
Fast Distributed Algorithms for Connectivity and MST in
Large Graphs

Gopal Pandurangan
∗

Dept. of Computer Science
University of Houston

gopalpandurangan@gmail.com

Peter Robinson
Royal Holloway

University of London
peter.robinson@rhul.ac.uk

Michele Scquizzato
Dept. of Computer Science

University of Houston
michele@cs.uh.edu

ABSTRACT
Motivated by the increasing need to understand the algorith-
mic foundations of distributed large-scale graph computa-
tions, we study a number of fundamental graph problems in
a message-passing model for distributed computing where
k ≥ 2 machines jointly perform computations on graphs with
n nodes (typically, n� k). The input graph is assumed to
be initially randomly partitioned among the k machines, a
common implementation in many real-world systems. Com-
munication is point-to-point, and the goal is to minimize the
number of communication rounds of the computation.

Our main result is an (almost) optimal distributed ran-
domized algorithm for graph connectivity. Our algorithm
runs in Õ(n/k2) rounds (Õ notation hides a polylog(n) fac-
tor and an additive polylog(n) term). This improves over

the best previously known bound of Õ(n/k) [Klauck et al.,
SODA 2015], and is optimal (up to a polylogarithmic fac-

tor) in view of an existing lower bound of Ω̃(n/k2). Our
improved algorithm uses a bunch of techniques, including
linear graph sketching, that prove useful in the design of
efficient distributed graph algorithms. We then present fast
randomized algorithms for computing minimum spanning
trees, (approximate) min-cuts, and for many graph verifica-

tion problems. All these algorithms take Õ(n/k2) rounds,
and are optimal up to polylogarithmic factors. We also show
an almost matching lower bound of Ω̃(n/k2) for many graph
verification problems using lower bounds in random-partition
communication complexity.

Keywords
Distributed graph algorithms; massive graphs; graph sketch-
ing; graph connectivity; minimum spanning trees

∗Supported, in part, by US-Israel Binational Science Foun-
dation grant 2008348, NSF grant CCF-1527867, and NSF
grant CCF-1540512.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SPAA ’16, July 11 - 13, 2016, Pacific Grove, CA, USA
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4210-0/16/07. . . $15.00

DOI: http://dx.doi.org/10.1145/2935764.2935785

1. INTRODUCTION
The focus of this paper is on distributed computation on

large-scale graphs, which is increasingly becoming important
with the rise of massive graphs such as the Web graph, social
networks, biological networks, and other graph-structured
data and the consequent need for fast algorithms to process
such graphs. Several large-scale graph processing systems
such as Pregel [27] and Giraph [1] have been recently de-
signed based on the message-passing distributed computing
model [26, 34]. We study a number of fundamental graph
problems in a model which abstracts the essence of these
graph-processing systems, and present almost tight bounds
on the time complexity needed to solve these problems. In
this model, introduced in [19] and explained in detail in
Section 1.1, the input graph is distributed across a group
of k ≥ 2 machines that are pairwise interconnected via a
communication network. The k machines jointly perform
computations on an arbitrary n-vertex input graph, where
typically n� k. The input graph is assumed to be initially
randomly partitioned among the k machines (a common
implementation in many real world graph processing sys-
tems [27, 36]). Communication is point-to-point via message
passing. The computation advances in synchronous rounds,
and there is a constraint on the amount of data that can
cross each link of the network in each round. The goal is
to minimize the time complexity, i.e., the number of rounds
required by the computation. This model is aimed at in-
vestigating the amount of “speed-up” possible vis-a-vis the
number of available machines, in the following sense: when
k machines are used, how does the time complexity scale in
k? Which problems admit linear scaling? Is it possible to
achieve super-linear scaling?

[19] presents lower and upper bounds for several funda-
mental graph problems in the k-machine model. In partic-
ular, for the graph connectivity problem it shows a lower
bound of Ω̃(n/k2) rounds.1 It also presents an Õ(n/k)-round
algorithm for graph connectivity and spanning tree (ST) ver-
ification. This algorithm thus exhibits a scaling linear in
the number of machines k. The question of existence of a
faster algorithm, and in particular of an algorithm match-
ing the Ω̃(n/k2) lower bound, was left open in [19]. In this
paper we answer this question affirmatively by presenting
an Õ(n/k2)-round algorithm for graph connectivity, thus
achieving a speedup quadratic in k. This is optimal up to
polylogarithmic (in n) factors.

1Throughout this paper Õ(f(n)) denotes O(f(n) polylogn+

polylogn), and Ω̃(f(n)) denotes Ω(f(n)/polylogn).

http://dx.doi.org/10.1145/2935764.2935785

This result is important for two reasons. First, it shows
that there are non-trivial graph problems for which we can
obtain superlinear (in k) speed-up. To elaborate further on
this point, we shall take a closer look at the proof of the
lower bound for connectivity shown in [19]. Using commu-
nication complexity techniques, that proof shows that any
(possibly randomized) algorithm for the graph connectivity

problem has to exchange Ω̃(n) bits of information across
the k machines, for any k ≥ 2. Since there are k(k − 1)/2
links in a complete network with k machines, when each link
can carry O(polylog(n)) bits per round, in each single round

the network can deliver at most Θ̃(k2) bits of information,

and thus a lower bound of Ω̃(n/k2) rounds follows. The
connectivity algorithm of this paper thus shows that the
optimal speed-up factor of Θ(k2) is attainable. Second, this
implies that many other important graph problems can be
solved in Õ(n/k2) rounds as well. These include computing a
spanning tree, minimum spanning tree (MST), approximate
min-cut, and many verification problems such as spanning
connected subgraph, cycle containment, and bipartiteness.

It is important to note that under a different output re-
quirement (explained next) there exists a Ω̃(n/k)-round lower
bound for computing a spanning tree of a graph [19], which
also implies the same lower bound for other fundamental
problems such as computing an MST, breadth-first tree, and
shortest paths tree. However, this lower bound holds under
the requirement that each vertex (i.e., the machine which
hosts the vertex) must know at the end of the computation
the “status” of all of its incident edges, that is, whether they
belong to a ST or not, and output their respective status.
(This is the output criterion that is usually required in dis-
tributed algorithms [26, 34].) The proof of the lower bound
exploits this criterion to show that any algorithm will re-
quire some machine receiving Ω(n) bits of information, and
since any machine has k − 1 incident links, this results in
a Ω̃(n/k) lower bound. On the other hand, if we relax the
output criterion to require the final status of each edge to
be known by some machine (different machines might know
the status of different edges), then we show that this can be

accomplished in Õ(n/k2) rounds using the fast connectivity
algorithm of this paper.

1.1 The Model
We now describe the adopted model of distributed com-

putation, the k-machine model (a.k.a. the Big Data model),
introduced in [19] and further investigated in [9, 35, 33]. The
model consists of a set of k ≥ 2 machinesN = {M1,M2, . . . ,Mk}
that are pairwise interconnected by bidirectional point-to-
point communication links. Each machine executes an in-
stance of a distributed algorithm. The computation advances
in synchronous rounds where, in each round, machines can ex-
change messages over their communication links and perform
some local computation. Each link is assumed to have a band-
width of O(polylog(n)) bits per round, i.e., O(polylog(n))
bits can be transmitted over each link in each round. (As dis-
cussed in [19] (cf. Theorem 4.1), it is easy to rewrite bounds
to scale in terms of the actual inter-machine bandwidth.)
Machines do not share any memory and have no other means
of communication. There is an alternate (but equivalent) way
to view this communication restriction: instead of putting a
bandwidth restriction on the links, we can put a restriction
on the amount of information that each machine can commu-
nicate (i.e., send/receive) in each round. The results that we

obtain in the bandwidth-restricted model will also apply to
the latter model [19]. Local computation within a machine
is considered to happen instantaneously at zero cost, while
the exchange of messages between machines is the costly
operation. (However, we note that in all the algorithms of
this paper, every machine in every round performs a compu-
tation bounded by a polynomial in n.) We assume that each
machine has access to a private source of true random bits.

Although the k-machine model is a fairly general model
of computation, we are mostly interested in studying graph
problems in it. Specifically, we are given an input graph G
with n vertices, each associated with a unique integer ID
from [n], and m edges. To avoid trivialities, we will assume
that n ≥ k (typically, n� k). Initially, the entire graph G
is not known by any single machine, but rather partitioned
among the k machines in a “balanced” fashion, i.e., the nodes
and/or edges of G are partitioned approximately evenly
among the machines. We assume a vertex-partition model,
whereby vertices, along with information of their incident
edges, are partitioned across machines. Specifically, the type
of partition that we will assume throughout is the random
vertex partition (RVP), that is, each vertex of the input
graph is assigned randomly to one machine. (This is the
typical way used by many real systems, such as Pregel [27],
to partition the input graph among the machines; it is easy to
accomplish, e.g., via hashing.2) However, we notice that our
upper bounds also hold under the much weaker assumption
whereby it is only required that nodes and edges of the
input graph are partitioned approximately evenly among
the machines; on the other hand, lower bounds under RVP
clearly apply to worst-case partitions as well.

More formally, in the random vertex partition variant,
each vertex of G is assigned independently and uniformly at
random to one of the k machines. If a vertex v is assigned to
machine Mi we say that Mi is the home machine of v and,
with a slight abuse of notation, write v ∈Mi. When a vertex
is assigned to a machine, all its incident edges are assigned
to that machine as well; i.e., the home machine will know
the IDs of the neighbors of that vertex as well as the identity
of the home machines of the neighboring vertices (and the
weights of the corresponding edges in case G is weighted).
Note that an immediate property of the RVP model is that
the number of vertices at each machine is balanced, i.e., each
machine is the home machine of Θ̃(n/k) vertices with high
probability. A convenient way to implement the RVP model
is through hashing: each vertex (ID) is hashed to one of the
k machines. Hence, if a machine knows a vertex ID, it also
knows where it is hashed to.

Eventually, each machine Mi, for each 1 ≤ i ≤ k, must
set a designated local output variable oi (which need not
depend on the set of vertices assigned to Mi), and the output
configuration o = 〈o1, . . . , ok〉 must satisfy certain feasibility
conditions for the problem at hand. For example, for the
minimum spanning tree problem each oi corresponds to a set
of edges, and the edges in the union of such sets must form an
MST of the input graph. The time complexity of an algorithm
is the maximum number of rounds until termination.

2In Section 1.3 we will discuss an alternate partitioning
model, the random edge partition (REP) model, where each
edge of G is assigned independently and randomly to one
of the k machines, and show how the results in the random
vertex partition model can be related to the random edge
partition model.

1.2 Our Contributions and Techniques
The main result of this paper, presented in Section 2, is a

randomized Monte Carlo algorithm in the k-machine model
that determines the connected components of an undirected
graph G correctly with high probability and that terminates
in Õ(n/k2) rounds.3 This improves upon the previous best

bound of Õ(n/k) [19], since it is strictly superior in the
wide range of parameter k = Θ(nε), for all constants ε ∈
(0, 1). Improving over this bound is non-trivial since various
attempts to get a faster connectivity algorithm fail due to
the fact that they end up congesting a particular machine
too much, i.e., up to n bits may need to be sent/received by a

machine, leading to a Õ(n/k) bound (as a machine has only
k−1 links). For example, a simple algorithm for connectivity
is simply flooding: each vertex floods the lowest labeled
vertex that it has seen so far; at the end each vertex will
have the label of the lowest labeled vertex in its component.4

It can be shown that the above algorithm takes Θ(n/k +D)
rounds (where D is the graph diameter) in the k-machine
model by using the Conversion Theorem of [19]. Hence new
techniques are needed to break the n/k-round barrier.

Our connectivity algorithm is the result of the application
of the following three techniques.

1. Randomized Proxy Computation. This technique, sim-
ilar to known techniques used in randomized routing algo-
rithms [39], is used to load-balance congestion at any given
machine by redistributing it evenly across the k machines.
This is achieved, roughly speaking, by re-assigning the exe-
cutions of individual nodes uniformly at random among the
machines. It is crucial to distribute the computation and
communication across machines to avoid congestion at any
particular machine. In fact, this allows one to move away
from the communication pattern imposed by the topology of
the input graph (which can cause congestion at a particular
machine) to a more balanced communication.

2. Distributed Random Ranking (DRR). DRR [8] is a simple
technique that will be used to build trees of low height in
the connectivity algorithm. Our connectivity algorithm is
divided into phases, in each of which we do the following:
each current component (in the first phase, each vertex is
a component by itself) chooses one outgoing edge and then
components are combined by merging them along outgoing
edges. If done naively, this may result in a long chain of
merges, resulting in a component tree of high diameter;
communication along this tree will then take a long time.
To avoid this we resort to DRR, which suitably reduces the
number of merges. With DRR, each component chooses a
random rank, which is simply a random number, say in the
interval [1, n3]; a component (say C1) will merge with the
component on the other side of its selected outgoing edge
(say C2) if and only if the rank of C2 is larger than the rank
of C1. If the rank of C1 is higher, then C1 does not merge
with C2 and thus it becomes the root of a DRR tree, which is
a tree induced by the components and the set of the outgoing
edges that have been used in the above merging procedure.

3Since the focus is on the scaling of the time complexity
with respect to k, we omit explicitly stating the polylogarith-
mic factors in our run time bounds. However, the hidden
polylogarithmic factor is not large—at most O(log3 n).
4This algorithm has been implemented in a variant of Gi-
raph [38].

We will show that the height of a DRR tree is bounded by
O(logn) with high probability.

3. Linear Graph Sketching. Linear graph sketching [2, 3,
28] is crucially helpful in efficiently finding an outgoing edge
of a component. A sketch for a vertex (or a component) is a
short (O(polylogn)) bit vector that efficiently encodes the
adjacency list of the vertex. Sampling from this sketch gives
a random (outgoing) edge of this vertex (component). A very
useful property is the linearity of the sketches: adding the
sketches of a set of vertices gives the sketch of the component
obtained by combining the vertices; the edges between the
vertices (i.e., the intra-component edges) are automatically
“cancelled”, leaving only a sketch of the outgoing edges. Lin-
ear graph sketches were originally used to process dynamic
graphs in the (semi-) streaming model [2, 3, 28]. Here, in
a distributed setting, we use them to reduce the amount of
communication needed to find an outgoing edge; in particular,
graph sketches will avoid us from checking whether an edge
is an inter-component or an intra-component edge, and this
will crucially reduce communication across machines. We
note that earlier distributed algorithms such as the classical
GHS algorithm [14] for the MST problem would incur too
much communication since they involve checking the status
of each edge of the graph.

We observe that it does not seem straightforward to ef-
fectively exploit these techniques in the k-machine model:
for example, linear sketches can be easily applied in the
distributed streaming model by sending to a coordinator ma-
chine the sketches of the partial stream, which then will be
added to obtain the sketch of the entire stream. Mimicking
this trivial strategy in the k-machine model model would
cause too much congestion at one node, leading to a Õ(n/k)
time bound.

Using the above techniques and the fast connectivity algo-
rithm, in Section 3 we give algorithms for many other impor-
tant graph problems. In particular, we present a Õ(n/k2)-
round algorithm for computing an MST (and hence an ST).

We also present Õ(n/k2)-round algorithms for approximate
min-cut, and for many graph verification problems includ-
ing spanning connected subgraph, cycle containment, and
bipartiteness. All these algorithms are optimal up to a poly-
logarithmic factor. In Section 4 we show a lower bound of
Ω̃(n/k2) rounds for many verification problems by simulating
the k-machine model in a 2-party model of communication
complexity where the inputs are randomly assigned to the
players. This simulation has to be done in a careful man-
ner since the k-machine model is synchronous, whereas the
communication complexity model is asynchronous.

1.3 Related Work and Comparison
The theoretical study of large-scale graph computations

in distributed systems is relatively new. Several works have
been devoted to developing MapReduce graph algorithms
(see, e.g., [18, 21, 24] and references therein). We note
that the flavor of the theory developed for MapReduce is
quite different compared to the one for the k-machine model.
Minimizing communication is also the key goal in MapReduce
algorithms; however this is usually achieved by making sure
that the data is made small enough quickly (that is, in a
small number of MapReduce rounds) to fit into the memory
of a single machine (see, e.g., the MapReduce algorithm for
MST in [21]).

For a comparison of the k-machine model (a.k.a Big Data

model) with other parallel and distributed models proposed
for large-scale data processing, including Bulk-Synchronous
Parallel (BSP) model [40], MapReduce [18], and the con-
gested clique, we refer to [41]. In particular, according to [41],
“Among all models with restricted communication the “big
data”[k-machine] model is the one most similar to the MapRe-
duce model”.

The k-machine model is closely related to the BSP model;
it can be considered to be a simplified version of BSP, where
local computation is ignored and synchronization happens at
the end of every round (the synchronization cost is ignored).
Unlike the BSP and refinements thereof, which have several
different parameters that make analysis of algorithms com-
plicated [41], the k-machine model is characterized by just
one parameter, the number of machines, and this might ease
the job of designing and analyzing algorithms.

The k-machine model is related to the classical CONGEST
model [34], and in particular to the congested clique model,
which recently has received considerable attention (see, e.g.,
[25, 23, 22, 12, 30, 7, 15]). The main difference is that
the k-machine model is aimed at the study of large-scale
computations, where the size n of the input is significantly
bigger than the number of available machines k, and thus
many vertices of the input graph are mapped to the same
machine, whereas the two aforementioned models are aimed
at the study of distributed network algorithms, where n = k
and thus each vertex corresponds to a dedicated machine.
More “local knowledge” is available per vertex (since it can
access for free information about other vertices in the same
machine) in the k-machine model compared to the other
two models. On the other hand, all vertices assigned to a
machine have to communicate through the links incident
on this machine, which can limit the bandwidth (unlike
the other two models where each vertex has a dedicated
processor). These differences manifest in the time complexity.
In particular, the fastest known distributed algorithm in the
congested clique model for a given problem may not give
rise to the fastest algorithm in the k-machine model. For
example, the fastest algorithms for MST in the congested
clique model ([25, 15]) require Θ(n2) messages; implementing
these algorithms in the k-machine model requires Θ(n2/k2)
rounds. Conversely, the slower GHS algorithm [14] gives

an Õ(n/k) bound in the k-machine model. The recently
developed techniques (see, e.g., [11, 31, 13, 15, 12]) used to
prove time lower bounds in the standard CONGEST model
and in the congested clique model are not directly applicable
here.

The work closest in spirit to ours is the recent work of
Woodruff and Zhang [42]. This paper considers a number of
basic statistical and graph problems in a distributed message-
passing model similar to the k-machine model. However,
there are some important differences. First, their model is
asynchronous, and the cost function is the communication
complexity, which refers to the total number of bits exchanged
by the machines during the computation. Second, a worst-
case distribution of the input is assumed, while we assume a
random distribution. Third, which is an important difference,
they assume an edge partition model for the problems on
graphs, that is, the edges of the graph (as opposed to its
vertices) are partitioned across the k machines. In particular,
for the connectivity problem, they show a message complexity
lower bound of Ω̃(nk) which essentially translates to a Ω̃(n/k)
round lower bound in the k-machine model; it can be shown

by using their proof technique that this lower bound also
applies to the random edge partition (REP) model, where
edges are partitioned randomly among machines, as well. On
the other hand, it is easy to show an Õ(n/k) upper bound
for the connectivity in the REP model for connectivity and
MST.5 Hence, in the REP model, Θ̃(n/k) is a tight bound
for connectivity and other related problems such as MST.
However, in contrast, in the RVP model (arguably, a more

natural partition model), we show that Θ̃(n/k2) is the tight
bound. Our results are a step towards a better understanding
of the complexity of distributed graph computation vis-a-vis
the partition model.

2. THE CONNECTIVITY ALGORITHM
In this section we present our main result, a Monte Carlo

randomized algorithm for the k-machine model that deter-
mines the connected components of an undirected graph
G correctly with high probability and that terminates in
Õ(n/k2) rounds with high probability (Theorem 1). This
algorithm is optimal (up to polylog(n)-factors) by virtue

of a matching lower bound of Ω̃(n/k2) rounds, which was
shown in [19] by a reduction from the 2-party communication
complexity of set disjointness under random input partitions.

Before delving into the details of our algorithm, as a warm-
up we briefly discuss simpler, but less efficient, approaches.
The easiest way to solve any problem in our model is to first
collect all available graph data at a single machine and then
solve the problem locally. For example, one could first elect a
referee among the machines, which requires O(1) rounds [20],
and then instruct every machine to send its local data to the
referee machine. Since the referee machine needs to receive
O(m) information in total but has only k−1 links of bounded
bandwidth, this requires Ω(m/k) rounds.

A more refined approach to obtain a distributed algorithm
for the k-machine model is to use the Conversion Theorem
of [19], which provides a simulation of a congested clique

algorithm A in Õ(M/k2 + ∆′T/k) rounds in the k-machine
model, where M is the message complexity of A, T is its
round complexity, and ∆′ is an upper bound to the total
number of messages sent (or received) by a single node in a
single round. (All these parameters refer to the performance
of A in the congested clique model.) Unfortunately, existing
algorithms (e.g., [14, 37]) typically require ∆′ to scale to
the maximum node degree, and thus the converted time
complexity bound in the k-machine model becomes Ω̃(n/k)

at best. Therefore, in order to break the Ω̃(n/k) barrier,
we must develop new techniques that directly exploit the
additional locality available in the k-machine model.

In the next subsection we give a high level overview of our
algorithm, and then formally present all the technical details
in the subsequent subsections.

2.1 Overview of the Algorithm
Our algorithm follows a Boruvka-style strategy [6], that is,

it repeatedly merges adjacent components of the input graph,

5The high-level idea of the MST algorithm in the REP model
is: (1) First “filter” the edges assigned to one machine using
the cut and cycle properties of a MST [17]; this leaves each
machine with O(n) edges; (2) Convert this edge distribution

to a RVP which can be accomplished in Õ(n/k) rounds via
hashing the vertices randomly to machines and then routing
the edges appropriately; then apply the RVP bound.

which are connected subgraphs, to form larger (connected)
components. The output of each of these phases is a labeling
of the nodes of G such that nodes that belong to the same
current component have the same label. At the beginning
of the first phase, each node is labeled with its own unique
ID, forms a distinct component, and is also the component
proxy of its own component. Note that, at any phase, a
component contains up to n nodes, which might be spread
across different machines; we use the term component part
to refer to all those nodes of the component that are held by
the same machine. Hence, at any phase every component is
partitioned in at most k component parts. At the end of the
algorithm, every node v ∈ G will have a component label
`(v) such that two nodes have the same label if and only if
they belong to the same connected component of G.

Our algorithm relies on linear graph sketches as a tool
to enable communication-efficient merging of multiple com-
ponents. Intuitively speaking, a (random) linear sketch su
of a node u’s graph neighborhood returns a sample chosen
uniformly at random from u’s incident edges. Interestingly,
such a linear sketch can be represented as matrices using
only O(polylog(n)) bits [16, 28]. A crucial property of these
sketches is that they are linear: that is, given sketches su
and sv, the combined sketch su + sv (“+” refers to matrix
addition) has the property that, w.h.p., it yields a random
sample of the edges incident to (u, v) in a graph where we
have contracted the edge (u, v) to a single node. We describe
the technical details in Section 2.3.

We now describe how to communicate these graph sketches
in an efficient manner: Consider a component C that is split
into j parts P1, P2, . . . , Pj , the nodes of which are hosted
at machines M1,M2, . . . ,Mj . To find an outgoing edge for
C, we first instruct each machine Mi to construct a linear
sketch of the graph neighborhood of each of the nodes in
part Pi. Then, we sum up these |Pi| sketches, yielding a
sketch sPi for the neighborhood of part Pi. To combine
the sketches of the j distinct parts, we now select a random
component proxy machine MC,r for the current component
C at round r (see Section 2.2). Next, machine Mi sends sPi

to machine MC,r; note that this causes at most k messages
to be sent to the component proxy. Finally, machine MC,r

computes sC =
∑j
i=1 sPi , and then uses sC to sample an

edge incident to some node in C, which, by construction, is
guaranteed to have its endpoint in a distinct component C′.
(See Section 2.4.)

At this point, each component proxy has sampled an inter-
component edge inducing the edges of a component graph C
where each vertex corresponds to a component. To enable the
efficient merging of components, we employ the distributed
random ranking (DRR) technique of [8] to break up any long
paths of C into more manageable directed trees of depth
O(logn). To this end, every component chooses a rank
independently and uniformly at random from [0, 1],6 and each
component (virtually) connects to its neighboring component
(according to C) via a (conceptual) directed edge if and only
if the latter has a higher rank. Thus, this process results in
a collection of disjoint rooted trees, rooted at the node of
highest (local) rank. We show in Section 2.5 that each of
such trees has depth O(logn).

The merging of the components of each tree T proceeds
from the leafs upward (in parallel for each tree). In the first

6It is easy to see that an accuracy of Θ(logn) bits suffices
to break ties w.h.p.

merging phase, each leaf Cj of T merges with its parent
C′ by relabeling the component labels of all of their nodes
with the label of C′. Note that the proxy MCj knows the
labeling of C′, as it has computed the outgoing edge from
a vertex in Cj to a vertex in C′. Therefore, machine MCj

sends the label of Cj to all the machines that hold a part of
Cj . In Section 2.5 we show that this can be done in parallel
(for all leafs of all trees) in Õ(n/k2) rounds. Repeating this
merging procedure O(log n) times, guarantees that each tree
has been merged to a single component.

Finally, in Section 2.6 we prove that O(logn) repetitions
of the above process suffice to ensure that the components
at the end of the last phase correspond to the connected
components of the input graph G.

2.2 Communication via Random Proxy Ma-
chines

Recall that our algorithm iteratively groups vertices into
“components” (which are connected subgraphs of the actual
components of G) and subsequently merges such components
according to the topology of G. Each of these components
may be split into multiple component parts spanning mul-
tiple machines. Hence, to ensure efficient load balancing of
the messages that machines need to send on behalf of the
component parts that they hold, the algorithm performs all
communication via proxy machines.

Our algorithm proceeds in phases and each phase consists
of iterations. Consider the ρ-iteration of the j-th phase of
the algorithm, with ρ, j ≥ 1. We construct a “sufficiently”
random hash function hj,ρ, such that, for each component
C, the machine with ID hj,ρ(C) ∈ [k] is selected as the
proxy machine for component C. First, machine M1 gen-
erates ` = Θ̃(n/k) random bits from its private source of
randomness. M1 will distribute these random bits to all
other machines via the following simple routing mechanism
that proceeds in sequences of two rounds. M1 selects k bits
b1, b2, . . . , bk−1 from the set of its ` private random bits that
remain to be distributed, and sends bit bi across its i-th
link to machine Mi+1. Upon receiving bi, machine Mi+1

broadcasts bi to all machines in the next round. This en-
sures that bits b1, b2, . . . , bk−1 become common knowledge
within two rounds. Repeating this process to distribute all
the ` = Θ̃(n/k) bits takes Õ(n/k2) rounds, after those all
the machines have the ` random bits generated by M1. We
leverage a result of [4] (cf. in its formulation as Theorem 2.1
in [5]), which tells us that we can generate a random hash
function such that it is d-wise independent by using only
O(d logn) true random bits. We instruct machine M1 to
disseminate d = ` logn = npolylog(n)/k of its random bits
according to the above routing process and then each ma-
chine locally constructs the same hash function hj,ρ, which
is then used to determine the component proxies throughout
iteration ρ of phase j.

We now show that communication via such proxy machines
is fast in the k-machine model.

Lemma 1. Suppose that each machine M generates a mes-
sage of size O(polylog(n)) bits for each component part resid-
ing on M ; let mi denote the message of part Pi and let C be
the component of which Pi is a part. If each mi is addressed
to the proxy machine MC of component C, then all messages
are delivered within Õ(n/k2) rounds with high probability.

Proof. Observe that, except for the very first phase of

the algorithm, the claim does not immediately follow from a
standard balls-into-bins argument because not all the destina-
tions of the messages are chosen independently and uniformly
at random, as any two messages mi and mi′ of the same
component have the same destination.

Let us stipulate that any component part held by machine
Mi is the i-th component part of its component, and denote
this part with Pi,j , i ∈ [k], j ∈ [n], where Pi,j = ∅ means
that in machine i there is no component part for component
j. Suppose that the algorithm is in phase j′ and iteration
ρ. By construction, the hash function hj′,ρ is Θ̃(n/k)-wise
independent, and all the component parts held by a single
machine are parts of different components. Since Mi has at
most Θ̃(n/k) distinct component parts w.h.p., it follows that
all the proxy machines selected by the component parts held
by machine Mi are distributed independently and uniformly
at random. Let y be the number of distinct component parts
held by a machine Mi that is, y = |{Pi,j : Pi,j 6= ∅}| =

Õ(n/k) (w.h.p.).
Consider a link of Mi connecting it to another machine

M1. Let Xt be the indicator variable that takes value 1 if
M1 is the component proxy of part t (of Mi), and let Xt = 0
otherwise. Let X =

∑y
i=1Xi be the number of component

parts that chose their proxy machine at the endpoint of link
(Mi,M1). Since Pr(Xi = 1) = 1/(k − 1), we have that the
expected number of messages that have to be sent by this
machine over any specific link is E[X] = y/(k − 1).

First, consider the case y ≥ 11k logn. As the Xi’s are
Θ̃(n/k)-wise independent, all proxies by the component parts
of Mi are chosen independently and thus we can apply a
standard Chernoff bound (see, e.g., [29]), which gives

Pr

(
X ≥ 7y

4(k − 1)

)
≤ e−3y/16(k−1) < e

−2k log n
k <

1

n2
.

By applying the union bound over the k ≤ n machines we
conclude that w.h.p. every machine sends Õ(n/k2) messages

to each proxy machine, and this requires Õ(n/k2) rounds.
Consider now the case y < 11k log n. It holds that 6E[X] =

6y/(k − 1) < 6 · 11k log n/(k − 1) ≤ 132 log n, and thus, by a
standard Chernoff bound,

Pr (X ≥ 132 logn) ≤ 2−132 logn =
1

n132
.

Analogously to the first case, applying the union bound over
the k ≤ n machines yields the result.

2.3 Linear Graph Sketches
As we will see in Section 2.5, our algorithm proceeds by

merging components across randomly chosen inter-component
edges. In this subsection we show how to provide these
sampling capabilities in a communication-efficient way in
the k-machine model by implementing random linear graph
sketches. Our description follows the notation of [28].

Recall that each vertex u of G is associated with a unique
integer ID from [n] (known to its home machine) which,
for simplicity, we also denote by u.7 For each vertex u we

define the incidence vector au ∈ {−1, 0, 1}(
n
2) of u, which

describes the incident edges of u, as follows: au[(x, y)] = 0 if
(x, y) /∈ E(G) or, if (x, y) ∈ E(G), then au[(x, y)] = 1 if u =
x < y, or au[(x, y)] = −1 if x < u = y. Note that the vector

7Note that the asymptotics of our results do not change if
the size of the ID space is O(poly(n)).

au+av corresponds to the incidence vector of the contracted
edge (u, v). Intuitively speaking, summing up incidence
vectors “zeroes out” edges between the corresponding vertices,
hence the vector

∑
u∈C au represents the outgoing edges of

a component C.
Since each incidence vector au requires polynomial space,

it would be inefficient to directly communicate vectors to
component proxies. Instead, we construct a random linear
sketch su of polylog(n)-size that has the property of allowing
us to sample uniformly at random a nonzero entry of au
(i.e., an edge incident to u). (This is referred to as `0-
sampling in the streaming literature, see e.g. [28].) It is
shown in [16] that `0-sampling can be performed by linear
projections. Therefore, at the beginning of each phase j of
our algorithm, we instruct each machine to to create a new
(common) polylog(n)×

(
n
2

)
sketch matrix Lj , which we call

phase j sketch matrix.8 Then, each machine M creates a
sketch su = Lj · au for each vertex u that resides on M .
Hence, each su can be represented by a polylogarithmic
number of bits.

Observe that, by linearity, we have Lj · au + Lj · av =
Lj · (au + av). In other words, a crucial property of sketches
is that the sum su + sv is itself a sketch that allows us to
sample an edge incident to the contracted edge (u, v). We
summarize these properties in the following statement.

Lemma 2. Consider a phase j, and let P a subgraph of
G induced by vertices {u1, . . . , u`}. Let su1 , . . . , su` be the
associated sketches of vertices in P constructed by applying
the phase j sketch matrix to the respective incidence vectors.
Then, the combined sketch sP =

∑`
i=1 sui can be represented

using O(polylog(n)) bits and, by querying sP , it is possible
(w.h.p.) to sample a random edge incident to P (in G) that
has its other endpoint in G \ P .

Constructing Linear Sketches Without Shared Ran-
domness. Our construction of the linear sketches described
so far requires Õ(n) fully independent random bits that would
need to be shared by all machines. It is shown in Theorem 1
(cf. also Corollary 1) of [10] that it is possible to construct
such an `0-sampler (having the same linearity properties)
by using Θ(n) random bits that are only Θ(logn)-wise in-
dependent. Analogously as in Section 2.2, we can generate
the required Θ(log2 n) true random bits at machine M1, dis-
tribute them among all other machines in O(1) rounds, and
then invoke Theorem 2.1 of [5] at each machine in parallel
to generate the required (shared) Θ(log n)-wise independent
random bits for constructing the sketches.

2.4 Outgoing Edge Selection
Now that we know how to construct a sketch of the graph

neighborhood of any set of vertices, we will describe how to
combine these sketches in a communication-efficient way in
the k-machine model. The goal of this step is, for each (cur-
rent) component C, to find an outgoing edge that connects
C to some other component C′.

Recall that C itself might be split into parts P1, P2, . . . , Pj
across multiple machines. Therefore, as a first step, each
machine Mi locally constructs the combined sketch for each
part that resides in Mi. By Lemma 2, the resulting sketches

8Here we describe the construction as if nodes have access to
a source of shared randomness (to create the sketch matrix).
We later show how to remove this assumption.

have polylogarithmic size each and present a sketch of the
incidences of their respective component parts. Next, we
combine the sketches of the individual parts of each compo-
nent C to a sketch of C, by instructing the machines to send
the sketch of each part Pi (of component C) to the proxy ma-
chine of C. By virtue of Lemma 1, all of these messages are
delivered to the component proxies within Õ(n/k2) rounds.
Finally, the component proxy machine of C combines the
received sketches to yield a sketch of C, and randomly sam-
ples an outgoing edge of C (see Lemma 2). Thus, at the
end of this procedure, every component (randomly) selected
exactly one neighboring component. We now show that the
complexity of this procedure is Õ(n/k2) w.h.p.

Lemma 3. Every component can select exactly one outgo-
ing edge in Õ(n/k2) rounds with high probability.

Proof. Clearly, since at every moment each node has
a unique component’s label, each machine holds Õ(n/k)
component’s parts w.h.p. Each of these parts selected at most
one edge, and thus each machine “selected” Õ(n/k) edges
w.h.p. All these edges have to be sent to the corresponding
proxy. By Lemma 1, this requires Õ(n/k2) rounds.

The procedure is completed when the proxies communicate
the decision to each of the at most k components’ parts. This
entails as many messages as in the first part to be routed
using exactly the same machines’ links used in the first part,
with the only difference being that messages now travel in
the opposite direction. The lemma follows.

2.5 Merging of Components
After the proxy machine of each component C has selected

one edge connecting C to a different component, all the
neighboring components are merged so as to become a new,
bigger component. This is accomplished by relabeling the
nodes of the graph such that all the nodes in the same (new)
component have the same label. Notice that the merging
is thus only virtual, that is, component parts that compose
a new component are not moved to a common machine;
rather, nodes (and their incident edges) remain in their home
machine, and just get (possibly) assigned a new label.

We can think of the components along with the sampled
outgoing edges as a component graph C. We use the dis-
tributed random ranking (DRR) technique [8] to avoid having
long chains of components (i.e., long paths in C). That is, we
will (conceptually) construct a forest of directed trees that is
a subgraph (modulo edge directions) of the component graph
C and where each tree has depth O(log n).9 The component
proxy of each component C chooses a rank independently
and uniformly at random from [0, 1]. (It is easy to show that
Θ(log n) bits provide sufficient accuracy to break ties w.h.p.)
Now, the proxy machine of C (virtually) connects C to its
neighboring component C′ if and only if the rank chosen
by the latter’s proxy is higher. In this case, we say that C′

becomes the parent of C and C is a child of C′.

Lemma 4. After Õ(n/k2) rounds, the structure of the
DRR-tree is completed with high probability.

9Instead of using DRR trees, an alternate and simpler idea
is the following. Let every component select a number in
[0, 1]. A merging can be done only if the outgoing edge
(obtained from the sketch) connects a component with ID 0
to a component with ID 1. One can show that this merging
procedure also gives the same time bound.

Proof. We need to show that every proxy machine of a
non-root component knows its smaller-ranking parent com-
ponent and every root proxy machine knows that it is root.
Note that during this step the proxy machines of the child
components communicate with the respective parent proxy
machines. Moreover, the number of messages sent for deter-
mining the ordering of the DRR-trees is guaranteed to be
O(n) with high probability, since C has only O(n) edges. By
instantiating Lemma 1, it follows that the delivery of these
messages can be completed in Õ(n/k2) rounds w.h.p.

Since links are bidirectional, the parent proxies are able
to send their replies within the same number of rounds,
by re-running the message schedule of the child-to-parent
communication in reverse order.

If a component has the highest rank among all its neighbors
(in C), we call it a root component. Since every component
except root components connects to a component with higher
rank, the resulting structure is a set of disjoint rooted trees.

In the next step, we will merge all components of each
tree into a single new component such that all vertices that
are part of some component in this tree receive the label
of the root. Consider a tree T . We proceed level-wise (in
parallel for all trees) and start the merging of components
at the leafs that are connected to a (lower-ranking) parent
component C.

Lemma 5. There is a distributed algorithm that merges
all trees of the DRR forest in Õ(dn/k2) rounds with high
probability, where d is the largest depth of any tree.

Proof. We proceed in d iterations by merging the (cur-
rent) leaf components with their parents in the tree. Thus it
is sufficient to analyze the time complexity of a single itera-
tion. To this end, we describe a procedure that changes the
component labels of all vertices that are in leaf components
in the DRR forest to the label of the respective parent in
Õ(n/k2) rounds.

At the beginning of each iteration, we select a new proxy
for each component C by querying the shared hash function
hj,ρ(C), where ρ is the current iteration number. This en-
sures that there are no dependencies between the proxies
used in each iteration. We know from Lemma 4 that there
is a message schedule such that leaf proxies can communi-
cate with their respective parent proxy in Õ(n/k2) rounds
(w.h.p.) and vice versa, and thus every leaf proxy knows the
component label of its parent. We have already shown in
Lemma 3 that we can deliver a message from each component
part to its respective proxy (when combining the sketches) in

Õ(n/k2) rounds. Hence, by re-running this message schedule,
we can broadcast the parent label from the leaf proxy to
each component part in the same time. Each machine that
receives the parent label locally changes the component label
of the vertices that are in the corresponding part.

The following result is proved in [8, Theorem 11].

Lemma 6. The depth of each DRR tree is O(logn) with
high probability.

2.6 Analysis of the Time Complexity
We now show that the number of phases required by the

algorithm to determine the connected components of the
input graph is O(logn). At the beginning of each phase

i, distributed across the k machines there are ci distinct
components. At the beginning of the algorithm each node is
identified as a component, and thus c0 = n. The algorithm
ends at the completion of phase ϕ, where ϕ is the small-
est integer such that cϕ = cc(G), where cc(G) denotes the
number of connected components of the input graph G. If
pairs of components were merged in each phase, it would
be straightforward to show that the process would termi-
nate in at most O(log n) phases. However, in our algorithm
each component connects to its neighboring component if
and only if the latter has a higher rank. Nevertheless, it is
not difficult to show that this slightly different process also
terminates in O(logn) phases w.h.p. (that is, components
gets merged “often enough”). The intuition for this result is
that, since components’ ranks are taken randomly, for each
component the probability that its neighboring component
has a higher rank is exactly one half. Hence, on average
half of the components will not be merged with their own
neighbor: each of these components thus becomes a root of
one component, which means that, on average, the number
of new components will be half as well.

Lemma 7. After 12 logn phases, the component labels of
the vertices correspond to the connected components of G
with high probability.

Proof. Replace the ci’s with corresponding random vari-
ables Ci’s, and consider the stochastic process defined by the
sequence C0, C1, . . . , Cϕ. Let C̄i be the random variable that
counts the number of components that actually participate
at the merging process of phase i, because they do have an
outgoing edge to another component. Call these components
participating components. Clearly, by definition, C̄i ≤ Ci.

We now show that, for every phase i ∈ [ϕ− 1], E[E[C̄i+1 |
C̄i]] ≤ E[C̄i]/2. To this end, fix a generic phase i and a
random ordering of its C̄i participating components. Define
random variables Xi,1, Xi,2, . . . , Xi,C̄i

where Xi,j takes value
1 if the j-th participating component will be a root of a
participating tree/component for phase i+1, and 0 otherwise.

Then, C̄i+1 | C̄i =
∑C̄i
j=1 Xi,j is the number of participating

components for phase i+ 1. As we noticed before, for any
i ∈ [ϕ− 1] and j ∈ [C̄i], the probability that a participating
component will not be merged to its neighboring component,
and thus become a root of a tree/component for phase i+ 1
is exactly one half. Therefore, Pr(Xi,j = 1) ≤ 1/2. Hence,
by the linearity of expectation, we have that

E[C̄i+1 | C̄i] =

C̄i∑
j=1

E[Xi,j] =

C̄i∑
j=1

Pr(Xi,j = 1) ≤ C̄i
2
.

Then, using again the linearity of expectation,

E[E[C̄i+1 | C̄i]] ≤ E

[
C̄i
2

]
=

E[C̄i]

2
.

We now leverage this result to prove the claimed statement.
Let us call a phase successful if it reduces the number of
participating components by a factor of at most 3/4. By
Markov’s inequality, the probability that phase i is not suc-
cessful is

Pr

(
E[C̄i+1 | C̄i] >

3

4
E[C̄i]

)
<

E[E[C̄i+1 | C̄i]]
(3/4)E[C̄i]

≤ E[C̄i]

2
· 4

3E[C̄i]
=

2

3
,

and thus the probability that a phase of the algorithm is
successful is at least 1/3. Now consider a sequence of 12 log n
phases of the algorithm. We shall prove that within that
many phases the algorithm w.h.p. has reduced the number of
participating components a sufficient number of times so that
the algorithm has terminated, that is, ϕ ≤ 12 logn w.h.p.
Let Xi be an indicator variable that takes value 1 if phase i
is successful, and 0 otherwise (this also includes the case that
the i-th phase does not take place because the algorithm
already terminated). Let X =

∑12 logn
i=1 Xi be the number

of successful phases out of the at most 12 logn phases of
the algorithm. Since Pr(Xi = 1) ≥ 1/3, by the linearity of
expectation we have that

E[X] =

12 logn∑
i=1

E[Xi] =

12 logn∑
i=1

Pr(Xi = 1) ≥ 12 logn

3
= 4 logn.

As the Xi’s are independent we can apply a standard Chernoff
bound, which gives

Pr(X ≤ logn) ≤ e−4 logn(3/4)2/2 = e−
9
8

logn <
1

n
.

Hence, with high probability 12 logn phases are enough to
determine all the components of the input graph.

Theorem 1. There is a distributed algorithm in the k-
machine model that determines the connected components of
a graph G in Õ(n/k2) rounds with high probability.

Proof. By Lemma 7, the algorithm finishes in O(logn)
phases with high probability. To analyze the time complexity
of an individual phase, recall that it takes Õ(n/k2) rounds to
sample an outgoing edge (see Lemma 3). Then, building the

DRR forest requires Õ(n/k2) additional rounds, according
to Lemma 4. Merging each DRR tree T in a level-wise
fashion (in parallel) takes Õ(dn/k2) rounds (see Lemma 5),
where d is the depth of T which, by virtue of Lemma 6,
is bounded by O(logn). Since each of these time bounds
hold with high probability, and the algorithm consists of
O(logn) phases with high probability, by the union bound
we conclude that the total time complexity of the algorithm
is Õ(n/k2) with high probability.

We conclude the section by noticing that it is easy to
output the actual number of connected components after
the termination of our algorithm: every machine just needs
to send “YES” directly to the proxies of each of the compo-
nents’ labels it holds, and subsequently such proxies will send
the labels of the components for which they received “YES”
to one predetermined machine. Since the communication
is performed via the components’ proxies, it follows from
Lemma 1 that the first step takes Õ(n/k2) rounds w.h.p.,
and the second step takes only O(logn) rounds w.h.p.

3. APPLICATIONS
In this section we describe how to use our fast connectivity

algorithm as a building block to solve several other fundamen-
tal problems in the k-machine model in time Õ(n/k2). Here
we consider the problem of constructing a minimum span-
ning tree (MST), and defer the treatment of other problems
(namely, approximate min-cut and several graph verification
problems) to the full version of the paper [32].

The minimum spanning tree (MST) problem requires the
machines to jointly output a set of edges that form a tree,

connect all nodes, and have the minimum possible total
weight. Interestingly, [19] shows that Ω̃(n/k) rounds are
necessary for constructing any spanning tree (ST), assuming
that, for every spanning tree edge (u, v), the home machine
of u and the home machine of v must both eventually output
(u, v) as being part of the ST. We now show that we can

break the Ω̃(n/k) barrier, under the slightly less stringent
requirement that at least one machine outputs each spanning
tree edge e, but not necessarily any of the home machines
of e. Note that for the MST problem we assume that each
edge e = (u, v) of the input graph G has an associated edge
weight w(e) that is known to the home machines of u and v.

Our algorithm mimics the multi-pass MST construction
procedure of [2], originally devised for the (centralized) stream-
ing model. To this end we modify our connectivity procedure
of Section 2, by ensuring that when a component proxy C
chooses an outgoing edge e, this is the minimum weight
outgoing edge (MWOE) of C with high probability.

We now describe the i-the phase of this MST construction
in more detail: Analogously to our algorithm in Section 2,
the proxy of each component C determines an outgoing
edge e0 which, by the guarantees of our sketch construction
(Lemma 2), is chosen uniformly at random from all possible
outgoing edges of C.

We then repeat the following edge-elimination process
t = Θ(logn) times: The proxy broadcasts w(e0) to every
component part of C. Recall from Lemma 3 that this com-
munication is possible in Õ(n/k2) rounds. Upon receiving
this message, the machine M of a part P of C now con-
structs a new sketch su for each u ∈ P , but first zeroes out
all entries in au that refer to edges of weight > w(e0). (See
Section 2.3 for a more detailed description of au and su.)
Again, we combine the sketches of all vertices of all parts of
C at the proxy of C, which in turn samples a new outgoing
edge e1 for C. Since each time we sample a randomly chosen
edge and eliminate all higher weight edges, it is easy to see
that the edge et is the MWOE of C w.h.p. Thus, the proxy
machine of C includes the edge et as part of the MST output.
Note that this additional elimination procedure incurs only
a logarithmic time complexity overhead.

At the end of each phase, we proceed by (virtually) merging
the components along their MWOEs in a similar manner
as for the connectivity algorithm (see Section 2.5), thus

requiring Õ(n/k2) rounds in total.
Let E be the set of added outgoing edges. Since the

components of the connectivity algorithm eventually match
the actual components of the input graph, the graph H on
the vertices V (G) induced by E connects all vertices of G.
Moreover, since components are merged according to the
trees of the DRR-process (see Section 2.5), it follows that H
is cycle-free.

We can now fully classify the complexity of the MST
problem in the k-machine model:

Theorem 2. There exists an algorithm for the k-machine
model that outputs an MST in

• Õ(n/k2) rounds, if each MST-edge is output by at least
one machine, or in

• Õ(n/k) rounds, if each MST-edge e is output by both
machines that hold an endpoint of e.

Both bounds are tight up to polylogarithmic factors.

4. LOWER BOUNDS FOR VERIFICATION
PROBLEMS

In this section we show that Ω̃(n/k2) rounds is a fundamen-
tal lower bound for many graph verification problems in the
k-machine model. Even though many verification problems
are known to satisfy a lower bound of Ω̃(D+

√
n) in the clas-

sic distributed CONGEST model [11], the reduction of [11]
encodes a Θ(

√
n)-instance of set disjointness, requiring at

least one node to receive Θ̃(
√
n) information across a single

short “highway” path or via Θ(
√
n) longer paths of length

Θ(
√
n). Moreover, we assume the random vertex partition

model, whereas the results of [11] assume a worst case dis-
tribution. Lastly, any pair of machines can communicate
directly in the k-machine model, thus breaking the Ω(D)
bound for the CONGEST model. Our complexity bounds
follows from the communication complexity of 2-player set
disjointness in the random input partition model (see [19]).
The main result of the section is the following theorem. The
proof is deferred to the full version of the paper [32].

Theorem 3. There exists a constant γ > 0 such that
any γ-error algorithm A has round complexity of Ω̃(n/k2)
on an n-node vertex graph of diameter 2 in the k-machine
model, if A solves any of the following problems: connec-
tivity [19], spanning connected subgraph, cycle containment,
e-cycle containment, s-t-connectivity, cut, edge on all paths,
and s-t-cut.

5. CONCLUSIONS
There are several natural directions for future work. Our

connectivity algorithm is randomized: it would be interesting
to study the deterministic complexity of graph connectivity
in the k-machine model. Specifically, does graph connectiv-
ity admit a Õ(n/k2) deterministic algorithm? Investigating
higher-order connectivity, such as 2-edge/vertex connectivity,
is also an interesting research direction. A general ques-
tion motivated by the algorithms presented in this paper
is whether one can design algorithms that have superlinear
scaling in k for other fundamental graph problems. Some
recent results in this directions are in [33].

Acknowledgments. The authors would like to thank Mohsen
Ghaffari, Seth Gilbert, Andrew McGregor, Danupon Nanongkai,
and Sriram V. Pemmaraju for helpful discussions, and the
anonymous reviewers for their helpful comments.

6. REFERENCES
[1] Giraph, http://giraph.apache.org/.

[2] K. J. Ahn, S. Guha, and A. McGregor. Analyzing
graph structure via linear measurements. In
ACM-SIAM SODA, pages 459–467, 2012.

[3] K. J. Ahn, S. Guha, and A. McGregor. Graph sketches:
sparsification, spanners, and subgraphs. In ACM
PODS, pages 5–14, 2012.

[4] N. Alon, L. Babai, and A. Itai. A fast and simple
randomized parallel algorithm for the maximal
independent set problem. J. Algorithms, 7(4):567–583,
1986.

[5] N. Alon, R. Rubinfeld, S. Vardi, and N. Xie.
Space-efficient local computation algorithms. In
ACM-SIAM SODA, pages 1132–1139, 2012.

[6] O. Boruvka. O Jistém Problému Minimálńım (About a
Certain Minimal Problem). Práce Mor. Pŕırodoved.
Spol. v Brne III, 3, 1926.

[7] K. Censor-Hillel, P. Kaski, J. H. Korhonen, C. Lenzen,
A. Paz, and J. Suomela. Algebraic methods in the
congested clique. In PODC, pages 143–152, 2015.

[8] J. Chen and G. Pandurangan. Almost-optimal
gossip-based aggregate computation. SIAM J. Comput.,
41(3):455–483, 2012.

[9] F. Chung and O. Simpson. Distributed algorithms for
finding local clusters using heat kernel pagerank. In
WAW, pages 77–189, 2015.

[10] G. Cormode and D. Firmani. A unifying framework for
`0-sampling algorithms. Distributed and Parallel
Databases, 32(3):315–335, 2014.

[11] A. Das Sarma, S. Holzer, L. Kor, A. Korman,
D. Nanongkai, G. Pandurangan, D. Peleg, and
R. Wattenhofer. Distributed verification and hardness
of distributed approximation. SIAM J. Comput.,
41(5):1235–1265, 2012.

[12] A. Drucker, F. Kuhn, and R. Oshman. On the power of
the congested clique model. In PODC, pages 367–376,
2014.

[13] M. Elkin, H. Klauck, D. Nanongkai, and
G. Pandurangan. Can quantum communication speed
up distributed computation? In ACM PODC, pages
166–175, 2014.

[14] R. G. Gallager, P. A. Humblet, and P. M. Spira. A
distributed algorithm for minimum-weight spanning
trees. ACM Trans. Program. Lang. Syst., 5(1):66–77,
1983.

[15] J. W. Hegeman, G. Pandurangan, S. V. Pemmaraju,
V. B. Sardeshmukh, and M. Scquizzato. Toward
optimal bounds in the congested clique: Graph
connectivity and MST. In PODC, pages 91–100, 2015.

[16] H. Jowhari, M. Saglam, and G. Tardos. Tight bounds
for Lp samplers, finding duplicates in streams, and
related problems. In ACM PODS, pages 49–58, 2011.

[17] D. R. Karger, P. N. Klein, and R. E. Tarjan. A
randomized linear-time algorithm to find minimum
spanning trees. J. ACM, 42(2):321–328, 1995.

[18] H. J. Karloff, S. Suri, and S. Vassilvitskii. A model of
computation for MapReduce. In ACM-SIAM SODA,
pages 938–948, 2010.

[19] H. Klauck, D. Nanongkai, G. Pandurangan, and
P. Robinson. Distributed computation of large-scale
graph problems. In ACM-SIAM SODA, pages 391–410,
2015.

[20] S. Kutten, G. Pandurangan, D. Peleg, P. Robinson,
and A. Trehan. Sublinear bounds for randomized leader
election. Theoret. Comput. Sci., 561:134–143, 2015.

[21] S. Lattanzi, B. Moseley, S. Suri, and S. Vassilvitskii.
Filtering: a method for solving graph problems in
MapReduce. In ACM SPAA, pages 85–94, 2011.

[22] C. Lenzen. Optimal deterministic routing and sorting
on the congested clique. In PODC, pages 42–50, 2013.

[23] C. Lenzen and R. Wattenhofer. Tight bounds for
parallel randomized load balancing. Distrib. Comput.,
29(2):127–142, 2016.

[24] J. Leskovec, A. Rajaraman, and J. D. Ullman. Mining
of Massive Datasets. Cambridge University Press, 2014.

[25] Z. Lotker, B. Patt-Shamir, E. Pavlov, and D. Peleg.
Minimum-weight spanning tree construction in
O(log log n) communication rounds. SIAM J. Comput.,
35(1):120–131, 2005.

[26] N. A. Lynch. Distributed Algorithms. Morgan
Kaufmann Publishers Inc., 1996.

[27] G. Malewicz, M. H. Austern, A. J. C. Bik, J. C.
Dehnert, I. Horn, N. Leiser, and G. Czajkowski. Pregel:
a system for large-scale graph processing. In ACM
SIGMOD, pages 135–146, 2010.

[28] A. McGregor. Graph stream algorithms: a survey.
SIGMOD Record, 43(1):9–20, 2014.

[29] M. Mitzenmacher and E. Upfal. Probability and
Computing: Randomized Algorithms and Probabilistic
Analysis. Cambridge University Press, 2005.

[30] D. Nanongkai. Distributed approximation algorithms
for weighted shortest paths. In STOC, pages 565–573,
2014.

[31] D. Nanongkai, A. D. Sarma, and G. Pandurangan. A
tight unconditional lower bound on distributed
randomwalk computation. In ACM PODC, pages
257–266, 2011.

[32] G. Pandurangan, P. Robinson, and M. Scquizzato. Fast
distributed algorithms for connectivity and MST in
large graphs. CoRR, abs/1503.02353, 2016.

[33] G. Pandurangan, P. Robinson, and M. Scquizzato.
Tight bounds for distributed graph computations.
CoRR, abs/1602.08481, 2016.

[34] D. Peleg. Distributed Computing: A Locality-Sensitive
Approach. Society for Industrial and Applied
Mathematics, 2000.

[35] J. Qiu, S. Jha, A. Luckow, and G. C. Fox. Towards
HPC-ABDS: An initial high-performance big data
stack. 2014. Available:
http://grids.ucs.indiana.edu/ptliupages/publications/nist-
hpc-abds.pdf.

[36] I. Stanton. Streaming balanced graph partitioning
algorithms for random graphs. In ACM-SIAM SODA,
pages 1287–1301, 2014.

[37] R. Thurimella. Sub-linear distributed algorithms for
sparse certificates and biconnected components. J.
Algorithms, 23(1):160–179, 1997.

[38] Y. Tian, A. Balmin, S. A. Corsten, S. Tatikonda, and
J. McPherson. From “think like a vertex” to “think like
a graph”. PVLDB, 7(3):193–204, 2013.

[39] L. G. Valiant. A scheme for fast parallel communication.
SIAM J. Comput., 11(2):350–361, 1982.

[40] L. G. Valiant. A bridging model for parallel
computation. Commun. ACM, 33(8):103–111, 1990.

[41] S. Vassilvitskii. Models for parallel computation (a
hitchhikers’ guide to massively parallel universes),
http://grigory.us/blog/massively-parallel-universes/,
2015.

[42] D. P. Woodruff and Q. Zhang. When distributed
computation is communication expensive. Distrib.
Comput., to appear.

	Introduction
	The Model
	Our Contributions and Techniques
	Related Work and Comparison

	The Connectivity Algorithm
	Overview of the Algorithm
	Communication via Random Proxy Machines
	Linear Graph Sketches
	Outgoing Edge Selection
	Merging of Components
	Analysis of the Time Complexity

	Applications
	Lower Bounds for Verification Problems
	Conclusions
	References

