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Spin response to localized pumps: Exciton polaritons versus electrons and holes
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Polariton polarization can be described in terms of a pseudospin which can be oriented along the x, y, or z axis,
similarly to electron and hole spin. Unlike electrons and holes where time-reversal symmetry requires that the
spin-orbit interaction be odd in the momentum, the analog of the spin-orbit interaction for polaritons, the so-called
TE-TM splitting, is even in the momentum. We calculate and compare spin transport of polariton, electron,
and hole systems, in the diffusive regime of many scatterings. After dimensional rescaling diffusive systems
with spatially uniform particle densities have identical dynamics, regardless of the particle type. Differences
between the three particles appear in spatially nonuniform systems, with pumps at a specific localized point. We
consider both oscillating pumps and transient (delta function) pumps. In such systems each particle type produces
distinctive spin patterns. The particles can be distinguished by their differing spatial multipole character, their
response and resonances in a perpendicular magnetic field, and their relative magnitude which is largest for
electrons and weakest for holes. These patterns are manifested both in response to unpolarized pumps which
produce in-plane and perpendicular spin signals, and to polarized pumps where the spin precesses from in-plane
to out-of-plane and vice versa. These results will be useful for designing systems with large spin polarization
signals, for identifying the dominant spin-orbit interaction and measuring subdominant terms in experimental

devices, and for measuring the scattering time and the spin-orbit coupling’s magnitude.
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I. INTRODUCTION

Quantum particles are characterized not only by their
position, but also by additional quantum numbers. Among
these quantities the electron’s spin, a property which has one
of two values, +1/2 and —1/2, has tremendous promise
for improvements in computing technology. If there is no
magnetic field which breaks time reversal symmetry, then a
180° rotation reversing an electron’s momentum must also
reverse the evolution of its spin. Here we will explore diffusive
spin transport of an alternate particle, which like electrons
has a quantum number with two possible values, but which
unlike electrons keeps the same dynamics when momentum is
reversed.

The particle of interest is the cavity polariton, the elemen-
tary excitation of semiconductor microcavities in the limit of
strong coupling between light and the quantum well’s excitons.
Like electron spin, the polariton has a quantum number
with two states: its polarization. Unlike electrons, reversing
a polariton’s momentum has no effect at all on its polarization.
To reverse the polarization’s dynamics one must rotate the
polariton by 90° not 180°, and thus interchange the x and y
axis. (For a review of polarization properties of polaritons see,
e.g., Ref. [1].) The consequences of this profound difference
for polarization transmission under repeated scattering are at
the heart of the current article.

The electron’s single-particle density matrix o is character-
ized by charge density N and spin densities Sy, Sy, S; and can
be represented as a vector

p:[N, va Sya Sz] (1)
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Like the electron, the polariton also has a density matrix
composed of its particle density N, circular polarization den-
sity S;, and linear polarization densities S, S, corresponding
to xy and diagonal in-plane polarization. In the ballistic
regime, i.e., without scattering, the polaritonic analog of spin-
orbit coupling causes the polarization’s direction to precess,
converting linear S;, S, polarization to circular S, polarization
and vice versa. For polaritons the axis of precession varies
continuously over 360° when the polariton momentum rotates
by 180°, unlike electrons where the axis of precession is
locked to the momentum. Because of this angular structure, an
initial population of linearly polarized S, or S, polaritons will
evolve into a four-lobed, or quadrupole, pattern of circular S,
polarization. In this celebrated effect, two lobes have positive
circular polarization, two have negative polarization, and
separating the four lobes is the Langbein cross where the initial
linear polarization is unchanged [2—-8]. When a perpendicular
magnetic field is added, the four-quadrant polarization pattern
twists into spiral shapes [8,9].

We will compare the polariton’s dynamics under scattering
to those of electrons, and also to holes realized in zinc blende
semiconductors, where the Fermi level is doped into the J =
3/2 valence band rather than the conduction band. In each of
these cases we will restrict our analysis to two-dimensional
systems analogous to the 2D electron gas. Like polaritons,
electrons and holes can be written mathematically as two-
state systems, and their dynamics are governed by two-state
Hamiltonians. However, unlike polaritons, they possess real
spin and therefore must reverse their spin dynamics when their
momentum is rotated by 180°. Moreover, in holes (without
strain or anisotropy [10,11]) rotating the momentum by 60°
also reverses the spin dynamics. This is a consequence of the
crystal symmetry, in combination with the fourfold degeneracy
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of the valence band [12]. Therefore an initial population of S,
holes will evolve into a six-lobed, or sextupole, pattern of S,
spin density. Holes produce six lobes, polaritons produce four
lobes, and electrons produce a simple dipole pattern. These
qualitative differences in angular dependence correspond to
precise differences in the two-state Hamiltonians governing
electrons, polaritons, and holes.

In addition to the distinctive spin-orbit splitting terms of
each type of particle, we will consider also the effect of a
Zeeman splitting term caused by an external magnetic field
oriented perpendicularly to the sample. For polaritons this term
may also be caused by variations in the polariton cavity such
as in-plane strains inside the quantum well, or asymmetries in
the direction of crystal growth [1]. This external and tunable
parameter is a useful probe of (pseudo)spin dynamics, and in
polariton systems is known to twist the polarization pattern
into a spiral.

Previous polariton experiments have generally utilized
GaAs samples where the clean sample’s low disorder den-
sity is further diminished by the polariton’s large spatial
extent, allowing polaritons to move ballistically, i.e., without
scattering, on millimeter length scales [13—17]. Ballistic
polariton transport has been studied both experimentally and
theoretically in many papers [2-9]. It is completely controlled
by (pseudo)spin precession: As the polaritons move radially
out from the polariton pump, their quadrupole pattern changes
sign twice for each precession length [pcqn. The result is that
concentric circles of alternating sign are superimposed on the
quadrupole pattern [7]. Perfect spin polarization is maintained
until the polaritons decay.

In this article we focus on a different scenario, the diffusive
regime, where the scattering length is so short that transport
is governed by diffusion. We assume that the experimental
length and time scales are long compared to the scattering
scale. This is the typical case for experiments on 2D electron
and hole gases. For polaritons, the diffusive regime can be
obtained by fabricating nanopillars embedded in the polariton
sample, similarly to optical systems where disorder has been
induced by growing nanocolumns [18,19]. In the diffusive case
the particle’s average displacement ry grows according to the
diffusive law

ro =+/Dt, 2)

where D is the diffusion constant, unlike the ballistic regime
where the rms value of ry grows linearly with time. In diffusive
samples the momentum becomes randomized through elastic
scattering, subject to the constraint that the energy remains
equal to the pump energy E,. Therefore one calculates the
average dynamics and transport—averaging over the random
disorder, and averaging over the randomized momentum.
Performing this averaging, and assuming a low-density, non-
interacting system, we calculate the spin diffusion equations
which govern the evolution of spin and particle densities.
Previous works on polaritons in the diffusive regime used
a classical kinetic equation to calculate the equilibrium
of steady-state spatially uniform systems [20,21]. Here we
calculate the dynamics of nonuniform systems using standard
perturbative techniques based in quantum mechanics which
have been applied extensively to electron diffusion.

PHYSICAL REVIEW B 93, 085311 (2016)

We will show that in the diffusive regime spatially uni-
form distributions of electrons, polaritons, and holes exhibit
identical spin dynamics. The essential reason is that the three
particles differ only in their spin-orbit interaction’s dependence
on momentum, and momentum is randomized by scattering in
the diffusive regime. Differences between the spin diffusion
equations of the three particles can be resolved only by
breaking translational invariance, so we will focus entirely
on nonuniform systems.

Previous articles deriving spin diffusion equations have
often applied the equations to quasi-1D geometries in steady
state, i.e., without temporal dynamics [22,23]. In this case the
diffusion equations simplify and can be solved analytically. In
this present article we focus instead on the richer and phys-
ically relevant case of spatially localized pumps introducing
particles into the device at one particular point. Such pumps
produce a rich set of interesting spin behaviors. We will show
that in the presence of a magnetic field, unpolarized pumps
produce through scattering both in-plane and out-of-plane
spin densities. Polarized pumps do the same, and in addition
exhibit spin precession between in-plane and out-of-plane
spins. These signals display spatial multipole patterns with
the same angular structure as the spin-orbit coupling—a
quadrupole structure in the case of polaritons. If there is a
perpendicular magnetic field, the multipoles twist into spirals
as time progresses. However, unlike ballistic transport, the spin
pattern does not manifest concentric circles around the pump,
since transport occurs according to a random walk rather than
radial motion.

The structure of this paper is as follows. In Sec. Il we explain
in detail the electron, polariton, and hole systems which can be
realized experimentally, and realistic Hamiltonians for mod-
eling these systems. We also describe how to quantitatively
compare diffusive transport of these disparate particles, by
rescaling the dimensions and comparing dimensionless ratios.
In Sec. IIT we mathematically prescribe the observables which
are calculated in our paper: the density matrix which encodes
spin and particle densities, and the response function for a
spatially localized pump. Next, Sec. IV presents our analytical
results: the diffusion equations which control the evolution
of spin densities. These diffusion equations are obtained
using a standard technique which has been widely applied
to electron diffusion problems [23-30]. Examination of the
diffusion equations reveals the multipole pattern which will
allow experimentalists to quickly determine the dominant spin-
orbit coupling and carefully measure subdominant couplings.
Changing the spin-orbit splitting or the scattering time will
cause the spatial multipole pattern to rotate. We also show
that in a perpendicular magnetic field polaritons and holes
exhibit a resonance that can be used to measure the spin-orbit
strength. The resonance is characterized by extinction of the
polarization produced in response to an unpolarized pump. It
occurs at numerically different magnetic field strengths for the
two particles, and is sensitive to the spin splitting.

The behavior of a real experimental device cannot be deter-
mined unless the diffusion equations of Sec. IV are combined
with initial conditions and solved. Unlike previous works
which analytically calculated steady-state quasi-1D devices,
in Sec. V we solve 2D spin diffusion from a localized pump,
using numerical techniques. The problem/solution space is
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very rich: oscillating pumps vs. transient pumps, four types
of spin input and response (S, S, S, and density N), various
angular and radial profiles of the response, time dependence
at both short and long times, and an intricate dependence on
the relative strengths of the kinetic energy, spin-orbit splitting,
Zeeman field, and scattering time. Surveying this complex
solution space was one of the chief challenges of the present
work. Section V presents the most interesting features. In
many cases our results quantitatively confirm and illustrate
the qualitative trends discussed in Sec. IV. However Sec. V
also gives qualitatively new information: we show that the time
evolution breaks naturally into two regimes, before and after
loss of memory of the pump polarization. Spin observables
can reach quite large values in the first regime, and can persist
well beyond the memory loss. We also examine the evolution
into spiral structures which will allow measurement of the
scattering time, and determine the parameters which maximize
the spin polarization. Lastly, Sec. VI synthesizes the major
differences between electrons, polaritons, and holes. Several
appendices present mathematical details of our calculations.

II. THE MICROSCOPIC HAMILTONIANS FOR
ELECTRONS, POLARITONS, AND HOLES

We now introduce a realistic Hamiltonian which models
polaritons in a GaAs quantum well, as well as electronic
2DEGs and hole-doped systems [1,12,22]. The spin-orbit
coupling varies substantially in these three systems. It is the
linear Rashba coupling for electrons, a quadratic coupling
for polaritons, and a cubic coupling for holes. We write the
Hamiltonian for all three cases in a unified notation with N = 1
for electrons, N = 2 for polaritons, and N = 3 for holes:

Rk 0 (ke — thy)N
HY = — + b0, + A P
m + 0,0, + Aso |:(kx —}—lky)N 0 i|
h*k?
= E +C Eprcsnoz
N 0 (ky — 1hy)V
+ S EprcsnkF |:(kx + lky)N 0 5
Asok b,
S =sinfp = SOF, C =cosblp = -
presn presn
Eprcsn = (ASOkIZE‘/)2 + b%» 3

where o = [0x,0y,0;] are the Pauli sigma matrices, k is
the wave vector, and kr is the characteristic wave vector
determined by the energy E. b, is the strength of the Zeeman
term, and A g controls the strength of the spin-orbit coupling.
For convenience we have expressed the relative strength of
the Zeeman term and the spin-orbit coupling with the angle
Op = arctan(Asokg/bZ), asine S = sinfp, and a cosine C =

cos 0. 2Epreen = 2, /(Asokg)2 + b2 is the splitting between

energy levels.

This is a noninteracting Hamiltonian, which works well
for polaritons in the limit of low polariton density, where
polariton interactions are weak and can be neglected. In this
limit the polariton energy E,—the in-plane kinetic energy
in the lower polariton branch—is the same as the energy of
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the pump photons used to excite the polaritons. Moreover the
polaritons’ characteristic wave number k¢ is the magnitude of
k on the contour in momentum space defined by E(k) = E,.
(This contour is the elastic scattering circle for polaritons, or
the Fermi surface for electrons and holes.) Note that in the
regime of strong pumps nonlinear effects may qualitatively
change the texture of the spin patterns [31,32]. The noninter-
acting picture is also appropriate for electrons in 2DEGs and
for hole-doped semiconductors, with the caveat that here £, is
the Fermi energy E,, and is controlled by doping, gating, etc.

Our N =2 polariton Hamiltonian is accurate when the
polariton energy E, is a fraction of Rabi splitting Q2g, which is
the energy scale of the exciton-photon coupling that produces
the polaritons. In GaAs the Rabi splitting is near the value
Qp = 6 meV seenin Refs. [14-16,33-35], so our Hamiltonian
is valid in the range E, = [0,2] meV. In this article we will
fix £, at 2.0 meV; decreasing this value only rescales the
scattering length and time, as well as the polariton wavelength
[, determined by the pump energy. We also choose the mass
m=>5x10">m,, as reported in Refs. [14-16]. This value
is typical for polaritons in GaAs quantum wells, and is
determined by the band gap in GaAs.

The polarization evolution (or spin evolution for electrons
and holes) is determined by the second and third terms in
H. The second term is a Zeeman splitting depending on the
polarization (or spin) quantum number. Here we assume that
this term is oriented along the Z axis, perpendicularly to the
sample, so it produces only in-plane precession.

The third term gives the momentum-dependent spin-orbit
coupling, or the TE-TM splitting in the case of the cavity
polariton. In polariton systems symmetry arguments require
that this term be even in the momentum, which is a very
distinctive signature of polaritons. In contrast, in electron and
hole systems time-reversal symmetry requires that this term
be odd in the momentum, as long as there is no magnetic field
or magnetic impurities. The N = 1 linear term we use here for
electrons is just the Rashba spin-orbit interaction.

The principal source of the quadratic polariton TE-TM
splitting is the confined photons’ sensitivity to the mirrors
of the cavity and to the angle of the incident light [1]. Studies
of the TE-TM term and of the Zeeman term (with a modest five
Tesla field) have shown that both terms can reach or exceed
0.2 meV, so that they may be comparable to the total polariton
energy, and spin-orbit effects can be very large [33,36-40].

A. How to compare electrons, polaritons, and holes

For the purpose of comparison between uncharged po-
laritons and charged electrons and holes, we neglect the
electrical potential ® and magnetic gauge potential A acting
on charges. The gauge potential A can be neglected if the
cyclotron radius is larger than both the scattering length and
the dephasing length, which is easily achieved if the sample is
not very clean and the temperature is high enough to extinguish
weak localization effects. Turning to the electrical potential, a
gradient in this potential will cause a net drift of the charges,
which will act in addition to the diffusive dynamics considered
here. This drift can be be minimized by decreasing the potential
gradient.
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In the preceding discussion of the Hamiltonian we have
taken care to use realistic values for the polariton mass m,
pump energy E,, and spin-orbit coupling strength. However
the final results of our calculations are determined only by
length and time scales and dimensionless ratios formed from
combinations of these parameters. We can compare polariton
results directly to electron and hole results by rescaling the
dimensions to match each other. Here are the physically
relevant scales:

The wavelength 1, and velocity v,. The mass m and the
pump energy E, (or Fermi energy for electrons and holes)
determine the wavelength

l, =h//2mE,, )

which is the fundamental length scale governing transport
and dynamics. They also determine the polariton’s velocity

in ballistic flight,
v, =/2E,/m, 5

which conveniently allows conversion of times and energies to
lengths, and vice versa. At the polariton energy E, = 2.0 meV
the polariton wavelength and velocity are respectively [, =
4 pmand v, =4 um/ps.

The precession length [ s, Taken together, the Zeeman and
spin-orbit terms determine the spin (or polarization) precession
length

lprcsn = hvp/Eprcsna (6)

where Epeon = /(AsokR)? + b2. We assume that the spin-

orbit term is small compared to the kinetic energy p?/2m, or
equivalently, that the precession length [, is large compared

tol, =4 pum.
The scattering length | scales with
(hvp)?
| X ————, 7
Wk @

where (V?) the second moment of the disorder potential
and v is the characteristic length scale of the impurities. In
the diffusive regime only [ itself determines the system’s
evolution, not n or (V?). We do require that the disorder
be weak according to the Ioffe-Regel criterion, i.e., that
x =1,/Im < 1. Otherwise the diffusion picture breaks down
and Anderson-localized states may be observed. To ensure
diffusive transport in our polariton system with [, =4 um,
we set [ = 16 um. The scattering time is T = [/v, = 4 ps.

The polariton decay length lgecay. Unlike electron and
hole systems where charge is conserved, polariton number
generically decreases with time as photons escape through the
Bragg mirrors of the quantum cavity. This decay is determined
by the polariton lifetime Tgecay, Which also determines the
maximum distance /gec,y that polaritons travel before decaying.
Under diffusive motion this distance is

ldecay = DTdecay’ (8)

where D =[v,/2 is the 2D diffusion constant. Diffusion
can be observed only if the decay length /gec,y substantially
exceeds the scattering length/ = 16 pum. Therefore we assume
a relatively large value [gecay = 80 um, corresponding to
Tdgecay = 200 ps = 507. The (pseudo)spin dynamics of greatest
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interest occur at shorter time scales of order 107, so our
numerical results on spin are largely independent of the decay
time. For electrons and holes the decay time is infinite.

These numerical values of the polariton decay length
and time are experimentally accessible. Polariton cavities far
larger than /gecsy = 80 wm are routinely fabricated in present
experiments. Improved mirrors have recently increased the
lifetime from a few ps to 180 ps, so 200 ps is also quite
feasible [14-16].

Given these length scales, electrons, holes, and polaritons
can be compared directly to each other after positions are
normalized by the scattering length / and times are normalized
by 7. These are the natural length and time scales of a
diffusive system. After performing this normalization, only
four dimensionless quantities determine the (pseudo)spin
dynamics:

(1) The dimensionless disorder strength x =1,/Ix =
hE,T < 1.

(2) 65, which controls the relative strength of the Zeeman
and spin-orbit terms.

(3) The dimensionless diffusion length, ry/l = /t/27,
which tracks the diffusive spreading of the initial particles.

(4) The dimensionless energy splitting between the spin
up and down states & = I/ lpresn = EpresnT/h Which determines
the dominant source of spin relaxation [41-45].

This last parameter is key to the spin dynamics. ¢ > 1/2
puts the system in the Elliott-Yafet (EY) regime, where the
(pseudo)spin precesses many times before scattering and
momentum is tightly coupled to spin. In the EY regime the
spin is randomized at every scattering event, so its relaxation
time is close to the scattering time 7. In contrast, { < 1/2 puts
the system in the D’yakonov-Perel’ (DP) regime where the
(pseudo)spin precession length /s, is long compared to /, and
the energy splitting is small compared to the scattering energy.
In this case precession lasts much longer than the scattering
time, and the spin relaxation length scales with /jcqp.

As always, we assume that I,/ lycsn = ¢ x is small, so
that the spin splitting is small compared to the kinetic energy
p2/2m.

III. THE DENSITY MATRIX AND THE
RESPONSE FUNCTION

We now begin developing the equations describing
(pseudo)spin dynamics in the diffusive regime, where the
particle scatters randomly many times, and where we must
average over disorder in order to calculate transport properties.
Disorder-averaged diffusive transport is qualitatively different
from transport in the ballistic regime, where all transport infor-
mation is contained in the wave function |y). In the diffusive
regime scattering randomizes |v)’s phase and therefore its
disorder average (|¥)). averages to zero, losing all transport
information. Study of the disorder-averaged wave function
alone is unable to describe transport, or even probability
conservation, in the diffusive regime.

A correct description of diffusive transport begins with the
single-particle density matrix which for the case of a pure state
reads

p(t) = ¥ (1)) ® (Y(1)], ©9)
p(t,3,%) = EYO)N Y (@)IX).
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The density matrix encodes complete information about the
probability density /(X) in its local X = x values:

1(t,%) = Tr[p(t,X,X)]. (10)

Here the trace is performed over p’s spin indices. I(X) is
proportional to the charge density in electron and hole systems,
and to the particle density in polariton systems. Similarly, the
(pseudo)spin densities are also encoded in p’s local values:

Se(t,X) = Tr[p(t,X,X) 0],
Sy(1.%) = Tr[p(t.%.%) 0, ], (11)
S.(t,%) = Trlp(t,%,%) 0.].

These local quantities survive the disorder average because
of the cancellation of phases between |¢) and (y|. Nonlocal
X # X values of the density matrix decay exponentially when
X—Xis longer than the scattering length if we are outside the
polariton condensation regime [46]. We confine our attention
to the local quantities 1(¢,X), Sy (¢,X), Sy(t,X), S(¢,X), which
are the proper starting point for studying diffusive transport.
We write these as a vector:

o, D] = (1(,%), $:(t,%), S,(t,%), S.(t,%)}.  (12)

It is also convenient to study the spatial Fourier transform of
the density matrix, because random disorder after averaging
does not break the (average) translational invariance:

o1 = {1(1.9), S:(1.4), Sy(t.9), S:(1.9)}.  (13)

When studying transport with an oscillating pump we will also
study the temporal Fourier transform

[o(@,0)]" = /dt expror) [p(1,%)]". (14)

It is often useful to compare the spin densities S; to the
probability density /. We define the (pseudo)spin degrees

sy =58:/1,8,=8,/1,s5,=5,/1. (15)

These degrees can never be larger than 1 or smaller than —1. At
one extreme, the density matrix may be entirely unpolarized,
in which case it is proportional to o = {1,0,0,0} and the spin
degrees are all zero. At the other extreme it may be completely
polarized, with sf + sf, + sf =1.

A. Response functions

Our goal is to obtain and study a response function ®(z)
which evolves the density matrix forward in time:

o(t,%) = fd;é d(t,X — X) p(t = 0,%). (16)

<I>(t,fc,;6) is a 4 x 4 matrix, because it computes the charge
and spin densities at time ¢ as function of the charge and
spin densities at ¢+ = 0. The response function is also a linear
operator, which is a direct consequence of our working in
the noninteracting regime. Therefore we will study only the
response ®(,X) to a t = 0 delta function input py 62(¥) at the
origin. The response to any input may be reconstructed from

PHYSICAL REVIEW B 93, 085311 (2016)

®(z,x) by convolving the response function over the t = 0
density matrix according to Eq. (16).

We will also calculate the temporal Fourier transform
®(w,X¥) which describes the density matrix produced in
response to a pump pq oscillating with period T = 27 /w:

d(w,X) = fdt exp(iwt) ®(t,%),

p(w,%) = /d?E D(w,% — X) po(®,X). 17)

This frequency response function contains both information
about the response amplitude and information about the
response’s phase relative to the pump. Therefore it is in general
complex, with both real and imaginary components. In this
paper we will study only the magnitude of the response, not
its phase information.

Because the system is translationally invariant after aver-
aging over disorder, it is convenient to Fourier-transform both
the time response function ®(¢,X) and frequency response
function ®(w,X) to momentum space:

p0.5) = [ 5 expd - D) ptr = 0.0). (1)
(2m)

We determine the response functions using standard meth-
ods from the diagrammatic technique for disordered systems
[47]. We neglect effects from quantum interference and adopt
a purely classical picture of particle diffusion through the
disordered system. We model scattering with a “white noise”
disorder potential which does not alter the (pseudo)spin

1
o]

where the density of states v(E ) at pump energy E, is

(1):|u(7), (@u) = Qrvt/h) '8¢ —7),  (19)

dk .
W(E,) = Z/ P S(E, — E(s,k)), (20)

and E (s,lz) are the two eigenvalues of the Hamiltonian at
wave vector k. We assume that this equilibrium value of p
is unpolarized, which just means that £, > 2 E}cs,. With this
white noise disorder every scattering event causes the particle
to lose its memory of its previous momentum, which becomes
evenly distributed on the elastic scattering circle. Under these
assumptions the time response function can be written as an
exponential:

d(t,q) = exp [% Dl(é)}, t>0. ©2))
D' (G =1- I;; is the inverse of an operator called the
diffuson. It contains information about a single scattering event
which is represented by the scattering operator /;;. The re-
sponse function is obtained by exponentiating D', describing
the results of repeated scatterings. As a consequence of this
exponential form, the frequency response function is

1

(o} ,ﬁ = .
(@.4) tw+t7'D71(g)

(22)
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FIG. 1. Diagram illustrating the scattering that produces diffu-
sion. Here two scattering events are shown. G* and G® describe
time evolution of the polariton ¥ and its complex conjugate yrf. Each
scattering event causes correlations between G* and G¥ and is shown
as a dashed line connecting the two.

Equivalently to Egs. (21) and (22), we can also write the spin
diffusion equation

0 N - o
3P0 = D) p(t,9). (23)

This reveals that D~' is the diffusion operator controlling
evolution of the density matrix. Before solving the diffusion
equation one must first supplement it with the starting state
pt =0).

In the next section we will derive the diffusion opera-
tor D~'(g) analytically. Calculation of the response func-
tions requires numerical calculations—either exponentiation
[Eq. (21)] or inversion [Eq. (22)]—and we will perform this
numerical work in Sec. V.

IV. ANALYTICAL CALCULATION OF
DIFFUSIVE TRANSPORT

In order to calculate the diffusion operator D~'(g), one
must first calculate the scattering operator /;;. In each
scattering event the wave function [1) and its conjugate (V|
move together, scattering in unison. Two scattering events are
pictured in Fig. 1. The scattering operator /;; is given by the
integral

h > -
Iif = —/dkTr[GA(k — Q/ZaEp)O—i
’ dmvt

x GR(k +G/2,E,)a;]. (24)

Here G* and GR are the disorder-averaged single-particle
Green’s functions, and their spectral representation is given
in Eq. (C2) in Appendix C. The trace is taken over the spin
indices of G*,G®,0;, and o}, which are all 2 x 2 matrices
in (pseudo)spin space. ¢ is the diffuson wave vector. Further
details of the integration of Eq. (24) are given in Egs. (C3) and
(C4) of Appendix C.

Equation (24) for the scattering operator and D~'(g) =
1 — I;; for the diffuson are a well established and widely
adopted formalism for determining spin and charge diffusion
[23-30]. This formalism has a strong physical motivation
expressed in the perturbative diagram in Fig. 1, can be derived
from the Keldysh equations for nonequilibrium conduction,
and is equivalent to Kubo linear response theory [48]. In
the present work we use this formalism to study electrons,
polaritons, and holes, in a magnetic field, to all orders of the
spin splitting parameter {. We also have checked that our
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results coincide with those of Ref. [22], which is also based on
the Keldysh equations, but uses a different strategy for solving
them iteratively.

As seen from the Fourier transform in Eq. (18), there is
a direct mapping from the momentum g to position space.
Precisely, every power of 1g, corresponds to a d/d, spatial
derivative, every power of 1g, corresponds to a 9/dy, and 1q
corresponds to V. Because we are interested only in length
scales that are long compared to the scattering length I, we
perform a Taylor series expansion of the scattering operator /;;
in powers of /g (or equivalently in powers of / %) and terminate
the expansion at second order. This approximation is justified
for calculating observables at scales larger than /. It guarantees
that the inverse diffuson contains only terms with at most two
spatial derivatives, which is appropriate for describing particle
diffusion under random scattering [22,24]. For the spin-charge
coupling in holes we make an exception to this procedure and
keep cubic (Ig)* terms, since at quadratic order this coupling
is zero, as is well known from previous studies [28,49,50].

As mentioned before, we assume that disorder is weak, far
from the localized phase, so that the dimensionless disorder
strength x = 1,/ml = h/E,t is small. Therefore we expand
I;; in a Taylor series in powers of x and truncate at first order.
We neglect all powers of x that do not occur in combination
with [, 7, 0r ¢.

Our spin-orbit term has the special property that the spin
splitting 2 Epresn = 2,/(Agsoky)? + b2 is rotationally invariant.
As aresult we are able to analytically calculate the scattering

operator /;; to all orders in the dimensionless energy splitting
= l/lprcsn~

A. The diffuson in the EY and DP regimes

After Taylor-expanding Eq. (24) and integrating over the
elastic scattering circle, we find that the inverse diffuson
D~! decomposes into four parts: a momentum-independent
part A which gives the spin (or polarization) relaxation rates
and the precession term, a diffusion term A (not to be
confused with the spin-orbit strength Agp) which includes
the coupling between charge/number density and circular S,
polarization, a momentum-dependent part «o; which gives the
coupling between density and linear S,,S, polarization, and
a momentum-dependent part k;. which gives the coupling
between linear S, S, polarization and circular S, polarization.
Our decomposition reads

D' = —(A — A+ ko + Kge + T/Tdecay)- (25)

We present the four terms both in the Elliott-Yafet limit
where ¢ > 1/2, and also in the D’yakonov-Perel” limit where
¢ <« 1/2.In Appendix A we present the more complicated ex-
pressions which interpolate between these limits. Appendix C
shows gives the details of our derivation of «; and also of the
coupling between particle density and S, polarization.
Spatially uniform spin distributions are governed by the
mass and precession matrix. Very remarkably, this term is
the same for electron, polariton, and hole-doped systems,
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regardless of N = 1,2,3. It is

0 0 0 0
NI 0 2:*(14+C? 2¢C 0
0 -2cC 2221+¢?» 0 |
L0 0 0 472582
0 0 0 0
0 (1+C%»/2 0 0
LBV _ ( )/ ’ 26)
0 0 1+C?»/2 0
L0 0 0 52

where the C and S parameters are defined in Eq. (3). The
on-diagonal terms in A give the (pseudo)spin relaxation rates,
which are the inverses of the spin lifetimes. The upper left
entry is the inverse lifetime of the charge/number density,
and is zero because elastic scattering does not change the
polariton number or the electron or hole charge. In the EY
¢ > 1/2 regime the lifetimes are proportional to the scattering
time T = 4 ps, while in the DP ¢ <« 1/2 regime they scale
quadratically with ¢~ !; Tyy, Ty X /et ol

The off-diagonal terms of A (zero in the EY regime)
describe the usual precession of the in-plane polarization
around the magnetic field, which is oriented perpendicularly
to the sample, along the z axis. They render the diffuson
non-Hermitian, so that its eigenvalues are complex, as required
for describing precession. In the DP regime the polarization
precesses many—O (¢ ~!)—times before it decays. In contrast,
in the EY regime polarization precession is not visible
at diffusive scales, because each scattering randomizes the
polarization.

We turn to A, the part of the diffuson which is proportional
to g2 and therefore describes diffusion. Since it is zero at
zero momentum g = 0, it has no effect on spatially uniform
distributions.

1 0 0 do.
_anr qh*| 0 1 —6:C 0
2 |0 e6ccC 1 0l
| do: O 0 1
m 1 0 0 do:
N @h*| 0 S22 0 0
2 10 0o s?2 o]
| dy, O 0 c?

do.n = —x¢{C+ xCCS* N — x¢ /(1 + 4% CS*N.
@7

The most interesting aspect of this diffusion operator is
dy;, the coupling which controls the generation of S, circular
polarization from polariton density (or electron or hole charge).
This coupling implies that from an initial population of
unpolarized polaritons, diffusive scattering in a magnetic field
will produce an S; signal perpendicular to the plane, with
a conversion efficiency controlled by x¢ =1,/mlycsn. The
resulting S, signal is rotationally symmetric in real space. The
dy, coupling describes diffusive generation of S, polarization
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inside the structure of the diffuson D! itself. It is not the
same as the external Zeeman potential introduced in Ref. [24],
which does not couple S, to density, and is not part of the
diffuson. The dy, coupling requires inclusion of the Zeeman
splitting while computing D~!; it is zero when b, = 0, and
therefore is omitted in some previous works on diffusion with
a Rasha term [22,24].

do,’s magnitude )({(ql)2 is the same for electrons, polari-
tons, and holes, but its dependence on 65, the balance between
Zeeman and spin-orbit terms, differs for the three particles.
We focus on the EY regime where the last term in dp, can
be neglected. In an electron system with linear spin-orbit
coupling dy, does not depend on the spin-orbit strength Ago
at all. Interestingly, in polariton systems if the magnetic field
strength |b,| = |A sok%| is tuned to exact resonance with the
spin-orbit strength, then dy, goes to zero and changes sign. In
hole-doped systems with cubic coupling the same resonance is
still present, but is shifted to |b,| = V2 |A sokfr |. This resonant
behavior is interesting both because it is different for electrons,
polaritons, and holes, and also because it may be useful for
measuring the spin-orbit strength.

The diffusive component A contains an additional term
A" which is proportional to (g/)*V. Interestingly, it breaks
rotational symmetry, mirroring the spin-orbit coupling. In
electron systems with a linear Rashba spin-orbit coupling, A!
is

0 0 0 0
Al _e(qz)z 0 cos(26,) sin(26,) O
2 |0 sin(20,) —cos(26,) O '
0 0 0 0
. 20282(3 4 672 + 824 28)
(14 4¢2)3

In the DP ¢ « 1/2 regime this term is proportional to ¢2,
which is a small contribution to AP, However in the EY
¢ > 1/2 regime where the spin-orbit coupling is strong A!
is proportional to S$?/4, and induces a quadrupole angular
dependence in the diffusion. A similar anisotropic diffusion
term has been found for spin conduction on the surface of
a 3D TI, which because of its strong spin-orbit coupling is
in the EY regime [23,51]. More generally, in polaritons A
scales with (ql)4, and in holes it scales with (ql)6. Because
in polaritons and holes A' is parametrically smaller than the
(ql)? part of A, we neglect it in these systems, and retain it
only for electrons.

Unlike the treatment of the Rashba coupling in Ref. [22]
which leaves the diffusion term constant at its ¢ = 0 value
where the spin splitting is very small, our result for A keeps
all orders of ¢. This allows spin or pseudospin to diffuse
at a rate different from that of charge or number density, a
possibility discussed in Refs. [52—54]. While the diffusion term
% controlling the number/charge density is insensitive to ¢,
the other terms in A are reduced by the spin-orbit coupling.
For instance, the S, diffusion term (expanded to second order
in ¢) is reduced to %(1 — 24¢?). This implies that spatial
inhomogeneities of number/charge density are smoothed more
quickly than spatial inhomogeneities of (pseudo)spin.
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We find also a coupling which generates Sy, S, linear
polarization from polariton number density (or electron or
hole charge density):

0 cos N, sinNO, O
( Z)N cos Nb, 0 0 0
Koo = —ql) yn| . >
sin N6, 0 0 0
0 0 0 0

(29)

yv = x¢S x {(1 4+ C?)/4,C*/2,(3/16)2C* — §)}
+x2/A+4HY S(1+C?)
x {—1/4, —1/2, —(9/16)(1 — 4¢%/3)}. (30)

This coupling implies that an initial population of unpo-
larized particles, in the presence of a spin-orbit (TE-TM)
splitting, will after diffusion produce a linearly polarized
Sy, Sy signal with a conversion efficiency controlled by x ¢ =
Ip /7 lpresn. This process does not occur without a spin-orbit
coupling.

Production of linear S, S, polarization from an unpolarized
source depends very sensitively on whether the system hosts
electrons, polaritons, or holes. First of all, the polarization has a
special angular pattern: a dipole pattern in an electron system,
a quadrupole pattern in a polariton system, and a sextupole
pattern in a hole-doped system. Second, the signal’s magnitude
is strongly sensitive to the spin-orbit interaction, scaling with
gl to the Nth power. At the length scales of interest, much

J
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larger than the scattering length /, this implies that the linear
polarization is strongest for electrons and weakest for holes.
Third, in the DP regime spin production from an unpolarized
source is much smaller for electrons than for polaritons or
holes. For electrons the two terms in Eq. (30) nearly cancel,
giving a signal that scales as x¢3. In contrast, for polaritons
and holes there is no such cancellation and the signal is
proportional to x¢, i.e., larger by two factors of the inverse
dimensionless spin splitting ¢!, which is large in the DP
regime.

Lastly, the linear polarization’s dependence on the Zeeman
term is different for each of the three particles. The difference
between particles is particularly strong in the EY regime
where the second term in yy can be neglected, and relatively
weak in the DP regime. We focus on the EY regime in the
following discussion. In electrons the Zeeman term’s influence
is weak, changing the polarization by at most a factor of two.
In contrast, in polaritons removing the Zeeman term (setting
C = 0) extinguishes the linear polarization. This means that
polaritons, unlike electrons and holes, require a magnetic field
to produce a linear spin polarization signal from an unpolarized
pump. In holes the requirement is again absent, but one can
tune the magnetic field to zero the linear polarization at the
resonant condition |b,| = |A50|k13F / /2. As one moves from
the EY regime to the DP regime the resonance shifts to smaller
|b;| and eventually disappears. This resonance may be useful
for measuring the spin-orbit strength in hole-doped systems.

Finally we turn to the coupling between linear S, S,
polarization and circular S, polarization, ;., which describes
out-of-plane (pseudo)spin precession. Unlike the couplings
doz,k0; to the number or charge, the form of «;. depends
strongly on the dimensionless energy splitting ¢, and is
independent of the disorder strength x. It changes if one goes
from the DP regime to the EY regime:

0 0 0 0

Kie = _(,ql)N 0 0 0 fncosNO, — gy sin Nb,
0 0 0 fnsin N6, + gy cos NO,
0 fncosNO, +gnsinNO, fysinNO, — gycos N, 0

DP:  fy =0, gy =28 x {2, — 3,1},
EY: fy=-CS(=2)", gy=0.

This coupling implies that a spin-orbit coupling will cause
out-of-plane precession, which converts an initially linearly
polarized S,, S, signal to circular S, (pseudo)spin, and vice
versa. In the DP regime only a spin-orbit coupling is required,
while in the EY regime a magnetic field is also required. In
the DP regime this is bona fide spin precession, since the
gn contribution is anti-Hermitian, similarly to the precession
term coupling S, and S,. In this regime oscillations between
Sy, Sy, and S, are possible. In the EY regime oscillations are
not possible because the fy term is dominant and is Hermitian;
we find only a nonoscillatory coupling.

Similarly to «o; which produces linear polarization from
an unpolarized pump, this precession between linear and
circular polarization is strongest for electrons and weakest

€19}

(

for holes, and the resulting polarization shows a dipole,
quadrupole, or sextupole pattern for electrons, polaritons, and
holes, respectively. An interesting difference is that the angular
pattern rotates by 7 /(2N) during the transition from small ¢
to large ¢. This angular pattern is expressed in the coupling’s
dependence on sin N6, and cos N§,. These sines and cosines
are interchanged when ¢ is increased from the DP limit to the
EY limit, causing the rotation.

B. Instability and regularization

Our calculation of the response function involved a Taylor
series expansion in powers of gl. This is a long-wavelength
approximation, restricted to length scales larger than the
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scattering length. Outside of this approximation’s range of
validity, i.e., at momenta g/ > 1 large enough to probe scales
smaller than the scattering length, our analytical formulas
predict that the S, S, linear polarization grows exponentially
with time instead of decaying, which is an unphysical result.
In polariton systems this instability occurs only when ¢ o« 1/2
is near the transition between the EY and DP regimes, i.e.,
when the spin precession length matches the scattering length.

We have regularized this instability by making an ad hoc
modification of the diffuson, i.e., a cutoff, when % < (ql)z.
This cutoff is technically sound and justified because we
already removed all short-distance physics when we truncated
higher spatial derivatives [22,24]. We have recalculated our
numerical results with three different cutoffs, and we compared
the results. When the computed results differ, this signifies
that they are sensitive to ballistic physics, i.e., length scales
smaller than the scattering length /. Throughout our numerical
discussion we report which results are stable, independent of
the cutoff, and which results do vary with the cutoff because
of a sensitivity to ballistic physics. Appendix B describes each
of the three cutoffs in more detail.

The numerical results presented in our graphs are calculated
with a smooth cutoff that turns on smoothly over the interval
% < (q1)*> < 2. This cutoff nonetheless produces a spatial
oscillation, or ringing, in some of our results. The ringing has a
length scale set by the cutoff scale / and affects all components
of the density matrix.

C. Summary of analytical results

Remarkably, electron, polariton, and hole systems have
identical behavior for spatially uniform spin and charge
densities. Their spin relaxation rates and precession are exactly
the same. Moreover, there is neither coupling between linear
and circular (pseudo)spin, nor between number/charge density
and spin.

The behavior of spatially inhomogeneous systems is more
intriguing. An initially unpolarized and nonuniform pump will
spontaneously produce both circular and linear polarization.
The resulting circular polarization has the same magnitude
for all three types of particles, but for holes and polaritons in
the EY regime it can be zeroed by tuning the magnetic field
to a resonance condition where the magnetic field matches
the spin-orbit coupling. The resonance condition differs for
holes and polaritons. In addition to the circular polarization,
the linear polarization also can be zeroed in the EY regime
by tuning the magnetic field to a resonance with the spin-orbit
coupling, but only in holes.

We have also seen that an initially polarized pump will
undergo out-of-plane precession, converting linear polariza-
tion to circular polarization and vice versa. Both this process
and the production of linear polarization from an unpolarized
pump are strongest for electrons and weakest for holes, and
produce distinctive dipole, quadrupole, and sextupole patterns
for the three types of particles. In the case of out-of-plane
precession, this pattern’s magnitude and angular orientation
are both sensitive to the dimensionless energy splitting .

The analytical results presented here were obtained with a
spatial Fourier transform, i.e., in momentum space, and they
determine the matrix D~ which controls time evolution. We
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now turn to numerical calculation of the response function
® in real space. These numerical results will give us a clear
picture of both the spatial distributions that are produced from
a spatially localized pump, and of the spin polarization signals
that occur before and after the spin relaxation time.

V. NUMERICAL RESULTS

In the previous analytical section we calculated the diffu-
sion operator D~!(g) in momentum space, which we presented
in Egs. (25)—(31). The response function ¢ in momentum
space cannot be obtained without numerical calculation, either
inverting 1w+ t~!'D~! to obtain the frequency response
®(w,q), or exponentiating %D‘l to obtain the time response
®(z,q). Calculation of the real-space response functions
®(1,X), (w,x) requires a further Fourier transform; we
discretize on a spatial lattice and use fast Fourier transforms.
The lattice spacing a adds an additional smearing of the
response function ® over an area a?, in addition to our diffusive
approximation which removes ballistic physics at scales
smaller than the scattering length /. If a < [ this lattice-induced
smearing is insignificant. We employ periodic boundary
conditions for numerical convenience, combined with large
sample sizes. In experimental realizations if polaritons reach
the device edges before they decay, then they escape from
the edges of the device. The behavior of electrons and holes
at device edges is sensitive to attached leads. In the diffusive
regime these effects are not significant for the large sample
sizes which we employ here.

A. Basic spin precession and decay

We begin our numerical results with two graphs that illus-
trate quantitatively basic features of the diffusion equations in
momentum space. First, Fig. 2 studies the spin precession and
decay of systems with fixed wave vector. Figure 2(a) illustrates
precession of an initially £-polarized density which is spatially
uniform (zero momentum ¢ = 0) and therefore shows only in-
plane and no out-of-plane precession. The in-plane precession
is caused by the Zeeman field oriented perpendicularly to
the sample, and is manifested as out-of-phase oscillations
of the S and S, linear polarizations (orange and red lines).
Dashed lines show precession with only a Zeeman splitting,
and solid lines show precession with both a Zeeman splitting
and a spin-orbit term. The black solid line shows the overall
polariton density, which decays exponentially due to the effects
of the finite polariton lifetime. Identical results are obtained
for electrons and for holes, which at uniform density have
identical spin relaxation dynamics. Of course, because the
lifetime of electron and hole charge is infinite, their total
density is conserved.

Panel (b) of Fig. 2 shows out-of-plane spin precession,
where circular S, polarization is generated from the initial
X polarized pump. Unlike panel (a) where we plotted the
polarization densities Sy, Sy, here we plot the polarization
degrees s,,sy,s;, which are the polarization densities divided
by the polariton density /. We will plot this observable s in all
subsequent graphs because it shows out-of-plane precession
more clearly than the polarization densities S and moreover
can be measured easily in experiments. In order to obtain
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FIG. 2. Polarization precession. The black lines show the polari-
ton density, and the orange, red, and blue lines show linear S, S, and
circular S, polarization. Polarization density S is shown in panel (a),
and polarization degree s is shown in panel (b). The initial polaritons
are 100% linearly X polarized. In panel (a) the initial polariton density
is spatially uniform producing strictly in-plane precession, while in
panel (b) it has wave vector gl = 1/+/10 which allows out-of-plane
precession. Panel (a) shows in-plane spin precession—out-of-phase
oscillations of the S, S, polarizations. Solid lines show precession
with both Zeeman and spin-orbit terms (65 = 57/8), and dashed lines
show precession with only a Zeeman term (8 = 0.) Panel (b) shows
out-of-plane precession, which produces circular S, polarization.
¢ =0.1,x =h/Eyt = 1/47, Tgecay = 507, and 7 =4 ps. In panel
(b) 0 = 57/8.

out-of-plane precession, the polariton distribution must have
nonzero wave vector, which we have set to ¢ = £/1 +/10. The
largest polarization degrees are found at large times # >> 7. At
time ¢ = 50t the polariton density is about 3.0% of the initial
value, the initial 100% X polarization degree has reversed sign
and is 41%, and a 13% circular polarization degree has been
generated.

In Fig. 3 we show the polarization relaxation times of a
spatially uniform distribution as a function of ¢. Identical
results are obtained for electrons, polaritons, and holes, which
in the case of spatially uniform systems have identical spin
relaxation dynamics. We show 7, at four values of 6p. The
D’yakonov-Perel” { < 1/2 regime is shown on the left side,
and the Elliott-Yafet regime ¢ > 1/2 regime is shown on the
right side. In the EY regime 7, is locked to the scattering time
7, and in the DP regime it scales with ¢ 2. At very small ¢
the polariton decay time Tgecay = 507 caps 7,,. In electron and
hole systems this cap is removed and 7, continues to scale
with ¢ =2 even at very small ¢.

The straight solid blue line in Fig. 3 shows that when
0 = 0, i.e., when the spin-orbit coupling is zero, the circular
S, polarization lifetime is equal to the polariton lifetime
Tdecay- In this case o, commutes with the Hamiltonian and
circular polarization is conserved. Therefore we find large
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FIG. 3. Polarization (spin) relaxation times 7, as a function of
the dimensionless spin splitting ¢, both for circular S, polarization
(unbroken lines) and for linear S, polarization (dashed lines.) We
plot 7, at four values of 65 = 0,7/6,7/3,7/2. In the EY ¢ > 1/2
regime the decay time is constant, and in the DP ¢ <« 1/2 regime
it scales with ¢ 2. x = h/E,t = 1/47, Tgecay = 200 ps = 507, and
T =4ps.

accumulations of circular S, polarization when 65 is small,
i.e., when the spin-orbit coupling is small.

B. The polarization’s dependence on radius

Next we begin our study of the response to a spatially
localized pump, which requires numerical evaluation of
Egs. (21) and (22). In order to learn about typical length scales,
Fig. 4 focuses on the radial dependence of the polarization.
We present radial data for polaritons only because the electron
and hole results are quantitatively similar and qualitatively
identical. The similarity of the radial dependence between the
three particles, and indeed all of the qualitative and quantitative
results seen in Fig. 4 and discussed here, was inaccessible
without numerical calculations.

The left panels of Fig. 4 show the temporal response at times
t = 51, 207, 807 after the pulse, and the right panels show
the frequency response to an oscillating signal with periods
T = 57, 207, 80t. The blue lines in the right panels show the
response to a static pump. In the #,7 = 57,207 calculations
we used a system of size L = W = 51.2/ and a lattice spacing
a =0.2].Inthet,T = 807 calculations L = W = 102.4/ and
a = 0.41, and in the static calculation L = W = 204.8/ and
a = 0.41.Sincea « [, lattice-spacing effects are insignificant.
We rms-averaged the intensity / and polarizations S,,Sy,S;
over the polar angle ¢. The averaged polarization degrees
(8y,8y,8;)¢ are calculated by dividing the rms average of
Sy,Sy,S; by the rms average of /.

The upper panels of Fig. 4 plot the polariton density 7,
which is independent of ¢, and also independent of p and
of the starting polarization, except for small variations when
0 = 0. In panel (a) the time-response curves are simple
quadratics, and they match perfectly after rescaling r by v/Dt,
which shows that the polariton density is simply an expanding
Gaussian. Similarly in panel (b) the frequency response curves
coincide well after rescaling by ry = +/DT. The frequency
response decays exponentially with r for all r/ry > 0.3. (We
obtain a good match for the static data by rescaling with
the artificial value 7 = 1280 ps. This value of T may be
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FIG. 4. Radial distribution of the polariton density and polariza-
tion degree. The left panels show the time response p(f,Xx) at time
¢t to a transient pulse, while the right panels show the frequency
response to an oscillating signal with period 7. All panels show
the signal’s radial dependence, after performing an rms average
over the polar angle ¢. The radial coordinate is rescaled by the
diffusion length ro = +/Dr. The upper panels plot the polariton
density (I)4 (in arbitrary units) produced by an unpolarized pump,
the middle panels plot the circular polarization degree (s )4 produced
by out-of-plane precession from a linearly polarized pump, and the
bottom panels plot the linear polarization degree (s, )4 produced by
an unpolarized pump. For polaritons Tgecay = 507. ¢ = 0.1, 0 =
57/8, x =h/E,t =1/4m, T =4 ps.

tied to the decay time Tgecay = 200 ps.) The density’s almost
perfect insensitivity to {,0p, and time ¢, T, after rescaling the
radius r, supports our use of intensity variables s,, sy, s, in the
remaining graphs. Because / has a simple profile, dividing by
I does not obscure or complicate the physics revealed in the
following graphs.

The density’s form is very similar to that of a simple particle
density undergoing diffusion without spin-orbit coupling or
spin precession. In this case the diffusion operator is just
Dtg?, where D is the diffusion constant, and the Fourier
transform to position space can be performed analytically.
For the time response ®(¢,x) [Eq. (21)] one finds an ex-
panding Gaussian (27 Dt)~! exp(—r?/2Dt). For the frequency
response ®(w,X) [Eq. (22)] one finds a modified Bessel
function 2 | Ko(r /1w /D)|, which decays exponentially with
r if 0.2 < r4/w/D. Our numerical results are very similar to
these analytical forms.

The middle panels (c) and (d) show out-of-plane precession
from a linearly X polarized pump to circular s, polarization de-
gree. The static response (blue line) shown in panel (d) displays
spatial oscillations which are caused by the regularization that
we imposed on the diffusion operator at large wave vectors
gl > 1/+/2. However we have checked that the overall shape
and magnitude of the static response are insensitive to the
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cutoff. In addition, our calculations using other cutoffs show
that the frequency response at T = 5t, 207, 807 is sensitive
to the cutoff at small radii 7/~ DT < 2, and other cutoffs not
shown here can show substantially larger frequency responses
at small r. Outside of this window the frequency response is
insensitive to the cutoff. The temporal response is insensitive
to the cutoff everywhere.

Panel (c) shows that at t = 57, 20t conversion rates can
reach and exceed 10~'. Panel (d) shows that similar numbers
are obtained from the response to oscillating and static pumps.
These numbers decrease substantially at larger times or periods
t,T = 807, and can be tuned by varying ¢ and 5. An increased
polarization degree can also be obtained by moving to larger
radii r, at the cost of reducing the polariton density.

Panels (e) and (f) show the linear s, polarization degree
produced in response to an unpolarized pump. These curves
are very similar to the data in panels (c) and (d), but numerically
they are about an order of magnitude smaller. This difference
in magnitude is caused by the factor of x, the ratio of the
energy splitting to the pump energy E,, which controls angular
variations in the momentum kr. x is 1/4mw =~ 0.08 in our
calculations. x occurs once in the coupling k; of polariton
density to circular polarization, signaling that this process
requires appreciable angular variations of k. x does not occur
at all in the coupling of linear to circular polarization k;;
therefore panels (e) and (f) are smaller by a factor of .

Our time response and frequency response results show that
the polarization degree—the ratio of the polarization signal to
the density—generally increases with 7 /rq. This is a universal
trend visible in all of our data, for electrons, polaritons, and
holes, and for all values of the model parameters, and is seen in
panels (c), (d), (e), and (f). To be clear, the polarization signal
itself decreases with r. However its rate of decrease is smaller
than that of the number/charge density N, which results in the
observed increase in r seen throughout Fig. 4. At large enough
r the polarization degree invariably exceeds 1, as seen for
example in panel (d). However this unphysical result occurs
only when the signal intensity is smaller than the peak value by
a factor of 107 or less; it is not physically measurable. This
unphysical result is a mathematical artifact of our diffusive
approximation, which does not correctly capture the tails of
probability distributions. In the remaining graphs we restrict r
to values where the diffusive approximation remains valid.

C. Angular structure in position space

We turn to the polarization’s angular distribution in real
space, which naturally complements the previous section’s
analysis of the radial dependence. Our numerical results will
confirm the analytical results about the multipole patterns of
electrons, polaritons, and holes, and their rotation with ¢.
Furthermore, we will show that the multipoles twist into spirals
as time progresses, and we will give quantitative results about
the signal strengths.

Figure 5 shows the pattern of circular polarization degree
s, = §;/I which out-of-plane precession produces starting
from a linearly polarized pump. Our analytical results indicate
that direct conversion of linear to circular polarization in the
EY regime requires both a spin-orbit term and a Zeeman
splitting, so we make both terms strong with 8 = 57/8. Here
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FIG. 5. §; circular polarization degree in real space, at two values
of ¢ and two values of time ¢. The left panels and right panels are r =
5t and ¢t = 207, respectively, and the upper and lower panels are at
¢ =0.25and ¢ = 0.5, respectively. The pump is linearly X polarized.
As ¢ is increased the polarization’s quadrupole distribution rotates.
As time increases the quadrupole pattern rotates and deforms into a
spiral. 5 = 57/8, x = R/E,T = 1/47, Tgecay = 507, and T = 4 ps.

and in the other radial plots (Figs. 6 and 10) the lattice spacing
is 0.2/ and the system size is 51.2/. Previous theoretical
and experimental articles in the ballistic regime have shown
that out-of-plane precession produces a quadrupole pattern
with two opposite lobes of positive circular polarization, two
negative lobes, and the Langbein cross of zero polarization
dividing these lobes [2—-8]. Further work, always in the ballistic
regime, showed that when a magnetic field is introduced
the quadrupole pattern twists into a spiral pattern, with its
orientation becoming a function of radius r [8,9]. This rotation
occurs because in the ballistic regime the radial position r is
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FIG. 6. S, spin polarization degree in real space, for electrons
(upper panels) and holes (lower panels). The left panels and right
panels are t = 5t and ¢ = 207, respectively. The pump is linearly X
polarized. Electrons show a dipole pattern, and holes show a sextupole
pattern. As time increases the pattern rotates and deforms into a
spiral in response to the magnetic field. { = 0.25,05 = 57/8, x =
R/E,t = 1/47,Tgecay = 00, and T = 4 ps.
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proportional to time ¢, and the external Zeeman field causes
in-plane precession at a fixed frequency, which in ballistic
fight maps to a precession length. The combination of the
quadrupole pattern with spin in-plane precession causes the
spiral.

As we discussed earlier, our analytical results for the
linear-circular coupling «;. do predict a quadrupole pattern,
and in addition indicate that the quadrupole pattern rotates by
7 /4 as the ¢ parameter is shifted from the DP regime to the EY
regime. The left panels of Fig. 5 show the circular polarization
degree at time t = 57, at £ = 0.25 (upper left), and at £ = 0.5
(lower left). These panels show a clear quadrupole pattern and
confirm that the pattern rotates as ¢ is changed. Similarly to the
ballistic regime, the rotation is caused by in-plane precession
superimposed on the multilobe pattern. However—this is a
hallmark which can be used to distinguish the diffusive regime
from the ballistic regime—no concentric circles are observed
in the diffusive regime. Surprisingly, even though there is a
Zeeman term the polarization pattern is not twisted into a
spiral, unlike previous results in the ballistic regime at t < 7.
It seems that the spiral effect does not occur at this time
scale. However the right panels of Fig. 5 at r = 20t do show
clear spiral patterns at both ¢ = 0.25 (upper right) and at
¢ = 0.5 (lower right.) Appendix B shows that these patterns
are mildly sensitive to the cutoff but the main features are
cutoff-insensitive. Panel (d) with its very small polarization
degree is the exception: its pattern does depend on the cutoff.
In summary, the circular polarization pattern deforms from a
simple quadrupole pattern to a spiral as time progresses, and
its angular orientation is sensitive to both ¢ and time ¢. The
most surprising aspect of these results is that no spiral pattern
is seen at time ¢ = 57, unlike ballistic results. Experimental
observation of the spiral pattern’s temporal evolution from
a simple multipole to a spiral may be a useful means of
measuring the scattering time in individual devices.

Figure 6 shows the angular patterns produced by electrons
(top panels) and holes (lower panels), which have been little
discussed in the previous literature. As expected, electrons
display a dipole pattern in real space, and holes show a
sextupole pattern. Comparison of the left r = 5t and right
t = 207 panels shows again a time dependence—the initial
patterns twist into spirals in response to the magnetic field.
In results not shown here, we also have confirmed that the
angular orientation of the electron dipole pattern and the hole
sextupole pattern rotate in response to variations in ¢, similarly
to the polariton’s { dependence. Probably the most interesting
aspect of these results is that the observed real-space spin
pattern (dipole, quadrupole, sextupole) is a simple signature
that can be used to determine the dominant type of spin-orbit
interaction. Moreover, it is likely that in materials with both
linear and cubic spin-orbit terms, a numerical analysis of
experimental spatial spin distributions could distinguish both
terms in the spin-orbit interaction.

D. The polarization’s temporal dependence

In the previous sections we analyzed the spin’s spatial
profile, both its radial and angular dependence. Here we turn
to the time dependence of the spin polarization degree, which
is determined by the response function ®(r), the exponential
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FIG. 7. Temporal dependence in electrons (top), polaritons (mid-
dle), and holes (bottom). ¢ = 0.1 in the left panels and ¢ = 4 in the
right panels. Blue lines show the polarization degree produced by
an unpolarized pump, and orange lines show the polarization degree
caused by out-of-plane precession from polarized pump. Dashed lines
show linear s, polarization degree, and solid lines show circular s,
polarization degree. The data are rms-averaged over the polar angle
¢. For polaritons 7.,y = 507 and for electrons and holes Tyecay = 00.
r/~/Dtiskeptfixedat3,0; = 57/8, x = 1/E,t = 1/4m, T =4ps.

of the diffusion operator. In Fig. 7 we examine the time
dependence of the spin polarization degree of electrons (top
panels), polaritons (middle), and holes (lower panels), both in
the DP regime (left panels) and in the EY regime (right panels.)
In each panel the dashed and solid lines show respectively
the linear s, polarization degree and the circular s, polariza-
tion degree. Blue lines show the s,, s, polarization degrees
produced by an unpolarized pump, and orange lines show
the polarization degrees caused by out-of-plane precession
from a polarized pump. The lattice spacing a, both here and
in Figs. 8 and 9, is a = 0.2r; = 0.2 /Dt. Since the lattice
spacing is effectively the size of the spatially localized source
pump, this means that we are varying the pump size, with
maximum width at + = 125 7 of abouta = 1.6 [. However the
effect of this smearing remains small in our plots, which show
the spin polarization degree at much large distances r = 3 ry.
The sample width and length are 12.8r(, large enough to
make finite-size effects quite small. We set 0 = 57/8; i.e.,
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FIG. 8. Dependence on the dimensionless energy splitting { =
Ip/ Lyresn in electrons (top), polaritons (middle), and holes (bottom).
Similarly to Fig. 7, blue lines show the polarization degree produced
by an unpolarized pump, and orange lines show the polarization
degree caused by out-of-plane precession from a polarized pump.
Dashed lines show linear s, polarization degree, and solid lines
show circular s, polarization degree. The data are rms-averaged over
the polar angle ¢. Here r/«/ﬁ is kept fixed at 3, t = 207, 05 =
57/8, x =1/E,Tt =1/4m, T =4 ps.

both the Zeeman splitting and the spin-orbit splitting are
significant, but not precisely in balance. This allows both
in-plane and out-of-plane precession to occur, and therefore
gives larger signal strengths than those seen at, for instance,
0 =0 or O = m/2. At times up ¢t = 4t the data may be
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FIG. 9. Dependence on 5 in electrons (top), polaritons (middle),
and holes (bottom). ¢ = 0.1 in the left panels and ¢ =4 in the
right panels. Blue lines show the polarization degree produced by
an unpolarized pump, and orange lines show the polarization degree
caused by out-of-plane precession from a polarized pump. Dashed
lines show linear s, polarization degree, and solid lines show circular
s, polarization degree. The data are rms-averaged over the polar
angle ¢. r/~/Drt is kept fixed at 3, t = 80 ps = 20t, x = h/E,t =
1/4m, T =4 ps.

influenced by ballistic effects which we omitted in our diffusive
approximation, and in some cases is sensitive to the cutoff. In
particular, with other cutoffs some spin signals are increased.
These ballistic/cutoff effects at small times have little effect
on the data after t = 4t.

The spin signals in Fig. 7 generally peak at t = (4-8)t
in the DP regime and at ¢ = (1.75-6)t in the EY regime.
Obviously this time scale is determined by the scattering time
7. At this time scale, in the DP regime, the out-of-plane
precession from an initially polarized pump (orange lines)
is dominant, an order of magnitude larger than polarization
generated from an unpolarized pump (blue lines). In the EY
regime the two processes have similar magnitudes, because
any initial polarization decays extremely quickly. The peak
polarization degree is greatest for electrons: 61% in the DP
regime and 32% in the EY regime. For polaritons it is 43%
and 8% respectively for the DP and EY regimes, and for holes
it is 23% and 11%. These peak values are independent of the
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cutoff in the DP regime. They are more sensitive in the EY
regime where the peak occurs earlier. As a general trend, the
polarization signals are invariably larger in the DP regime than
in the EY regime.

Starting at t = (4-8)t in the DP regime and at r =
(1.75-6)7 in the EY regime, the polarization degree decreases
uniformly. At the same time the dashed lines merge with each
other, and solid lines also merge with each other. This means
that the system loses its memory of the initial polarization, and
is sensitive only to the original polariton intensity. The memory
loss implies a reversal in the dominant mechanism of spin
production: before the memory loss out-of-plane precession is
dominant, while after the memory loss it is replaced by spin
generation from an unpolarized source.

In the EY regime (right panels) the memory loss completes
before + = 107, because the spin is tightly locked to the
momentum and is randomized at every scattering. In the DP
regime (left panels) the memory loss lasts much longer—100t
or longer—because the spin is little affected by scattering and
instead is lost by spin-orbit precession around a randomized
precession axis. This is consistent with the analytical expecta-
tion that in the DP regime the spin relaxation time scales with
7/£2. In our case with £ = 0.1 the memory loss occurs a factor
of 10 later than the time of the peak in the polarization degree.

Surprisingly, after memory of the initial polarization is
completely lost all polarization degree signals do not decay
exponentially, but instead as powers of the inverse time
(straight lines on our log-log plots). This power-law decay
allows the polarization degree to persist to quite long times: at
t = 100t the s, polarization degree for polaritons is 0.5% in
the DP regime, and for electrons it is 7%. In the EY regime
the ¢+ = 1007 s, polarization degree is smaller, but is still 2%
in the case of electrons.

It is also interesting that after the memory loss the s,
polarization degree is largest for electrons and smallest for
holes, because «q;’s out-of-plane precession between Sy, Sy,
and §; is linear for electrons, quadratic for polaritons, and cubic
for holes. In particular, in polaritons the s, and s, signals are
almost the same because in this case all couplings are quadratic
in the momentum. In contrast, the perpendicular s, polarization
degree is roughly the same for all particles, in keeping with
the dy, coupling which is the same up to a numerical constant.

E. Dependence on the dimensionless energy splitting ¢

In Fig. 8 we examine the polarization degree’s dependence
on the energy splitting ¢, which is the ratio of the scattering
length [ to the precession length /jcsn. We will confirm the
analytical results’ linear dependence on ¢ both in the DP
and EY regimes. Going beyond the analytical results, we
will reveal the behavior at the transition between DP and
EY regimes, give quantitative magnitudes of the signals, and
find an interesting feature of polaritons in the EY regime.
Again we have set 8 = 57/8 to allow both in-plane and
out-of-plane precession to occur, and to give larger signal
strengths. The time is fixed at t = 207, long after the first
scattering. We plot the same observables seen in Fig. 7, with
the same parameter values. The data between ¢ = 0.25 and
¢ =1 are mildly dependent on the cutoff, but the qualitative
trends are insensitive to the cutoff and to ballistic physics.
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The polarization degree signals show a transition which
begins near ¢ = 0.1 and ends near ¢ = 1/2, i.e., at the
transition from the DP regime to the EY regime. This transition
is controlled by the onset of spin relaxation, which occurs
at t o t/¢? in the DP regime, suggesting that the transition
in ¢ scales with =12, At small ¢ < 0.1, i.e., deep in the
D’yakonov-Perel’ regime, the out-of-plane precession signals
(orange lines) are largest and tend to have very similar values.
These signals rise steadily with ¢, in agreement with the
linear-circular coupling «;. which is linear in ¢ in the DP
regime. Production of s, linear polarization and s, circular
polarization from an unpolarized pump (the blue lines) is
smaller. In polaritons and holes this process is linear in ¢,
again in agreement with the «p; and dy, couplings which are
linear in .

Near ¢ = 0.1 the out-of-plane precession signals (orange
lines) reach peak values of 43% in electrons, 24% in polaritons,
and 8% in holes. Between ¢ = 0.1 and ¢ = 1/2 the out-of-
plane (orange) signals drop precipitously, and for polaritons
and holes the signals from an unpolarized pump (blue lines)
also decrease. Near the transition to the EY regime at ¢ = 0.5
the solid lines merge with each other, as do also the dashed
lines. The mergers indicate that the system loses its memory
of the pump polarization; it is sensitive only to the initial
pump intensity, not to the initial polarization. This is because
at t = 207 a system in the EY regime is insensitive to its
starting polarization. In the EY regime all polarization signals
are linear in ¢, as expected from our couplings gy, k¢, do;,
which are all linear in ¢ in the EY regime. We again see that the
s, polarization degree is largest for electrons and smallest for
holes, because «q;’s out-of-plane precession between Sy, Sy,
and S, is linear for electrons, quadratic for polaritons, and
cubic for holes. In contrast, the perpendicular s, polarization
degree is roughly the same for electrons, polaritons, and holes.
Interestingly, polaritons in the EY regime give almost exactly
equal magnitudes for all four of the signals plotted here.

F. Dependence on 05, the balance between spin-orbit
and Zeeman terms

Figure 9 examines the polarization degree’s dependence
on the angle 05, which describes the balance between the
spin-orbit interaction and the Zeeman splitting. When 65 = 0
there is only a Zeeman splitting and no spin-orbit interaction,
and when 0 = /2 this is reversed. This section confirms the
0p dependence which we discussed in the analytical section;
its main value is to illustrate the analytical results and give
quantitative magnitudes. The time is fixed at ¢+ = 207, long
after the first scattering, and the data are almost completely
insensitive to cutoff effects. We plot the same observables
seen in Figs. 7 and 8, with the same parameter values.

If one flips the sign of both the spin-orbit term and
the Zeeman splitting, or equivalently adds m to g, then
the polarization signal may change its overall sign but its
magnitude must be unchanged. Therefore our plots of the
rms-averaged signal are symmetric under 63 — 0p + 7, and
we plot only the interval 65 = [0,7r]. In addition we find that
three of the four signals in Fig. 9 are symmetric under flips
around 6z = 7/2. These signals are independent of the sign
of the Zeeman term, which distinguishes between clockwise
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and counterclockwise precession in the device plane. The
one exception occurs in the EY regime, where the linearly
polarized s, response to a circularly polarized s, pump (dashed
orange lines) is not symmetric under flips about 7 /2; i.e., it is
sensitive to the Zeeman term’s sign, as a result of the pump’s
orientation parallel to the z axis. This sensitivity occurs only
if the system retains memory of the original polarization, i.e.,
either at short times, or even at long times when 6 is close
to zero as seen here. However, even this signal is symmetric
under changes at the same time of both the sign of the pump’s
s, polarization and also sign of the Zeeman term.

A first examination of Fig. 9 shows that the polarization
signals are strongly sensitive to 8g. In many of our other graphs
we have fixed 0 = 57/8 in order to avoid the deep minima
that occur at 85 = 0,77/2, and elsewhere. We also see again
that in the EY regime (right panels) the solid lines coincide, and
the dashed lines also coincide, except near g = 0,7 where S,
is conserved. As noted before, this means that the system has
forgotten its initial state.

As discussed earlier, a special feature of electrons is that
in the DP regime the conversion from unpolarized pumps to
linear polarization scales with x¢3, a factor of ¢? smaller
than the conversion to circular polarization, and also a factor
of ¢2 smaller than the same signals in polaritons and holes.
In Fig. 9(a) we see that the unpolarized to linear signal
(the dashed blue line) is smaller, but not by the factor of
¢% = 1072 that might be expected. The reason is that here we
are seeing the result of a two-step process: (a) conversion to
circular polarization, and (b) precession from circular to linear
polarization. This also explains why the unpolarized to linear
signal is zero at 0 = /2, i.e., when there is no magnetic field.

Broadly speaking, the details of Fig. 9 confirm features
of the g dependence which we found in our analysis of the
couplings ko ,k;¢,do,. In particular:

(1) No linearly polarized signal is produced when there is
no spin-orbit coupling, i.e., at 85 = 0. This is universal for
electrons, polaritons, and holes, and occurs because a Zeeman
field oriented along the Z axis is unable to create a linear
polarization, because it is unable break the rotational symmetry
in the xy plane.

(2) At6p = 0 the absence of a spin-orbit term ensures that
the lifetime of circular S, polarization is infinite. Therefore at
0 = 0 we find large circular s, polarization degrees. The s,
magnitude at g = 0 is close to x¢ = ¢/4m ~ 0.08 x ¢, and
is insensitive to ¢ and to any initial linear S, polarization. It is
also the same for electrons, polaritons, and holes.

(3) In the DP regime (left panels), regardless of the
value of 6p, a linearly X polarized pulse always generates
s, polarization. When there is no spin-orbit coupling, i.e.,
0 = 0, the s, polarization is generated by conversion from
the pump’s initial number/charge density, and its magnitude is
of order x ¢. When there is no magnetic field, i.e., 0 = 7 /2,
the spin-orbit coupling causes out-of-plane precession and
produces the s, polarization. In this case its magnitude reaches
48% in electrons, 27% in polaritons, and 9% in holes.

The most interesting aspects of Fig. 9 are the differences
between electrons, polaritons, and holes:

(1) In the EY regime (right panels) polaritons exhibit no
polarization signal at all unless there is a Zeeman term, so at
0p = m /2 all signals are zero. This contrasts with electrons and
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holes in the EY regime, where a Zeeman term is not necessary
for producing an s, signal, and is required only for producing
s.. This means that for electrons and holes the dashed lines are
nonzero at fg = /2.

(2) In both the EY and the DP regime an unpolarized
pump does not produce a linearly polarized s, signal unless
a magnetic field is introduced, so at 6 = /2 the solid blue
lines are zero.

(3) Setting O = 7 /4, 3 /4 creates a resonance condition
where the Zeeman and spin-orbit terms have precisely the same
magnitude, i.e., in polaritons |b;| = |A sok%|- For polaritons
in the EY regime this resonance condition zeros the generation
of circular s, polarization (graphed as solid blue and orange
lines), causing sharp dips at 6 = /4, 37w /4. Holes in the
EY regime also display a resonance effect, with a shifted
resonance which occurs at |b,| = «/§|A50k%|. In addition,
holes manifest a similar resonance condition in the generation
of s, linear polarization from an unpolarized pump, shown
as dashed blue and orange lines. In contrast electrons do not
display any resonance at any value of b, . The resonances shown
here may be useful for measurements of the spin-orbit strength
in polariton and hole systems in the EY regime.

G. Summary of the numerics

The main value of our numerical results, as opposed to
our analytical formulas, is that they offer a clear picture
of the spatial spin patterns in these systems, and also of
their time evolution. Our spatial data on the number/charge
density showed that the frequency response always follows a
simple decaying exponential in real space, while the temporal
response follows a Gaussian. Moreover, our data showed that
changing the time parameter, or indeed any other parameter,
has no influence on the number/charge density other than
rescaling its exponential or Gaussian profile.

The spin polarization shows much richer behavior. Elec-
trons, polaritons, and holes produce dipole, quadrupole,
and sextupole patterns respectively, which provides a very
simple and strong diagnostic tool for visually determining the
dominant spin-orbit term. Our numerical results confirm that
these patterns are clearly visible in the diffusive regime. In
real materials the spin-orbit interaction may involve more than
one term, for instance both linear and cubic terms, and in this
case numerical analysis of experimental data will reveal the
relative strength of the spin-orbit terms. Our numerical results
also showed that in the presence of a magnetic field, the spin
distribution evolves with time from a simple multipole into a
spiral. This too will be useful for measuring the scattering
time in individual devices. Moreover, we saw that in the
diffusive regime there is no pattern of concentric circles
around the pump, which allows an unambiguous determi-
nation of whether the system is in the diffusive or ballistic
regime.

The numerical data also gave us rich information about
the time dependence, and told us how large the polarization
degree can become. We can break the time evolution into
two phases: before and after the time when the system
loses memory of its initial polarization. This memory loss
occurs at ¢ o< T/£2 in the DP regime, and before t = 107 in
the EY regime. Before memory loss occurs, the dominant
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source of spin dynamics is out-of-plane precession which
converts S,,S, spin to §; spin, and vice versa. With an
optimal value of the dimensionless spin splitting & = 0.1,
this process yields maximum polarization degrees of 23-61%
in the DP regime at around ¢t = 4-87. In the EY regime at
& = 4 the maximum polarization degrees are between 8% and
32%, occur at t = 1.75-67, and grow linearly with &. These
maximum values are largest for electrons. After the maximum,
spin relaxation causes a steady decrease in the polarization
degree.

As the system loses its memory of the initial polarization,
the dominant mechanism producing spin polarization changes
from spin precession to direct conversion from the num-
ber/charge density. In this phase the spin polarization degree
decreases as a power of the time, and in particular the linear
sy polarization degree is largest for electrons and weakest for
holes. The circular polarization degree is about the same for
all three particles. Even at + = 1007 the polarization degree
for electrons can remain as high as 7% in the DP regime, or
2% in the EY regime.

Lastly, our numerical results about the ¢ dependence gave
the transition between DP and EY regimes (not shown in the
analytical results), and gave an optimal value of ¢. Our 65
results largely illustrated and confirmed the analytical results
on this parameter.

VI. DISCUSSION AND CONCLUSIONS

After proper rescaling of time and distance, in the diffusive
regime, spatially homogeneous distributions of electrons,
polaritons, and holes act identically. They all have the same
spin relaxation times and the same spin precession rates,
and in all cases their number charge/density shows the same
spatial profile spreading away from the pump. This is perhaps
disappointing, since one might wish to see at this level
some clear difference between the bosonic polariton and
the fermionic electron and hole, similarly to the difference
between Bose-Einstein condensation and fermionic repulsion
that is seen at large particle densities. At small particle
densities, in the noninteracting limit, the perturbative treatment
utilized here shows no such signal. There is still some
possibility that a Berry phase or other quantum effect could
distinguish between the three particles, but there is no such
effect even in the weak localization signal, which is determined
by relaxation times that are mathematically identical to the spin
relaxation times calculated here. Any such quantum effect will
be rather subtle.

However, using a spatially localized pump will immediately
reveal very large differences between the three particles. The
most important difference is their multipole spatial pattern,
which has two lobes for electrons, four for polaritons, and six
for holes. This spatial distribution provides an unambiguous
signal to experimentalists for determining immediately which
spin-orbit term is dominant, and also provides the raw data for
quantitative analysis of the strengths of competing spin-orbit
terms. It is a very strong signal: if the pump is initially linearly
polarized, then in the DP regime a multipole pattern in the
circular polarization can be observed, with a polarization
degree of up to 23—-61%, and can persist for long times. In the
EY regime the same process can produce between 8% and 32%
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polarization degree. Production of linear polarization from
an unpolarized pump also produces appreciable multipole
patterns.

The three particles also differ in their response to a
perpendicular magnetic field. For electrons and holes, in the
EY regime an unpolarized pump always produces a multipole
pattern of linear polarization, regardless of the magnetic field
strength. In contrast for polaritons in the EY regime no
linear polarization is generated from an unpolarized pump
unless there is a magnetic field. Moreover in the EY regime
polaritons and holes manifest a resonance, where no circular
S, polarization is generated from an unpolarized pump, at a
specific field strength that matches the spin-orbit strength. The
resonance occurs at numerically different field strengths for
different particles, and varies with spin-orbit strength. This will
allow experimentalists both to measure the spin-orbit strength
and to confirm again whether the particle is an electron,
polariton, or hole.

The last major difference between the three particles is
in the magnitude of multipole pattern that is produced. In
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electrons, polaritons, and holes this scales respectively with
the first, second, and third power of the scattering length. In
the diffusive regime studied here the scattering length is small
compared to the experimental length scale, so the multipole is
strongest for electrons and weakest for holes. One interesting
way of testing this trend is to compare, at long times, the linear
and circular polarization produced from an unpolarized pump.
The circular signal is rotationally symmetric and its magnitude
is about the same for all three particles. In the case of electrons
the circular signal should be smaller than the linearly polarized
signal, in the case of holes this is reversed, and in the case of
polaritons the two signals have very similar magnitudes.
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APPENDIX A: THE DIFFUSON IN THE GENERAL CASE, FOR ANY VALUE OF ¢, AND FOR LINEAR, QUADRATIC,
AND CUBIC SPIN-ORBIT TERMS

In this article we report on spin dynamics for the following Hamiltonian:

K b kN 0
H = %‘" :0; + Aso o N

~— + b0, + Aso

e Nk k
0 =

2 0
2m (ks + 1hy)V 0

N N
(ks = thy) } (A1)

We consider the cases of linear N = 1, quadratic N = 2, and cubic N = 3 spin-orbit interactions. We assume that the impurities
conserve the (pseudo)spin quantum number; if this constraint is relaxed then our results on the matrix structure of the diffuson

will change substantially.
For the Hamiltonian H, we obtain the diffuson D!

(q1)*/2 0 0 doz,n(q1)* /2
e O/t dean@D/2 T[T+ iy n(g)?)2 0
0 —T/Ty = dyen(qD)? /2 T/Tex +dyy N (g])/2 0
do. n(q1)*/2 0 0 T/t + do(q1)*/2
0 yn cos NO, yn sin N, 0
v | YN cos NO, 0 0 fncosNO, — gysinNb,
—(ah) Yy Sin Ng, 0 0 fnsin N6, + gy cos N6,
0 fncosNO, + gysinNbO, fysin NG, — gycos NI, 0
2 2 2
T/t = 2c%4§2, T/t = 2(1 + cz)l f4€2, T/t = 452%442, dy, = [CZ + 52%}
2
dyyr =dxy3 =dyp=dy 3= 26’(;1(;;4;2;13;)’
decp = dyyr = dixs = dyy3 = 1[52 +2 - 52)1_—W},
’ s ’ 2 (14+4¢%)3

dix,1 = dyx 2 +ecos(20,), dyy | =dyy o — ec08(20,), diy 1 = dyy 2 + e sin(20,), dy, 1 = dy, 2 — e sin(26,),

27823+ 657 +8¢%)
B (144¢2)3

)

dosn = —x¢CP+ (N — Dx¢CS* — 1/(1 +4¢%* x x¢CS* N,
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FIG. 10. Cutoff dependence of our results. Circular S, spin polarization degree in real space, for cutoff A (upper panels) and cutoff B (lower
panels). The left panels and right panels are t = 5t and r = 207 respectively. The pump is linearly £ polarized. ¢ = 0.25, 0 = 57/8, x =
h/E,t =1/4m,and T = 4 ps.

yn = x¢S x {(14 C»/4,C*/2,(3/16)(2C* — §%)}
+ x2S/ +42N x (1 +C?) x {—1/4, — 1/2, — (9/16)(1 — 4¢2/3)},

Cs¢?
fo = ﬁ X (—(6+8¢9), 64+ 1267 + 1624, — (5 + 1062 + 32¢* + 32¢%)),
s
& = e X (23 + 4020 - 4%, (A2)

The constant contributions to the matrix 7/ty,,7/7;;,7/xy, Which determine the evolution of a spatially uniform distribution,
are independent of N. The diffusion constant d,; is also independent of N.

As described earlier, S = sin(fg) = Asokg/, / (Asgkg)z +b?and C = cos(0p) = b./,/ (Asokg)2 + b? describe the relative
strength of the spin-orbit coupling AgokY and the Zeeman term b,.

APPENDIX B: NUMERICAL RESULTS ON THE CUTOFF DEPENDENCE

As discussed in the text, some of our numerical results are sensitive to physics at length scales shorter than the scattering
length [, i.e., ballistic physics. These numerical results are changed by our perturbative expansion of the response function in
powers of gl. We have tested our results by calculating them in three different ways:

Cutoff A. At small wave number 0.5 > (g/)*> we use the formulas presented in Appendix A. At large wave number (¢/)> > 2
we set ko,k1e, and Dy, to zero, and we set A = (ql)2 /2. At intermediate wave numbers 2 > (ql)2 > (0.5 we perform a linear
interpolation of x,x;., Do;, A between these two cases.

Cutoff B. At small wave number 0.5 > (g/)*> we use the formulas presented in Appendix A. At large wave number (¢/)> > 2
we use the expressions for the D’yakonov-Perel’ limit, as listed in Egs. (26), (27), (28), (29), and (31). At intermediate wave
numbers 2 > (gl)*> > 0.5 we perform a linear interpolation between these two cases.

Cutoff C. We use only the formulas presented in Appendix A, without any changes, for all values of gl.

Since cutoff C leaves the analytical formulas unchanged, it retains the original instability near ¢ = 1/2. Both cutoffs A and B
do not show instability for electrons and polaritons. Holes are stable only with cutoff A and are unstable with both cutoffs B and
C, presumably because our analytical expressions for holes include cubic (/) terms which are more unstable than the quadratic
terms seen in electrons and polaritons.

Figure 10 illustrates the differences between two cutoffs. The upper panels are obtained using cutoff A, and the lower panels
with cutoff B. Very similar patterns and magnitudes are seen, with some mild distortions. We have performed similar comparisons,
with all three cutoffs, for all of our real-space data. In cases where different cutoffs give different results, we have discussed this
in the main text.

APPENDIX C: DERIVATION OF THE k¢ AND dy, COUPLINGS

Here we report the details of our derivation of the coupling «o; between charge and in-plane S,, S, spin, and also in the coupling
dy, between charge and out-of-plane S, spin. We have performed the calculation systematically in a very general MATHEMATICA
script which allows calculation to quite high orders in the various small parameters. However here we do not discuss the script,
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and instead show in analytical formulas how the derivation develops. We compute the dy, coupling which is equal to — /3, and
the «¢; coupling which is equal —Iy; and —I(,, where I;; is the scattering operator. We begin with Eq. (24), which writes ;; as
the integral

h o o R o R
I = o /dk Tr[GA(k — G/2,E)o;GR(k + G/2,E,)o}]. (C1)
TV

Here G# and GR are the disorder-averaged single-particle Green’s functions, ¢ is the diffuson wave vector, and v is the density
of states. The trace is taken over the spin indices of G*,G*,0;, and o, which are all 2 x 2 matrices in (pseudo)spin space. The
advanced and retarded Green’s functions can be resolved into separate contributions from the two spin states s = +1, which
have energies E(s, k)

R 1 1+sX(k) -6 .
Gk, E) = ~ , 0 =loy, 001,
ZZE—E(s,k):th/Zt pen e
ASO Re[(kx + lky)N] ASO Im[(kx + lky)N] bZ
Xy = w2 0 rT w2 0 T N2 2 (€2
V(Asolk|V)* + b; V(Asolk|V)? + b3 V(Asolk|M)* + b;
Performing the trace and applying the identity (ab)™' = (a=' — b~')(b — a)~" quickly obtains
h 2 > T
o =~ =~ [ AR Yl Xk = 3/2) +§ X+ /DI
8wyt —
v 1 1
 E,— E(s.k —G/2) —th/2t E, — E(§.k +4/2) + 1h/2T
7T 8(E, — E(s,k —§/2)) L, - EG,k+§/2) )
B\ 1+ 1t[EGk+G/2) — E))/h - 1 +1t[E, — E(s.k—3/21/h |

In the last line we replaced [E, — E (s,l_é —g/2) — 1h/2t]7! by its imaginary part, which is taken to be the Dirac delta function
im8(E, — E(s, k — d/2)). This standard approximation is justified if the scattering time is long compared to the kinetic time
scale, i.e., Eh o x < 1. Physically it means that we concern ourselves only with processes that occur on the elastic scattering
circle for polarltons, or on the Fermi surface for electrons and holes. After these steps the scattering time t occurs only in the
denominator of Y. Powers of dimensionless energy splitting { = Epcsn7/h, because they contain 7, can come only from the
denominator of Y.

Multiplying [s X;(k — §/2) + § X;(k + G/2)] by the two terms in ¥ and making appropriate shifts ¥ — k = /2 obtains

PR / d,-c»zs[ Xi)S(E, R | Xk —§)3(E, = EG.R) }
1+ 1t[EG.k+q)— E(s.k)]/h 14+ 17[ES.k) — E(s.k —§)1/h

__/ Iy [ Xi(k +§)8(E, — E(5.,k)) L XE®)NE, — EGR) } )

— | 1+ 1T[EG.k+§) — EG0I/h - 1 +1T[EGS.K) — E(s.k— /b |
At this point we expand the X; functions in powers of . Each power of g is implicitly accompanied by a power of 1/kr, and
after a simple manipulation gives a power of x g/, where yx is the dimensionless disorder strength and is a small parameter. Since
there are no compensating 7’s in X;, x can be taken at face value as a small parameter, and we expand only to leading order in
x - In the dy,; elements of the diffuson the leading order has a single power of x, while all other elements of the D are nonzero at
zeroth order in x. Therefore we write

Xk +§) = Xi(k)+ G - VX (k). (C5)

We decompose the diffuson into two parts, a part d(())i originating in X; (1?), and another part dgi originating in the gradient VX ,~(l§):

doi = dgi + déi’
i — _i/dié S H,)[ Xi®)3E, —B6R) | Xi®)3(E, — EGR) ]
8v s 14+ t[ES.k+q)— E(s,k)]/h 14+ 1t[ES.k)— E(s,k—q)]/h
i —i/dlzz [s —- X ®NE, ~ EGR)_ G- IXBIE, — EGD) } o)
L+ 1T[EGEK) — EGs,k —DI/h 1+ 1T[EG K +§) — EGs,k)1/h
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This decomposition is physically significant. The s # § terms make an exactly null contribution to dOi, so a little rearrangement
obtains

5,

1

_i/‘d]_ézs[ X (k) SEEP: E(S,k))_) n Xi(k)(SSEp _ E(i’k))_) :|
l+it[E(s.k+q) — E(s,0)]/h 1 +1T[E(s.k) — E(s.k — q)]/h

1 - X;(k)8(E, — E(s,k))
—— | dk My c7
2V/ ;sl—f—zu]VE(s,k)/h €D

In the last line we have expanded in powers of g, following the same argument as before. In contrast to the previous expansion,
the first term in the present expansion is matched by a factor of 7, so it actually scales as g/ without any powers of x. Since the
denominator subtracts E (s,%) from E (s,l_é + ¢) and therefore has no powers of the spin-orbit splitting, dg[ can contain no powers
of (1 4+ 4¢%)~'. Because of the guarding factor of s multiplying the sum, nonzero contributions can be obtained only from a
dependence on the spin index s of the Dirac delta function, or of X;, or of VE (s,l;). Physically, variations in the Dirac delta
function with s reflect a difference between the density of states on the spin up s = +1 Fermi surface and the density of states on
the spin down Fermi surface. Similarly, variations in V E(s,k) correspond to differences in the Fermi velocity on the two Fermi
surfaces, and variations in X; to differences in the spin-orbit interaction’s angular orientation on the two surfaces. In order to
analyze these effects, it is necessary to calculate the spin splitting of the two s = 1 Fermi surfaces, as a function of the angular
variable ¢. It is sufficient to obtain them to first order in the ratio of the spin splitting to the Fermi energy, Eprcesn/E, = x¢.
After doing so, we obtain in the case of the Rashba interaction

£ — _L/d,;ZSXl(/?)S(E,, — E(s,k)
! v ~ " 1+11G - VE(s.k)/h

d Xi(s,
= —/zi;k;sp(s,qm T

14+17G - VE(s,9p)/h

2
p(s.9) = / kdkS(E, — E(s.0)) = k—Fu — xgssind(0p)/2],

2w
v —Z/ dgp(s. ¢>—4n—

X1(s,¢) = cos(6y) sin(@p)[1 — s x¢ cos*(05)/2],
1
1+1tq-VE(s,¢r)/h

d), = —1q.1x¢ sin(0p)[1 + cos*(6p)]/4. (C8)

We have automated this perturbative calculation, and also the calculation of d®, with MATHEMATICA, which facilitates the
calculation of all matrix elements to high orders.

We now turn to the other contribution, dgi. Exchanging s, in the second term and then expanding in powers of § - VE gl
produces

1 R .. . -1 1
df._——/dk *.vxikaE—E',k[ = B + = = }
" 8v %’jsq oL (4 1 +1T[ES,k) — E(s,k—@1/h 1 +1T[E(s,k +q) — E(S,k)]/h

=1—1qglcos(6y —6,) +1q9lx¢ cos>(0)s cos(By — 64)/2,

Fl—ttipk) - G-
desq VXi(k)8(E, — E(5, k))Z Z{li”[m kF) IO (C9)

The ¢ - VX, (12) multiplying the entire expression is proportional to x g/, which guarantees a power of y. Therefore all other
expressions must remain at zeroth order in x, allowing us to neglect the spin splitting effects on the density of states, Fermi
velocity, and X;, which are so important for determining d(())i' In this approximation the Fermi surface becomes a simple circle

and the dk turns into a simple angular integral over ¢;. Moreover, the factor of s multiplying everything guarantees that the two
s = § contributions sum to zero, leaving us with

¢ _ %*."4* 1T (k) - g1M-1 B
di. = /lmq VX,(k)%:[ 170p(k) - 4] zi:;(lyszg_w. (C10)

For the couplings to in-plane spins, dg , and déz, the angular integration selects the M = N term, where N = 1,2,3 for electrons,
polaritons, and holes. For the coupling to out-of-plane spins, dg3, the angular integral selects the M = 2 term. For N = 1,2,3 the
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last factor 3, > G5 sums to
—18¢
(+472)N

x (1,2,3(1 — 42%/3)).
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(C11)

If one performs the remaining angular integral and sums dgi,dgi, then one obtains the charge-spin couplings reported in this
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