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Abstract. Considerable effort in constraint programming has focused
on the development of efficient propagators for individual constraints. In
this paper, we consider the combined power of such propagators when
applied to collections of more than one constraint. In particular we iden-
tify classes of constraint problems where such propagators can decide the
existence of a solution on their own, without the need for any additional
search. Sporadic examples of such classes have previously been identi-
fied, including classes based on restricting the structure of the problem,
restricting the constraint types, and some hybrid examples. However,
there has previously been no unifying approach which characterises all
of these classes: structural, language-based and hybrid. In this paper we
develop such a unifying approach and embed all the known classes into a
common framework. We then use this framework to identify novel classes
of problems that can be solved by propagation alone.

1 Introduction

Constraint programming (CP) is widely used to solve a variety of practical prob-
lems such as planning and scheduling [34,43], and industrial configuration [1,33].
Much of the success of CP arises from to the use of special-purpose constraint
types known as global constraints.

Global constraints facilitate the declarative encoding of problems; they allow
the constraint programmer to express high-level knowledge about relationships
between variables [26, 41, 44]. A global constraint is rarely represented explic-
itly by listing all the assignments that satisfy it. Instead, such constraints are
usually represented implicitly by an algorithm in the solver that decides which
assignments the constraint should allow.

For many kinds of global constraints another algorithm is also provided that
prunes values from the domains of variables if they can be shown to be infeasible,
given the values currently available for other variables [5,42]. Such an algorithm
is known as a filtering algorithm, or propagator.

Considerable effort in constraint programming has focused on the develop-
ment of efficient propagators that can achieve various kinds of local consistency



for individual constraints. The strongest level of local consistency that can be es-
tablished for an individual constraint considered in isolation is when every value
in the domain of every variable is part of an allowed assignment that assigns each
variable of the constraint a value from its current domain. When this condition
holds the domains are said to satisfy the property of generalised arc-consistency
(GAC) for that constraint [5] (sometimes called domain consistency). An algo-
rithm that removes values from the domains of the variables of an individual
constraint to achieve this property is called a GAC propagator for that con-
straint. The close connection between GAC propagation and unit propagation
in SAT-solvers is explored in [2].

Many common global constraint types, including the standard AllDifferent
constraint [40], are known to have efficient GAC propagators. For an early survey
of global constraints see the Handbook of Constraint Programming [34], and for a
detailed description of many global constraints and associated GAC propagators
see the online Global Constraint Catalog [4].

However, the development of efficient GAC propagators for individual con-
straints does not shed much light on the effectiveness of such algorithms when
applied to multiple overlapping global constraints, which is a standard feature
of most practical constraint problems.

In this paper we will consider the combined effect of running GAC propaga-
tors on each of the constraints in problems with more than one constraint. In
particular, we will characterise constraint problems where using such propaga-
tors can efficiently decide whether or not a solution exists, without the need for
any additional processing or search. This property will be referred to as being
decided by GAC. The use of propagators is implemented by most existing solvers,
so any such solver will be able to determine whether any instance that is decided
by GAC has a solution or not, simply by using propagation.

We begin by surveying and characterizing the diverse classes of problems
that have previously been shown to be decided by GAC, and then give a unified
description that characterises all individual instances with this property. We
then show that this characterisation provides a simple alternative explanation
for each of the previously known classes.

However, we also show that we cannot expect to be able to efficiently recog-
nise all problem instances of a certain kind that are decided by GAC, by showing
that this problem is NP-hard for many kinds of problems. Finally, we give a di-
agram showing the relationships between the various classes.

If we can decide the existence of a solution using a certain algorithm, we
can often use a simple modification of this algorithm to actually find a solution
when one exists. For any class of CSP instances where we can add constant
constraints (which define assignments to individual variables), we can find a so-
lution by adding unary constant constraints on each variable in turn, restricting
it to a single value, and calling the decision algorithm each time [13]. Most of
the constraint problems we consider in this paper will allow arbitrary constant
constraints, and in these cases for any instance that is decided by GAC we can
use propagation repeatedly to find a solution when it exists.



One important application area for our results will be to find decompositions
of global constraints into combinations of smaller constraints [6]. If the instance
formed by the smaller constraints is decided by GAC, and retains this property
when we add an arbitrary unary constant constraint, then we can enforce GAC
on the original global constraint by adding unary constant constraints to each
variable in turn, restricting it to a single value, and enforcing GAC on the set
of smaller constraints each time.

Another application area is to identify sub-problems of a given problem that
can be solved efficiently, that can be used as targets for problem reduction or
pre-processing strategies [17]. We believe that the systematic identification of
the properties needed for GAC decidability that we give here will lead to novel
problem reduction and simplification strategies.

2 Constraints and propagators

Definition 1 (CSP instance). A CSP instance is a triple 〈V,D,C〉, where V
is a finite set of variables, D is a function which maps each element of V to a
finite set of possible values, called its domain, and C is a finite set of constraints.

Each constraint c ∈ C is a pair, 〈σ, ρ〉, where σ is a sequence of variables
from V , called the scope. The length of σ, denoted |σ|, is called the arity of c.
The relation, ρ, is a subset of D(σ[1])×· · ·×D(σ[r]), where r = |σ|, and defines
the allowed combinations of values for the list of variables in σ.

A solution to a CSP instance is a function which maps each variable to a
value from its domain in such a way that all constraints are satisfied.

CSP instances are abstract specifications of problems: they tell us what the
required properties of the instance are, but do not tell us how that instance
should be represented for processing by a constraint solver. As discussed in [11],
when the constraints in a family of problems have unbounded arity, the way that
the constraints are represented can significantly affect their complexity.

In this paper we will assume that the constraints in our instances are rep-
resented by pre-defined global constraints that impose the specified restrictions,
each with an associated GAC propagator that the solver can use to prune values
from the domains of the variables in the scope of that constraint.

A standard approach to processing a CSP instance, implemented in many
current solvers, is to run the GAC propagators on each constraint until no further
changes result. If doing this removes all possible values from the domain of at
least one variable, then we will say that this algorithm returns the answer “no”.
This outcome will be called “domain wipeout”. Any other outcome (i.e., at least
one remaining value in the domain of every variable) corresponds to returning
the answer “yes”.

Running this algorithm on any instance that has a solution will always re-
turn the value “yes”, but running it on instances with no solutions may also in
some cases return the value “yes”. Such cases will need additional processing to
determine whether a solution actually exists (such as some form of search).



We will say that an individual CSP instance is decided by GAC if running this
algorithm returns the answer “yes” if the instance has a solution, and returns
the answer “no” if it does not. This is captured by the following definition.

Definition 2. A CSP instance is decided by GAC if it has a solution, or else
repeatedly running GAC propagators on each of its separate constraints leads to
domain wipeout.

As the next examples illustrate, it can be challenging to distinguish between
instances where GAC decides and instances where it does not.

Example 1. A Latin square is an arrangement of the numbers 1 to n in an n×n
square grid in such a way that the numbers in each row are distinct and the
numbers in each column are distinct. The task of completing a Latin square
where some entries are already given and others are left blank is sometimes
referred to as the quasi-group completion problem [39] and has been used as a
benchmark problem for constraint programming.

It can be formulated as a constraint problem where we have n2 variables, some
with a single specified value, and others with domain values 1 to n, and AllDif-
ferent constraints on the rows and columns. Empirical studies of this formulation
have shown that in many cases, especially when n is small, GAC propagation
alone will decide whether a given instance of this problem has a solution without
the need for any further search [27]. However, this is not true in general, as this
problem is known to be NP-complete [16].
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Fig. 1. Two partial Latin squares with no solution

Two instances of such a problem are shown in Figure 1. All the empty squares
have two or more possible values that are distinct from the already-assigned
values in the same row and column. However, using the formulation above the
instance on the left is decided by GAC because the GAC propagators will remove
all of the remaining values from the domains of the variables. The instance on
the right is not decided by GAC as propagation removes no further values.

Example 2. Consider the CSP instance Itet which has variables {v1, v2, v3, v4}
each with domain {R,G,B} and four ternary AllDifferent constraints, with
scopes 〈v1, v2, v3〉 , 〈v1, v2, v4〉 , 〈v1, v3, v4〉 , 〈v2, v3, v4〉, and a unary constraint on
variable v4 that allows only the single value R.



This instance has no solution. Running a GAC propagator on the unary
constraint reduces the domain of v4 to the single value R. Then running a GAC
propagator on the constraint with scope 〈v2, v3, v4〉 will remove the value R from
the domains of v2 and v3. Then running a GAC propagator on the constraint
with scope 〈v1, v2, v3〉 will remove the values B and G from the domain of v1.
Finally, running a GAC propagator on the constraint with scope 〈v1, v2, v4〉 will
remove the value R from the domain of v1, causing a domain wipeout.

Hence Itet is decided by GAC.

The following example shows that removing a constraint from an instance will,
in some cases, stop GAC deciding that instance.

Example 3. Now consider the CSP instance I ′tet which has the same variables
and domains as the instance Itet in Example 3, but without the unary con-
straint. This instance again has no solution, but it is now generalised arc con-
sistent, so running a GAC propagator on each constraint has no effect.

Hence I ′tet is not decided by GAC.

3 Restricted classes decided by GAC

In this section we survey the classes already known to be decided by GAC.

3.1 Structural restrictions

The first kind of restriction that we consider is to limit the way that the con-
straints in a given instance share their variables, or, in other words, the way that
the constraint scopes overlap [14, 28, 31]. If every instance in a class defined by
a structural restriction is decided by GAC it means that we can apply arbitrary
constraints over the same scopes and the result will still be decided by GAC.

It is well-known that any binary CSP instance where the constraint scopes
form a tree is decided by GAC [24]. To obtain a simple generalisation of this
result to non-binary CSP instances we need to identify a suitable generalisation
of the notion of a tree.

One possible generalisation of the graph-theoretic notion of a tree that has
received a great deal of attention is the class of acyclic hypergraphs [3]. A hyper-
graph is a generalisation of the idea of a graph, where the edges can contain an
arbitrary number of vertices, rather than just two (the edges in such a structure
are sometimes referred to as hyperedges). A hypergraph is said to be acyclic
if repeatedly removing all hyperedges contained in other hyperedges, and all
vertices contained in only a single hyperedge, eventually deletes all vertices.

Another class of hypergraphs that has been considered in this context are
those with bounded tree-width [19].

Both acyclicity and bounded tree-width have proven very useful in the anal-
ysis of the computational complexity of many combinatorial search problems.
Indeed, many NP-hard problems become tractable if their structure is acyclic or
has bounded tree-width.



Solving a CSP instance whose constraints are represented extensionally (i.e.,
as table constraints) is known to be tractable if the hypergraph defined by the
constraint scopes is acyclic [32]. However, this is no longer true if the constraints
are represented implicitly, even when they have a fixed, finite domain [15].

Dalmau et al. [19], building on several earlier results [21, 25], showed that
the class of all CSP instances whose associated hypergraphs belong to some (re-
cursively enumerable) family with bounded tree-width is solvable in polynomial
time. This remains true even when the constraints are represented implicitly.

However, restricting the structure of CSP instances to be acyclic or to have
bounded tree-width does not ensure that they are decided by GAC. Moreover,
there are structural classes of CSP instances that are decided by GAC but do
not have bounded tree-width (for example, the class of instances containing a
single constraint of unbounded arity). Hence we need a different generalisation
of trees in order to be able to characterise the structural classes of CSP instances
that are decided by GAC.

Definition 3. A variable v is called an articulation point for a set of constraints
if those constraints can be partitioned into two non-empty sets whose scopes share
only the variable v.

A CSP instance is Berge-acyclic [3] if every variable is either an articulation
point or belongs to at most one constraint scope.

It is clearly the case that every binary CSP instance where the constraint
scopes form a tree, is Berge-acyclic. However, there is no requirement for a
Berge-acyclic instance to be connected, so any binary CSP instance where the
constraint scopes form a forest is also Berge-acyclic.

It has been noted by many authors that Freuder’s result about trees can be
extended to non-binary Berge-acyclic instances. Here we state a slightly stronger
result: these are the only structural classes which are decided by GAC.

Theorem 1. The following are equivalent:

– The CSP instance I is Berge-acyclic;
– Every CSP instance with the same constraint scopes as I is decided by GAC.

Proof. If I is Berge-acyclic, then the constraint scopes only overlap at articula-
tion points. Hence, after establishing GAC, if the domains are not empty, then
for each connected subset of constraints we can choose any constraint as the
root, choose any allowed tuple for that constraint, extend the assigned values to
allowed values for the children, and repeat until we reach the leaves. Hence I
has a solution, and so is decided by GAC.

If I is not Berge-acyclic, then there exists a sequence of two or more distinct
variables each shared by two or more constraint scopes where each successive
pair are contained in the scope of some constraint, and the first and last are also
in the scope of some constraint. So, choose variables x1, x2, . . . , xk and scopes
σi, 1 ≤ i ≤ k such that {xi, xi+1} ⊆ σi for i = 1, . . . , k−1 and {xk, x1} ⊆ σk. On
σ1 apply a constraint that requires xi 6= xi+1, and on all other such scopes σi
apply a constraint that requires xi = xi+1. If no further restrictions are imposed,
then the resulting instance is GAC but has no solution.



3.2 Language restrictions

The second kind of restriction that we consider is a restriction on the constraint
relations that can be specified for the constraints in a given instance, or, in other
words, the kinds of constraints we can use [8, 35].

It is convenient to refer to a set of relations over some fixed set D as a
constraint language, and to refer to a class of CSP instances where the constraint
relations of all constraints are elements of Γ as the class of CSP instances over
the language Γ .

Amongst the earliest such language restrictions to be identified were the so-
called min-closed and max-closed families of constraints [36]. These constraint
types generalise Horn clauses to larger domains, and also generalise the basic
arithmetic constraints provided in the CHIP programming language [36]. Any
class of CSP instances where the constraints are all max-closed or all min-closed
is decided by GAC [29]. This result generalises the well-known fact that unit
propagation decides all satisfiability problems over Horn clauses.

This class of constraints was further generalised to the class of all constraints
where the constraint relations are preserved by a so-called semi-lattice polymor-
phism [8]. Another generalisation has been described [20], to constraints where
the constraint relations are preserved by a set function. A set function on a set
D is a function from the non-empty subsets of D to D.

Definition 4. A relation ρ of arity r is said to be preserved by a set function f
if, for any non-empty subset {t1, t2, . . . , tk} of tuples from ρ, the tuple

〈f({t1[1], t2[1], . . . , tk[1]}), . . . , f({t1[r], t2[r], . . . , tk[r]})〉

is again an element of ρ. A language Γ is said to be preserved by a set function
if every relation in Γ is preserved by that set function.

Building on the work of [22], Dalmau and Pearson were able to show that any
CSP instance over a fixed domain where the constraint relations are preserved
by a set function is decided by GAC [20]. In fact they obtained the following
result, for which we include a short proof in our terminology, so that we can
extend this result below.

Theorem 2 ([20]). The following are equivalent:

– A constraint language Γ over a finite set D is preserved by a set function;
– Every CSP instance over Γ is decided by GAC.

Proof. Let Γ be a constraint language over a finite set D. We construct a canon-
ical CSP instance ID over Γ , as follows.

The variables of ID are the non-empty subsets of D. For each relation γ ∈ Γ ,
with arity r we impose the constraint 〈(A1, . . . , Ar), γ〉 (where the Ai are not
necessarily distinct), for all choices of (A1, . . . , Ar) that satisfy the following
condition: for every 1 ≤ i ≤ r and every ai ∈ Ai there exist elements aj in each
of the remaining Aj for which γ(a1, . . . , ar) holds. Observe that the solutions to
ID are precisely the set functions that preserve Γ .



Assume first that GAC decides every CSP instance over Γ , so GAC de-
cides ID. Restricting the domain of each variable Ai to be the set Ai gives a
sub-instance of ID with non-empty domains which is GAC. Hence, by our as-
sumption, ID has a solution and so, by the observation above, every relation in
Γ is preserved by the set function that corresponds to this solution.

Conversely suppose that not every instance over Γ is decided by GAC. In this
case there is some instance I over Γ with non-empty domains which is GAC but
has no solution. Let D′ be the mapping from the variables to their sub-domains
after enforcing GAC. By our construction of ID, the mapping which maps each
variable v of I to the variable D′(v) in ID gives a mapping from I to ID that
maps each constraint scope of I to a list of variables in ID that are constrained
in the same way. Hence ID is also not solvable, and so, by the observation above,
Γ is not preserved by any set function.

Note that if all the constraint relations in some CSP instance are preserved
by a set function then we can remove any constraint and still have this property.
However, as we have seen in Examples 2 and 3, not every instance that is decided
by GAC is still decided by GAC after removing a constraint. Hence not every
individual instance that is decided by GAC will have all its constraint relations
preserved by some set function; rather, as Theorem 2 indicates, this will only be
the case for those instances where all other instances over the same constraint
language are also decided by GAC, which is quite a strong requirement.

3.3 Hybrid restrictions

The third kind of restriction that we consider is restriction on both the scopes
and the constraint relations that can be specified for the constraints in a given
instance [12,18,37].

Amongst the earliest such hybrid restrictions to be identified were the so-
called triangulated CSP instances described in [12]. These instances contain only
binary constraints, so for any instance 〈V,D,C〉 there is an associated graph
with set of vertices V ×D, and edges between each pair of distinct values for the
same variable, and each pair of values for distinct variables that is forbidden by a
constraint. Such a graph is called the microstucture complement of the instance.
It is known [12] that any instance where this graph is triangulated is decided by
GAC. It has also been shown that the class of all such instances is not defined
by any structural restriction, nor by any language restriction.

More recently, another hybrid restriction defining a class of binary CSP in-
stances that are decided by GAC has been identified [18]. These are the instances
satisfying the so-called broken-triangle property.

Definition 5. A binary CSP instance satisfies the broken-triangle property
(BTP) with respect to the variable ordering <, if there is at most one con-
straint on each pair of variables, and for all triples of variables vi, vj , vk such
that vi < vj < vk, if

– the pair of values 〈a, b〉 is allowed on the variables 〈vi, vj〉; and



– the pair of values 〈a, c〉 is allowed on the variables 〈vi, vk〉; and
– the pair of values 〈b, d〉 is allowed on the variables 〈vj , vk〉;

then either

– the pair of values 〈a, d〉 is allowed on the variables 〈vi, vk〉; or
– the pair of values 〈b, c〉 is allowed on the variables 〈vj , vk〉.

CSP instances satisfying the BTP (or its various extensions [17]) are the only
known examples of classes of instances decided by GAC which are not closed
under the action of removing a constraint, as the next example illustrates.

Example 4. Consider a CSP instance I with variables v1, v2, v3, v4 each with
domain {0, 1, 2} and constraints v1 < v2, v2 < v3, v3 < v4, and v1 ≥ v4, together
with an additional constraint on v1 and v3 that allows only the combinations
{(2, 0), (2, 1), (2, 2), (1, 2)}.

This instance satisfies the BTP, and so is decided by GAC. However, if we
remove the constraint on v1 and v3 to obtain a reduced instance I ′ it no longer
satisfies the BTP (consider the triple of variables v1, v3, v4). On the other hand,
the reduced instance I ′ is now max-closed, so is still decided by GAC.

4 A characterisation of instances decided by GAC

To unify the earlier results and obtain more fine-grained results that characterise
all individual instances decided by GAC, we need to consider both the struc-
ture of the instance (defined by the constraint scopes) and the language of the
instance (defined by the constraint relations). To do this we will treat each con-
straint 〈σ, ρ〉 as a “labelled relation” where each component of the relation ρ is
labelled by the corresponding entry (variable) in the scope σ. We then consider
what other instances can be formed using these labelled relations. We allow the
constraints in these new instances to share a variable only when they share the
same label for the corresponding component. (Note that this approach is very
similar to the machinery developed in [9] for multi-sorted constraint relations.)

Definition 6. Given any CSP instance I = 〈V,D,C〉, we say that an instance
I ′ = 〈V ′, D′, C ′〉 is an instance over the same labelled language as I, if there
is a mapping λ from V ′ to V , called a labelling, such that for every constraint
c′ = 〈(v′1, . . . , v′r), ρ′〉 ∈ C ′, the constraint 〈(λ(v′1), . . . , λ(v′r)), ρ

′〉 is an element
of C and for all v′ ∈ V ′, the domain D′(v′) = D(λ(v′)) .

Lemma 1. The following are equivalent:

– Applying GAC propagators to the CSP instance I leads to domain wipeout;
– There is some Berge-acyclic instance over the same labelled language as I

which has no solution.

Proof. Let I = 〈V,D,C〉 be a CSP instance, and let GAC(c, v, d) mean that a
GAC propagator applied to constraint c ∈ C deletes value d ∈ D(v) from the
domain of v ∈ V .



First, suppose that GAC applied to the instance I leads to domain wipeout
at v. We must have a sequence: GAC(c1, v1, d1), . . . ,GAC(cm, vm, dm) in which
every value originally in the domain of v = vm is deleted at some point.

Now we use this sequence to inductively build a Berge-acyclic instance over
the same labelled language as I which will have no solution.

We begin the construction with an empty instance. Assume that for each j <
k we have constructed a Berge-acyclic instance for GAC(cj , vj , dj). We can then
build the instance for GAC(ck, vk, dk) as follows. Let ck = 〈σk, ρk〉, where σk =
(vi1 , . . . , vir ). Create variables vki1 , . . . , v

k
ir

with labels vi1 , . . . , vir and add the

constraint 〈(vki1 , . . . , v
k
ir

), ρk〉. Now, for each j < k and each GAC(cj , vj , dj) where
vj ∈ σ(k) we add (a separate copy of) the Berge-acyclic instance constructed for

GAC(cj , vj , dj) and identify the variables vjj and vkj .

All the variables that we identify during this construction are articulation
points, so the resulting instance is Berge-acyclic. Moreover, since every constraint
has the same relation as some constraint in C, and constraint scopes only overlap
when the variables have the same label, the constructed instance is over the same
labelled language as the original instance.

To see that it has no solution, it is enough to observe that at stage k a
variable vk cannot take any value d for which there is some i ≤ k and deletion
GAC(ci, vi, di) where vi = v and di = d. hence, by our assumption about the
sequence of GAC applications, there are no possible values for the variable vm
at stage m.

Conversely, suppose that some Berge-acyclic instance T = 〈V ′, D′, C ′〉 over
the same labelled language as I has no solution. Since Berge-acyclic instances
are decided by GAC, by Theorem 1, we know that applying GAC propagators
to the constraints of T in some order removes all values from some domain.

Since T is Berge-acyclic, the constraints of T can be arranged in a forest
whose edges correspond to the articulation points. Choose the tree in this forest
where the domain wipeout occurs, and choose the constraint whose propagator
removes the final value from the domain as the root. Order the constraints so
that each parent occurs after all of its descendants (i.e., choose a post-order on
the tree). Now we know that applying GAC propagators to the constraints in T
along this post-order from each leaf to the root leads to domain wipeout at the
root.

Hence we have a sequence: GAC(c′1, v
′
1, d1), . . . ,GAC(c′m, v

′
m, dm) for T , in

which every value originally in the domain of v′m is deleted at some point. By
Definition 6, each variable v′i in this sequence corresponds to a variable λ(v′i) in
the original instance I, and each constraint c′i corresponds to a constraint in the
original instance I, which we will call λ(c′i). If we apply the GAC propagators
to each of the corresponding constraints λ(c′i) of I in the same order, we claim
that after each application the domain of λ(v′i) will be a subset of the domain
of v′i at the same point in the process.

We will establish this claim by induction. It is clearly true at the start of
the process because both variables start with the same domain, by Definition 6.
Suppose that it is true for the first (k − 1) applications in the sequence. Con-



sider the next application of the GAC propagator, to c′k. By our hypothesis, the
domains of all variables in I corresponding to children of c′k in T are subsets
of the domains of the corresponding variables in T . Hence applying the GAC
propagator on constraint λ(c′k) removes at least as many values from the domain
of λ(v′k) as its analogue removes from v′k, so the claim follows by induction.

It follows that this sequence of applications of GAC propagators to the con-
straints in I leads to domain wipeout at λ(v′m), which proves the result.

Theorem 3. The following are equivalent:

– An instance I is decided by GAC;
– I has a solution if and only if every Berge-acyclic instance over the same

labelled language as I has a solution;

Proof. First, suppose that the CSP instance I is decided by GAC.
If I has a solution, say s, then we can use s to solve any Berge-acyclic instance

T over the same labelled language as I. Simply choose the value of each variable
in T to be s(λ(v)).

If I has no solution, since GAC decides I we know that GAC leads to domain
wipeout and we can appeal to Lemma 1 to obtain a Berge-acyclic instance over
the same labelled language as I which has no solution.

Conversely, suppose that I satisfies the second condition in the statement.
If I has a solution then GAC decides, since GAC preserves solutions. On the
other hand, if I has no solution then, by our assumption, some Berge-acyclic
instance T over the same labelled language as I has no solution, and again we
can appeal to Lemma 1 to show that applying GAC propagators to I leads to
domain wipeout.

A similar property was identified in [22], where it is referred to as “tree
duality”, but it was only defined for classes of instances over a fixed constraint
language (and was expressed rather more abstractly, in terms of Datalog and
algebraic conditions).

Theorem 3 does not bound the size of the Berge-acyclic instances that need
to be considered. However, examining the proof of Lemma 1, we can see that
the only Berge-acyclic instances we need to consider correspond to sequences of
domain reductions caused by GAC propagators. Since the maximum number of
domain reductions that can occur in a CSP instance 〈V,D,C〉 is

∑
v∈V |D(v)|,

it follows that it is sufficient to consider only Berge-acyclic instances of depth at
most

∑
v∈V |D(v)|.

In fact, for any CSP instance I we can identify a single “universal” Berge-
acyclic instance IB over the same labelled language as I (see Algorithm 1).

Corollary 1. The following are equivalent:

– An instance I is decided by GAC;
– I has a solution if and only if IB has a solution.

It follows that the second property holds for all of the classes decided by GAC
that we have described in earlier sections. For Berge-acyclic instances this follows
immediately by the following observation.



Algorithm 1 Building IB = 〈V ′, D′, C ′〉 from instance I = 〈V,D,C〉
Set V ′ = ∅; C′ = ∅
for all connected components K ⊆ C do

Call MakeTree(v,−, 1) for some v that occurs in the scopes of K
end for
Set D′ so that D′(v′) = D(v) for all v′ ∈ V , where v is the label of v′

function MakeTree(v, con, depth)
Add a new variable v′ to V ′ with label v
if depth ≤

∑
v∈V |D(v)| then

for all constraints c = 〈σ, ρ〉 of I except con do
if v occurs in σ then

for all vi ∈ σ except v do
v′i = MakeTree(vi, c, depth+ 1)

end for
Add a constraint on v′ and all the v′i, with relation ρ, to C′

end if
end for

end if
return v′

end function

Observation 1 If I is Berge-acyclic, then IB = I.

Theorem 3 also gives an alternative, more illuminating, proof that every instance
whose language is preserved by a set function is decided by GAC.

Proposition 1. Any instance I whose constraint relations are preserved by a
set function has a solution if and only if every Berge-acyclic instance over the
same labelled language as I has a solution;

Proof. Let ΓI be the set of constraint relations of an instance I, and assume
that ΓI is preserved by a set function.

If I has a solution s, then every Berge-acyclic instance over the same labelled
language as I has a solution, given by applying s to the label of each variable.

Conversely, assume that every Berge-acyclic instance over the same labelled
language as I has a solution. In this case, by Lemma 1, establishing GAC on I
cannot lead to domain wipeout. Hence, after establishing GAC, every variable
of I has a non-empty domain. Now apply the set function to these domains and
we get a value at each variable that satisfies all the constraints, and hence a
solution to I.

Another simple consequence of Theorem 3 is that whenever an instance I can
be shown to have a solution just by showing that some particular Berge-acyclic
instance over the same labelled language has a solution, then I is decided by
GAC.

We will now show that for any instance I that satisfies the BTP (Definition 5),
I has a solution if a particular Berge-acyclic instance over the same labelled



language, which we will call IordB , has a solution. By the observation just made,
this will be enough to show that any instance satisfying the BTP is decided by
GAC.

To obtain IordB we take into account the ordering on the variables along which
they satisfy the BTP, and we replace the “occurs” check in Algorithm 1 by a
test to check whether v is the earliest variable in the relevant scopes according
to this ordering. For instances I that are not Berge-acyclic, the instance IordB

can be much smaller than IB , as the following example illustrates.

Example 5. The scopes of the instance Itet described in Example 3 are shown
in Figure 2, along with the scopes of the corresponding instance IordB for the
ordering v1 < v2 < v3 < v4.

v1 v2 

v3 v4 

v’3 

v’1 

v’4 
v’2 

v’3 v’4 

v’3 

v’2 v’4 

v’4 

Fig. 2. The instance I described in Example 3 and the corresponding instance IordB

Theorem 4. A BTP instance I has a solution if IordB has a solution.

Proof. Let I be a binary CSP instance that satisfies the BTP with respect to
the variable ordering v1 < v2 < · · · < vn, and assume that IordB has a solution.
We will prove by induction on the number of variables in I that I has a solution.

The inductive hypothesis is that, for every instance I with at most k variables,
if I satisfies the BTP, and there is a solution s to IordB , then there is a solution
sλ to IordB , that assigns values to variables dependent only on their label. The
solution sλ will clearly induce a solution on I.

We begin the induction by observing that the result is trivially true for
instances satisfying the BTP which have at most two variables, since they can
have at most one constraint, so the instances I and IordB are identical.

For larger instances, let I ′ be the instance obtained from I by removing
variable vn and all constraints involving variable vn. It follows directly from the
definition of the BTP (Definition 5) that I ′ also satisfies the BTP.

The solution s to IordB , restricted to variables with labels v1, v2, . . . , vn−1,
gives a solution s′ to I ′ordB . Hence, by our inductive hypothesis, we can assume
that the value of s′ only depends on the label of its argument.

By construction, each variable with label vn in IordB is constrained by just one
constraint. Assigning all variables with earlier labels according to s′ restricts the



domain of each of these variables with label vn to some subset of their domain. It
was shown in [18, Lemma 2.3] that these subsets are totally ordered by inclusion.
Moreover, since IordB has a solution, none of them are empty. Hence they all have
a common element, which can be used to extend s′ to a solution s′′ for IordB

where the value assigned to each variable depends only on that variable’s label.

Corollary 2. Every BTP instance is decided by GAC.

A generalisation of the notion of BTP to non-binary constraints is described
in [17] and referred to as the DGABTP. The proof of Theorem 4 can be extended
to this more general class, which shows that it is also decided by GAC. Hence
this more general class is tractable when the constraints are represented by GAC
propagators, which extends the claims made in [17]. As this is a new result we
present it as a theorem.

Theorem 5. Every instance in the class DGABTP [17] is decided by GAC and
hence is tractable when constraints are represented by GAC propagators.

5 The complexity of identifying classes decided by GAC

We describe a class of CSP instances as NP-hard if it is NP-hard to decide
whether a given instance has a solution.

Theorem 6. Let Φ be an NP-hard class of CSP instances, where each constraint
has a polynomial-time GAC propagator. It is NP-hard to determine whether a
given instance from Φ is decided by GAC.

Proof. We will show that deciding whether an instance I of Φ has a solution
can be reduced, in polynomial time, to the problem of determining whether it is
decided by GAC, and hence is NP-hard.

Assume we have an algorithm to determine whether I is decided by GAC.

If this algorithm return “no” for instance I, then I has no solution, since all
instances with a solution are decided by GAC.

Otherwise the algorithm returns “yes” and I is decided by GAC. We can
establish GAC in polynomial time by running each of the propagators on the
constraints until no further changes result. If there is a domain wipeout we can
conclude that I has no solution, otherwise we conclude that I has a solution.

The restricted case of 2-valued CSP instances includes the 3-SAT problem, which
has polynomial-time GAC propagators but is NP-hard. Hence Theorem 6 can be
applied to the class of 2-valued instances. An exactly analogous argument using
the 3-colouring problem shows that it also applies to binary CSP instances.

However, for all of the specific sub-classes decided by GAC described earlier,
membership can be determined in polynomial time. The inclusion relationships
between these classes are shown in Figure 3; shading indicates that instances in
the class are tractable, and a dashed border indicates that membership in a class
is NP-hard to determine. Note that all instances with a tree structure satisfy
the BTP [18].
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Fig. 3. The relationships between the classes of CSP instances discussed in this paper

6 Summary and related work

We have described a new characterisation for the class of CSP instances which are
decided by establishing generalised arc-consistency. Our results unify and gen-
eralize several previously studied classes of problems, including tree-structured
problems [24], problems with max-closed constraints [36], problems where the
constraints are preserved by a set function [20], and problems with the broken-
triangle property [18].

There has been a long series of earlier papers attempting to identify tractable
constraint problems [8,14,28,31,38]. However, much of this previous theoretical
work has assumed (often tacitly) that the constraints are represented explicitly,
by a table of allowed assignments, and so can be modified and combined effi-
ciently. Hence very few of these earlier theoretical results are directly applicable
to overlapping constraints represented by propagators. This may be one reason
why such work has had little practical impact on the design of constraint solvers.

Exceptions include the pioneering work of Bulatov and Marx [10], the struc-
tural classes explored in [30], some work on overlapping AllDifferent constraints [7,
23], and our earlier work on global constraints with a high degree of symme-
try [15].

We see this paper as another step in the development of a more robust and
applicable theory of complexity for realistic constraint problems which involve
overlapping global constraints represented by propagators.
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