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Abstract 

To be able to interact with our environment, we need to transform incoming sensory 

information into goal-directed motor outputs. Whereas our ability to plan an appropriate movement 

based on sensory information appears effortless and simple, the underlying brain dynamics are still 

largely unknown. 

Here we used magnetoencephalography (MEG) to investigate this issue by recording brain 

activity during the planning of non-visually guided reaching and grasping actions, performed with 

either the left or right hand. Adopting a combination of univariate and multivariate analyses, we 

revealed specific patterns of beta power modulations underlying varying levels of neural 

representations during movement planning. (1) Effector-specific modulations were evident as a 

decrease in power in the beta band. Within both hemispheres, this decrease was stronger while 

planning a movement with the contralateral hand. (2) The comparison of planned grasping and 

reaching led to a relative increase in power in the beta band. These power changes were localized 

within temporal, premotor and posterior parietal cortices. Action-related modulations overlapped 

with effector-related beta power changes within widespread frontal and parietal regions, suggesting 

the possible integration of these two types of neural representations. (3) Multivariate analyses of 

action-specific power changes revealed that part of this broadband beta modulation also contributed 

to the encoding of an effector-independent neural representation of a planned action within fronto-

parietal and temporal regions. 

Our results suggest that beta band power modulations play a central role in movement 

planning, within both the dorsal and ventral stream, by coding and integrating different levels of 

neural representations, ranging from the simple representation of the to-be-moved effector up to an 

abstract, effector-independent representation of the upcoming action.  

Key words: Action, MVPA, Grasping, MEG, Motor System, Beta Band.   
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1. Introduction 

In daily life, we continuously interact with objects in our environment. These interactions 

involve the planning and execution of specific object-directed movements, requiring the 

representation and integration of different motor parameters, such as the type of action and effector. 

To date, the brain dynamics underlying these different neural representations are largely unknown. 

Neuroimaging studies have identified a fronto-parietal network involved in processing these 

neural representations, comprising parietal, premotor, and motor cortices (Culham and Valyear, 

2006; Culham et al., 2006; Filimon, 2010; Gallivan and Culham, 2015; Grafton, 2010; Turella and 

Lingnau, 2014; Vesia and Crawford, 2012). 

Recent investigations exploited the high sensitivity of multivariate pattern (MVP) analysis to 

obtain a more fine-grained description of the properties of these neural representations (Gallivan et 

al., 2013b, 2011b). These studies showed that almost all frontal and parietal regions within this 

network were sensitive to the subsequently adopted effector (e.g. left vs right hand, effector coding; 

Gallivan et al., 2013b) during movement planning. Moreover, a number of regions within the 

prehension network, in particular posterior parietal cortex (PPC) and premotor areas, distinguished 

between different upcoming actions (action coding) (Gallivan et al., 2011, 2013b). PPC and 

premotor regions probably distinguished between these two actions based on the coding of 

additional sensorimotor transformations required for grasping an object. Several of these regions, 

particularly within dorsal premotor and PPC, also represented actions at a more abstract level, 

generalizing across the hand used to perform the movement (effector independent action coding, see 

Gallivan et al., 2013a, 2013b). These results suggest that planned movements are represented at 

varying levels ranging from the simple representation of the hand to be moved, up to an abstract, 

effector-independent, representation of the upcoming action. 

Despite these advances in the description of the neural basis underlying movement planning, 

the brain dynamics supporting the coding and integration of these neural representations are not 

well understood.  
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Previous human MEG studies associated the beta band with sensorimotor processing during 

movement planning and execution (Cheyne, 2013). Recent studies extended these findings to more 

abstract representations, showing modulations of the beta band even if the to be performed action is 

not known in advance (Tan et al., 2013), and during motor imagery, when no overt movement is 

performed (Brinkman et al., 2014). Likewise, previous fMRI studies in humans (Gallivan et al., 

2013b) and single-cell recording studies in monkeys (Rizzolatti et al., 1988) indicated abstract 

action representations that generalize across the adopted effector, but so far this issue has not been 

investigated using MEG. 

Prompted by these observations, we predicted that power modulations within the beta band 

might not only convey concrete information about upcoming movements such as the selected action 

and the adopted effector, but also more abstract action information that generalizes across the 

effector. To test this prediction, we used a combination of univariate and multivariate analyses of 

MEG data. 

Using a univariate approach, we aimed at describing beta power modulations associated with 

the coding of two concrete features during movement planning, the adopted effector and the type of 

action. To examine whether the two features are hosted in similar brain regions, suggesting their 

possible integration, we used source analysis.  

One limitation of the standard univariate approach is that it cannot directly test the encoding of 

more abstract information regarding upcoming actions. We therefore used MVP analysis of MEG 

data, using methods originally developed for fMRI data (for a similar approach, see Tucciarelli et 

al., 2015). In particular, we used cross-decoding, which consists in training a classifier on a specific 

subset of data (e.g. movements performed with the left hand) and testing it on another set of data 

lacking such property (e.g. movements performed with the right hand). The idea behind this 

approach is that if the model we trained on one hand is able to distinguish between actions 

performed with the other hand, then the information conveyed by such a model is not bound to the 

effector performing the action, but resembles a more abstract action coding. Using cross-decoding, 
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MVP analysis thus allows testing for the generalization of decoding between different actions 

across different effectors (as shown in fMRI by Gallivan et al., 2013b).  
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2. Materials and Methods 

2.1 Participants 

Twenty right-handed participants (13 female) took part in the experiment. All participants gave 

written informed consent and were paid for their participation in the study. The experimental 

protocol was approved by the ethics committee for human research of the University of Trento.  

 

2.2 Experimental setup and paradigm 

Participants planned and executed non-visually guided grasping or reaching of an object, either 

with their left or right hand (Figure 1A). The experimental conditions were embedded in a 2x2 

factorial design (Figure 1B) with the factors type of action (grasping/reaching) and effector 

(left/right hand). Participants were requested either to perform a precision grip using the thumb and 

the index finger towards an object (grasping) or to touch the same object with the knuckles 

(reaching). The object was a half-sphere (radius 2.5 cm) positioned centrally on a plastic tray at the 

same distance (15 cm) from their hands (see Figure 1B). The onset of participant’s hand movements 

was determined via a fiber-optic system which recorded at which time the hand left the starting 

position. Both object and hands were hidden from the participant’s sight by a plastic barrier 

positioned above the participant’s arms (Figure 1A). 
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Figure 1. A. Setup. Participants performed a delayed movement task in the MEG system following 

visual instructions projected on a screen. The task consisted in planning and executing non-visually-

guided actions on an object positioned centrally on a plastic tray at the same distance from the two 

hands. The sight of the arms and of the object was hidden to the participant by a white plastic 

barrier. B. Design. The 2x2 factorial design comprised the planning and execution of four non-

visually-guided object-directed actions (grasping vs reaching with the left or right hand). C. Trial 

Sequence. Each trial started with a baseline phase, where the participant had to fixate a grey cross. 

Then, a cue instructed the participant which action to perform (red: grasping, green: reaching) and 

which effector to move in the subsequent execution phase (indicated by the position of the colored 

disc). The execution phase started when the fixation cross turned blue. Finally, in the return phase 

(yellow cross) the participant had to return their hand to the starting position and blink. 
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2.3 Experimental trial 

Participants were requested to follow visual instructions presented on a screen using ASF 

(Schwarzbach, 2011) based on the MatLab Psychtoolbox-3 for Windows (Brainard, 1997; Pelli, 

1997). Stimuli were projected on a screen (1280 x 1024 resolution, 60 Hz refresh rate) that was 

placed about 130 cm in front of the participants. The screen was visible as a rectangular aperture of 

about 13.16° x 21.7°. Before starting the experiment, participants practised an entire run both 

outside and inside the MEG system to familiarize with the task. The experiment consisted of 10 

runs, each comprising 48 pseudo-randomly presented experimental trials (12 for each condition, for 

a total of 120 repetitions per condition per participant). The timing of an experimental trial (Figure 

1C) was adapted from a previous study on movement planning (Van Der Werf et al., 2010). 

Each trial (for an example, see Figure 1C) started with a baseline phase where the participant 

had to fixate a grey cross (randomized duration: 2000/ 2500/ 3000 ms). Next, a cue (duration: 100 

ms) was presented which consisted of two circles positioned to the left and right of the cross, one 

colored and one grey. This cue instructed the participant which movement to perform subsequently. 

The color of the cue indicated the type of action (grasping, reaching) and the position of the cue 

indicated the effector (cue on the left: left hand, cue on the right: right hand). The assignment of 

colors to the type of action was counterbalanced across participants. After the disappearance of the 

cue, the participant kept their hands still while fixating the cross presented in the baseline condition 

(planning phase, duration 1500 ms). Once the fixation cross turned blue, the execution phase started 

and the participant had to perform the planned action and to maintain their hand at the final position 

(execution phase, duration: 3000 ms). The return phase (duration: 2000 ms) started when the cross 

turned yellow. During this phase, participants had to move the hand back to the initial position and 

were requested to blink. Then, the subsequent trial started with the grey fixation cross (baseline 

condition). 
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2.4 Data acquisition 

MEG data were recorded using a 306-channels whole head MEG system (Neuromag Elekta, 

Finland) at a sampling rate of 1000 Hz. Before entering the MEG room, the individual head shape 

of each participant was collected using a Polhemus system (Polhemus, Colchester, VT).  

Simultaneously to MEG data, eye movement and electromyographic (EMG) data were 

acquired. Eye movements were recorded using an MEG compatible eye-tracker (Sensomotoric 

Instruments, Germany; 60 Hz sampling rate) positioned within the MEG room to measure blinks 

and saccades. To detect possible movements during the planning phase, we recorded EMG from 

two muscles of each limb (first dorsal interosseus and extensor digitorum communis). In addition, 

for online and offline control of behaviour, we recorded participants’ behaviour using an MEG 

compatible video camera which was positioned above the participant. 

 

2.5 MEG data preprocessing 

MEG data analysis was performed using the FieldTrip toolbox (Oostenveld et al., 2011). 

Continuous data were high-pass filtered at 1 Hz, low-pass filtered at 120 Hz, notch filtered for line 

noise (50 and 100 Hz) and downsampled (400 samples per second). Then, epochs of interest were 

extracted considering the entire experimental trial duration, from the baseline phase (2000 ms 

before cue onset) until the end of the execution phase (6000 ms from cue onset). Given the aim of 

the study, we focused on the analysis of the planning phase (between 0 and 1600 ms) for the 

combined gradiometers only. 

Epochs showing any abnormality in the signal within the baseline or planning phase (e.g. jump 

artefacts, saturated or dead sensors, eye movements) were excluded from further analysis. In 

addition, we excluded epochs based on behavioural errors performed in the subsequent execution 

phase, assuming participants did not correctly plan the instructed movement in such trials (e.g. the 
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participants grasped the object instead of reaching it), or if participants moved the hand during the 

planning phase. On average, we excluded 15.86 % of all trials from further analysis. Sensors 

showing noisy activity throughout the entire experimental session were rejected and reconstructed 

by interpolating neighboring sensors. This procedure ensured having the same number of sensors 

for all participants.  

 

2.6 Behavioural data analysis 

Analysis of behavioural performance was conducted on the non-discarded epochs for all the 

participants. We extracted reaction times (RTs) of the movements performed during the execution 

phase, even if this phase was not the focus of the present study (see Table 1). RTs were defined as 

the time interval between the appearance of the go cue (blue cross) and the time point at which the 

hand was released from the starting position (recorded using the fiber-optic system). A 2x2 repeated 

measure ANOVA was performed to assess any significant effect at group level. RTs were neither 

modulated by the type of action [F(1,19)= 2.806, p=0.11] nor by the effector [F(1,19)= 0.522, 

p=0.425] or their interaction [F(1,19)= 0.379, p=0.546]. 

  Effector 

  Left Right 

T
y
p

e 
o
f 

A
ct

io
n

 Grasp 540.45±22.99 535.01±22.47 

Reach 554.10±22.18 542.60±21.60 

Table 1. Mean and standard error of the mean values for reaction times are reported. 

 

2.7 Univariate analysis of time frequency data  

We computed time–frequency representations (TFRs) using a Fourier approach. The analysis 

was carried out within a specific frequency range (5-30 Hz) by applying a sliding window of 500 
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ms and a Hanning taper (with time points spaced every 50 ms). TFRs of changes in power for each 

condition were computed with respect to average power within a period of the baseline phase (from 

-1600 to -100 ms) considering all the non-rejected epochs. 

All statistical analyses on power changes at the sensor level were performed using a non-

parametric method based on a Monte Carlo simulation approach with 1000 randomizations (Maris 

and Oostenveld, 2007). P values were set at p<0.05 for single comparisons.  To control for multiple 

comparisons, we used cluster level correction with p<0.05 (based on the sum of the t-values, see 

Maris and Oostenveld, 2007). For statistical comparisons, we considered at least two neighboring 

sensors when clustering at the sensor level. 

Previous human EEG/MEG studies demonstrated time-frequency (TF) power modulations 

within the beta band during hand movement planning and execution (Verhagen et al., 2012; Virji-

Babul et al., 2010; Wheaton et al., 2009, 2005; Zaepffel et al., 2013). Based on the results of the 

study by Zaepfell and colleagues (2013), adopting an experimental paradigm similar to ours, we 

focused on a specific range within the beta band (15-25 Hz).We first identified the sensors where 

power changes over time within the beta band were significantly different for both main effects (i.e. 

type of action and effector) by defining clusters of significant power modulations within the 

planning phase (in steps of 50 ms). Next, we extracted any sensor that was significant within the 

identified time period in order to define the sensor topography for the two main effects. In addition, 

to examine power modulations within a broader range of frequencies (between 5 and 30 Hz) for the 

entire planning phase, we plotted power modulations within the sensors of the identified 

topographies.  
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2.8 Source analysis reconstruction 

We built a subject-specific anatomical image by warping an MNI template brain to fit the 

individual head shape collected before the beginning of the MEG session using the Polhemus 

system (Polhemus, Colchester, VT). Then, for every participant we warped this anatomical image to 

fit the MNI template brain and a 1-cm three-dimensional grid built within the same MNI space. 

This grid was then warped back to fit each participant’s original anatomical image, so that in each 

participant the same grid point resembles the same MNI coordinates. 

For each participant, we used a volume conductor model using the single-shell method (Nolte, 

2003). The neural sources generating the two main effects were localized by applying a beam-

forming technique (Dynamic Imaging of Coherent Sources, DICS; Gross et al., 2001). Source 

reconstruction was performed considering the value of the peak power change and the significant 

time period. We applied DICS separately for each condition using a common spatial filter computed 

from the combination of all the conditions. This was done to ensure that any difference between the 

conditions could not be attributed to differences between the filters. Source images were 

interpolated from the original resolution onto an inflated surface of an MNI template brain available 

within the Caret software package (Van Essen et al., 2001, 

http://brainvis.wustl.edu/wiki/index.php/Caret:About). For visualization purposes, we thresholded 

the resulting maps to show only 10% of the grid points with maximum power change (for a similar 

approach see Tucciarelli et al., 2015). 

 

2.9 Multivariate pattern (MVP) analysis of sensor and source data 

We used cross-decoding multivariate analysis (Ariani et al., 2015; Gallivan et al., 2013a, 

2013b; Oosterhof et al., 2012a, 2012b, 2010; Tucciarelli et al., 2015; Wurm and Lingnau, 2015; 

Wurm et al., 2015) to examine if action-specific power modulations also conveyed an effector-
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independent neural representation of action. Cross-decoding consisted in training a model on data 

from one effector and testing it on another set of data from the other effector, i.e. effector-

independent action encoding (Gallivan et al., 2013a, 2013b).  

For MVP analysis, we used a Support Vector Machine (SVM) classifier (LIBSVM, 

http://www.csie.ntu.edu.tw/~cjlin/libsvm/, Chang and Lin, 2011) available in the CoSMoMVPA 

Toolbox (Oosterhof et al., in prep., http://www.cosmomvpa.org/), choosing a linear kernel and a 

constant cost parameter (C=1). For each participant, we carried out cross-decoding MVP analysis 

on (z-scored) single trial power data both in sensor and source space (for a schematic overview see 

Figure 2 and 3).  

The classifier used different features for sensor and source space ( for a similar approach, see 

Tucciarelli et al., 2015). At sensor level, we based our decoding analysis on univariate TFRs of 

power data adapting a searchlight method used in fMRI data analysis (Kriegeskorte and Bandettini, 

2007; Oosterhof et al., 2011). The approach consisted in performing a sensor-based multivariate 

decoding analysis in a feature space defined in time × frequency band space. The searchlight used 

power values calculated in the univariate analysis as features for the classifier, selecting only the 

values coming from the sensors found significant at group level in the pairwise comparison used to 

train the classifier (Figure 2, step 1).  

For each feature (in time × frequency band space), we defined a neighborhood by taking the 

power values across neighboring time points (± 2 time bins of 50 ms) and frequency bins (± 2 

frequency bins of 1 Hz) from all the selected sensors (Figure 2, step 2). Classification accuracies for 

each neighborhood were then assigned to the originally selected feature. We used a cross-validation 

approach to estimate decoding accuracy. For the first cross-validation fold (Figure 3, step 3), we 

trained a classifier on the pairwise comparison, grasping vs reaching with the right hand, and testing 

it on grasping vs reaching with the left hand. The result of the cross-validation fold for this 

multivariate searchlight analysis is a classification accuracy map in time × frequency band space 
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(Figure 2, step 4). For the second cross-validation fold (Figure 2, step 5), the process was repeated 

after swapping the data used for training and testing across the two hands (training on left hand, 

testing on right hand). Within each of the two cross-validation folds, we used all the trials of the 

specific pairwise comparisons for training the classifier and all the trials of the other pairwise 

comparisons for testing the classifier. If the number of trials within the training set was not the same 

for each condition, as a result of our trial rejection procedure, we randomly selected the same 

number of trials from both conditions. For each participant, we averaged the TF decoding maps 

obtained from the two cross-validation fold (Figure 2, step 6).  

This average map can be tested for information discriminating between conditions at the group 

level, as in normal univariate TF analysis, by comparing the resulting accuracy maps against chance 

level (50 %) using a non-parametric approach implemented in the CoSMoMVPA Toolbox 

(Oosterhof et al., 2016) adopting 10000 permutations (see 

http://cosmomvpa.org/matlab/cosmo_montecarlo_cluster_stat.html). P values were set at p<0.05 for 

cluster level correction to control for multiple comparisons adopting Threshold-Free Cluster 

Enhancement (Smith and Nichols, 2009) with the suggested default values (H=2, E=0.5, dh=0.1) 

which have been recently validated for MEG/EEG data (Pernet et al., 2015). 
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Figure 2. Sensor-based Multivariate Analysis Pipeline. Step 1. Define univariate sensors 

significant for pairwise comparison used to train the classifier at group level (e.g. grasping vs 

reaching with right hand in the time window between 750-1050 for beta band 15-25 Hz). Step 2. 

Define searchlight in time frequency band space using z-scored power values for all the selected 

sensors defined in step 1. For each feature, define a neighborhood (± 100 ms and ± 2 Hz) taking 

power values from all the selected sensors. Step 3. Estimate decoding accuracy for each 

neighborhood. Train SVM classifier on the selected pairwise comparison 1 (e.g. grasping vs 

reaching with right hand). Test the SVM-classifier on the pairwise comparison 2 (e.g. grasping vs 

reaching with left hand). Classification accuracies for each neighborhood were then assigned to the 

originally selected feature. Step 4. Obtain a TF decoding map for the tested cross-validation fold. 

Step 5. Adopt the same procedure (steps 1-4) inverting the pairwise comparisons used for defining 
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and training with respect to testing (define and train using grasping vs reaching with left hand, test 

grasping vs reaching with right hand). Step 6. Average the two decoding maps for each subject.  

 

To determine the sources underlying the cross-decoding effect found at sensor level, we carried 

out an additional MVP analysis on power data at source level (i.e. multivariate source analysis, see 

Figure 3 for an overview of the analysis workflow). For each participant, the procedure involved the 

extraction of source power data on a single trial basis using a DICS beamforming technique based 

on the peak of decoding found using sensor-based multivariate analysis. Briefly, the trials for all 

conditions were used to create a common filter which was subsequently used to extract single trial 

source power data. MVP analysis was performed using a searchlight approach, i.e. performing 

multiple separate multivariate decoding analyses along all the positions within the source space (i.e. 

1 cm-spaced grid in MNI space) and assigning the resulting decoding value to each selected grid 

point. The searchlight was defined using the power values of the selected grid point and of the 

surrounding neighboring ones within a radius of 2 cm (Figure 3, step 1). The searchlight was then 

applied to single trial data separately for each participant, resulting in a source map in MNI space 

with decoding accuracy as dependent measure. Also here, a cross-validation approach comprising 

two folds was adopted to estimate decoding accuracy (Figure 3, step 2-3-4), as in the case of sensor-

based multivariate analysis. The adopted pairwise comparisons were the same as in the sensor 

analysis: grasping vs reaching with the right hand and grasping vs reaching with the left hand. For 

each subject, the decoding maps of the two cross-validation folds were averaged (Figure 3, step 5). 

For visualization purposes, similarly to our approach for univariate source analysis, we plotted 

the source maps for average decoding accuracy on an inflated brain surface thresholded to show 

only grid points with 10% maximum decoding accuracy (see for a similar approach, Tucciarelli et 

al., 2015). 
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Figure 3. Multivariate Source Analysis Pipeline. Step 1. Define searchlight in source space using 

z-scored single trial source power trials. For each feature, define a neighborhood comprising 

selected grid point and surrounding grid points within a sphere of 2 cm. Step 2. Estimate decoding 

accuracy for each neighborhood. Train SVM classifier on the selected pairwise comparison 1 (e.g. 

grasping vs reaching with right hand). Test the SVM-classifier on the pairwise comparison 2 (e.g. 

grasping vs reaching with left hand). Classification accuracies for each neighborhood were then 

assigned to the originally selected grid point. Step 3. Obtain a TF decoding map for the tested cross-

validation fold. Step 4. Adopt the same procedure (steps 1-3) inverting the pairwise comparisons 

used for defining and training with respect to testing (define and train using grasping vs reaching 

with left hand, test grasping vs reaching with right hand). Step 5. Average the two decoding maps 

for each subject.  

 

To assess generalization of effector encoding across the type of action, i.e. action-independent 

effector coding, we adopted an approach similar to the effector-independent action decoding (see 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

 

above) at both sensor and source levels (see Figure 2 and 3, but adopting different pairwise 

comparisons). For the first cross-validation fold, we trained a classifier on a pairwise comparison 

between two conditions for the reaching action, performed with left vs. right hand, and tested on the 

grasping action. For the second cross-validation fold, the process was repeated after swapping the 

data used for training and testing across type of action.  
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3. Results 

3.1 Effector coding: univariate analysis of TFRs and source localization 

We computed power modulations for effector coding, i.e. planning left vs. right hand 

movements. Significant power modulations within the beta band were evident after 250 ms from 

cue onset and persisted throughout the entire planning phase (Figure 4A, lateral panels). The 

average topography of this effect was localized within two clusters, roughly corresponding to the 

two hemispheres (see Figure 4A, central panel).  

We observed a bilateral decrease of power, but this modulation was stronger within each 

hemisphere for planning movements with the contralateral hand. This behavior is evident within the 

TFRs extracted from the significant sensors for each hemisphere (Figure 4A, lateral panels). 

Effector-specific TF modulations were not limited to the beta band, but also extended to the alpha 

band (Figure 4A, lateral panels) which showed a similar pattern of bilateral decrease with a stronger 

reduction in power for movements planned with the controlateral effector. 

For visualization purposes, we applied source analysis considering the significant time period 

of the planning phase (250 – 1600 ms) within a broad beta band interval (20 ± 5 Hz). Sources 

generating this effect were widely distributed within the fronto-parietal prehension network, 

comprising premotor cortices (PMd, PMv and SMA), primary motor and somatosensory regions, 

and cortical areas within the PPC (Figure 4B).  
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Figure 4. A. Topography and Clusters’ TFRs for effector coding. The central topography 

represents any sensor significant for effector coding (right vs left hand) within the significant time 

period (250-1600 ms). The plot represents mean power change of the sensors averaging across the 

significant time period within the beta band (15-25 Hz). The two upper lateral panels represent 

mean TFRs of the sensors within the two clusters showing relative power change defined in 

arbitrary units (a.u.), as right hand-left hand. B. Source Localization. Localization of sources for 

effector coding is projected on the two lateral views of the brain. Relative power modulations were 

defined as (right hand-left hand)/left hand. Only 10 % of the grid points with maximum and 

minimum power change (below 5th
 
and above 95th percentile) are depicted. Source maps have been 

projected on an inflated brain template adopting the Caret software (Van Essen et al., 2001, 

http://brainvis.wustl.edu/wiki/index.php/Caret:About). LH, left hemisphere; RH; right hemisphere. 
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3.2 Action coding: univariate analysis of TFRs and source localization 

Action-specific power changes were evident within the beta band between 750 and 1050 ms 

after cue onset. The average topography of action coding was localized within two clusters (Figure 

5A, central panel) showing a relative increase in beta power for planning grasping actions with 

respect to reaching. These sensors were a subset of those found modulated by the effector main 

effect, suggesting that the two effects are overlapping in sensor space. We extracted the TFRs from 

the two clusters. In both clusters there was a clear broadband beta power increase in the significant 

time period (750-1050 ms, Figure 5A).  

This timing of recruitment seems to be compatible with recent fMRI results showing the 

possible decoding of grasping vs reaching actions at the end of the planning phase, just before the 

go cue (Gallivan et al., 2013b, 2013c). This seems to suggest that if participants can predict the 

timings of the experimental task, as in our study, action representations might be recruited just 

before the time the participants know they should perform the action. In contrast, effector-related 

power modulations are present throughout the entire planning phase (see effector coding section). 
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Figure 5. A. Univariate results for action coding (Grasping vs. Reaching). The central 

topography represents any significant sensor for the action type main effect (grasping vs. reaching) 

within the significant time period (750-1050 ms). The plot represents mean power change of the 

sensors averaging across the significant time period within the beta band (15-25 Hz). The two upper 

lateral panels represent the mean TFRs of the sensors within the two clusters depicted within the 

insets. Relative power change was expressed in arbitrary units (a.u.) calculated as grasping - 

reaching. B. Source estimation. Visualization of sources for action coding is projected on the two 

lateral views of the brain. Relative power modulations were defined as: (grasping -

reaching)/reaching. Only 10 % of the grid points with maximum power change (above 90th 

percentile) are depicted. Source maps have been projected on an inflated brain template adopting 

the Caret software (Van Essen et al., 2001, http://brainvis.wustl.edu/wiki/index.php/Caret:About). 

To be able to compare the effects of effector and action coding, the borders of the significant 

sources for effector coding (univariate analysis) depicted in Figure 4C have been projected on the 

brain surface as a black outline. LH, left hemisphere; RH; right hemisphere. 
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For visualization purpose, we performed source analysis selecting the significant time period 

(750-1050 ms) and frequency range (20 ± 5 Hz). As the comparison grasping vs. reaching was 

significant only in the positive direction (Figure 5A, central panel), we focused on sources 

generating this type of power modulation, which were found in the temporal cortex and bilaterally 

in the ventral (PMv) and dorsal (PMd) premotor cortices, dorsolateral prefrontal cortex, PPC and 

precuneus (Figure 5B). Furthermore, Figure 5B suggests a spatial overlap between areas coding 

effector and action type in bilateral motor, somatosensory, premotor (PMv, PMd, SMA) and PPC 

regions.  

 

3.3 Effector-independent action coding: multivariate analysis of sensor and source data 

As described above, previous studies using MVP analysis of fMRI data identified effector-

independent action representations within a wider set of cerebral regions showing action coding 

(Gallivan et al., 2013b). Based on these findings (Gallivan et al., 2013b), we expected that action-

specific beta activity might also convey information underlying an abstract representation of the 

upcoming action, i.e. irrespective of the hand used to perform the movement.  

Following these assumptions, we chose to focus on the significant sensors identified with the 

univariate contrast for action coding. However, the main effect of action coding might highlight 

sensors where power modulations for grasping with both hands might be higher than the respective 

reaching condition. Using significant sensors from both hands could thus lead to circular analysis 

problems (see Kriegeskorte et al., 2009). To avoid this possibility, we identified significant sensors 

specific for grasping actions performed with each hand separately (right grasping vs. right reaching, 

left grasping vs. left reaching) by performing a univariate comparison within the same time window 

(750-1050 ms) and frequency band (15-25 Hz) identified for the action type main effect (Figure 2, 

step 1). Next, we performed two sensor-based multivariate analyses, one for each cross-validation 
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fold, using power values for all the significant sensors as features for the classifier and performing a 

searchlight in time x frequency space (Figure 2, step 2).  We tested each cross-validation fold, using 

the pairwise comparison adopted to localize the sensors in the univariate analysis for training, and 

the other pairwise comparison for testing obtaining a decoding TF map (Figure 2, steps 3-4-5). 

Then, we averaged the decoding TF maps of the two cross-validation folds obtained for each 

participant (Figure 2, step 6) and tested the obtained accuracy maps against chance decoding at 

group level. We found significant cross-effector decoding (surviving TFCE multiple comparison 

correction at cluster level) within the low beta range below 20 Hz (see Figure 6A).  

For visualization purpose, we localized sources with above chance decoding adopting an 

additional multivariate analysis at source level (see Figure 3) extracting single trial data from the 

peak of decoding found using the sensor-based MVP analysis (18 ± 3 Hz, time window: 700-1100 

ms). The result of this analysis demonstrated that cross-effector decoding for grasping actions was 

localized bilaterally within premotor cortices (PMv, PMd and SMA), intraparietal sulcus and 

temporal cortex (see Figure 6B). Furthermore, within the left hemisphere there was also the 

involvement of the inferior frontal gyrus and the dorsolateral prefrontal cortex. 
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Figure 6. A. Sensor-based multivariate analysis for effector-independent action coding. 

Multivariate searchlight analysis was performed in time x frequency space considering as features 

power values extracted from all the significant sensors identified at univariate level for each cross-

validation fold separately. Decoding results for the average of the two cross-validation folds are 

presented. The TFR on the left depicts z-values assessing the statistical significance of decoding 

accuracies (z value of 1.65 corresponds to p=0.05 TFCE corrected). On the right, TFR with raw 

decoding accuracy values averaged across participants is depicted without any statistical masking. 

B. Multivariate source analysis for effector-independent action coding. On the two lateral views 

of the brain, the localization of regions showing above chance decoding for action type cross-

decoding is depicted. Only 10% of the grid points with maximum decoding value (above 90th 

percentile) are shown. Source maps have been projected on an inflated brain template adopting the 

Caret software (Van Essen et al., 2001, http://brainvis.wustl.edu/wiki/index.php/Caret:About). LH, 

left hemisphere; RH, right hemisphere. 
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3.4 Action-independent effector coding: multivariate analysis of sensor and source data 

To validate our multivariate approach, we adopted MVP analyses of sensor and source power 

to investigate action-independent effector coding using the same cross-decoding approach used for 

effector-independent action coding (Figure 2). At sensor space, we directly investigated the 

decoding performing the searchlight in time x frequency space separately for the two cross-

validation folds within the selected sensors (see Figure 3). The only difference was in the adopted 

pairwise comparisons: left grasping vs right grasping and left reaching vs. right reaching. 

Decoding TF maps were statistically tested at group level by adopting the non-parametric 

approach implemented in the CoSMoMVPA Toolbox (described above), correcting for multiple 

comparisons with TFCE (see Figure 7A, left panel). Comparing uni- and multivariate TF analysis 

(Figure 4A, lateral panels and Figure 7A, right panel) for this effect demonstrated that the two 

analyses revealed qualitatively similar patterns of results.  

For visualization purposes, multivariate source analysis was also performed on the beta band 

adopting the same parameters as in the univariate analysis (time: 250-1600 ms, frequency: 20 ± 5 

Hz). The results show bilateral encoding localized within posterior parietal, somatosensory, 

premotor and motor cortices (Figure 7B). For ease of comparison, the outlines of the corresponding 

source analysis for the univariate analysis are superimposed (see Figure 7B). 

 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

 

 

Figure 7. A. Sensor-based multivariate decoding analysis for action-independent effector 

coding. Multivariate searchlight analysis was performed in time x frequency space considering as 

features power values extracted from all the significant sensors identified at univariate level for 

each cross-validation fold separately. Decoding results for the average of the two cross-validation 

folds are presented. The TFRs on the left depicts z-values (TFCE corrected) assessing the statistical 

significance of decoding accuracies (z value of 1.65 corresponds to p=0.05 TFCE corrected). On the 

right panel, TFR with raw decoding accuracy values averaged across subjects is depicted without 

any statistical masking. B. Source decoding analysis. On the two lateral views of the brain, the 

localization of regions showing above chance decoding for the average of the two cross-validation 

folds within the beta band (15-25 Hz) is depicted. Only 10% of the grid points showing maximum 

above chance decoding (above 90th percentile) are shown. Source maps have been projected on an 

inflated brain template adopting the Caret software (Van Essen et al., 2001, 

http://brainvis.wustl.edu/wiki/index.php/Caret:About). The borders of the significant sources for 

effector coding (univariate analysis) are projected on the inflated brains as a black outline for ease 

of comparison between the two analyses. LH, left hemisphere; RH, right hemisphere. 
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4. Discussion 

We found that movement planning was characterized by distinct power modulations within the 

beta band. Specifically, effector coding and action coding were represented by a relative decrease 

and increase, respectively. Whereas effector coding was evident throughout most of the planning 

phase, action coding was obtained in a more narrow time window from 750 to 1050 msec after the 

onset of the cue. These modulations in beta power were evident within overlapping regions in 

premotor and posterior parietal cortex, suggesting the possible integration of action and effector 

information within these areas. Moreover, we found that abstract, effector-independent action-

related information is encoded within a more narrow frequency band (below 20 Hz) within the 

broadband beta band modulation described for action coding. Sources encoding this abstract 

information were evident not only within the fronto-parietal prehension network, but also in the 

ventral stream.  

In the next sections, we will discuss the role of beta band modulations in coding these different 

types of neural representations and their more general role in motor control. 

 

4.1 Role of beta band power modulations in representing effector and action information 

Within the general decrease in power obtained during movement planning, the beta band was 

modulated both by the effector and the type of action. The spatial and temporal overlap between 

action and effector coding at sensor and source levels suggested that power modulations within the 

beta band might code two different motor features through a combination of simultaneous relative 

increase and decrease in power within the same cortical region. These different power changes 

seem to support the view of beta band power modulations as reflecting the summation of different 

processes rather than a unitary phenomenon (Kilavik et al., 2013).  
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At first sight, the demonstration of less beta suppression when comparing grasping with respect 

to reaching might sound counterintuitive, given the general notion that a stronger decrease in 

alpha/beta band power implies a stronger recruitment of the motor system (Cheyne, 2013; Neuper et 

al., 2006).  

Similar to our results, a recent MEG investigation on reaching movements (Tzagarakis et al., 

2010) described a relative increase in beta power during movement planning. Participants had to 

plan reaching movements based on a variable number of potential targets. A higher number of 

potential targets led to a less pronounced beta suppression: maximal decrease was present for one 

target, with a smaller decrease for two, and an even smaller decrease for three targets. This result 

supports the idea that a smaller (i.e. relative increase) beta power suppression might be indicative of 

a planning process requiring higher sensorimotor demands. 

Spinks et al. (2008) recorded local field potentials from monkey PMv and motor cortex and 

showed a similar power increase in the beta band (around 20 Hz) during the planning phase before 

an upcoming grasp. The effect was partially selective to the grip needed to grasp an object, 

suggesting a possible role of this power modulation in processing different types of grasp-related 

information: object shape and spatial position, object affordance, grip type or the transformations 

needed to convert object shape into a suitable grasping pattern (see also Vargas-Irwin et al., 2015). 

Linking these two pieces of evidence, we suggest that the relative increase in beta power might 

be related to additional sensorimotor transformations required while planning a prehension action, 

comprising both reaching and grasping, with respect to planning a reaching-only action, such as the 

appropriate hand shape and wrist orientation.  

Most of the regions coding for grasping movements in the current study are in line with 

previous studies adopting a variety of techniques spanning from human fMRI (e.g. Ariani et al., 

2015; Gallivan et al., 2013b, 2011b; Leo et al., 2016), neurostimulation data (e.g. Koch et al., 2010; 
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Vesia et al., 2013) and monkey single cell recordings (Baumann et al., 2009; Bonini et al., 2012, 

2011, 2010; Brochier and Umiltà, 2007; Fattori et al., 2012, 2010, 2009; Fluet et al., 2010; Janssen 

and Scherberger, 2015; Murata et al., 2000, 1997; Raos et al., 2006, 2004; Schaffelhofer et al., 

2015). Interestingly, action-related beta power modulation was localized not only within the fronto-

parietal pathway traditionally considered to code grasping information, i.e. the dorsolateral 

pathway, comprising the inferior part of PPC and PMv. This power modulation extended also 

within the dorsomedial pathway (superior and medial part of PPC and PMd), traditionally 

considered as coding only reaching information. This finding is supporting convergent monkey 

(Baumann et al., 2009; Fattori et al., 2012, 2010, 2009; Fluet et al., 2010; Murata et al., 2000, 1997; 

Raos et al., 2006, 2004) and human studies (Fabbri et al., 2014; Gallivan et al., 2013b, 2011b; 

Monaco et al., 2014; Verhagen et al., 2008) showing the coding of grasping information within both 

pathways. 

 

4.2 Effector-independent action coding within fronto-parietal network 

Our multivariate analyses showed that local patterns of beta power modulations convey also 

effector-independent information regarding upcoming actions. At sensor level, this effect was 

subtended by a specific frequency interval within the more broadband beta power modulation 

described using univariate analysis. At source level, this effect was localized both within the fronto-

parietal network and the ventral stream. Given the different roles attributed to these two cortical 

pathways, we discuss the possible function of these representations. 

With respect to the fronto-parietal network, it is plausible that these action representations 

might play a direct role in motor control. Previous investigations described similar abstract action 

representations, i.e. generalizing across different movement features, within human PPC and frontal 

cortex adopting fMRI (Barany et al., 2014; Gallivan et al., 2013b; Kadmon Harpaz et al., 2014), and 
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within monkey PMv using single cell recordings (Rizzolatti et al., 1988). Our study extended these 

results showing that effector-independent information about upcoming action is encoded by beta 

oscillations within the PPC, premotor and prefrontal cortices. 

It is difficult to clearly define which aspects of a planned action might be represented 

irrespective of the adopted effector, given the difference between the reaching and the grasping 

conditions in terms of sensorimotor processing. Effector-independent information might refer to the 

encoding of the spatial position (Gallivan et al., 2013b, 2011a) and/or the intrinsic properties (shape 

and size) of the to-be grasped object (Gallivan et al., 2013b). Alternatively, it might be related to 

representing information about the action itself at a more abstract level, i.e. generalizing across 

specific features (Gallivan et al., 2013b; Kadmon Harpaz et al., 2014). These abstract action 

representations have been proposed to represent the aim of the motor output irrespective of the 

means (i.e. specific muscular pattern) by which it is obtained (Gallivan et al., 2013b; Heed et al., 

2011; Leoné et al., 2014; Rizzolatti et al., 1988). The encoding of effector-independent information 

could be crucial in motor control as it allows the flexible remapping of the aim of an intended 

behavior through a different motor output, comprising a different muscular pattern or even adopting 

another effector (e.g. the other hand, the mouth or the foot). 

 

4.3 Effector-independent action coding within temporal regions 

Abstract action encoding within temporal cortex, particularly within the lateral 

occipitotemporal cortex (LOTC), supports the recent proposal of its possible role in motor control 

(Ariani et al., 2015; Gallivan and Culham, 2015; Gallivan et al., 2014, 2013a; Verhagen et al., 2012, 

2008). A recruitment of ventral stream regions during the execution of non-visually guided grasping 

actions have been demonstrated in monkey (Kilintari et al., 2014) and human neuroimaging studies 

(Astafiev et al., 2004; Orlov et al., 2010; Singhal et al., 2013). This recruitment has been interpreted 
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as a rehearsal of a high order visual representation of the performed action and/or of the object to be 

grasped. Furthermore, MVPA analysis of fMRI data within the ventral stream showed encoding of 

action representations even during movement planning and even if the activity of these regions was 

below or at baseline level (Ariani et al., 2015; Gallivan et al., 2013a). This suggests that these 

regions did encode action information even before movement execution. A direct evidence of the 

causal involvement of temporal regions in performing delayed non-visually guided movements 

comes also from a recent TMS study (Cohen et al., 2009). TMS perturbation of lateral occipital 

complex had an effect on kinematics of non-visually guided actions, only when grasping had to be 

performed after a delay of two seconds, but not if the movement was performed immediately. This 

specific perturbation effect suggests that information coming from the ventral stream might be 

particularly crucial in the case of a non-visually guided delayed movement (as the one adopted in 

our study). Our data support a similar recruitment within the temporal cortex during movement 

planning. In our specific case, participants had to plan and perform non-visually guided actions 

without direct visual information regarding the to-be-grasped object. The recruitment of temporal 

regions might provide the dorsal stream with a “surrogate” source of input, i.e. an abstract 

representation of the to-be-executed action and/or of the object’s properties (i.e. shape and 

position), for performing the upcoming action (see also Lingnau and Downing, 2015). Our results 

and other recent investigations (Bracci and Peelen, 2013; Bracci et al., 2011; Gallivan et al., 2014, 

2013a; Gutteling et al., 2015; Valyear and Culham, 2010; Verhagen et al., 2012, 2008) support a 

relevant role of the ventral stream in motor control, which might be involved in coding action or 

specific learned properties of the target object, especially when this environmental information is 

not available during action planning. This information might be transferred between ventral and 

dorsal stream in order to form a motor program (Verhagen et al., 2008).  

In line with our current results, Tucciarelli et al. (2015) found abstract (i.e. effector independent) 

action representations for observed actions in the LOTC. In contrast to the current study, this 

representation was subtended by modulations within the theta/low alpha band, suggesting possible 
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differences within the LOTC for observing and acting. Similarly, Tan et al. (2013) showed that 

occipito-temporal alpha modulations underlay a continuous process for extracting information from 

observed movements in order to plan a subsequent motor response. These occipitotemporal alpha 

modulations were also strongly predictive of the subsequent response before its execution, 

suggesting that incoming information was processed initially within occipitotemporal cortex and, at 

a later stage, integrated with the planned movement within fronto-parietal areas.  

Based on these findings, as alpha band involvement was clearly present also in our univariate 

and multivariate results, an intriguing hypothesis could be that it underlay the interplay between the 

neural dynamics of movement planning and observation within the temporal lobe, but further 

studies are needed to verify this possibility. 

 

4.4 Conclusions 

Our univariate approach provided new insights on the coding and the possible integration of 

different neural representation during movement planning within the fronto-parietal network. 

Furthermore, our multivariate analysis suggested that the beta band might support “abstract” action 

encoding localized within the fronto-parietal network and the occipito-temporal cortex. Caution is 

needed when interpreting decoding data, as MVP analysis is susceptible of discriminating between 

conditions based on any (experimentally manipulated or not) difference between them. For this 

reason, our experimental paradigm was devised to control for visual stimulation during the planning 

phase minimizing potential confounds in interpretation. Keeping in mind the limitations of this 

approach, our study showed also the potential of MVP analysis as a powerful tool for disentangling 

different processes simultaneously acting during movement planning by decoding modulations in 

local patterns of activity.  
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To conclude, our data support and widen previous investigations on motor control by 

demonstrating the crucial role of beta oscillations in processing different movement features, 

spanning from the representation of the adopted effector up to an effector-independent 

representation of the upcoming action.   
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Highlights 

 

• MEG was adopted to investigate the neural dynamics of movement planning. 

• Action and effector information is reflected by beta band power modulations. 

• Action and effector-related modulations were found in fronto-parietal regions. 

• Multivariate analysis showed encoding of effector-independent action information. 

• This encoding was localized within fronto-parietal and temporal regions. 


