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Abstract

This thesis is to address three questions on price competition and one question in statistical

application in physics that has a possible application in economics. The aim of the first

paper is to investigate the equilibrium in a dynamic Bertrand duopoly where firms do not

know the cost of other firms and firms face an avoidable sunk cost when they decide to

enter the market. In this model, firms are allowed to monitor rival’s entry decision before

making their pricing decision. Firms are also allowed to communicate with each other via

announcements before they make the entry decision. I show that there exists two classes

of Pure-Strategy Bayesian-Nash equilibria in this game. In one class of equilibrium only

the low cost firms enter, and in the other class of equilibrium only one firm enters while

the other stays out irrespective of their types. This is a new existence result and the paper

provides full characterization of the Perfect Bayesian Equilibria (PBE). Communication

among firms is just ‘cheap talk’ and has no effect on the set of equilibria in this game.

One-shot price competition among identical firms facing avoidable fixed cost generally

leads to a permanent inefficiency when costs are unknown. This stems from the fact that

the market is not served with positive probabilities. However, in reality, firms interact

repeatedly. My second paper shows that market inefficiency in the one-shot game can be

restored with infinitely repeated interaction among competing firms. I demonstrate that

with infinite interaction of firms in a Bertrand setting, competing firms can self-impose

collusive conduct via communication. I provide a characterization of the Perfect Public

Equilibrium (PPE) where firms collude and as a part of this equilibrium firms employ

asymmetric penal codes. In this game, pre-play communication has a positive value which

is absent in the one-shot game. The results indicate that the presence of an avoidable

fixed cost in this setting makes it easier for firms to collude.

In the third paper, I consider a Bertrand duopoly where one firm’s cost is publicly

known and the other firm’s cost is private information. In this paper, we provide a full

characterization of the [?] of this game under equal market sharing rule. We point out

that one-sided cost uncertainty and bounded known cost type is sufficient to guarantee
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the existence of the PSBNE.

Finally, in the fourth paper we use basic techniques from econometrics and statistics,

in particular Ordinary Least Square regression and Pearson’s rank correlation method, to

study second order fluctuations along the fluid side of the melting line of the Lennard-

Jones (LJ). We use Molecular Dynamic computer simulation to generate data on the

cross correlation between the configurational part of the pressure and potential energy the

repulsive and attractive parts of the potential energy. By using the statistical techniques

we notice a qualitative change along the melting line.
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Chapter 1

Introduction

A big part of this thesis analyzes Bertrand Competition when firms do not know each

other’s cost in different settings. In the second part, we analyze a statistical application

to predict second order fluctuations of temperature along the Lennard-Jones melting line

using different ensembles. The first part of my thesis has three chapters. The first chapter

is motivated by Baye and Kovenock (2008) and several others that establish that, under

equal market sharing rule, the existence of pure strategy equilibrium in a standard full

information Bertrand game with avoidable fixed cost is difficult. Saporiti et al (2010)

show that an equilibrium with pure strategies is possible when cost functions of firms are

not sub-additive. However, when marginal costs are unknown and due to the fundamental

discontinuity of the game, Sharkey et al (1993) and Spulber (1993) indicate that the

existence of a pure strategy equilibrium is not possible. In my paper, I show that when

firms are allowed to monitor each others entry decision in the market, pure strategy

equilibrium exists. The paper investigates the equilibrium in a dynamic Bertrand duopoly

where firms do not know the cost of other firms and firms face an avoidable sunk cost when

they decide to enter the market. In this model, firms are allowed to monitor rival’s entry

decision before making their pricing decision. Firms are also allowed to communicate

with each other via announcements before they make the entry decision. I show that

14



1. Introduction

there exists two classes of Pure-Strategy Bayesian-Nash equilibria in this game. In one

class of equilibrium (symmetric) only the low cost firms enter, and in the other class of

equilibrium (asymmetric) only one firm enters while the other (inefficient firms) stay out

irrespective of their cost types. This is a new existence result and the paper provides full

characterization of the Perfect Bayesian Equilibria. The paper also explores the effect

of pre-play communication in the game to see whether this brings cooperation among

firms, however, the results indicate that such communication is cheap talk and has no

effect on the set of equilibria. In the second paper, I research the possibility of collusion

among price competing firms that try to obtain private information about each other by

observing a third party public information (such as media publication, accounting report

or the like). Athey and Bagwell (2001, 2008) have shown that collusion among infinitely

Bertrand competing firms with asymmetric and unknown marginal costs is possible under

proper inter-temporal market sharing agreements between firms. They suggest schemes

to implement the first-best outcome that supports a Perfect Public Equilibrium (PPE).

In my paper, I assume a similar set-up, but also assume that firms pay an avoidable fixed

cost of entry in the period they decide to participate in the market. This set-up is widely

present across industries such as the airlines industry where firms have to renew their

terminal lease agreements every period before competing on price. In line with Athey and

Bagwell (2001, 2008), I maintain that in each period firms receive an iid cost shock and

are allowed to communicate before making their entry decisions, but to be more consistent

with the wider reality present in todays economy, I do not allow for explicit market sharing

agreements. As a result, and unlike Athey and Bagwell (2008), the stage game in this set-

up has permanent inefficiencies (Patra, 2015) where either the market is not served with

positive probability or the entering firm earns a negative profit with positive probability.

But with infinite interaction, the collusive equilibrium (a PPE ) presented in my paper

develops a strategy to restore market efficiency where the market is always served and

the entering firms receives its share of the monopoly profit. Allowing for communication

among firms facilitates a self-enforcing collusive agreement among competing firms and I
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1. Introduction

study the value of this communication both from collusion and efficiency perspective. I

provide a characterization of the PPE and show that there exists a discount factor strictly

less than one for which this equilibrium exists. The conclusion that emerges then is that

the presence of the avoidable fixed cost makes it easier for the firms to collude, and market

efficiency is achieved in this PPE in the sense that, among the firms who enter, only lowest

cost firms produce.

In my third paper, I observe that the classical outcome of competitive profit when firms

with symmetric constant marginal costs compete one-shot a la Bertrand while having per-

fect information about each other has been difficult to replicate in different informational

and asymmetric cost conditions. Spulber (1995) shows that, in a standard Bertrand game

with parameterized asymmetric costs, all but the highest cost firm expect positive profit

when costs are drawn from a continuous distribution. In a recent paper, Routledge (2010)

shows that in a classical model of Bertrand competition with homogeneous goods and

constant marginal costs, only a mixed strategy Nash-equilibrium exists when there is dis-

crete cost uncertainty. In my paper, I show that, under equal market sharing rule (which

is the assumption maintained in the previous two cases and several others), there exists a

set of Pure Strategy Bayesian-Nash Equilibria (PSBNE) in a Bertrand duopoly where one

firm’s cost is known and the other firm’s cost is a draw from a commonly known probabil-

ity distribution on a support of two discrete costs. I provide a full characterization of the

equilibrium and point out that one-sided cost uncertainty and bounded known cost types

are sufficient to guarantee the existence of PSBNE.

Finally, in my fourth paper in the second part of the thesis we study statistical fluc-

tuations and correlations between thermodynamic properties along the fluid side of the

melting line of the Lennard-Jones (LJ). Using the physical properties of Molecular Dy-

namics (MD) computer simulation we generate data between the configurational part of

the pressure and potential energy, and the repulsive and attractive parts of the potential

energy. We compute the coefficients of Ordinary Least Squares (OLS) regression and the

Pearson coefficient and other statistical measures. The cross correlation between Scatter
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1. Introduction

plots show that at constant temperature the Weeks-Chandler-Andersen (WCA) decom-

position of the Lennard-Jones repulsive and attractive potential energy components show

a qualitative change along the melting line. At low temperature the two components

are correlated, while they are anticorrelated in the high temperature limit. There is an

intermediate temperature range in which the two potential energy components are effec-

tively decorrelated. The various trends along the melting line were found to be weakly

dependent on the force field used to generate the distribution of states, namely, the LJ

potential, inverse power potential with exponent 12, and the repulsive term in the WCA

decomposition of the LJ potential.
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Chapter 2

Introduction

2.1 Introduction

The aim of this paper is to fill a gap in the literature on equilibrium characterization in

Bertrand games where firms do not know each other’s marginal cost and firms face an

avoidable fixed cost[24] of entry. Fixed costs are important considerations in economics

in general and strategic games in particular, due largely to the technical fact that such a

cost renders a firm’s decision to participate in the market an endogenous choice. Market

examples of avoidable fixed cost would include periodic renewal of license, participation

fee in auctions, expenses conducting a market survey before assuming business etc.. Firms

incur these expenses before they compete with each other with respect to any strategic

variable. As such, firms make their choice to enter the market by comparing the entry fee

with their expected profit based on the nature of competition that is going to ensue once

they enter the market. What is interesting here is that we allow firms to observe rival’s

entry decision before they make a decision on their price. Observation of such decision

by firms is more close to reality as compared to the prior literature where much focus has

been on firms making both entry and pricing decisions simultaneously1. The avoidable

1See Binmore[3]

19



2.2. Literature Review 2. Introduction

fixed cost considered here is an exogenous sunk cost2 which has no effect on the marginal

cost of the firms. We show the existence of classes of Pure Strategy Perfect Bayesian-Nash

Equilibrium (PSBNE) in this game. In one class of equilibrium only the lowest cost firms

decide to enter the market and supply. In the other class of equilibrium, one firm enters

the market and and the other firm stays out irrespective of their types. We provide a full

characterization of this equilibrium along with a numerical illustration of the game.

2.2 Literature Review

Francois Bertrand (1822-1900) [2], as a review response to the quantity competing oligopoly

model proposed by Cournot in 1883, modeled competition among firms using price as their

strategic variable. Bertrand’s observation that such a competition might lead to indefi-

nite undercutting of prices among oligopolists was falsified later with the advent of game

theoretic tools in economics. It was shown that with a small number of identical firms pro-

ducing homogeneous goods and having perfect information about the market and rivals,

Bertrand competition would yield competitive outcome in equilibrium, leaving ‘zero’ profit

for the oligopolists. However, due to the existence of the fundamental discontinuity in the

profit functions of Bertrand competing firms with homogeneous product, many existence

results involve tedious characterization of the equilibrium. As such, existence results in

Bertrand games are still an active area of research. Fixed cost, on the other hand, is an

important economic variable for firms. A firm may not want to undertake production if

its expected returns, given the strategic situation of the firm, are not high enough to cover

the fixed costs. Thus, given the nature of the fixed cost3 and timing of the game, the

structure of equilibrium in the pricing game changes. For example Baye and Kovenock

(2008) [1] showed that with a fully avoidable fixed cost and constant marginal cost of firms

there does not exist any pure or mixed strategy Nash-equilibrium in the full information

Bertrand game. Kreps and Scheinkman (1983)[5] (KS hereafter), showed that in a two

2see Sutton[24]
3endogenous or exogenous
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stage game where firms decide on capacities (a fixed cost) in the first stage and compete

in price in the second stage, the unique Nash equilibrium is equivalent to the Cournot

outcome. However, in the KS game the capacity level decided at the first stage has a cost

reducing effect in the second stage. Spulber (1995)[5] looked into a basic one-shot game

of price competition with unknown costs. He has shown that, with asymmetric costs and

other regularity assumptions, all but the highest cost firm expect positive profit when

costs are unknown. He has also shown that when firms are operating in a contestable

market and when there are unknown fixed cost of entry, the resulting equilibrium is that

all firms except the highest cost firm enters, since all but the firm with the highest fixed

cost would have positive expected profit of entry.

Saporiti and Coloma (2010) [10] work out equilibrium situations where price competing

firms face, among others, avoidable fixed costs in a perfect information game. Under equal

market sharing rule 4, they show that, with an avoidable fixed cost and the variable cost

function of firms not being sub-additive when they produce market supply at the lowest

price, there always exists a Bertrand equilibrium in pure strategies5.

This paper is organized in the following order. First, we present the basic set-up of the

model. Next, we present the equilibrium analysis of the stage game. Finally, in the last

section, we present a numerical example to illustrate the model.

2.3 Basic Set-Up

In this game G, two ex ante identical firms, 1 and 2, compete one-shot in a standard

Bertrand model with homogeneous goods. The inverse demand function D(p) satisfies

regularity conditions D′(p) < 0 < D(p). Let pi ∈ R+ be the price chosen by firm i ∈ {1, 2}.

Firms in this game face an exogenous fixed cost 6, F , when they decide to participate in

4firms agree to split market shares equally when they charge the same price in the market
5need not be symmetric
6See Sutton (Chapter 1) for a detailed discussion [24]
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the market. Such fixed costs may be viewed as renewal of licenses, leases etc. that

businesses normally incur every year before they make production and pricing decisions

for the subsequent year. Thus, effectively, firms make a decision to ‘enter’ the market

or ‘not enter’ based on their comparison between the expected pay-off from the ensuing

competition after they decide to enter and the fixed cost they will need to pay when they

enter.

Accordingly, we assume that every firm has a total cost function represented by

Ci(q) =


ciq + F, if enter

0, otherwise

where ci is the realized marginal cost of firm i. ci is an IID random variable that is

equal to cL with probability ηL and cH with probability 1 − ηL. We assume ηL < 1
2 .

This assumption ensures that there is a higher probability that a firm will realize high

cost and thus represents a more interesting scenario, since this is a situation firms would

have a stronger motivation to cooperate than the reverse situation7. We call a firm to

be of type L (or H) if it faces a marginal cost cL (or cH). For convenience we will use

cL(or cH) and L(or H) interchangeably. The state space of types is represented here by

Ω = {L,H}×{L,H} where Ωi = (L,H) and the types are realized from a common prior

which is common knowledge to all.

The timing of the game is as follows: (1) firms observe their type, L or H (2) firm i

makes a decision to enter the market or not based on the realization of its own type,

7In fact, we only need an asymmetric probability weight for the types in order to characterize our
PSBNE. So, WLOG, we have assumed ηL < 1

2
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ci ∈ {cL, cH}, (3) Firms monitor each other’s entry decision and subsequently compete in

price. We denote the space of entry decision for firm i as Υi where Υi = {E,N} ≡ {E =

enter, N = not enter} and Υ to be the state space of entry decisions pertaining to the

available types defined by Υ = Υi×Υ−i = (E,N)× (E,N). The entry decision function

is ei(ci) : Ωi → Υi and we denote the realized entry decision of firm i by υi ∈ Υi where

υi = ei(ci). Denote υ = (υi, υ−i) where υ ∈ Υ. For future notational use we define

Υ = (Υi,Υ−i). As is evident, in this set up, if a firm enters it incurs a fixed cost of F . If

a firm doesn’t enter, its profit is identically equal to ‘0’.

This game can be represented in the following diagram.

Figure 2.1: Game G

(x): no pay-off for any firm; (π
j
i ): monopoly pay-off for firm i ∈ {1, 2} when its type j ∈ {H,L} ; Nature : ‘nature’ is choosing type

of firm i ∈ {1, 2}; (Dst): profit from duopoly price competition where firm 1 is type type s ∈ {L,H} and firm 2 is type t ∈ {L,H};
byx: belief of player x that the rival is of type y
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We now state our assumptions of the model.

Assumption 1. There exists a p̂ < ∞ such that D(p̂) = 0.

Assumption 2. There exists a price, p such that Di(p)p− cHDi(p)− F ≥ 0, i ∈ {1, 2}.

Let’s denote the optimal monopoly price, quantity and profit depending upon its cost

type by pj , qj ,Πj for types j ∈ {L,H}. We also define the operating profit of each firm

by Πj− = Πj + F, j ∈ {L,H}.

Assumption 3. (1−ηL)ΠH− < F < (1−ηL)ΠL−, ΠH− > (1−ηL)(cH−cL)q(cH) > F .

Assumption 2 guarantees that there is sufficient demand in the market for a firm to operate

at profit even if all the firms find that they have the highest possible marginal cost. The

first part of Assumption 3 ensures that the fixed entry cost is below the expected operating

monopoly profit of a low cost firm and above the expected operating monopoly profit of a

high cost firm. The second part of Assumption 3 implies that the expected profit of a low

cost firm when it undercuts a type H rival’s marginal cost still earns a high enough profit

to enter the market without incurring losses. To make economic sense I have assumed

that this profit is lower than the operating monopoly profit of the high cost firm.

2.4 Equilibrium Analysis of the Game

We solve for the Perfect Bayesian Equilibrium in this game where we will consider both

symmetric and asymmetric equilibria. We define the strategy structure of this game

as follows. We retain the entry strategy of firm i to be ei(ci) : Ωi → Υi since entry is

dependent on type of the firm only which is the respective firm’s private information. Then
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the subsequent pricing strategy for firm i can be defined as ρi(ci,υ) = Ωi × Υ−i → R+

since a firm observes rival’s entry decision before making its pricing decision. We define

an entry policy vector in this game by e(c) ≡ (e1(c1), e2(c2)) where c ≡ (c1, c2) is the

vector of realized cost types of the duopolists. Finally, the pricing strategy profile can be

represented by a vector ρ(c,υ) = (ρ1(c1, υ
2), ρ2(c2, υ

1)).

We denote an equilibrium pricing strategy profile by %∗ = (p1∗, p2∗) ∈ p∗ where both

p1∗, p2∗ are a six-tuple consisting of the entry strategy of the form ej∗ = (νjL, ν
j
H) ≡

(firm j’s entry decision when it realizes type L, firm j’s entry decision when it realizes

type H) when (νjL, ν
j
H) ∈ Υ, j ∈ {1, 2}, and pricing strategy of the form pj∗θ,γ where

(θ, γ) ∈ {L,H}×{E,N} ∈ Ωj ×Υ−j and pi∗θ,γ ≡ (price when type L and the other enters,

price when type L and the other does not enter, price when type H and the other enters,

price when type H and the other does not enter). Therefore, we denote an entry strategy

profile in this game by (ν1
L, ν

1
H), (ν2

L, ν
2
H) and the resulting full pricing strategy profile by

((ν1
L, ν

1
H), (ν2

L, ν
2
H), (p1

LE , p
1
LN , p

1
HE , p

1
HN ), (p2

LE , p
2
LN , p

2
HE , p

2
HN ))

where p∗ ∈ R2+|Ωi×Υ−i|+|Ω−i×Υi|. Note that a firm does not make any pricing decision

when it does not enter in this game. Now, let’s assume pL, pH to be optimal monopoly

prices for type L and type H respectively when they face demand D(p). From the condi-

tions above we can deduce that when a rival, say firm 2, does not enter then, observing

this, firm 1 sets its price at the monopoly price with respect to its realized cost. As such

we can fix the prices in such cases at their respective monopoly price. So, the updated

entry and pricing strategy profile will be
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((ν1
L, ν

1
H), (ν2

L, ν
2
H), (p1

LE , p
1
LN = pL, p1

HE , p
1
HN = pH), (p2

LE , p
2
LN = pL, p2

HE , p
2
HN = pH))

Now we define the beliefs in this game at different nodes. Observe that the beliefs of

players after ‘Nature’ has drawn the types (call it first-stage beliefs) are trivially defined,

because all of the corresponding informations sets are reached with positive probability.

For example, after the nature has selected that firm 1 is of type L, the belief of firm 1 that

firm 2 is type L with probability ηL i, which is derived from the given prior. Other such

beliefs are analogously defined with consistency since they are trivial as discussed in the

above example. We will not be using additional notation to explicitly define those beliefs

into the model. We will, however, introduce notations to define beliefs during the price

competition stage of the game. Let biJyz , i ∈ {1, 2},J ∈ {L,H} be the belief of type J

(already assigned by nature) player i that player ¬i ≡ −i ∈ {1, 2} is of type y ∈ {L,H}

when player −i has taken action z ∈ {E,N}. Thus, the system of beliefs are given by

a sixteen-tuple µ ≡ {biJyz | i,−i ∈ {1, 2}; y,J ∈ Ω; z ∈ {E,N}}. However, notice that

the complexity of representation can be drastically reduced since (1) belief of any firm i’s

about the rival −i’s type is not dependent on the realization of firm i’s own type, since the

cost draws are IID; (2) if firm i believes that rival is of type L with probability u ∈ [0, 1]

then he also believes that the rivals of type H with probability 1 − u; and (3) the belief

that firm i forms about firm −i when firm −i has not entered does not play an active part

in the description of the PBE. Thus we denote that firm i believes that the probability

that firm −i is of type L when firm −i has entered is bi, i ∈ {1, 2} which are the only
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beliefs we will describe in the strategy profiles.

Proposition 2.4.1. This game G possesses two classes of Perfect Bayesian Equilibria

(PBE) corresponding to the entry and pricing strategy profiles as follows:

1. Symmetric Equilibrium: In this equilibrium a type L firm always enters and a type H

firm stays out of the market. Notationally, ((E,N), (E,N), (p1
LE , p

1
HE , p

1
LN = pL, p1

HN =

pH), (p2
LE , p

2
HE , p

2
LN = pL, p2

HN = pH))

2. Asymmetric Equilibrium: In this equilibrium, only one firm enters irrespective of its type. Nota-

tionally, ((E,E), (N,N), (p1
LE , p

1
HE , p

1
LN = pL, p1

HN = pH)), (p2
LE , p

2
HE ,

p2
LN = pL, p2

HN = pH))8

3. No other entry strategy profile in this game forms a part of any pure strategy equilibrium in this

game, G.

We proceed with the proof of this theorem in a case-by-case basis and we define the

beliefs as a part of the proof.

2.4.0.1 Symmetric Equilibrium: Entry Strategy (EN,EN)

The strategy profile ((E,N), (E,N), (p1
LE , p

1
HE , p

1
LN = pL, p1

HN = pH), (p2
LE , p

2
HE , p

2
LN =

pL, p2
HN = pH)) forms a part of a PBE of the game, G.

Proof: First, by consistency, the beliefs of players in any PBE with this strategy profile

are given by (b1 = 1, b2 = 1). Given these beliefs, the best response function of firm 2,

8Of course as a corollary, an equilibrium strategy profile can be analogously defined
as ((N,N), (E,E), (p1

LE , p
1
HE , p

1
LN = pL, p1

HN = pH), (p2
LE , p

2
HE , p

2
LN = pL, p2

HN =
pH))).See case2.4.0.11.
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from the optimality of p2
LE :

BR2(p1
LE) =



p2
LE = p1

LE − ε, if p1
LE > cL

p2
LE ≥ p1

LE , if p1
LE = cL

p2
LE > p1

LE , if p1
LE < cL

The best response function of firm 1, from the optimality of p1
LE :

BR1(p2
LE) =



p1
LE = p2

LE − ε > cL, if p2
LE > cL

p1
LE ≥ p2

LE if p2
LE = cL

p1
LE > p2

LE , if p2
LE < cL

As we can observe, for all price levels in the set [0, cL), type L firms’ best responses are

to set price above each other. But @ a maximum in the set [0, cL) implying @ a fixed point

in the best response correspondences of both firms when they are type L and the assumed

entry strategy profile is ((E,N), (E,N)) . In the similar setting, for prices in the set

(cL,∞), the best responses are firms undercutting each other. Since @ a minimum in this

set of prices there is no fixed point correspondence of undercutting best responses. Finally,

we verify that the best response correspondences are satisfied at the pricing strategy profile

{p1
LE = p2

LE = cL, p
1
HE = p2

HE = cH , p
1
LN = p2

LN = pL, p1
HN = p2

HN = pH} 9. Given

this equilibrium pricing profile, the associated expected profit of a type H firm, say firm

9Note that if firm i ∈ {1, 2} enters, any price set by the firm i above cH will be undercut by rival j 6= i
irrespective of j′s type. Additionally, any price lower than cH for a type H firm is dominated by cH , since
the firm runs the risk of being over bid by its rival when the rival is of type H and is forced to supply the
whole market. So a type H firm in this case never gets any more than ‘0’ expected operating profit when
the rival enters.
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1, is ‘0’ when it stays out, and (1− ηL)ΠH− −F when it enters. This is because, if firm 1,

being type H, observes that firm 2 has not entered, makes monopoly profit ΠH− −F and

makes a profit of ‘0-F’ if it observes firm 2 enter . Since every firm’s belief is (EN,EN) and

since prob(cH) = 1− ηL, firm 1 believes that the firm 2 would not enter with probability

1− ηL, in which case firm 1 would expect to make type H monopoly profit. Similarly, for

type L firm, when the firm enters the game, it earns an expected profit of (1−ηL)ΠL−−F

and ‘0’ if it stays out. Since (1− ηL)ΠH− < F < (1− ηL)ΠL− , its obviuos that a type H

firm would not expect to make any positive return when it enters where as a type L firm

would always expect to make a positive profit when it enters, enforcing the belief of each

other. �

2.4.0.2 Asymmetric Equilibrium: Entry Strategy ((E,E),(N,N))

The strategy profile ((E,E), (N,N), (p1
LE = cL, p

1
HE < cH , p

1
LN = pL, p1

HN = pH)),

(p2
LE , p

2
HE , p

2
LN = pL, p2

HN = pH)) forms a part of a PSBNE of the game, G.

Proof: In order to analyze if this strategy profile is an equilibrium, first we consider the

pricing strategy10 of firm 2 given the prices that firm 1 sets. We then assume that the

entry strategy ((E,E), (N,N)) forms a part of the equilibrium of the game. Then we

analyze the game to see if firm 2 could profitably deviate given the strategy of firm 1 in

order to disprove our assumption. Note here that since firm 1 believes that firm 2 is not

going to enter irrespective of its type, if firm 2 actually enters, any belief that firm 1 forms

about the type of firm 2 is going to be Bayes-consistent. Thus, the belief of players in this

section is given by (b1 = P, b2 = ηL) for any P ∈ [0, 1] .

10See appendix for the pricing strategy of firm 2
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Observe that if a type L firm 2 does not find it profitable to enter then the equilibrium

in the pricing game must be such that firm 2, irrespective of its type, does not get an

expected profit above F . We will now show by contradiction that this implies that type

H firm 1 must be pricing below cH when both firms enter. Assume that a type H firm 1

sets p1
HE ≥ cH . But then, a type L firm 2 can set P 2

LE = cH − ε which would guarantee

an expected profit of at least (1 − ηL)(cH − cL)D(cH) and this will be enough to cover

the cost of entry F for firm 2 (by assumption 3). This means that a type L firm 2 will

find it profitable to enter which is a contradiction that firm 2 will always choose to stay

out as a part of its entry strategy. Now we have established that for entry strategy profile

((E,E), (N,N)) to be in equilibrium it must be true that a type H firm 1 is pricing strictly

below cH . If a type H firm 2 prices strictly above p1
HE it will lose the market to firm 1

and make ‘0’ profit if firm 1 is type H. On the other hand, if firm 2 prices weakly below

p1
HE(< cH) then firm 2 will gain market, but it will make negative profit in expectation,

since, by assumption, firm 2 knows that firm 1 is type H with probability 1 − ηL > 0.

Thus, firm 2 will find it more profitable to price strictly above p1
HE . Given this, suppose

that when firm 2 enters, firm 1 assigns a positive probability weight to firm 2 being type

H. Since we have shown that p1
HE is strictly below cH in equilibrium, and since a type H

firm 2 is going to price above p1
HE , a type H firm 1 will receive negative expected pay-off

in this case. In such a case, a type H firm 1 will find it more profitable to price strictly

above p2
HE , which contradicts our assumption that firms are in equilibrium. So in the

equilibrium with entry strategy profile ((E,E), (N,N)), firm 1 must have no probability

weight on firm 2 being type H. So now we fix that it is a consistent belief of firm 1 that if

firm 2 has entered then firm 2 is type L. Now, we inspect the pricing strategy of a type L
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firm 1. Given that firm 1 believes that an entering firm 2 is type L, a type L firm 1 would

price at p1
LE = p2

LE − ε if p2
LE is above cL and p1

LE > p2
LE if p2

LE is below cL. Now lets

fix that both p1
LE and p1

HE are above cL. Now, given that firm 2 knows the probability

distribution of types of firm 1 whose strategy is to enter the market irrespective of its

realized type and given that firm 2 knows that a type H firm would price strictly below

cH , a type L firm 2 will set price p2
LE = p1

HE − ε > cL if p1
HE ≥ cL +

q(p1
LE)(p1

LE−cL)

(1−ηL)q(p1
HE)

= K,

otherwise firm 2 will set a price equal to p1
LE − ε > cL. Then a type L firm 1 knows

that the entering firm 2 (which firm 1 believes to be type L only) would set the price at

p2
LE = p1

HE − ε. As such, a type L firm 1 would set a price below p2
LE since by doing

such firm 1 will gain the market and make a profit greater than ‘zero’, which is aprofitable

deviation. Arguing similarly, if p1
HE < K < cH a type L firm 2 will set its price at p1

LE−ε.

In such a case, a type L firm 1 would undercut firm 2’s price, which is, again, a deviation

from the equilibrium. Now, suppose that a type L firm 1 sets a price above p1
HE . Then a

type L entering firm 2 would undercut p1
LE by ε in this case. Given this, a type L firm 1

will undercut the price set by firm 2 in this case, which is a profitable deviation. Finally,

for any price that a type L firm 1 sets strictly below cL, a type L frim 2 will best respond

with setting a price above it. In such a case the type L firm 1 can profitably deviate by

setting a price above firm 2’s price and strictly below cL. So far, we have exhausted all

candidates for equilibrium in the support of prices. The only surviving candidate is a type

L firm 1 pricing at cL. If a type L firm 1 prices at cL then an entering type L firm 2 would

set a price at cL . In such a case a type L firm 1 does not have any profitable deviation.

Thus p1
LE = cL is an equilibrium condition. Finally, we inspect the equilibrium pricing

strategy of a type H firm 2. At this point, firm 2 knows the probability distribution of
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types of firm 1, belief of firm 1 (entering firm 2 is type L), a type H firm 1 would price

strictly below cH and a type L firm 1 would price at cL. Given this information, a type H

firm 2 would have to price below p1
HE < cH to gain positive market share in expectation.

But in such a case p2
HE < p1

HE < cH and thus firm 2 will earn a negative profit. So a

profitable deviation for type H firm 2 will be to charge a price strictly above p1
HE , which

is also the equilibrium pricing strategy for a type H firm 2. The deductions above define

the complete set of conditions for an equilibrium to hold where ((E,E), (N,N)) forms a

part of the equilibrium strategy profile.

Note that in theasymmetric equilibrium involving the entry strategy profile ((E,E),(N,N))

(or ((N,N),(E,E))) a type H entering firm prices below its marginal cost, cH , which is a

weakly dominated strategy. This is an unattractive feature of this equilibrium as compared

to the the symmetric equilibrium.

2.4.0.3 No other entry strategy profile in this game forms a part of any

equilibrium in this game, G.

We present the proof of this section in a case-by-case basis in the appendix 3.

2.5 Conclusion

In this paper we have shown that when firms make an endogenous entry in a standard

Bertrand duopoly with discrete cost uncertainty, there exists two classes of PSBNE, one

with the entry strategy profile ((E,N), (E,N)) and the other with the entry strategy

profile ((E,E), (N,N)). Baye and Kovenock [1] and Spulber[5] have shown previously,

under symmetric market sharing and full information, there is no-equilibrium existence in
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games with price competition and entry, either in pure or in mixed strategy. In a related

work Routledge (2010)[4] has shown that in a classical Bertrand model with two-sided

symmetric uncertainty and discrete costs, there does exist only mixed strategy Bayesian-

Nash equilibria of the game. Thus our result adds an existence of PSBNE result in a

price competition game with cost uncertainty and entry. Our existence result depends

largely on the fact that firms can observe each other’s entry decision before they compete

in price. However, there are some bleak features of the classes of equilibria we find in

this game. With the equilibrium following from the entry strategy profile (EN,EN),

the market will not be served with positive probability, i.e., when both firms draw high

cost simultaneously. In the second equilibrium following from the entry strategy profile

((E,E), (N,N)) (or ((N,N), (E,E))) a type H entering firm will be charging a price below

its marginal cost, cH , in equilibrium. Therefore, one of the future research directions would

be to consider possibilities that would help improve equilibrium outcome of this price game

in different settings. In particular, it will be interesting to consider extending this model

to a repeated play of this game and explore the equilibrium, since such consideration is

close to real market situations.

2.6 Appendix 1

The pricing strategy of firm 2,the not entering firm, when the entry strategy is ((E,E), (N,N)),

is as follows:

1. Case 1 : p1
LE ≤ p1

HE < cL
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BR2(p1
LE , p

1
HE) =


p2
LE > p1

HE

p2
HE > p1

HE

2. Case 2 : p1
LE ≤ p1

HE = cL

BR2(p1
LE , p

1
HE) =


p2
LE ≥ p1

HE

p2
HE > p1

HE

3. Case 3 : p1
LE < cL < p1

HE

BR2(p1
LE , p

1
HE) =


p2
LE = p1

HE − ε,

p2
HE > p1

HE

4. Case 4 : cL = p1
LE < p1

HE < cH

BR2(p1
LE , p

1
HE) =


p2
LE = p1

HE − ε

p2
HE ≥ p1

HE ,

5. Case 5 : cL < p1
LE = p1

HE < cH

BR2(p1
LE , p

1
HE) =


p2
LE = p1

LE − ε

p2
HE > p1

HE

6. Case 6 : cL < p1
LE = p1

HE < cH
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BR2(p1
LE , p

1
HE) =



A : p2
LE = p1

HE − ε if p1
HE ≥ cL +

q(p1
LE)(p1

LE−cL)

(1−ηL)q(p1
HE)

B : p2
LE > p1

HE if otherwise

p2
HE ≥ cH

7. Case 7 : cL < p1
LE < p1

HE = cH

BR2(p1
LE , p

1
HE) =



A : p2
LE = p1

LE − ε if p1
LE ≥ cL + (1− ηL) q(cH)(cH−cL)

q(p1
LE)

B : p2
LE > p1

HE if otherwise

p2
HE ≥ cH

8. Case 8 : cL < p1
LE = p1

HE = cH

BR2(p1
LE , p

1
HE) =


p2
LE = p1

LE − ε

p2
HE ≥ p1

HE

9. Case 9 : cL < p1
LE < cH < p1

HE

BR2(p1
LE , p

1
HE) =



A : p2
LE = p1

LE − ε if p1
LE ≥ cL + (1− ηL)

q(p1
HE)(p1

HE−cL)

q(p1
LE)

B : p2
LE = p1

HE − ε if otherwise

p2
HE = p1

HE − ε
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10. Case 10 : cH = p1
LE < p1

HE

BR2(p1
LE , p

1
HE) =



A : p2
LE = p1

LE − ε if p1
HE ≥ cL + 1

(1−ηL)
q(cH)(cH−cL)

q(p1
HE)

B : p2
LE = p1

HE − ε if otherwise

p2
HE = p1

HE − ε

11. Case 11 : cL = p1
LE < p1

HE = cH

BR2(p1
LE , p

1
HE) =


p2
LE = p1

HE − ε

p2
HE ≥ p1

HE

12. Case 12 : cL = p1
LE < cH < p1

HE

BR2(p1
LE , p

1
HE) =


p2
LE = p1

HE − ε

p2
HE = p1

HE − ε

13. Case 13 : p1
LE < cL < cH < p1

HE

BR2(p1
LE , p

1
HE) =


p2
LE = p1

HE − ε

p2
HE = p1

HE − ε

14. Case 14 : cL < cH < p1
LE < p1

HE
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BR2(p1
LE , p

1
HE) =



A : p2
LE = p1

LE − ε if p1
LE ≥ cL + (1− ηL)

q(p1
HE)(p1

HE−cL)

q(p1
LE)

B : p2
LE = p1

HE − ε if otherwise

C : p2
HE = p1

LE − ε if p1
HE ≤ cH + 1

(1−ηL)

q(p1
LE)(p1

LE−cH)

q(p1
HE)

D : p2
HE = p1

HE − ε if otherwise

15. Case 15 : cL < cH < p1
LE = p1

HE

BR2(p1
LE , p

1
HE) =


p2
LE = p1

LE − ε

p2
HE = p1

HE − ε

2.7 Appendix 2
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2.8 Appendix 3

2.8.0.4 Entry Strategy ((E,N),(E,E))

The strategy profile ((E,N), (E,E), (p1
LE , p

1
HE , p

1
LN , p

1
HN )), (p2

LE , p
2
HE , p

2
LN , p

2
HN )) does

not form a part of a PSBNE of the game, G.

Proof: First, by consistency, the belief of players in this section is given by (b1 =

ηL, b
2 = 1). The best response function of firm 2 from the optimality of p2

LE can be

deduced as follows: ;

BR2(p1
LE) =



p2
LE = p1

LE − ε, if p1
LE > cL

p2
LE ≥ p1

LE , if p1
LE = cL

p2
LE > p1

LE , if p1
LE < cL

and from the optimality of p2
HE ;

BR2(p1
LE) =



p2
HE = p1

L − ε, if p1
LE > cH

p2
HE ≥ p1

LE , if p1
LE = cH

p2
HE > p1

LE , if p1
LE < cH

Now we discuss the best responses of firm 1 from the optimality of p1
L in a case-by-case

basis. We will inspect firm 1 trying to set prices in the following intervals, which will

exhaust cases of all possible prices:

1. Case 1 : p1
LE < cL
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In this case, firm 2 would best respond with

BR2(p1
LE) =


p2
LE > p1

LE , if p1
LE < cL

p2
HE > p1

LE , if p1
LE < cL

Given this best response and since the interval [0, cL) is open upwards, there does

not exist an optimal strategy for firm 1. So @ an equilibrium pricing strategy in this

interval.

2. Case 2 : p1
LE = cL

In this case, firm 2 would best respond with

BR2(p1
LE) =


p2
LE ≥ cL, if p1

LE = cL

p2
HE > cL, if p1

LE = cL

But then, immediately, firm 1’s best response would be to charge p2
HE − ε > cL. So

@ an equilibrium pricing strategy in at cL.

3. Case 3 : cL < p1
LE < cH

In this case, firm 2 would best respond with

BR2(p1
LE) =


p2
LE ≥ p1

LE − ε > cL, if cL < p1
LE < cH

p2
HE > p1

LE > cL, if cL < p1
LE < cH

But then, immediately, firm 1’s best response would be to charge p2
LE − ε > cL. So

@ an equilibrium pricing strategy in the interval cL < p1
LE < cH .
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4. Case 4 : p1
LE = cH

In this case, firm 2 would best respond with

BR2(p1
LE) =


p2
LE = p1

LE − ε > cL, if p1
LE = cH

p2
HE ≥ cH , if p1

LE = cH

But then, immediately, firm 1’s best response would be to charge p2
LE − ε > cL. So

@ an equilibrium pricing strategy when p1
LE = cH .

5. Case 5 : p1
LE > cH

In this case, firm 2 would best respond with

BR2(p1
LE) =


p2
LE = p1

LE − ε > cL, if p1
LE > cH

p2
HE = p1

LE − ε, if p1
LE > cH

But then, immediately, firm 1’s best response would be to charge p2
LE − ε > cL.

This is periodic. So @ an equilibrium pricing strategy when p1
LE > cH .

This completes the proof that there does not exists an optimal pricing strategy in the

strategy profile outlined in this case. Consequently, there does not exist and equilibrium

strategy profile in this case. �

2.8.0.5 Entry Strategy ((E,N),(N,E))

The strategy profile, ((E,N), (N,E), (p1
LE , p

1
HE , p

1
LN , p

1
HN )), (p2

LE , p
2
HE , p

2
LN , p

2
HN )) does

not form a part of a PSBNE of the game, G. Proof: First, the belief of players in this

section is given by (b1 = 0, b2 = 1). From the optimality of p2
HE we get the best response
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correspondence as follows:

BR2(p1
LE) =



p2
HE = p1

LE − ε, if p1
LE > cH

p2
HE ≥ p1

LE , if p1
LE = cH

p2
HE > p1

LE , if p1
LE < cH

From the optimality of p1
LE

BR1(p2
HE) =



p1
LE = p2

HE − ε, if p2
HE > cL

p1
LE ≥ p2

HE , if p2
HE = cL

p1
LE > p2

HE , if p2
HE < cL

With the best responses defined, we now inspect for Nash Equilibrium in different

intervals of the price space, [0,∞).

1. Case 1 ( < cL): The best responses for firms 1 and 2 in this region respectively are

p1
LE > p2

HE and p2
HE > p1

LE , which is cyclic. So we do not have a NE in this region.

2. Case 2 ( = cL): The best responses for firms 1 and 2 in this region respectively are

p1
LE ≥ p2

HE and p2
HE > p1

LE , which is cyclic. So we do not have a NE in this region.

3. Case 3 (cL, cH): The best responses for firms 1 and 2 in this region respectively are

p1
LE = p2

HE − ε and p2
HE > p1

LE , which is cyclic. So we do not have a NE in this

region.

4. Case 4 (= cH): The best responses for firms 1 and 2 in this region respectively are

45



2.8. Appendix 3 2. Introduction

p1
LE = p2

HE − ε and p2
HE ≥ p1

LE , which is cyclic. So we do not have a NE in this

region.

5. Case 5 (> cH): The best responses for firms 1 and 2 in this region respectively are

p1
LE = p2

HE − ε and p2
HE = p1

LE − ε , which is cyclic. So we do not have a NE in

this region.

Now we have exhausted all cases and we establish that we do not have an equilibrium

pricing strategy in the case of the entry strategy profile ((E,N), (N,E)). Thus the entry

strategy profile ((E,N), (N,E)) cannot form a part of a Nash Equilibrium strategy profile.

2.8.0.6 Entry Strategy ((E,N),(N,N))

The strategy profile ((E,N), (N,N), (p1
LE , p

1
HE , p

1
LN , p

1
HN ), (p2

LE , p
2
HE , p

2
LN , p

2
HN )) does not

form a part of a PSBNE of the game, G. Proof: First, the belief of players in this section

is given by (b1 = P, b2 = 1) for any P ∈ [0, 1]. Now, suppose the above strategy profile

forms an equilibrium of the game. Now consider the following deviation. Firm 2 plays

‘enter’ and charges p1
LE = cL and p1

LN = pL. Apparently the expected profit from such

deviation is (1− ηL)ΠL− − F which is positive. So such a deviation is credible. Q.E.D.

2.8.0.7 Entry Strategy ((E,E),(E,E))

The strategy profile ((E,E), (E,E), (p1
LE , p

1
HE , p

1
LN , p

1
HN ), (p2

LE , p
2
HE , p

2
LN , p

2
HN )) does not

form a part of a PSBNE of the game, G. Proof: First, the belief of players in this section

is given by (b1 = ηL, b
2 = ηL). WLOG, we first describe the best responses for firm 2

from the optimality of its type dependent pricing strategy.
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1. Case 1 : p1
LE ≤ p1

HE < cL

BR2(p1
LE , p

1
HE) =


p2
LE > p1

HE

p2
HE > p1

HE

2. Case 2 : p1
LE ≤ p1

HE = cL

BR2(p1
LE , p

1
HE) =


p2
LE ≥ p1

HE

p2
HE > p1

HE

3. Case 3 : p1
LE < cL < p1

HE

BR2(p1
LE , p

1
HE) =


p2
LE = p1

HE − ε,

p2
HE > p1

HE

4. Case 4 : cL = p1
LE < p1

HE < cH

BR2(p1
LE , p

1
HE) =


p2
LE = p1

HE − ε

p2
HE ≥ p1

HE ,

5. Case 5 : cL < p1
LE = p1

HE < cH

BR2(p1
LE , p

1
HE) =


p2
LE = p1

LE − ε

p2
HE > p1

HE
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6. Case 6 : cL < p1
LE = p1

HE < cH

BR2(p1
LE , p

1
HE) =



A : p2
LE = p1

HE − ε if p1
HE ≥ cL +

q(p1
LE)(p1

LE−cL)

(1−ηL)q(p1
HE)

B : p2
LE > p1

HE if otherwise

p2
HE ≥ cH

7. Case 7 : cL < p1
LE < p1

HE = cH

BR2(p1
LE , p

1
HE) =



A : p2
LE = p1

LE − ε if p1
LE ≥ cL + (1− ηL) q(cH)(cH−cL)

q(p1
LE)

B : p2
LE > p1

HE if otherwise

p2
HE ≥ cH

8. Case 8 : cL < p1
LE = p1

HE = cH

BR2(p1
LE , p

1
HE) =


p2
LE = p1

LE − ε

p2
HE ≥ p1

HE
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9. Case 9 : cL < p1
LE < cH < p1

HE

BR2(p1
LE , p

1
HE) =



A : p2
LE = p1

LE − ε if p1
LE ≥ cL + (1− ηL)

q(p1
HE)(p1

HE−cL)

q(p1
LE)

B : p2
LE = p1

HE − ε if otherwise

p2
HE = p1

HE − ε

10. Case 10 : cH = p1
LE < p1

HE

BR2(p1
LE , p

1
HE) =



A : p2
LE = p1

LE − ε if p1
HE ≥ cL + 1

(1−ηL)
q(cH)(cH−cL)

q(p1
HE)

B : p2
LE = p1

HE − ε if otherwise

p2
HE = p1

HE − ε

11. Case 11 : cL = p1
LE < p1

HE = cH

BR2(p1
LE , p

1
HE) =


p2
LE = p1

HE − ε

p2
HE ≥ p1

HE

12. Case 12 : cL = p1
LE < cH < p1

HE

BR2(p1
LE , p

1
HE) =


p2
LE = p1

HE − ε

p2
HE = p1

HE − ε
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13. Case 13 : p1
LE < cL < cH < p1

HE

BR2(p1
LE , p

1
HE) =


p2
LE = p1

HE − ε

p2
HE = p1

HE − ε

14. Case 14 : cL < cH < p1
LE < p1

HE

BR2(p1
LE , p

1
HE) =



A : p2
LE = p1

LE − ε if p1
LE ≥ cL + (1− ηL)

q(p1
HE)(p1

HE−cL)

q(p1
LE)

B : p2
LE = p1

HE − ε if otherwise

C : p2
HE = p1

LE − ε if p1
HE ≤ cH + 1

(1−ηL)

q(p1
LE)(p1

LE−cH)

q(p1
HE)

D : p2
HE = p1

HE − ε if otherwise

15. Case 15 : cL < cH < p1
LE = p1

HE

BR2(p1
LE , p

1
HE) =


p2
LE = p1

LE − ε

p2
HE = p1

HE − ε

Since the strategy profile is symmetric, the best responses of player 1 will also be

symmetric to that of player 2. We then inspect for a NE of pricing strategy using the

table provided. We conclude from the table that there does not exist an equilibrium

pricing strategy for the subgame with entry strategy profile ((E,E), (E,E)). Therefore,

we can also conclude that the strategy profile ((E,E), (E,E)) cannot form part of a NE

strategy profile for the game we are analyzing. Hence, we do not have any equilibrium
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pay-off for players in this game.

2.8.0.8 Entry Strategy ((E,E),(N,E))

The strategy profile ((E,E), (N,E), (p1
LE , p

1
HE , p

1
LN , p

1
HN ), (p2

LE , p
2
HE , p

2
LN , p

2
HN )) does not

form a part of a PSBNE of the game, G. Proof: First, the belief of players in this section

is given by (b1 = 0, b2 = ηL). Now, lets consider this equilibrium profile. Then ∃ a price

p2
HE for which the profit of firm 2 is greater than ‘0’. Now consider the following deviation

by firm 2. Play ‘E’ when type L and set p2
LE = p2

HE . Its obvious that this is a profitable

deviation for firm 2. Q.E.D.

2.8.0.9 Entry Strategy ((N,E),(N,E))

The strategy profile ((N,E), (N,E), (p1
LE , p

1
HE , p

1
LN , p

1
HN ), (p2

LE , p
2
HE , p

2
LN , p

2
HN )) does not

form a part of a PSBNE of the game, G. Proof: First, the belief of players in this section

is given by(b1 = 0, b2 = 0). Assume the above strategy profile is an equilibrium of this

game. Now consider the following deviation by player 1. Play ‘Enter’ when type L and

charge p1
LE = p1

HE . It is apparent that this is a profitable deviation for firm 1. Q.E.D.

2.8.0.10 Entry Strategy ((N,E),(N,N))

The strategy profile ((N,E), (N,N), (p1
LE , p

1
HE , p

1
LN , p

1
HN ), (p2

LE , p
2
HE , p

2
LN , p

2
HN )) does not

form a part of a PSBNE of the game, G.

Proof: First, the belief of players in this section is given by (b1 = P, b2 = 0) for

any P ∈ (0, 1). Now, assume the above strategy profile to be an equilibrium strategy

profile. Now consider the following deviation: firm 1 enters when low cost and charges
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price p1
LE = p1

HE and p1
LN = pL. If firm 1 makes positive profit playing ‘enter’ in the

equilibrium being type H, then it must be true that it will make positive profit by playing

‘enter’ when it is type L. So this deviation is credible. Q.E.D.

2.8.0.11 Entry Strategy ((N,N),(NN))

The strategy profile ((N,N), (N,N), (p1
LE , p

1
HE , p

1
LN , p

1
HN ), (p2

LE , p
2
HE , p

2
LN , p

2
HN )) does not

form a part of a PSBNE of the game, G.

Proof: First, the belief of players in this section is given by (b1 = P, b2 = P) for any

P ∈ (0, 1). WLOG, consider any equilibrium price profile (p1
LE , p

1
HE , (p

1
LN , p

1
HN ), (p2

LE , p
2
HE ,

p2
LN , p

2
HN ). Since every player’s strategy is to not enter irrespective of its type, consider

the following deviation by player 1; enter when type L and charge p1
LE = pL. The result-

ing profit in such a case is ΠL− which is greater than F . Thus this deviation is profitable.

Q.E.D.

2.8.0.12 Entry Strategies ((N,N),(E,E)), ((E,E),(E,N)),((N,E),(E,N)), ((N,N),

(E,N)), ((N,E),(E,E)), ((N,N),(N,E))

The strategy profile ((N,N), (E,E), (p1
LE , p

1
HE , p

1
LN , p

1
HN ), (p2

LE , p
2
HE , p

2
LN , p

2
HN )) forms

a part of a PSBNE of the game, G. This case is symmetric to case 2. The strat-

egy profile ((E,E), (E,N), (p1
LE , p

1
HE , p

1
LN , p

1
HN ), (p2

LE , p
2
HE , p

2
LN , p

2
HN )) does not form a

part of a PSBNE of the game, G. This case is symmetric to case 3. The strategy

profile ((N,E), (E,N), (p1
LE , p

1
HE , p

1
LN , p

1
HN ), (p2

LE , p
2
HE , p

2
LN , p

2
HN )) does not form a part

of a PSBNE of the game, G. This case is symmetric to case 4. The strategy pro-

file ((N,N), (E,N), (p1
LE , p

1
HE , p

1
LN , p

1
HN ), (p2

LE , p
2
HE , p

2
LN , p

2
HN )) does not form a part
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of a PSBNE of the game, G.This case is symmetric to case 5. The strategy profile

((N,E), (E,E), (p1
LE , p

1
HE , p

1
LN , p

1
HN ), (p2

LE , p
2
HE , p

2
LN , p

2
HN )) does not form a part of a PS-

BNE of the game, G. This proof is symmetric to case 7. The strategy profile ((N,N), (N,E),

(p1
LE , p

1
HE , p

1
LN , p

1
HN ), (p2

LE , p
2
HE , p

2
LN , p

2
HN )) does not form a part of a PSBNE of the

game, G. This case is symmetric to case 9. Q.E.D.
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3.1. Introduction 3. Collusion with Private Information and Fixed Costs

3.1 Introduction

The wide presence of oligopolistic market structure and resulting strategic competition

among participating firms is one of the major reasons for the continued interest in this

particular field. Price being a major strategic variable in market competition has war-

ranted due attention under different market situations and with different market con-

straints. Since profit of identical firms competing a la Bertrand falls to ‘zero’ in a single

play of the game, a large body of literature is suggestive that firms in such a market

tend to contemplate collusion both in one-shot and repeated interactions on finite and

infinite horizons. Collusion has important anti-trust implications. A number of anti-

trust cases all over the world and across industries 1, and more recently, an upsurge of a

number of theoretical and empirical papers exploring the welfare effects of those collusive

practices[18], provide a strong evidence of the anti-welfare effects of collusion. possibility

of collusion as an equilibrium outcome2 has sparked interest among economists. Current

development of game theoretic tools like Nash Equilibrium and its application to games

with different information structures have proven to be very handy to identify the incen-

tive conditions for oligopolists to collude, which is an important benchmark in the theory

of oligopoly equilibrium 3. A large class of models, which have evolved from Green and

Porter (1984)[12], Abreu, Pearce, and Stacchetti (1986)[1](hence forth APS1) and Fuden-

berg, Levin, Maskin(1994)[10](hence forth FLM) analyze situations where oligopolists face

a natural barrier to collusion when the strategic behavior of firms is imperfectly observ-

able. For example, in input markets firms negotiate their prices individually with their

suppliers and any information about this negotiation is mostly private information that

competitors do not observe [3]4. Even in cases where firm’s strategic decisions may be

publicly observable, firms might not have sufficient information about each other. In such

cases, it is not always clear if there can exist a separating equilibrium where firms may

truthfully reveal their private information and collude efficiently leading to a high profit

outcome. However, recent literature establishes that firms can rely on the realizations of

a public signal like price, published report of firms’ accounts etc. [19] as a part of their

strategy to enforce collusive equilibrium when they cannot monitor each others actions

directly. FLM and APS1 developed the related equilibrium concept which they defined

as a strategy profile where every firm’s strategy is dependent only on publicly observable

outcomes (called public history) and for each time period and that period public history

1For example the Alcoa Case, the Lysine Cartel, the Air Tours case and Airlines in EU, to name a few
2of course in repeated setting
3Conditions for the incentive to collude dates back to Chamberlin, i.e., the kinked demand curve solution

where collusion is being enforced by the threat of retaliation
4It might be interesting to see if suppliers can be incentivised to reveal truthful information to firms

about each other’s cost, but then it could not be truthfully verified.
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the strategy profile induces a Nash-equilibrium from that point on. Such equilibrium is

called Perfect Public Equilibrium (henceforth PPE ). But, imperfections in interpreting

the public signal do exist due to a number of exogenous factors like level of law enforcement

etc. . These imperfections often pose problems in the characterization of the (PPE)5 by

directly affecting the incentives among firms to collude. Several earlier papers have looked

into the issue of collusion among firms involving unknown costs in both repeated and

dynamic settings over both finite and infinite horizons. A subset of them discuss various

aspects of public monitoring and analyze its role in enforcing collusion. We discuss some

of these papers later in the literature review section.

In this paper, we propose two fundamental changes to the game that Athey and Bagwell

have analyzed in their 2001, 2004 (with Chris Sanchirico) and 2008 papers. First, we as-

sume a downward-sloping demand curve instead of a unit demand by consumers for a very

good reason that downward sloping demand is a better representation of the real world.

Secondly, we introduce an avoidable fixed cost into the firms’ cost structure that induces

firms make a decision to participate in the market before going on to competing in prices.

This makes firms participation in this game endogenous and the stage game changes to a

dynamic game, a major departure from Athey and Bagwell’s set-up. We explore, with the

changed conditions, the possibility of collusion among firms. We also analyze if it is harder

to collude in this set-up compared to a situation when there is no avoidable fixed cost. We

also analyze if productive efficiency (only the low cost firm producing in the market) can

be achieved and if it can sustain in the new circumstances. Finally, we explore if allowing

for pre-play communication facilitates collusion.The pre-play communication is introduced

to exchange information (make announcements) as a part of the commitment mechanism

in the collusive strategy of the players. In particular, players announce their cost types

before playing the entry and pricing strategies in the repeated game which they try to

verify later via a public signal mechanism. Without the pre-play communication, players

will have no chance to reveal their types and thus the collusive agreement to attain the

first-best outcome could not be facilitated6 Unlike Ziv (1993)[26], we assume no monetary

transfers between players.

3.2 Literature Review

Spulber (1995)[5] looked into a basic one-shot game of price competition with unknown

costs. He has shown that, with assymetric costs and other regularity assumptions, all but

5Note that a PPE is an analogous concept as SPNE where the strategy of players is dependent on the
observation of a public signal and thus the public history. It is a Nash equilibrium that induces a Nash
Equilibrium in a repeated game from any time t onwards.

6For a discussion see Chakrabarti (2010) [7]. We outline the details of this communication in the model.
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the highest cost firm expect positive profit when costs are unknown.

Compte (1988), Matsushima and Kandori (1998)[14], Matsushima (2001)[20], Cole

and Kocherlakota (2001) [8] and Kennan (2001)[15] have looked into different aspects of

collusive behavior in dynamic Bertrand games when there is private information. This

private information is generated by a random cost shock that firms receive every period

and as such states are privately observed by some of the players but not by all. Hanazono

and Yang (2007)[13] analyze collusive behavior when the firms receive private signals by

independently and identically distributed (IID) demand shocks affecting the demand side

of the market primarily. In a similar setting, Gerlach (2009)[11] designed a stochastic

market sharing rule to substitute for pre-play communication that is dependent on the

state of demand, in order for collusion to sustain when demand is fluctuating arbitrarily.

For example, in his model, partial communication in high demand states are sufficient in

order for firms to achieve the best and full communication collusive outcome since commu-

nication eliminates the possibility of opportunistic price cuts when demand is fluctuating.

In a series of papers, Athey and Bagwell (2001)[3] (2008)[5] and Sanchirico (2004)[4],

very rigorously discuss the possibility of collusion when firms cannot observe each others

costs. These papers use the market signal correlated with firms actions to characterize

jointly profit maximizing collusive equilibrium when firms are competing a la Bertrand and

when firms have private information about their own costs. In the 2001 paper, competing

firms 7 receive an IID shock about their cost types at the beginning of each period which

is private information. They characterize the Perfect Public Equilibrium (PPE) where

productive efficiency is achieved only when the high cost firm is willing to give up its

market share. Collusive equilibrium becomes most profitable in this situation when the

high cost firms are promised higher market share in future in order to implement efficiency

in the present period.

In the 2008 paper, existing firms in the market are assumed to play an infinite-horizon

version of the Bertrand price-setting game in which the prices are perfectly observed, firms

receive a private cost shock every period, but firms’ type remains persistent over time. It

is evident that this change in setting makes it a dynamic game. In this game cost shocks

are independent across firms, but within a firm cost shocks follow a first-order Markov

process. The paper shows that the firms can collude at the monopoly price by agreeing on

appropriate splits of the market share. The high-cost firm will be willing to give up market

share because it expects higher profit in the future. This result, however, as opposed to

the 2001 paper, does not depend crucially on the condition that a high-cost firm today

could receive a technology “shock” in the future that would make it a low-cost firm.

Athey and Bagwell (2008)’s main result indicates that if the distribution of costs is

7They use discrete types i.e. low-type and high-type
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log-concave and the firms are sufficiently patient, then price rigidity is supported in the

optimal collusive equilibrium, i.e., firms set the same price and share the market equally,

regardless of their respective costs. In their model, productive efficiency can be achieved

under some circumstances, but such equilibria are not optimal. It should, however, be

noted that the firms play a Bertrand price-setting game in each period and (this could be

a key factor that drives their results) the demand side is given by a unit mass of identical

consumers with a fixed reservation price (assumed to be strictly above the highest possible

marginal cost). This indeed makes the market sharing rule much more tractable than in

a case where a downward sloping demand schedule is assumed, since the firms know that

the reserve price is the optimal collusive price irrespective of the privately observed costs

of the firms. In particular when the demand is given by the usual downward sloping

demand curve, the optimal collusive price depends on the realized costs of the firms. In

these three papers by Athey and Bagwell and Athey, Bagwell and Sanchirico, the authors

have used dynamic programming squared technique proposed by APS1, Abreu, Pearce

and Staccetti (1990)[2](henceforth APS2) and Fudenberg, Levin and Maskin (1994) [10].

These techniques provide a very efficient approach to modeling PPE by focusing on the

pay-offs rather than the strategy itself. However, they are useful when there exists a

unique stage game equilibrium in pure strategies which the firms can unequivocally bank

upon for a punishment strategy.

A later paper by Chakrabarti (2010)[7] models a similar situation in the case of Cournot

competing firms. However, he does not explicitly make use of the techniques that Athey

and Bagwell use and his conclusions are significantly different from Athey and Bagwell

(2008). He shows that, with signaling, the firms will play the strictly separating Bayesian

Nash equilibrium in period 1 and produce the optimal incentive compatible collusive quan-

tity vector from period 2 onwards. But with communication, the first period play of strictly

separating Bayesian Nash equilibrium in period 1 is no more optimal. He concludes that

the separating equilibria with communication yields larger pay-off among the two equilib-

ria he was considering.

Our work is well timed and placed in the literature in the sense that many of the

existence results that we use in our analysis in one-shot Bertrand games are still an active

area of research. This paper is organized in the following order. First, we present the

basic set-up of the model where we discuss the results of the stage game. Next, we present

the repeated game with imperfect public monitoring where we characterize a PPE that

results in efficient production (low cost firm producing). In the both the sections above

we consider that firms get an IID cost shock every period. Finally, in the last section, we

present a numerical example to illustrate the model.
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3.3 Basic Set-Up

We assume that two ex ante identical firms, 1 and 2, compete repeatedly in a standard

Bertrand model with homogeneous goods in periods t = 0, 1, 2, . . . . The inverse demand

function D(p) satisfies regularity conditions D′(p) < 0 < D(p). Let pi,t ∈ R+ be the price

chosen by firm i ∈ {1, 2} in period t. Firms discount future with rate δ ∈ (0, 1) and we

use −i to represent convention.

We assume that every firm has a total cost function represented by

Ci,t(q) =

ci,tq + F, if enter

0, otherwise

where F is an exogenous fixed cost 8 that a firm pays to participate in the market and

ci,t is its realized marginal cost in period t. Such fixed costs may be viewed as renewal of

licenses, leases etc. that businesses normally incur every year before they make pricing and

production decisions for the subsequent year. We assume that the marginal cost of firms ci,t

is a random variable with support {cL, cH}, cH > cL > 0 and prob(cL) = ηL < 1
2 . The

reason we assign this asymmetric probability to the cost types is to rid our model of any

mixed strategy equilibria and effectively use the PSBNE from the stage game equilibria

for our modeling purposes9. We call a firm to be of type L (or H) if it faces a marginal

cost cL (or cH). For convenience we will use cL(or cH) and L(or H) interchangeably. The

state space of types is represented here by Ω = {L,H} × {L,H} where Ωi = (L,H) are

realized from a common prior. For exposition, we assume that prob (cL) = ηL ∈ (0, 1
2),

which is common knowledge. Since we are also interested in examining the effect of pre-

play communication we allow for firms to announce their cost type before they engage

in price competition. Notice that every firm will have to announce its type here and not

announcing its type is not an option. Every firm i announces its type ai ∈ A ≡ {L,H}
where A is same across all firms. Thus the announcement space is A = A2.

The game follows a schedule every time period t in the following manner: (1) firms

observe their type, L or H (2) firms communicate with each other or engage in “Cheap

Talk” and make announcements ai = ψi(ci) where ψi(ci) is firm i’s announcement function

(we allow for such pre-play communication in order to examine if it facilitates collusion, an

important anti-trust issue) (3) firms make a decision to enter the market or not based on

their own announcement, ai, the announcement of other firms, a−i = ψ−i where a−i ∈ A
and the realization of their own type, ci. Denote a = (ai, a−i) as the announcement vector

of all firms where a ∈ A and A is the space of announcements of all firms. We denote

8See Sutton (Chapter 1) for a detailed discussion [24]
9WLOG we have assumed ηL < 1

2
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the space of entry decision for firm i as Υi where Υi = {E,N} ≡ {E = enter, N =

not enter}. The entry decision function is ei(ci,a) : Ωi × A × A → Υi and we denote

the entry decision of firm i by υi ∈ Υi where υi = ei(ci,a). Denote υ = (υi, υ−i) where

υ ∈ Υ = (Υi,Υ−i) and Υ = Υi ×Υ−i = (E,N)× (E,N). Υ is the state space of entry

decisions pertaining to the available types. As is evident, in this set up, if a firm enters

it incurs a fixed cost of F . If a firm doesn’t enter, its profit is identically equal to ‘0’. (4)

Firms monitor each other’s entry decision and subsequently compete in price.

We describe the public monitoring mechanism that we will be using in our analysis.

Abreu, Pearce and Staccetti (1990) and Fudenberg, Levine and Maskin (1994) [10] have

done pioneering work in developing very powerful techniques to model repeated games

with imperfect public information using dynamic programming. A public monitoring

mechanism is essentially a signal that the players receive by observing a strategic variable

in the market. For example, Green and Porter identify price as the public monitoring

mechanism that firms use to monitor collusion while competing in Cournot. Another

example of such a monitoring is Team Production where players choose between high

effort or low effort. The probability of success of the project depends on the sum of

efforts of both players, but only the joint outcome is observed publicly. In a perfect public

monitoring firms can infer the correct actions from the public signal they observe which is

also equivalent to saying that firms can observe each other actions correctly. On the other

hand, in imperfect public monitoring, firms receive a noisy signal and the distribution

of the signal depends on the actions that firms take. We assume that the support of

the distribution of the public signal is constant across the set of all action profiles. This

definition of imperfect public monitoring can be directly extended to repeated games and

dynamic games. Mailath and Samuelson [19] represent the idea of public monitoring via

a public correlation device. Such device could capture the idea of a range of public events

that firms might use as a coordination mechanism which in essence captures the idea of a

public monitoring mechanism.

We now state our assumptions of the model.

Assumption 4. There exists a p̂ such that D(p̂) = 0 and p̂ < ∞.

Assumption 5. There exists a price, p such that Di(p)p− cHDi(p)− F ≥ 0.

Let’s denote the optimal monopoly price, quantity and profit depending upon its cost

type by ΠL(ΠH), pL(pH), qL(qH) for types L(H). We also define ΠL−(ΠH−) = ΠL(ΠH)+

F .

Assumption 6. (1− ηL)ΠL− ≤ ΠH−, ΠH− > F .

Assumption 5 guarantees that there is sufficient demand in the market for a firm to
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operate at profit even if all the firms find that they have the highest possible marginal

cost. Assumption 6 specifies that the expected operating monopoly profit when a low cost

firm enters is less than the operating monopoly profit of a high cost firm. This assumption

allows us to reduce the multiplicity of equilibria using symmetric distribution on one side

of the inequality.

3.4 The Stage Game

We now describe the one-shot play of the stage game which forms the background for

our subsequent repeated extensive form game with incomplete information. We solve for

the Nash-Equilibriums in the stage game using the strategic trade-offs that the firms face

when making their entry decisions followed by their pricing decisions. First, we define the

strategy structure of the stage game as follows. Since announcements are “Cheap Talk”

in a one-shot game, we denote the entry strategy of firm i by ei(ci) : Ωi → Υi since entry

is dependent on type of the firm only . Then the subsequent pricing strategy for firm i

can be defined as ρi(ci,υ) = Ωi×Υi×Υ−i → R+ since a firm observes the entry decision

of all firms before making its pricing decision. We define an entry strategy profile in this

game as a vector e(c) ≡ (e1(c1), e2(c2)) where c ≡ (c1, c2) is the vector of realized cost

types of the duopolists. Finally, the pricing strategy profile can be represented by a vector

ρ(c,υ) = (ρ1(c1,υ), ρ2(c2,υ)).

We denote the equilibrium pricing strategy profile by p∗ = (p1∗, p2∗) ∈ p∗ where both

p1∗, p2∗ are a six-tuple consisting of the entry strategy of the form ej∗ = (νjL, ν
j
H) ≡

(firm j’s entry decision when it realizes type L, firm j’s entry decision when it realizes

type H) when (νjL, ν
j
H) ∈ Υ, j ∈ {1, 2}, and pricing strategy of the form pj∗θ,γ where

(θ, γ) ∈ {L,H}×{E,N} ∈ Ωj ×Υ−j and pi∗θ,γ ≡ (price when type L and the other enters,

price when type L and the other does not enter, price when type H and the other enters,

price when type H and the other does not enter). Thus a full pricing strategy profile for

the one-shot stage game can be represented as follows.

((ν1
L, ν

1
H), (ν2

L, ν
2
H), (p1

LE , p
1
LN , p

1
HE , p

1
HN ), (p2

LE , p
2
LN , p

2
HE , p

2
HN ))

where p∗ ∈ R2+|Ωi×Υ−i|+|Ω−i×Υi|. Let’s assume pL, pH to be optimal monopoly prices for

type L and type H respectively. From the conditions above we can deduce that when

the rival, say firm 2, does not enter, then firm 1 sets its price at the monopoly price with

respect to its realized cost. Thus we will only be solving for the situations where both

firms enter and decide on the pricing strategy. Also, note that the entry strategy profiles

((N,E), (N,E)) and ((N,N), (N,N)) will only be considered as part of off-equilibrium

strategy profile of the subsequent repeated game since the former entry strategy profile is
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counter intuitive on incentive compatibility grounds and the latter leads to no production

in the market making it uninteresting from our modeling perspective.

Now we can state the following proposition.

Proposition 3.4.1. The stage game where Bertrand duopolists face symmetric discrete

cost uncertainty and an avoidable fixed cost, possesses two classes of Pure Strategy Per-

fect Bayesian equilibria (PBE) corresponding to the entry and pricing strategy profiles as

follows:

• Symmetric Equilibrium: In this equilibrium a type L firm always enters and a type H
firm stays out of the market. Notationally, ((E,N), (E,N), (p1

LE , p
1
HE , p

1
LN = pL, p1

HN =

pH), (p2
LE , p

2
HE , p

2
LN = pL, p2

HN = pH))

• Asymmetric Equilibrium: In this equilibrium, only one firm enters irrespective of its
type. Notationally, ((E,E), (N,N), (p1

LE , p
1
HE , p

1
LN = pL, p1

HN = pH)), (p2
LE , p

2
HE , p

2
LN = pL,

p2
HN = pH))

• No other entry strategy profile in this game forms a part of any pure strategy equilibrium in this

game, G.

Proof: See Patra, 2015[21].

From this proposition, it is obvious that the symmetric equilibrium strategy profile

((E,N), (E,N), (p1
LE = cL, p

1
HE > cL, p

1
LN = pL, p1

HN = pH), (p2
LE = cL, p

2
HE >

cL, p
2
LN = pL, p2

HN = pH)) constitutes a natural equilibrium of the game. This is the

most important result from our repeated game perspective. So p∗((E,N), (E,N)) =

((p1
LE = cL, p

1
HE > cL, p

1
LN = pL, p1

HN = pH)). The asymmetric equilibrium strategy

profile is an artificial one where a type H firm prices below cH when the rival firm has en-

tered. We use this result to motivate the penal code in our colussive equilibrium strategy

in the repated game that we analyze below.

Notice that, unlike Athey and Bagwell (2001[3] and 2008[4]), the stage game here is

an extensive form game and, in equilibrium, it possesses permanent inefficiencies where

either the market is not served with positive probability or the firm which always enters

earns a negative profit with positive probability.

Now we proceed to the infinitely repeated game10 . Our primary objective in this sec-

tion is to investigate production efficiency and collusive behavior among firms by allowing

for pre-game communication.

10another interpretation is that firms believe that the game will be played in the subsequent period with
positive probability
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3.5 The Repeated Game

In this section we define and analyze the repeated game. We also provide a theorem to

show the existence of a PPE that is production efficient.

3.5.1 Recursive Representation of the Stage Game

In the papers by Athey and Bagwell and Sanchirico that we have discussed earlier there

existed a unique Bertrand-Nash equilibrium (without any side payment possibilities) in the

stage game where p = E[m
i
in{mci}] where E is the Kolmogoroff Expectation Operator.

However, we have a multiplicity of equilibria (See the section on the stage game)in the

stage game we are considering due to the endogeniety of participation of firms. In this

repeated setting we include announcements, which did not explicitly appear in the one-

shot stage game due to the classic “Cheap Talk” argument. As we have discussed earlier,

we analyze whether announcements may facilitate collusion, an important concern for

anti-trust. Now we go on to define the firm strategies in the stage game of the repeated

game in the following manner. We represent the space of policies of a firm by

Si = {αi|αi : Ωi → Ai}×{ei : Ωi×Ai×A−i → Υi}×{ρi : Ωi×Ai×A−i×Υi×Υ−i → R}.

A typical policy for a firm i when its realized cost type is ci, firm j’s announcement aj

and firm j′s entry decision ej is denoted by si(ci, a
i, aj , υi, υj) = (αi(ci), e

i(ci, a
i, aj),

ρi(ci, a
i, aj , υi, υj)). Now, let’s assume c = (ci, c−i) where ci = cj , c−i = ck in state

(j, k) ∈ Ω, a = (ai, a−i), e = (ei, e−i) and υ = (υi, υ−i) where υi and ei represents the

announcement and entry decision of firm i. We also define several vectors here for future

use.

α(c) ≡ (αi(ci), α
−i(c−i))

e(c,a) ≡ (ei(ci,a), e−i(c−i,a))

ρ(c,a,υ) ≡ (ρi(ci,a,υ), ρ−i(c−i,a,υ))

s(c,a) ≡ (si(ci, α
i(ci), e

i(ci,a), s−i(c−i, α
−i(c−i), e

−i(ci,a)))

The policy vector s(c) mentioned above determines the path of the game, i.e., it determines

announcements as well as the entry and price responses to these announcements. Thus

we can write down the stage game payoffs conditional upon the realization of types as

πi(s) = E
ci∈Ωi

[πi(s(c), ci)]. Since we are dealing with a duopoly here, i and −i can be

safely replaced by 1 and 2. We will be using this interchangeably for the rest of the game

without further declaration when we do so.
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Since we will be exploring the possibility of collusion among the duopolists during the

repeated play of the game we make a stop here to declare some of the quantities that form

a part of the expected return of firms every period they collude. We denote πL
−

= ΠL
−

2

to represent the profit of a single firm when the duopolists realize cost cL enter the market

announcing type L, and collude at price pL to split the monopoly profit equally. The

quantity πH
−

= ΠH
−

2 is defined analogously for type H. As indicated earlier, we discount

these payoffs by a factor δ ∈ (0, 1) per time period when we compute the present value of

the returns.

As we have mentioned earlier, firms do not have a direct monitoring mechanism in this

game and they use public signals to monitor the actions of their rival. Since a firm’s pay off

function is dependent on the history of publicly observable outcomes like announcements,

entry decisions and prices and not on any of their own private history, the solution concept

of a PPE seems applicable for this purpose11. Thus, before we go on to state the main

theorem, we would like to introduce some definitions and solution concepts for the type of

game we are considering. The solution concept we will primarily be using here is Perfect

Public Equilibrium where firms condition their strategy on realization of public signals.

3.5.1.1 Perfect Public Monitoring

We deal with perfect public monitoring as a special case of Imperfect Public Monitoring

that we define below.

3.5.1.2 Imperfect Public Monitoring

The concept of Imperfect Public Monitoring is very important in our analysis. Since

monitoring equilibrium action of players’ in this game is of primary importance, and

since there is no proper mechanism to monitor the type and policy function of the firms,

players in our game turn to a public signal in order to try inferring the strategy that

the rival actually played. We call this imperfect public monitoring. In repeated games

with Imperfect Public Monitoring (hence forth IPM), players information is a stochastic

public signal and the distribution of the public signal is dependent on the strategy profile

chosen by the firms. Let Y be the space for public signals and is finite, and the probability

that a public signal y ∈ Y is generated following a strategy profile s is µ(y|s). For a game

with perfect monitoring Y = A.

Also, like Athey and Bagwell (’01, ’04), we will not be analyzing mixed strategy profiles

in this game12 In our case even though the strategy profile is history dependent, since we

11the concept of sequential equilibrium by Kreps and Wilson[16] does not exclusive condition on the
public history

12This is purely for analytical purposes and to avoid cumbersome measurability details arising from a
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are assuming IID cost realizations over time t, some of the actions are not correlated

over time. To be precise, in this repeated game we try to detect if a firm has deviated

from a proposed equilibrium strategy and we use realizations of public signal to detect

such deviation13. Now, suppose si = (αi, ei, ρi) is an equilibrium strategy. A firm can

deviate from the equilibrium by choosing a deviant announcement, ai 6= αi(ci), a deviant

entry decision, υi 6= ei(ci), a price deviation pi 6= ρi(ci,a,υ) or any combination of

these deviations. All these deviations can be represented by alternative policy function

formulations, s̃i 6= si. Formally, we distinguish them into on-schedule and off-schedule

deviations. An on-schedule deviation is a deviation that is not observable to the players

during the equilibrium path of play. In the specific game that we are considering such a

deviation will come from what we call a mimicking deviation where a type H firm will

pretend to be type L, and share the market with type L. In terms of policy function, this

refers to a situation when a type H firm adopts the policy that the equilibrium specifies

for type L. Formally, s̃i specifies that cost type cj mimics type ĉj 6= cj , i.e., α̃i(cj) =

αi(ĉj), ẽj(cj , α̃
i(cj)) = ej(ĉj , α

i(ĉj)) and ∀a and ∀υ, ρ̃i(cj ,a,υ) = ρi(ĉj ,a,υ). Since

a low type firm has natural disincentives to mimic the high type in our setting, we will

only be considering cases where a high type firm mimics a low type. Thus, we will

also have to enforce the incentive compatibility for equilibrium announcement, price and

entry decisions in order to compute our continuation values. An off-schedule deviation

, on the other hand, is observable to the firms. They are defined as actions or a series

of actions that no cost type should adopt in equilibrium. For example, in our model,

decisions such as under-cutting the equilibrium price, entering the market when a firm

has announced type H are off-schedule deviations. As will be discussed later, this refers

to the deviation as “off-the-equilibrium-path” deviations. The current literature prescribes

harsh punishments for such a deviation in order to make it incentive compatible for firms

to play the collusive equilibrium14.

As has been indicated from the discussion above, since on-schedule deviations are not

observable, firms use a public signal (a signal that is generated by a mechanism/device that

deduces the cost of the rival firm by observing the rival firm’s published accounting profit,

its announcement, the demand function and an assumed tolerance for statistical errors and

compares the result to the announcement of the rival firm) for detection of deviation and

this is public information. In a simple sense this means that if a firm has played a strategy

that is not conforming with its true type then the machine will detect such a difference of

play with probability less than 1 (note that if such a play can be detected with probability

strategy profile being a mapping of the history (actions taken until that point) at a time period tand the
public realizations at the time period t to the current strategy profile.

13In the standard literature notion of a Public Correlation Device is employed in such situations
14In this case the literature uses mechanism design approach to deduce the participation constraints
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1, its the case of perfect information). However, if the rival has played the strategy

that conforms with its true cost type, then the mechanism will always detect fair play.

That is to say, the public signal mechanism can assign probability weights conditioning

upon an element from the state space of on-schedule deviating moves in any period Ξ =

(D,ND)× (D,ND) = (Deviation,No deviation)× (Deviation,No deviation) where for

every state (a, b) ∈ Ξ,‘a’ is firm i’s strategy and ‘b’ is firm −i’s strategy and (Deviation,

No Deviation)≡ (playing s̃i(cH , ., .), playing si(cL, ., .)). We denote the public signal in the

similar manner as the state space of deviations . µi represents the probability distribution

that firm i’s deviation will be detected given the action tuple of all firms in the market.

This probability assignment is symmetric and is public information.

µi(D|a) =

ηC if ai = D

0 otherwise

where ηc ∈ (0, 1), a = (ai, a−i) ∈ Ξ and ai ∈ (D,ND). In the case of off-schedule

deviations ηC = 1 always. In our game, all firms have access to the public signal.15

The most interesting thing with imperfect monitoring is that a firm might use this

to its advantage in order to deviate from a collusive equilibrium. However, note that in

the particular signaling mechanism that we have introduced earlier does not have a full

support, i.e., firms only initiate punishment when the rival in fact has deviated. In a

situation where the rival has not deviated the signaling mechanism will detect it with

probability 1 and such no punishment will be initiated. In a technical note, this signaling

mechanism helps us move away from the premises of APS1 and APS2 since it does not

satisfy the full support assumption of the signaling function. This plays a key role when

we design the collusive equilibrium.

Now we go on to describe the strategy of the repeated game. Clearly, we are dealing

with a game where continuation strategy of firms after a stage game is a function of public

monitoring and it does not condition on any private actions that firms take during the

stage game. Note that after the realization of the respective pay-offs in every stage game,

that stage game ends. Then, the firms observe the public signal before moving on to

the subsequent stage game. At the beginning of the subsequent stage game firms realize

their new type which is independent of the type they realized in the previous stage game.

Then firms play their stage game strategy as a mapping from their realized type and

announcement of their rival and proceed with subsequent strategies according to the time

line of the stage game set out earlier. Specifically, firms condition their strategy on the

history of realized announcements, entry decisions, price decisions and public signals and

15See appendix C for a helpful discussion.
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not on their private history of types or policy schedules. Such strategies are called Public

Strategies. We provide the following definition for Public Strategy.

Definition 3.5.1. Public Strategy: Let ht = (h0, h1, · · · , ht−1) be the t period public

history of firm i, i.e., a sequence of all publicly observed signals in the past. Every

ht is a 4-vector tuple, {at−1,υt−1,pt−1,yt−1} ∈ R|at−1 |+ |υt−1 |+ |pt−1 |+ |yt−1 | of realized

announcements, entry decisions, price decisions up to time period t and public signals

and every ht is a 4-tuple {at, υt, pt, yt}. Let the space of all public signals at period t as

Y t ⊂ Y and y ∈ Y .

Now, let Ht be the space of public histories ht at time t. We define the strategy of firm

i in period t as σti : Ht → Si where Si has the same meaning as before. We also denote

σt as period t strategy profile, σ as a sequence of strategy profiles over t = 1, · · · ,∞
and σi ∈ Σi, σ ∈ Σ and σ = (σi, · · · , σI). Finally, given history ht, we define per

period stage game payoff of firm i as π̂i(σt(ht)) and the expected payoff of the game as

E(
∑∞

t= 1 δ
t−1π̂i(σt(ht))) where h1 is a null set.

Having defined the strategy (which is a public strategy ) in this game, we now go on to

define the equilibrium concept associated with such strategy along the lines of Fudenberg,

Levin and Maskin (1994)[10](henceforth FLM) and APS2 in order to analyze the game.

The rationale for using this kind of equilibrium is the dependence of the strategy on public

realizations only. Since strategies are not necessarily public in the standard concept of

pure strategy Sequential Equilibrium proposed by Kreps and Wilson(1982)[16] and since

the full support assumption does not hold in our case (due to the fact that imperfect

detection mechanism that firms use assigns a positive probability to an unfavorable signal

only if (but not necessarily if) a deviation has occurred), we use Perfect Public Equilibrium

(PPE) as the equilibrium concept which we define below.

Definition 3.5.2. Perfect Public Equilibrium: A strategy profile σ∗ = (σi, ..., σI) is a

Perfect Public Equilibrium (PPE) if,

1. σ∗i is a Public Strategy for all i

2. For each date t and history ht the strategies are a Nash Equilibrium from that point

on. Formally,

Vi(σ
∗|ht) ≥ Vi(σi, σ∗−i|ht), ∀σi ∈ Σi,∀i.

Note that, unlike FLM and APS2 the use of PPE in our game is greatly simplified com-

pared to due to the nature of the monitoring mechanism we have discussed earlier. This

is because the monitoring mechanism we have is a composite function of public signals

generated by the actions taken by the firms, the application of the folk theorem provided
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by FLM becomes much simpler. As an aside, we divert away from the symmetric structure

of the response mechanism of the penal code by the punished firm and the punishing firm

that APS2 prescribes. Now we state the main result of our paper in the following theorem.

Theorem 3.5.1. Given that firms are sufficiently patient, there exists a Perfect Public

Equilibrium (PPE) in an infinitely repeated Bertrand Duopoly facing avoidable fixed cost

with imperfect public monitoring for a fixed cost F ≤ (1 − ηL)ΠH−. This equilibrium is

production efficient, i.e., in equilibrium only lowest cost firms enter and produce16 in the

market.

Proof: We provide our proof of this theorem by construction. First, we define the equi-

librium strategy in two parts; (1) A collusive agreement, (2) A penal code that enforces

the collusive agreement. Then we use standard tools from game theory to show that the

strategy outlined in part(1) constitutes such an equilibrium by the characterization of the

PPE.

Collusive Agreement: The collusive agreement in our Bertrand Duopoly game is out-

lined as follows.

(i) If both firms announce type L, both enter and set price pL and split the monopoly

profit equally. Each firm gets πL
− − F in this situation.

(ii) If one firm announces type L, only type L enters the market and sets price equal to

pL. In this case, this firm gets the whole market share and gets profit equal to ΠL− − F .

(iii) If both firms announce type H, then both enter, set price equal to pH , and split the

monopoly profits equally. In this case each firm earns πH
− − F .

Notice that the collusive agreement aims to support productive efficiency of the firms while

optimizing the per period payoff of every firm in the repeated game17.

In order to enforce the above collusive agreement we need to design a credible penal

code. But before we do so, we take a moment here to discuss possible deviations and

monitoring mechanism in this game. As we have indicated earlier, firms in our game

depend on realization of public signals to detect deviation. This means, after firms have

played their set of actions in our stage game, a public signal is generated to exhibit if

a firm has deviated from the collusive agreement in that game or not, and this signal

becomes publicly visible such that all players notice if a particular firm has deviated or

not. As has been discussed earlier, we make a distinction between on-schedule and off-

schedule deviations here. As we have indicated in section 5.1.2 firm is said to deviate
16Note that the lowest cost firm in this case is with respect to the firms’ announcement and as such it

does not have to be of type L. For example, if both firms declare type H, then the lowest cost firm is type
H

17see appendix E for further discussion on this.
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off-schedule if it chooses an action or a combination of actions in the stage game that is

not specified for any cost realization. For example, in our game, price under-cutting by a

firm is an example of such deviation. As we have indicated, in our monitoring mechanism,

an off-schedule deviation can be detected with probability ‘one’. This means that, with

probability ‘one’, the public signal will visibly indicate that a firm has deviated when it has

deviated off-schedule. The standard literature prescribes the worst available punishment

to deter this kind of deviation. On the other hand, an on-schedule deviation occurs

when a firm chooses an action or a combination of actions that are not prescribed for its

own type, but for some other existing type. In our game a mimicking deviation is an

example of such deviation. The actions are thus “on-the-equilibrium-path”. The standard

way to prevent this kind of deviation is to play the worst possible Nash equilibrium as a

credible threat. But, such a Nash Equilibrium does not exist in our game for the level of

fixed cost F we are considering. However, since the specific public monitoring mechanism

available in our game can detect such on-schedule deviation with probability ηC ∈ (0, 1)

via a public signal, we could also use the worst available punishment here just as we do

for an under-cutting to the lowest possible cost cL when the deviant enters as a threat to

deter such on-schedule deviation. Therefore, under proper mechanism, we will be using

this worst available pricing as threat against all kinds of deviation.

Now we prescribe the penal code to explain the punishment mechanism and we will sub-

sequently derive the incentive compatibility constraints.

Penal Code:

(a) If the public signal positively detects an on-schedule or off-schedule deviation, the

strategy of the punishing firm and the deviating firm are as follows.

(i) Punishing firm: Enters the market every subsequent period irrespective of its cost type.

If the deviating firm has entered, punishing firm sets price equal to cL. Else, the punishing

firm charges monopoly price with respect to its type. Note that the punishing firm would

like to floor the price to the lowest possible marginal cost in the market in order to ensure

that the rival faces a loss for sure if it enters the market, irrespective of its cost type.

(ii) Deviating firm: Stays out of the market for every subsequent period. If it enters during

the punishment phase then it sets its price equal to its marginal cost which is apparently

its dominant strategy irrespective of its type.

(b)If no deviation is detected:

Every firm plays according to the initial collusive agreement.

In order to support this penal code we deduce the incentive compatibility constraints

in the following section.

Incentive Compatibility Constraints:

As mentioned earlier, we use standard tools from the literature to characterize the con-
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tinuation value function and the present-value expected return to derive the incentive

compatibility constraints. Even though we are using the solution principle of dynamic

programming squared via characterizing a Bellman operator as a function of an endoge-

nous Bellman operator, we have not made an explicit exposition of the technique here.

This is due to the very reason that the public monitoring mechanism is deterministic in our

program. But this model can be extended to a non-deterministic public monitoring set-up

where we replace our public signaling mechanism by a mechanism with simple public cor-

relation with minor changes in the notation and introducing some additional definitions

as well as operators. Such modeling will condition the actions on the PPE pay-offs and

not on public monitoring directly which is not the case here. So we proceed as follows.

We define:

V =

[
η2
Lπ

L + ηL(1− ηL)ΠL + (1− ηL)ηL.0 + (1− ηL)2πH
]

where πL = πL
−−F and πH = πH

−−F . Notice here that V is the expected stage game

pay-off of a firm in our repeated game when they are playing the game according to the

collusive agreement. Now we can write down the incentive compatibility constraints as

follows.

IC-1: (Under-cutting being type L): (1− δ)ΠL ≤ V .

As we have discussed earlier, an under-cutting deviation occurs when both firms enter

after both declaring type L and one sets a price equal to pL − ε, ε > 0 to win the whole

market. Since this is an off-schedule deviation this will be detected with probability ‘one’.

As a result, according to the prescribed penal code, the deviating firm will be earning no

profit after such a deviation.

IC-2: (Under-cutting being type H): (1 − δ)ΠH ≤ V . This constraint is analogous to

IC-1, but for type H duopolists.

IC-3: (Mimicking): (1 − δ)πc + δ(1 − ηC)V ≤ V where πc = (pL − cH) q
L

2 − F is the

profit of the mimicking firm. We note here from a quick inspection that all incentive

compatibility constraints including IC-2 are satisfied when IC-1 and IC-3 hold. For future

use, let’s denote πc
−

= (pL − cH) q
L

2 .

Solving the constraints yields us

ΠL − V
ΠL

≤ δ ≤ 1.

As is evident the left limit of the δ, it is a decreasing function of the expected value from

playing collusion V and an increasing function of the lost cost monopoly profit ΠL. This

shows that collusion becomes easier when the ratio between V and ΠL are increasing since
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firms do not have to be very patient to play the punishment. This shows that for the

above value of δ, the incentive compatibility constraints hold in order for the designed

penal code to be credible which in turn supports the aforesaid collusive equilibrium. �

3.6 Numerical Example

For a simple exposition of the model, consider a linear inverse demand function of the

market given by Q = A − P and we assume the market organization, time-line of the

game as described in the previous sections. As before, we assume that every firm pays

identical fixed cost F to enter the market. Firms realize cost types with the following

distribution; P(cL) = 1/3 and P(cH) = 2/3, where P is the probability operator. Then,

the profits, following the description of the game above and maintaining the terms as

defined in the game, can be calculated to be:

ΠL− =
(A− cL)2

4
; πL

−
=

ΠL−

2
=

(A− cL)2

8
; πL = πL

− − F =
(A− cL)2

8
− F

ΠH− =
(A− cH)2

4
; πH

−
=

ΠH−

2
=

(A− cH)2

8
; πH = πH

− − F =
(A− cH)2

8
− F

and

πc
−

=
(A− cL)(A+ cL − 2cH)

8
;

where pL = A+cL
2 , qL = A−cL

2 .

Now for the equilibrium we are considering, ((E,N), (E,N)), we will need to satisfy

the conditions 2
3ΠL− − F > 0; 2

3ΠH− − F < 0 (see appendix D for a helpful discussion),

for the Nash equilibrium in the one-shot game to hold. Note that we showed previously,

that PPE holds automatically when F falls in the following bounds that we obtain by

combining the two conditions above.

2

3

(A− cL
2

)2
> F >

2

3

(A− cH
2

)2
.

As we have discussed in the theorem 5.1, we also explore the possibility of collusion when

2

3

(A− cH
2

)2
> F.

Solving from the IC constraints as defined in the characterization of PPE, it is immediate

that the PPE holds when δ is in the following bounds.

13

18
− 2

9

(
1 +

cL − cH
A− cL

)2

≤ δ ≤ 1.
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The following diagram represents this relationship.
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3.7 Efficiency of the PPE

Here we discuss the efficiency of our PPE by focusing on the feasibility of production at

different fixed cost levels while maintaining efficiency. We proceed with the discussion in

a case by case basis.

1. σ∗|ht = ((E,N), (E,N),p∗,y ∈ Y ) when (1−ηL)ΠH− ≤ F ≤ (1−ηL)ΠL− . Clearly,

this can be supported as a Nash equilibrium of the repeated game since we deduced

earlier that this strategy profile forms a Nash equilibrium of the one-shot stage

game. As long as F is within these bounds firms can continue playing the stage

game strategy profile irrespective of the announcements and monitoring mechanism

for infinite time periods. It is obvious that this will constitute a PPE of the repeated

game.

2. If F > (1− ηL)ΠL− then no one enters the market, i.e., play (σ∗|ht) = ((N,N),

(N,N),p∗,y ∈ Y ). This strategy is self explanatory since the fixed cost is too high

for any type of firm to earn positive expected profit in any situation.

3. If F < (1 − ηL)ΠH− , both firms expected profits are larger than the fixed cost.

So every firm would like to enter even though production efficiency will be sacri-

ficed. However, as we discovered in our one-shot dynamic game the entry strategy

((E,E), (E,E)) and the related pricing strategy p∗((E,E), (E,E)) cannot be a part

of the Nash equilibrium profile. Thus, this poses a problem in order for the strategy

profile σ∗|ht = ((E,E), (E,E),p∗,y ∈ Y ) to be a PPE. The problem is also ampli-

fied since a mimicking deviation from the collusive agreement could only be partially

detected by the monitoring mechanism in this game. So firms of type H will find it
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profitable to enter the market mimicking the strategy of a type L firm, since there

is a chance it will go undetected. However, we show that the penal code designed

above prevents such deviation in this repeated game. We use a much simpler vari-

ant of the folk theorem proposed by Fudenberg, Levin and Maskin (1994) for this

purpose. Note that the simplicity is due to the specific form of public monitoring

mechanism we use in this game.

3.8 Conclusion

The proposition, the theorem and the example provided above exhibits that, if firms are

sufficiently patient, it is possible for them to collude in a repeated Bertrand duopoly when

the cost types are discrete and the firms do not know each other’s costs. The monitoring

mechanism we have chosen plays an important role in designing a penal code that firms

can use as a credible threat in order to enforce the collusive equilibrium. A feature of this

mechanism is the asymmetric action of the punishing firm and the deviating firm when the

penal code is enforced, which differs from standard APS2 and FLM literature. Secondly,

due to the existence of avoidable fixed cost, it becomes possible for firms to collude in

our set-up which is a new result compared to the existing literature on repeated as well

as one-shot Bertrand games incorporating avoidable fixed costs. Added to this, when

costs are unknown and firms depend on a public signal to monitor each other’s action,

collusion mostly depends on the probability distribution of the types and the probability

of detection. With imperfection in detection, if the probability of realizing a high type

increases, collusion becomes harder since a firm which realizes low cost would undercut

with a higher probability since it will expect the other firm to be high type with increased

probability. Moreover, when the difference between the costs increase, the low cost firm

will find it easy to initiate punishment and the high cost firm will find it very harsh to

do so. Finally, our model preserves efficient production by the duopolists in this collusive

equilibrium which could not be achieved without incorporating fixed cost into the model.

In our model, only the lowest cost types enter following announcements and produce as

long as the game is played. Special mention must be made here about the situation when

both firms announce type H and enter the market to collude. Since, there is no firm with

a lower cost type in the market, production by the high type indeed preserves efficiency

and welfare in the market as compared to staying out.

We note here that, unlike Athey and Bagwell(2001)[3] we do not consider unequal

market sharing agreements and quantity restriction by firms in this model to model the

penal code for the on-schedule deviations in the equilibrium path. We abstract away

from such a model due to our innovation of the specific public signaling device which is
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different from the simple public correlation mechanism by Athey and Bagwell (2001)[3].

However, it will be an interesting avenue to pursue to include simple public correlation

mechanism in our model. As another direction, it will also be interesting to look at a

situation when the costs are persistent over time. In such situation, with the inclusion

of fixed cost, collusion may become harder since firms with low costs may predate than

collude when they decide to enter. Persistence of costs will also covert the repeated game

into a dynamic game with hidden state variable, a model that was developed by Cole and

Kocherlakota (2001)[8]. We can also look at situations where firms could strategically

undertake prior investments in order to influence their cost type in future play of the

game. This model can be extended to continuum of types and it will be interesting to see

if the results hold in a Cournot set-up. Finally, it will also be interesting to explore when

firms pay just a one time fixed cost before the repeated play of the Bertrand game with

unknown costs.

Our model is novel in the sense that it is a step forward in the direction of endogenous

participation of firms and inclusion of avoidable fixed costs in Bertrand games, an area in

economics that is not fully developed yet. This model is intended to serve as an anecdote

to many other interesting issues arising from such endogeniety in market decision making.
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4.1. Introduction 4. Bertrand Competition with One-sided Cost Uncertainty

4.1 Introduction

Due to the existence of the fundamental discontinuity in the profit functions of Bertrand

competing firms with homogeneous product with bounded price many existence results

are still an active area of research. The classical outcome of competitive profit when firms

with symmetric constant marginal cost compete one-shot in prices while having perfect

information about each other has been difficult to replicate in different informational

and cost setting. For example, when both firm’s costs are unknown, Spulber (1995)

[5] has shown that, with parameterized asymmetric costs, all but the highest cost firm

expect positive profit when costs are drawn from a continuous distribution. Baye and

Kovenock (2008) [1] showed that with a fixed cost and constant marginal cost of firms

there exists a mixed strategy Nash-equilibria in the full information Bertrand game. They

argue that the reason for this existence is that the cost function in this case essentially is

concave. Blume(2003)[2], in a seminal paper has indicated that when Bertrand duopolists

have different constant marginal costs, have perfect information about each other and

the highest marginal cost is below the monopoly price of the lowest cost firm, then in

equilibrium the low cost firm will charge a price equal to the higher marginal cost and the

higher cost firm would randomize between the two costs. However, observe that this is

again a partial mixed strategy equilibrium. In a recent paper, Routledge [4] (2010) showed

that in a classical model of Bertrand competition with homogeneous goods and constant

marginal costs, only a mixed strategy Nash-equilibrium exists when the marginal costs

are unknown and there is symmetric tie-breaking rule.

Unlike these prior studies, we assume that the cost type of one firm is unknown,

and that the cost types are asymmetric between firms. The assumptions reflect real life

competitions among firms. We characterize the full equilibrium, and show that pure

strategy Nash equilibrium can exist in some cases.

This paper is organized as follows. Section 4.2 presents the model set-up. Section 4.3

provides the full characterization of the equilibrium and finally, Section ?? concludes the

paper.

4.2 The Model

Two firms, each indexed by i ∈ N := {1, 2}, are engaged in a Bertrand price competition

with homogeneous goods and equal rationing rule. That is, firms compete by setting their

prices simultaneously and independently. Firms that set the lowest price serve all the

demand. In case of the tie, firms share the demand equally.

The inverse demand function D : R+ → R+ satisfies the following properties. First,
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there exists a “choke-off price” pmax ∈ R+ such that D′(p) < 0 < D(p) for all p ∈ (0, pmax)

and that D(p) = 0 for all p ∈ [pmax,+∞). Second, D is continuous on the entire domain

R+ and twice continuously differentiable on (0, pmax). We denote qmax := D(0).

Firm 1’s marginal unit cost is publicly known to be c1. Firm 2, on the other hand,

privately observes its own marginal unit cost c2 which can take two values cL and cH

with probability ηL and 1 − ηL, respectively. We call firm 2 to be of type L (H) if it

faces a marginal cost cL (cH) and we assume 0 < cL < cH < pmax. The profit function

of a firm is given by πj(p) := (p − cj)D(p) for each p ∈ R+ and for each j ∈ {1, L,H}.
As is standard, we assume that (p − cj)D(p) is strictly concave in price p over [0, pmax].

We denote by pmj , q
m
j , and πmj , the monopoly price, quantity, and profit, respectively, for

each cost realization: pmj := argmaxp∈R+
πj(p), q

m
j := D(pmj ), and πmj = πj(p

m
j ) for each

j ∈ {1, L,H}. Note that pmj is well-defined and unique for each j ∈ {1, L,H}. Each firm

maximizes its expected profit.

The Equilibrium Concept we use in this analysis is the Pure Strategy Bayesian Nash

equilibrium (PSBNE) of this Bertrand game. A Bayesian Nash Equilibrium in this game

is a triple (p∗1(c1) ≡ p∗1, p
∗
2(cL) ≡ p∗L, p

∗
2(cH) ≡ p∗H) where p∗1(c1) is the price that firm 1

sets, p∗2(cL) is the price that a type L firm 2 sets and p∗2(cH) is the price that a type H

firm sets in equilibrium. We denote by E∗ the set of pure strategy PSBNE.

4.3 The Full Characterization of PSBNE

Lemma 4.3.1. No firms price below their marginal cost.

Proof. Pricing below marginal costs will generate a negative profit, if the firm wins the

competition. Because the game is static, the firm cannot gain future benefits. Such

strategy violates the individual rationality constraint, because the firm can always produce

nothing.

Proposition 4.3.1. If c1 < cL, then E∗ = {(cL, pL, pH) | pL > cL, pH > cL}.

Proof. First, according to Lemma 4.3.1, firm 1 prices at or above c1. Second, as long as

firm 1 sets price above cL, type L firm 2 optimally responds by cutting price by a small

ε and captures the whole market.1 Given any pricing strategy of type L firm 2, firm 1 is

willing to undercut type L firm 2 as long as capturing the entire market generates higher

expected profit than pricing at pm1 (assuming pm1 ≤ cH) but losing the market when facing

1The monopolistic price of firm 1 in this case is lower than that of type L firm 2, which follows from
our model assumptions.
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type L firm 2. Thus the optimal strategy for firm 1 depends on the monopolistic price

pm1 . We discuss below in detail.

Case 1 (pm1 ∈ [c1, cL)): Observe that if firm 1 sets its price in the interval [c1, cL) then

firm 1’s optimal price would be to set p1 = pm1 . Then, both type L and type H firm 2

would set their respective prices strictly above p1. Given the best response of both types

of firm 2, firm 1 does not have any profitable deviation, which satisfies the conditions for

an equilibrium.

Case 2 (pm1 = cL): Consider firm 1 setting a price p1 = pm1 = cL. In such a case

a type L firm 2 would best respond by charging price pL ≥ cL and and a type H firm 2

would set pH > cL, both types of firm 2 making a ‘zero profit’. If a type L firm 2 chooses

a price at cL, Firm 1 in will make a profit of 1
2(cL − c1)D(cL). But firm 1 can profitably

deviate to charging a price cL − ε and making monopoly profit, given the best responses

of firm 2 irrespective of its type. Thus (pm1 , cL, pH) cannot be a PSBNE. Now consider the

possibility when a type L firm 2 charges a price pL > cL. In such a case, firm 1 will have

no profitable deviation since it is making monopoly profit by charging cL and given that

both types of firm 2 are best responding by charging strictly above pm1 = cL. A type H

firm 2 is making a ‘zero’ profit in this strategy profile. In order to gain any market share a

type H firm 2 will have to price below cL but earn negative profit in such a case. So a type

H firm 2 does not have a profitable deviation given the pricing strategy of firm 1. Finally,

when a type L firm 2 sets its price pL > cL, it receives no market share and as such receives

an expected profit of ‘zero’ which is no less than what it receives when it sets a price on

or below cL. Thus the pricing strategy profile E∗ = (p∗1 = pm1 = cL, p
∗
L > cL, p

∗
H > cL)

is an equilibrium strategy profile when (pm1 = cL).

Case 3 (pm1 > cL): For this case, we first inspect if there exists an equilibrium pricing

strategy profile such that p∗1 ∈ (cL, cH). Given p∗1, type L firm 2 will optimally undercut

firm 1. The expected profit of firm 1, given that type L firm 2 undercuts, is (1− ηL)(p∗1−
c1)D(p∗1), which implies p∗1 = pm1 . The question becomes, does firm 1 undercuts type L

firm 2? The indifference condition is

(1− ηL)(pm1 − c1)D(p∗m) = (ps1 − c1)D(ps1),

where Firm 1 is willing to undercut only to ps1.

If ps1 < cL, then type L firm 2 prices at cL and firm 1 prices at marginally below cL. If

type L firm 2 prices above cL, firm 1 optimally responds by pricing below type L firm 2.

Iterative argument implies that firm 2 prices at cL. Given firm 2’s strategy, firm 1 prices

at marginally below cL.

If ps1 ≥ cL, then type L firm 2 prices at cL, but firm 1 prices at min{max{cL +
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ε, ps1}, cH − ε}.

Proposition 4.3.2. If c1 = cL, then E∗ = ∅.

Proof. Notice that if firm 1 sets a price below c1 in equilibrium then it would obtain a

negative profit. A profitable deviation for firm 1 would be to charge a price on or above

c1. In addition, firm 1 cannot also charge a price above cH . Doing so results in being

undercut by firm 2 irrespective of its type. So the only interesting case to look at is the

pricing between [cL, cH ].

Firm 1 obtains positive profit, because it can set a price in (cL, cH) to win the market

when firm 2 draws a high type. Then, firm 2 with low type must also obtain positive

profit. If not, firm 2 with type L can profitably deviate by taking pL ∈ (cL, p1]. This

implies that p1 = pL(> c1). It is, however, impossible because each firm can profitably

deviate by slightly undercutting. Hence, the game does not have a PSBNE.

The result is striking since by pricing larger than cL, firm 1 can earn positive expected

profit. Given firm 1’s strategy, firm 2 of type L always wants to marginally undercut firm

1. Given this best response by firm 2 of type L, it is always marginally better for firm 1

to lower its price further to capture the market. This is a profitable deviation for firm 1

since for any given price of firm 2 of type L, the expected profit when not undercutting is

πH(p1 − cL)D(p1) where p1 = pL + ε, which is always smaller than the expected profit if

firm 1 undercuts is (p1−cL)D(p1). The result hinges crucially on the assumption that firm

1 has the same cost as firm 2’s lower type, i.e., c1 = cL (see the next case). It also depends

on the assumption that firm 2 takes firm 1’s strategy as given and does not account for

the effect of its deviation on firm 1’s response.

Proposition 4.3.3. If c1 ∈ (cL, cH), then

E∗ =

{(pm1 , pmL , pH) | pH > pm1 } if pmL < pm1 ≤ cH
∅ if pmL < pm1 and cH < pm1

.

Proof. As is in the previous case, in equilibrium it must be the case that cL ≤ pL ≤
cH ≤ pH . The first and third inequalities are due to participation constraints. The second

inequality is due to firm 1 will undercut if both types of firm 2 set price larger than cH .

For firm 1, it must be that c1 ≤ p1 ≤ cH .

We discuss two cases. First, p1 ≥ pmL . Since the costs of the two firms are different,

firm 2 does not necessarily want to set the price right below the price of firm 1. We explain

this result below.
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In this case, it is optimal for firm 2 to set price pL = pmL . The reason is p1 ≥ pmL ,

so firm 2 of type L captures the market and earns monopolistic profit. Given this, the

question is whether firm 1 has incentive to deviate. Firm 1 prefers to deviate from p1 if

and only if (1 − ηL)(p1 − c1)D(p1) ≤ (pmL − c1)D(pmL ).The break-even price, if it exists,

must be larger than pmL since 1 > πH > 0 and pm1 > pmL . Call this price ps1. If ps1 exists,

then firm 1 will NOT deviate by undercutting. If ps1 does not exist, firm 1 will deviate by

undercutting and this goes on until price reaches c1 but given c1, firm 1 would want to

deviate to earn positive profit.

In this case, pure strategy Nash equilibrium exists if and only if there exists a price

such that πH(p1c1)D(p1) = (pmL c1)D(pmL ), which is equivalent to πH(pm1 c1)D(pm1 ) >

(pmL c1)D(pmL ) if pm1 < cH and πH(cHc1)D(cH) > (pmL c1)D(pmL ) if pm1 ≥ cH . Firm 1

charges p1 = min{pm1 , cH}. Firm 2 charges its monopolistic price.

Second, p1 < pmL . Then firm 2 of type L will deviate by undercutting firm 1. This goes

on until price is at c1 in which case firm 1 will deviate. Hence there is no pure strategy

NE.

Proposition 4.3.4. If c1 = cH , then E∗ = {(p1, pL, pH) | p1 ≥ c1, pL < p1, pH ≥ cH}.

Proof. Consider p1 < cL. Then, both types of firm 2 would best respond by pL, pH > p1.

Now consider p1 = cL. Then a type L firm 2 would best respond with pL ≥ c1 [?] and

a type H firm 2 would best respond with pH > c1. Now, consider firm 1 charging a

price p1 ∈ (cL, cH). In such a case, a type L firm 2 would best respond by pL = p1 − ε
and a type H firm 1 would best respond by pH > cH . Given the best responses in the

above cases, firm 1 would earn a negative expected profit 2. However, firm 1 can profitably

deviate in all the aforesaid cases by charging a price p1 ≥ cH where it can earn a minimum

expected profit of ‘zero’. So we establish that in equilibrium firm 1 would not set a price

p1 < cH . Now, consider firm 1 setting p1 > cH . Then firm 2 would best respond with

p1 − ε irrespective of its type leading firm 1 to earn a ‘zero’ profit 3. In such a case,

firm 1 setting a p1 = min{pL, pH} − ε would be a profitable deviation. Using standard

Bertrand argument of spiral undercutting of prices, any price strictly above cH would

yield a profitable deviation for firm 1. So the only surviving candidate price is p1 = cH .

Now, consider p1 = cH . In such a case a type L firm 2 would best respond by pL < p1

and a type H and a type H firm 2 would best respond with pH ≥ cH . Now consider the

pricing strategy profile {(p1, pL, pH) | p1 = c1 = cH , pL = cH − ε, pH ≥ cH}. Observe

that, given this pricing profile no firm will have any profitable deviation. So, this is a

Nash-equilibrium pricing strategy profile.

2Since firm 1 would make a positive sale when firm 2 is type H, which occurs with positive probability.
In the case firm 2 is type L firm 1 would earn a zero profit.

3observe that this result holds irrespective of the location of the monopoly price of both the cost types

84



4.4. Conclusion 4. Bertrand Competition with One-sided Cost Uncertainty

Proposition 4.3.5. If c1 > cH , then E∗ = {(p1, cH , pH) | p1 > cH , pH ≥ cH}.

Proof. Using the arguments from the previous section it is immediate that p1 ≮ cL in

equilibrium. Now consider p1 = cL. In such a case a type L firm 1 will best respond by

setting pL ≥ p1 and a type H firm 2 will best respond by pH > p1. In this case firm 1

would earn a negative profit. But firm 1 can set its price at c1 and make a ‘zero’ profit

which is a profitable deviation. So in equilibrium it must be that p1 6= cL. Now consider

p1 ∈ (cL, cH). In this case firm 2 will best respond with pL = p1−ε and pH > p1. Arguing

similarly as the last section we can conclude that firm 1 will not set a price p1 ∈ (cL, cH)

in equilibrium. Now consider p1 = cH . In this case pL = p1 − ε and pH ≥ p1. Observe

that in expectation, firm 1 will also gain positive market share in this situation and earn

negative profit. As such, firm 1 can profitably deviate by setting p1 = c1. Now consider

firm 1 setting p1 ∈ (cH , c1). In this case both types of firm 2 will undercut p1, forcing firm

1 to earn zero profit. Observe that firm 1 can consider deviating only by setting a larger

p1. But in such a case this price will be undercut and firm 1 will earn ‘zero’ profit. So

there is no strictly profitable deviation for firm 1. So we can conclude that in equilibrium

firm 1 will set p1 ≥ c1. Now consider an equilibrium price p∗1 = c1. Given this, both

firm 1 and firm 2 would charge a price pL = pH = p∗1 − ε. In such a case firm 1 would

earn a ‘zero’ profit by not earning any market share. Continuing with that argument,

consider the pricing profile (p∗1 = c1, p
∗
L = p∗H = min{c1, p

m
L }). Its clear that there is no

profitable deviation for any firm in this since firm 2 will always gain the market and firm

1 will always price weakly above its marginal cost.

4.4 Conclusion

We have provided a full characterization of the pure strategy equilibrium in a standard

Bertrand game with one-sided cost uncertainty. We find that one-sided cost uncertainty

and bounded known cost type are sufficient to guarantee the existence of the PSBNE in the

Bertrand game when costs of one firm is a stochastic draw from some known distribution.

Note that when the cost of the certain firm type (firm 1 in our case) matches the lowest cost

of the uncertain type (firm 2 in our case) there is no equilibrium. This is a strong feature

of our equilibrium which is not present in a standard Cournot game in similar setting [3].

This is largely due to the fact that price as a strategic variable is quite sensitive to the cost

of a firm than quantity as such. In a Cournot game the firm with uncertain types takes

advantage of the fact that it can change its production according to its cost type while

the certain type cannot change the information about its cost and as such production. So

while the certain type will be making its decision about the quantity level in expectation,

the uncertain type will be able to make a more informed decision than the certain type
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which basically drives the equilibrium result. Note that, there is no real effect of the order

of costs in the Cournot game on its equilibrium characterization.
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Chapter 5

Statistical Fluctuations along the

Lennard-Jones Melting Curve

5.1 INTRODUCTION

Any thermodynamic system over time exhibits a distribution of thermodynamic state

variable values which depend on the ensemble adopted. Such fluctuations in first order

thermodynamic quantities can be used as a route to calculate second order thermodynamic

quantities (e.g ., heat capacity and compressibility), and they have been used in molecular

simulation studies over many decades to perform this task, [1]. Relatively recently a new

use for system property fluctuations has been proposed, and that is to identify those states

on the phase diagram that have (to a good approximation) an underlying scale invariance

which has been called isomorphism, [3, 4, 5, 6, 7, 2] because of similar underlying assembly

structures of these thermodynamic state points. Consider a point in the configurational

phase space of N molecules which may represent the molecules in a periodic simulation

periodic cell, where ri is the coordinate of molecule i, and the configurational phase state

point is represented in concise form by, rN ≡ r1r2 · · · rN . If ρ is the number density of

molecules, and r̃i ≡ ρ1/3ri is a non-dimensionalised coordinate, two state points on the

phase diagram (e.g ., defined by density and temperature) are said to be isomorphic if the

probability distribution function of these states, P (r̃N ), for all r̃N in the two thermody-

namic state points are the same. By extension an isomorphic line on the phase diagram

(typically, defined by the density and temperature points) is one along which all state

points have the same P (r̃N ).

Assuming pair-wise additivity of the potential energy surface, the analytic form of the

pair potential is, in addition to the density and temperature, the most important factor

in controlling the extent of isomorphic behaviour. The Lennard-Jones (LJ) potential is
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one of the most used classical representations of model condensed phase systems, and is

defined by, φLJ(r) = 4ε[(σ/r)12 − (σ/r)6], where ε and σ define the characteristic energy

of interaction and diameter of the molecule, respectively, and r is the separation between

the centres of two of the molecules. The inverse power potential, φIP (r) = 4ε(σ/r)n, is

another relevant potential in the present context, where n is an exponent which governs

the steepness of the potential. The inverse power (IP) fluid and solid are examples of

perfectly isomorphic condensed phases in which the isomorphic line is defined through the

relationship, ρn/3/T = const, where T is the temperature (using the usual molecule-based

reduced units). The LJ potential is the sum of two such inverse power terms, and the

n = 12 IP fluid or solid could be considered to be a possible reference system for the

LJ system, and the n = 6 IP attractive part of the potential is taken to be a first order

perturbation.

The ‘melting line’ on the phase diagram is where a transition between a fluid and solid

(crystalline) state takes place. In fact it is only a line when plotted in the P, T plane,

where P is the pressure. On the ρ, T and ρ, P planes, there are coexisting region ‘gaps’

between distinct fluid and solid single phase zones. Knowledge of the melting line (ML) of

a chemical system is important in various chemically relevant fields as the physical state

of the molecules can have a strong influence on the physical behaviour (e.g ., flow char-

acteristics) of the system. This is important in, for example, geology and high pressure

(elastohydrodynamic) lubrication. The melting line is already known to be almost iso-

morphic, which in part explains the success of various phenomenological ‘rules’ of melting

for many different types of molecule, [8].

The Pearson coefficient, Rp, between the configurational part of the pressure, Pc, and the

potential energy, u, has been used as a convenient measure of the extent to which two

state points are isomorphic [3, 4, 5, 6, 7, 9]. If the pressure-energy correlation measure,

Rp, is equal to unity, the two states would be completely isomorphic; in reality only IP

fluids form isomorphic lines, so 0 ≤ Rp ≤ 1 for all other model systems having repulsive

and attractive components in their interaction potential. The closer Rp is to unity the

more ‘isomorphic’ the two state points can be said to be.

The statistical analysis of data is carried out in a wide range of disciplines, such as Eco-

nomics, whose experience could be made use of in the branch of statistical physics asso-

ciated with isomorphism. The purpose of the present study is to determine the Pearson

coefficient and related statistical measures of correlation between a variety of thermody-

namic state variables (not just the configurational part of the pressure, Pc, and the total

potential energy per particle, u) by Molecular Dynamics computer simulation. The statis-

tical theoretical framework employed in Economics is made use of here. This examination

elucidates further the nature of near-isomorphic states and by association the factors that
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influence the melting line. Such conclusions might eventually lead to improved perturba-

tion theories of the liquid state.

5.2 SIMULATION AND DEFINITIONS

The Lennard-Jones pair potential was used to generate the molecular configurations re-

ported here. All quantities presented are given in LJ reduced units (i .e., ε for energy, and

σ for distance). The potential energy, pair force and other static properties were obtained

by truncating the LJ potential interactions at a molecule pair separation of r = 2.5 [10].

The usual mean field long range correction formulas, [10] were added to the potential

energy and other static properties. The time step was 0.005/
√
T , where T is the tempera-

ture, and simulations were conducted for up to 106 time steps during the post-equilibration

stage. The number of particles in the simulation cell, N , was 2048, which is large enough

to have minimal finite size effects. Molecular dynamics (MD) simulations were carried out

in the constant temperature ensemble using velocity rescaling. State points on the fluid

side of the melting line terminating at the triple point at ca. T, ρ values of 0.69, 0.85 [11]

were simulated (ρ is the reduced number density or Nσ3/V , where V is the volume of the

cubic simulation cell). The state points simulated were determined via a polynomial fit

to numerous sources of molecular simulation fluid-solid coexistence data taken from the

literature (e.g ., [11, 12]).

Simulations were carried out using different pair potentials to generate the state points,

with some being carried out with the LJ potential. The Weeks-Chandler-Andersen (WCA)

decomposition of the LJ potential into a steeply repulsive (‘r’) and a smoothly varying

(‘background’) attractive (‘a’) part is respectively as follows, [14, 15, 16, 17, 18, 21, 13,

22, 20, 19] φWCA,r(r) = φLJ(r) + ε, r ≤ rc and φWCA,r(r) = 0 r > rc, where rc = 21/6σ

is the position of the minimum of the LJ potential. Also, φWCA,a(r) = −ε, r ≤ rc and

φWCA,a(r) = φLJ(r) r > rc, so φLJ(r) = φWCA,r(r) + φWCA,a(r) for all r. Some sim-

ulations were carried with φWCA,r(r), and others using the inverse power potential, [23]

φ(r) = 4ε(σ/r)12 to generate the configurations, for the same values of T and ρ. The

values of the thermodynamic properties of the ‘virtual’ LJ and WCA potential systems

were also computed even for state distributions generated by the other two force fields.

The virial expression for the pressure, P , was used in the simulations, [1, 10]

P =
1

3V

[ N∑
i=1

1

m
p
i
p
i
+

1

2

N∑
i=1

N∑
j 6=i

rijfij

]
(5.1)
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where V is the volume of the system, p
i

is the translational momentum of molecule, i, of

mass m, rij = ri − rj , and ri and rj are the coordinates of molecules using the nearest

image, i and j, respectively. The pair force between the molecules is fij = −dφij/drij , ap-

plying the nearest image convention between molecules i and j. The kinetic contribution

to the total pressure is the first term in Eq. (5.1), which by equipartition can be written for

equilibrium systems as P k = ρkBT , where kB is Boltzmann’s constant and ρ = N/V . The

second term on the right hand side of Eq. (5.1), is the configurational part of the pressure,

denoted by Pc. The potential energy per particle is u =<
∑

i<j φ(rij) > /N , where < · · · >
represents a simulation average (the configurational part of the pressure is similarly av-

eraged). For the LJ potential this can be decomposed into repulsive (‘r’) and attractive

(‘a’) parts, i .e., , ur = 4 <
∑

i<j ε(σ/rij)
12 > /N and ua = −4 <

∑
i<j ε(σ/rij)

6 > /N ,

respectively. The LJ potential can also be decomposed into the two WCA contribution

parts, uWCA,r =<
∑

i<j φWCA,r(rij) > /N for the WCA repulsive potential component,

and uWCA,a =<
∑

i<j φWCA,a(rij) > /N for the attractive component. In the literature,

the potential term, φWCA,r is often just referred to as the ‘WCA’ potential.

Three temperature and density fluid states along the LJ melting line were considered. The

three temperatures were 0.7, 4.0 and 60, and the corresponding densities were 0.847, 1.229

and 2.289, respectively. The theory of statistical fluctuations relating to linear regression

and the Pearson coefficient is covered in Sec. III. Application of this theory to the simula-

tion data is undergone in Sec. IV. The correlation between Pc and u is computed, as these

two quantities were first used to test for isomorphism in previous molecular simulation

studies [6]. Correlations between two decompositions of the total potential energy are also

assessed. The results from IP and WCA (repulsive part only) and full LJ dynamics are

compared. Section V is mainly concerned with a time-dependent extension of the Pearson

coefficient criterion.
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5.3 THEORY AND RESULTS

In this section the directional relationships between the several variables are analysed.

The analysis of the variance, Pearson’s Rank Correlation Coefficient, [24] which is some-

times referred to as Pearson’s Product-Moment Correlation coefficient or PCC for short,

and Ordinary Least Squares (OLS) regression techniques, [25] are used for this purpose.

Pairs of variables are treated and the standard t−test, [26] is carried out to establish the

statistical significance of the derived relationship. The goodness of fit of the correlation

between the variables, for example, uWCA,r and uWCA,a is used to verify to what extent

the relationship between these variables is linear.

Several basic statistical concepts and the relationship between them are covered first, in

order to interpret properly Pearson’s coefficient. One of the most commonly used mea-

sures of how the points in a data set are distributed is the second central moment around

the mean. The ‘variance’ of a variable, A, or σ2
A, is the mean squared deviation from its

mean for a given sample of data,

σ2
A ≡ V ar(A) = E[(A− E[A])2)] = E[A2]− (E[A])2, (5.2)

where E is the expectation value of A. (i .e., E[A] =
∑N

i=1Ai/N for the i− th value of A

in a data set). The variance measures how spread out about the mean the distribution of

data points is. A variance of zero means all the values of A in a data set have the same

value, and the variance is always ≥ 0, of course. The ‘standard deviation’, denoted by σA,

is the square root of the variance, which in standard notation is,

σA =
√
E[A2]− (E[A])2, (5.3)

which should not be confused here with the particle diameter, σ, in the potential.

A related quantity, the ‘covariance’ is a measure of the ‘strength’ of the linear relationship

between two variables A and B,

Cov(A,B) = E[(A− E[A])(B − E[B])] = E[AB]− E[A]E[B]. (5.4)

If Cov(A,B) > 0, then on averageA increases asB increases and vice versa. If Cov(A,B) <

0, then A tends to decrease as B increases and vice versa. These quantities are important

when it comes to defining the PCC, a widely used measure of the correlation relationship

between the two variables, which is denoted here by, Rp,A,B. Correlation is a measure of
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the directional relationship between the paired elements in two data sets, A and B, and,

Rp,A,B =
Cov(A,B)

σAσB
=

E[(A−A)(B −B)]√
E(A2)− [E(A)]2

√
E(B2)− [E(B)]2

, (5.5)

where CovA,B is the covariance between data sets A and B, and σA is the standard

deviation of data set A (and the same notation for B). The average value of A is denoted

by A and the average value of B is denoted by B. Note that the PCC is dimensionless while

covariance has units obtained by multiplying the units of the two variables. The PCC is

a measure of the ‘strength’ of the relationship between the two variable sets, but does

not define any particular functional relationship (or ‘causality’) between the two variables

taken at the same time or in a particular order. By ‘causality’ we do not necessarily mean

that a value in A leads directly to the corresponding value in B or vice versa, but that both

quantities may be determined by an underlying third parameter of the system (e.g ., the

partition function of the system in statistical mechanics). This latter point limits our

ability to draw a causal relationship between the two variables, and for this reason an

additional procedure, known as ‘Regression Analysis’, (RA) or in the present context of

assumed proportionality between two variables, ‘Linear Regression’ (LR), which involves

minimising the sum-of-the-squares of the errors is widely used to draw inferences about

any causal relationship between the variables. The RA involves the method of Ordinary

Least Squares (OLS). Below the procedure of regression is defined and used to establish

a formal link between Pearson’s correlation coefficient and the OLS regression coefficient.

Regression analysis is the process of constructing a mathematical model or function that

can be used to predict or determine the value of one variable from that of another variable,

or other variables. The most elementary regression model is called ‘simple regression’. In

simple regression, the variable to be predicted is called the dependent variable, and is

usually designated by Y . The independent variable, or ‘explanatory’ variable, usually

designated by X is also called the ‘predictor’. The procedure of simple regression involves

fitting a straight line through a set of Np points in such a way that the sum of the squared

residuals of the model is minimised. The equation of this line is,

Ŷi = β̂0 + β̂1Xi, (5.6)

where, Ŷi is the predicted value of Yi using a finite number of sample sets, β̂0 is the y-

intercept of the line of best fit, and β̂1 is the slope of the line of best fit. The difference

between the actual and predicted value of the dependent variable, called the ‘residual’, is,

Ûi = Yi − Ŷi = Yi − β̂0 − β̂1Xi. (5.7)
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The residuals are the vertical distances between the points of the data set and the fitted

line. Intuitively it is readily appreciated that the smaller the residuals the closer the fit

line is to the distribution of input pair values. To avoid the problem of positive residuals

offsetting negative residuals, the principle of Ordinary Least Squares (OLS) is employed,

which involves finding the values of β̂0 and β̂1 which minimise the sum of the squares of

the residuals, S,

S =

Np∑
i=1

Û2
i =

Np∑
i=1

(Yi − Ŷi)2 =

Np∑
i=1

(Yi − β̂0 − β̂1Xi)
2. (5.8)

By minimising the above equation with respect to β̂0 (intercept) and β̂1 (slope) expressions

for these two quantities are obtained,

β̂0 = Y − β̂1X, (5.9)

where β̂0 is the predicted intercept, and the predicted slope, β̂1 is,

β̂1 =
E[(X −X)(Y − Y )]

E(X2)− [E(X)]2
=
Cov(X,Y )

V ar(X)
, (5.10)

for Np data points, and where, X is the mean value of the explanatory variable X, and Y

is the mean value of the dependent variable, Y .

The relationship between the OLS estimator and Pearson’s Correlation coefficient is now

derived. The formula for the estimator, β̂1, is given by,

β̂1 =
Cov(A,B)

σ2
B

=
E[(A−A)(B −B)]

E(B2)− [E(B)]2
. (5.11)

The relationship between the PCC and the OLS estimator, β̂1, is then,

β̂1 =
E[(A−A)(B −B)]

E(B2)− [E(B)]2

=
E[(A−A)(B −B)]√

E(A2)− [E(A)]2
√
E(B2)− [E(B)]2

√
E(A2)− [E(A)]2√
E(B2)− [E(B)]2

= Rp,A,B
σA
σB

, (5.12)

which reveals that the regresssion coefficient is Pearson’s correlation coefficient times the

ratio of the standard deviations of the independent variable divided by that of the depen-

dent variable. This signifies that regression analysis provides additional information when

compared to the Pearson coefficient, namely, the relative distribution spreads of the two
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variables. The OLS coefficient, β̂1, will be used here to analyze the relationship between

the two variables, in addition to the PCC. Equation (5.12) also proves that the sign of

Pearson’s correlation coefficient and that of the OLS coefficient are the same, as σA ≥ 0

and σB ≥ 0. To establish how well the predicted line fits the data, the ratio,

R2 =
V ar(Ŷ )

V ar(Y )
, (5.13)

is used, where R2 measures the fractional variation in the dependent variable given by the

model. The predicted value of Y is Ŷ , and the input value of the treatment is Y .

The so-called t-test, [27] is used here to establish whether the OLS estimator is significantly

different from zero, (i .e., the slope is statistically significant based on the number and

distribution of data points) through the parameter, t,

t =
β̂1

s.e.(β̂1)
(5.14)

where s.e.(β̂1) is the standard error of β̂1.

The above analysis is now used to establish the extent of correlation between the following

pairs of variables, (u, Pc), (ur, ua) and (uWCA,r, uWCA,a) where the right entry is taken

to be the dependent variable and the left entry to be the independent variable. In the

latter two sets it is reasonable to take the repulsive energy term to be the independent

variable as this is consistent with perturbation theories of liquids where the structure of

the liquid is assumed to be dominated by the repulsive part of the potential. For (u, Pc)

there appears to be no clear preference for which of the quantities should be taken to be

the independent variable as they are formally different system measures, and both include

the repulsive and attractive parts of the potential energy (although weighted differently).

The adopted choice is therefore arbitrary.
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5.4 REGRESSION AND CORRELATION

The linear regression and Pearson coefficient as defined in Fig. (5.5) are first explored for

system states generated using the LJ potential for three state points in the low and high

temperature limits, and one in the middle.

Figure 1 shows (a) Pc as a function of u, (b) ua as a function of ur and and (c) uWCA,a as a

function of uWCA,r respectively from left to right. The state point used has a temperature

of 60 and a density of 2.289 in LJ reduced units. The degree of correlation is measured by

the extent to which the data points fall on or near the regression straight line. Figures 2

and 3 give the corresponding plots for the temperature, density pairs of (4.00, 1.229) and

(0.70, 0.847), respectively. These three state points are on the fluid boundary side of the

LJ melting line. The dynamics and state points are generated using the LJ potential.

Tables 1-9 give a further statistical analysis of these nine data sets, with specific conclu-

sions for each case made in the figure caption. A number of noteworthy points emerge

from this analysis. Of the three sets, the (u, Pc) correlations are strongest, and have a

positive slope. The extent of linearity in the correlation between this pair has been used

to determine the extent to which lines on the density-temperature planes of the phase

diagram are isomorphic (i .e., have an underlying structural invariance),[3, 4, 5, 6, 7]. The

ur and ua are also quite strongly linked but with a negative slope, which indicates that

they are anticorrelated. Even at constant temperature, one expects the attractive part

of the potential to change in the opposite direction to a change in the repulsive part, as

it would do exactly in the microcanonical or NVE ensemble. Both of these trends are

evident along the whole of the melting line.

The behaviour of the uWCA,a, uWCA,r pair, in contrast, changes qualitatively along the

melting line. The slope goes from being negative to positive as the temperature (density)

decreases, and is approximately infinite in the region, T ∼ 10. This change in behaviour

has to be associated with the analytic form of the repulsive and attractive parts of the

WCA decomposition of the LJ potential, and the dynamic distribution of near neighbour

molecules. As the (temperature) density decreases the near neighbour particles move fur-

ther apart, and the repulsive part of the potential is weaker. This must surely weaken the

anticorrelation coupling between φWCA,r and φWCA,a energy terms. In fact it becomes

slightly correlated close to the triple point.

The radial distribution function for the three fluid state points generated using the LJ

potential force field are shown in Fig. 4. The lower set of curves uses the pair separation,

r in LJ σ on the abscissa. The top set of radial distribution functions expressed in iso-

morphic distance units, r̃ = ρ1/3r, show excellent isomorphic collapse. The peaks of g(r)

shift to smaller distances with increasing density. In fact, the first peak of all three are to
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varying extents within the truncation distance of φWCA,r i .e., rc = 21/6, which is shown

as a vertical line on the figure. For T = 60 the whole of the first peak is within rc while

only half of it is in this range for T = 0.7. The correlation to anticorrelation transition

must surely by attributable to these variations, or more many-body consequences of these

trends.

The analysis used to generate Figs. 1-3 was made for systems generated by the LJ poten-

tial. Two purely repulsive potentials, which are formed from the repulsive region of the

LJ potential are now considered as origins of the system dynamics. One form, called here,

‘IP12’, is the IP potential with n = 12, i .e., φ(r) = 4ε(σ/r)12, which does not include

any of the attractive part of the LJ potential. The other purely repulsive potential is the

repulsive part of the LJ or WCA interaction, φWCA,r, which does include the short range

region of the attractive part of the LJ potential, up to rc. The potential (or derived force)

used to generate the system of states is referred to as the ‘force field’ here. The results of

these simulations are summarised in Figs. 5-7, and in Table 10.

Figure 5 compares the same three pairs of computed property as in Figs. 1-3, given along

the rows. Each row is a different force field. The bottom row is derived from LJ potential

dynamics. The middle row used the (repulsive) WCA force field, and the top row from the

IP12 potential. The temperature and density of the state point are 0.70 and 0.847 for each

of the nine frames. First, the figure shows that the WCA and IP12 potentials generate

very similar pair-property correlation behaviour to the LJ case. The ur and ua are strongly

anticorrelated more or less equally for the three force fields. The figure also indicates that

the uWCA,r, uWCA,a pair are relatively weakly correlated, especially for IP12, indicated by

the ellipsoidal pattern of symbols on the figure (top right frame). This weak correlation

trend is understandable as the WCA decomposition of the LJ potential was originally

chosen to partition it into a strongly repulsive part and a slowly varying component which

is weakly correlated with the repulsive decomposition part (acting almost as an ‘attractive

background’), for use in perturbation theories of the liquid state, [13, 28, 29, 30]. In the

perturbation theory the attractive part of the WCA potential is treated as a background

term and the structure is governed by the repulsive part of the WCA decomposition.

Figure 6 presents the same set of correlations for a state point in which the temperature

and density are 4.00 and 1.229, repectively. The ur, ua pair are again strongly anticorre-

lated for all force fields. The uWCA,r, uWCA,a pair are even more weakly correlated than in

Fig. 5, for all force fields, as evident by the nearly circular pattern of symbols for all frames

in the rightmost column. Superficially at least it appears that the two potential terms are

statistically independent, which could be made use of in developing perturbation theories

of the liquid state, as these two components appear to be statistically independent over a

certain temperature (density) range along the melting curve. Another noteworthy feature
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is that again the distribution of points for each type of correlation is largely independent

of the dynamics generating force field, along the melting line at least.

Figure 7 presents the corresponding data for a temperature of 60 and density of 2.289. The

three ur and ua are anticorrelated to more or less the same extent as found in the previous

two figures. The three uWCA,r, uWCA,a pair reveal strong anticorrelation this time. This

change in behavior could be explained because the repulsive part of the potential becomes

relatively more important at higher temperatures (density), and larger fluctuations in this

part of the potential energy will take place which will induce oppositely signed fluctuations

in the attractive part of the potential (i .e., the constant temperature system is not too far

from the microcanonical ensemble in this limit). As discussed above, a key issue in this

respect is probably where the first peak in the radial distribution function lies in relation

to the minimum in the radial distribution function.

Table 10 gives a summary of the simulation average property values for the three state

points considered in Figs. 5-7, which are well separated along the melting line. The table

shows that as temperature (density) increases the total LJ potential energy, u, shifts in

the positive direction, especially for simulations carried out with the IP potential using

n = 12 (or ‘IP12’) force field dynamics. The difference in the total energy from LJ and

WCA dynamics is insignificant at T = 60 and not very great for T = 0.7, a result which is

consistent with the aim of using the WCA potential in perturbation theory. The average

potential energy, u, values from the LJ and WCA dynamics are not too different, and

typically within a few percent of each other, while that of the IP12 force field is much more

positive, which becomes more accentuated with increasing temperature along the melting

curve. The PCC for the three pairs of quantities are shown in the last three columns of

the table, which shows that the Pearson coefficient for the Pc and u pair of quantities is

very close to unity for all of the state points considered. Its value increases towards unity

with increasing temperature. Just why the Pearson Coefficient is so close to unity for this

pair of system quantities is not immediately obvious. One might expect there to be a

reasonably strong correlation between u and Pc as the latter has a component of ur in its

definition. In fact, for the Lennard-Jones potential, Pc/ρT = 4ur + 2ua, [31] Indeed, all

static properties of the LJ system can be expressed as a linear combination of the average

repulsive and attractive parts of the potential, apart from some known constants or nu-

merical factors. The strong anticorrelation between ur and ua may also contribute to the

proximity of the PCC to unity, as then the repulsive and attractive terms can be combined

into one effective (less repulsive) quantity. The table shows that the quantity, Rp[ur.ua],

is close to −1 for the three state points. The behaviour in Rp for the pair, uWCA,r with

uWCA,a, is quite different, as noted above. The absolute value is much less than unity and

for all types of force field dynamics; it is sensitive to state point and Rp goes from positive
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to negative in the temperature interval between 4 and 60. At higher temperature there is

evident more anticorrelation between the positive and attractive parts of the potential.

A limitation of linear regression and the Pearson coefficient is that it does not give any

indication of the time or chronological persistence of the correlation between the two quan-

tities along the data set. In fact, any randomly sorted array of a two column table would

give the same scatter plots and PCC values. However consecutive data values in a table

can be correlated with each other, which generally decays to a statistically uncorrelated

state between two data points far enough along the table. This is useful information

which can give further insights into the underlying physics. An extension of the Pearson

correlation concept which gives this additional information is proposed and tested in the

next section.

5.5 Time correlation Pearson Modification

The degree of correlation between the same or two different quantities at times separated

by an interval, t, can be expressed as,

Rp,A,B(t) =
< δA(0)δB(t) >

< δA(0)2 >1/2< δB(0)2 >1/2
. (5.15)

where A and B are again the two system quantities of interest. In Eq. (5.15) the quantity,

δA(t) = A(t) − A and δB(t) = B(t) − B. The function in Eq. (5.15) is an extension

of the Pearson coefficient definition (which is the t = 0 value) to account for temporal

correlations between the two quantities. Such a formula is widely used in economics and

is known as regression with n−lagged explanatory variable [25]. In liquid state physics,

if A = B then this is called an ‘autocorrelation’ function whereas if A 6= B it is referred

to as a ‘cross-correlation or perhaps ‘Pearson’ correlation function in the present context.

The quantity defined in Eq. (5.15) is closely related to the time-correlation function used

to explore the dynamics and calculate transport coefficients of fluids by MD with Green-

Kubo formulae, [32] but in that case the denominator is set to < δA(0)δB(0) > or unity

(respectively) instead. The only significant difference is the normalisation factor used

in the denominator. An informative step in the present context is to express time in

isomorphic units defined by, t̃ = ρ1/3T 1/2t. Along an isomorphic line time dependent

properties scale with time expressed as t̃. Time dependent properties along an isomorph

should collapse onto the same curve if the ordinate quantity is suitably normalised (this is

referred to as isochronal scaling). The time-dependent function, Rp,A,B(t̃) from Eq. (5.15)

expressed in terms of isomorphic time quantifies the time persistence of any correlation
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between A and B over time, t. It gives some information on how long it takes the correlated

values between two variables to become statistically uncorrelated to a strong degree.

The above treatment is another statistical analysis tool which quantifies the relationship

between variables, where an explanatory variable can influence the dependent variable even

with a time lag. These are known as distributed lag models in the time series literature,

and which are formulated as follows,

Yt = β0 + β1Xt−1 + Ut (5.16)

where Yt is the functional value at time t for the input vector, Xt−1 and β1 measures

the effect of the explanatory variable one increment of time in the past to the dependent

variable, ceteris paribus. The residual vector at time t is denoted by Ut. Many lagged

variables t − 1, t − 2, · · · as far back as necessary may need to be included in the set of

explanatory variables to account fully for memory effects. The extent of the time lag can

be chosen by using t−tests for every subsequent addition of a lagged explanatory variable.

The OLS estimation gives the best fit to the data, the statistical significance of which can

be established using the t−test and other statistical measures to prove the data is station-

ary, that is when the mean, variance, autocorrelation of the data are constant within the

data statistics.

Figure 8 shows Rp,A,B(t̃) for the same fluid state points and quantities as given in Table I,

where the LJ force field has been used to generate the dynamics. The three Pearson

cross-correlation functions shown on the figure are, < u(0)Pc(t̃) >, < ur(0)ua(t̃) > and

< ur,WCA(0)ua,WCA(t̃) >. The first two functions decay monotonically to zero from a

positive or negative initial value, and to a very good approximation exhibit isochronal

collapse along the studied melting line. The corresponding WCA quantity has a quite dif-

ferent time dependence even when cast in isomorphic units, which is consistent with the

data in Table I (i .e., the time equal to zero value of this function). The t = 0 value goes

from being positive to negative with increasing temperature, and at a certain temperature

Rp,A,B(0) is zero for each type of dynamics. Simulations carried out at that state point

could therefore be useful in informing the development of perturbation theory descriptions

of the liquid state. There is a long-time tail in these functions, having not achieved zero

by 0.5 isomorphic time units. Figures 9 and 10 show the corresponding Rp(t̃) produced

by WCA and IP12 forcefield dynamics. The correlation functions decay more rapidly to

zero for WCA (by t̃ = 0.4) and especially IP12 (by t̃ = 0.2). Otherwise the features and

trends are qualitatively the same as for LJ dynamics as shown in Fig. 8.
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5.6 CONCLUSIONS

The statistical fluctuation behaviour of pairs of thermodynamic properties are examined

for the Lennard-Jones (LJ) fluid along its melting curve. Plots of the instantaneous values

of the two variables (‘scatter plots’) are used to determine the slope and intercept using

standard linear regression analysis. The Pearson coefficient was also calculated, which

has been used recently to determine the extent to which a line on the phase diagram

is isomorphic (i .e., has an underlying structural invariance) taking the two variables to

be the configurational part of the pressure and the potential energy of the system. The

statistical analysis has been extended here to include that between the repulsive and at-

tractive parts of the LJ potential, and also that of its Weeks-Chandler-Andersen (WCA)

decomposition. At constant temperature, the former are strongly anticorrelated along the

melting line whereas the latter go from being weakly correlated near the triple point to

being moderately anticorrelated in the high temperature (density) limit.

The present analysis approach gives new insights into the relative roles of the attractive

and repulsive parts of the LJ potential in determining its structure and thermodynamic

properties, and could perhaps be used to help develop perturbation theories of the liquid

state.

The statistical theoretical framework found useful in Economics is exploited here, and

an extension of the Pearson coefficient method to determine time dependent correlations

is also proposed, and shown to give new insights into the temporal behaviour of system

property correlations.

The statistical trends are shown to be relatively insensitive to the potential used to gen-

erate the dynamics if it is purely repulsive and constructed from the LJ potential either

as the r−12 inverse power part or the repulsive part of the WCA reconstruction of the LJ

potential.
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5.7 Tables and Figures

Pc Coefficient Std. Error t p > |t| 95% Conf. Interval
β1 0.9321 0.03682 25.31 0.000 0.8595 - 1.004718
β0 0.01063 0.01684 0.63 0.529 -0.02257 - 0.04383

R2 = 0.7639, Np = 200

Table 5.1: Linear single variable OLS regression of the u and Pc data for the state point
values of T, ρ equal to 0.7, 0.8468, respectively. The top left hand entry is the independent
variable, which is Pc for this table. Np is the number of data point pairs. The above

regression produces, β̂0 = 0.01063 and β̂1 = 0.9321. The p value on β̂0 is greater than
0.05, hence β̂0 is not a significant predictor of the real y-intercept. The p value on β̂1 does
not exceed 0.05, and therefore Pc is a significant predictor of u, as Pc increases by one unit
u increases by 0.93 units. The value of R2 tells us that variation in Pc explains 76.39%
of the variation in u. The t−test value is denoted by ‘t’ in the table heading. ‘Conf.
Interval’ is the confidence interval. The statistical analysis carried out for this table and
tables II-IX was carried out using the statistical analysis software package, c© STATA [33].
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ua Coefficient Std. Error t p > |t| 95% Conf. Interval

β̂1 -0.9174 0.02348 -39.08 0.000 -0.9636 - 0.8711

β̂0 0.9579 0.01334 71.79 0.000 0.9316 - 0.9843

R2 = 0.8852, Np = 200

Table 5.2: Linear single variable OLS regression of the ur and ua data for the state point,
T, ρ equal to 0.7, 0.8468. Both β̂0 and β̂1 are significant predictors of the real intercept
and slope respectively. As ua increases by one unit ur decreases by 0.92 units and when
the value of ua is equal to zero ur equals 0.96. The variation in ua explains 88.52% of the
variation in ur.
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uWCA,a Coefficient Std. Error t p > |t| 95% Conf. Interval

β̂1 0.5565 0.05852 9.51 0.000 0.4410 - 0.6719

β̂0 0.1188 0.03020 3.93 0.000 0.05927 - 0.17837

R2 = 0.3135, Np = 200

Table 5.3: Linear single variable OLS regression of the uWCA,r and uWCA,a data for T, ρ

equal to 0.7, 0.8468. Both β̂0 and β̂1 are significant predictors of the real intercept and
slope respectively. As uWCA,a increases by one unit uWCA,r increases by 0.56 units and
when the value of uWCA,a equals zero, uWCA,r is equal to 0.12. The variation in uWCA,a

explains 31.35% of the variation in uWCA,r.
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Pc Coefficient Std. Error t p > |t| 95% Conf. Interval

β̂1 1.001 0.00483 207.3 0.000 0.9917 - 1.011

β̂0 0.0004956 0.00246 0.20 0.840 -0.004354 - 0.005345

R2 = 0.9954, Np = 200

Table 5.4: Linear single variable OLS regression of the u and Pc data for T, ρ equal to
4.0, 1.229. The p value on β̂0 is greater than 0.05 hence β̂0 is not a significant predictor
of the real y-intercept. The p value on β̂1 does not exeed 0.05, and therefore Pc is a
significant predictor of u, as when Pc increases by one unit, u increases by 1.0 units. The
value of R2 informs us that variation in Pc contributes 99.54% of the variation in u.
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ua Coefficient Std. Error t p > |t| 95% Conf. Interval

β̂1 -0.8965 0.02223 -40.33 0.000 -0.9403 - 0.8526

β̂0 0.9448 0.01155 81.77 0.000 0.9220 - 0.9676

R2 = 0.8915, Np = 200

Table 5.5: Linear single variable OLS regression of the ur and ua data for T, ρ equal
to 4.0, 1.229. Both β̂0 and β̂1 are significant predictors of the real intercept and slope
respectively. As ua increases by one unit ur decreases by 0.90 units and when the value
of ua equals zero ur equals 0.94. Variation in ua explains 89.15% variation in ur.
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uWCA,a Coefficient Std. Error t P > |t| 95% Conf. Interval

β̂1 0.2885 0.06280 4.59 0.000 0.1647 - 0.4124

β̂0 0.3402 0.03407 9.99 0.000 0.2730 - 0.4074

R2 = 0.0963, Np = 200

Table 5.6: Linear single variable OLS regression of the uWCA,r and uWCA,a data for T, ρ

equal to 4.0, 1.229. Both β̂0 and β̂1 are significant predictors of the real intercept and
slope respectively. As uWCA,a increases by one unit, uWCA,r increases by 0.29 units and
when the value of uWCA,a equals zero uWCA,r equals 0.34. Variation in uWCA,a explains
9.63% of the variation in uWCA,r.
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Pc Coefficient Std. Error t p > |t| 95% Conf. Interval

β̂1 0.9992 0.0011964 835.19 0.000 0.9968 - 1.002

β̂0 -9.72× 10−6 0.0005778 -0.02 0.987 -0.001149 - 0.001130

R2 = 0.9997, Np = 200

Table 5.7: Linear single variable OLS regression of the u and Pc data for T, ρ equal to
60.0, 2.289. The p value on β̂0 is greater than 0.05, hence β̂0 is not a significant predictor
of the real y-intercept. The p value on β̂1 does not exeed 0.05, therefore Pc is a significant
predictor of u, as Pc increases by one unit u also increases by 1.0 units. The value of R2

indicates that the variation in Pc explains 99.97% of variation in u.
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ua Coefficient Std. Error t p > |t| 95% Conf. Interval

β̂1 -0.8013 0.03259 -24.59 0.000 -0.8655 - 0.7370

β̂0 0.8856 0.01782 49.70 0.000 0.8504 - 0.9207

R2 = 0.7533, Np = 200

Table 5.8: Linear single variable OLS regression of the ur and ua data for T, ρ equal
to 60.0, 2.289. Both β̂0 and β̂1 are significant predictors of the real intercept and slope,
respectively. As ua increases by one unit, ur decreases by 0.80 units. When the value of
ua equals zero ur equals 0.88. Variation in ua explains 75.33% variation in ur.
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uWCA,a Coefficient Std. Error t p > |t| 95% Conf. Interval

β̂1 -0.5398 0.06052 -8.92 0.000 -0.6591 - 0.4204

β̂0 0.7041 0.02827 24.91 0.000 0.64839 - 0.7599

R2 = 0.2866, Np = 200

Table 5.9: Linear single variable OLS regression of the uWCA,r and uWCA,a data for T, ρ

equal to 60.0, 2.289. Both β̂0 and β̂1 are significant predictors of the real intercept and
slope respectively. As uWCA,a increases by one unit uWCA,r, decreases by 0.54 units.
When the value of uWCA,a equals zero uWCA,r equals 0.70. Variation in uWCA,a explains
28.66% of the variation in uWCA,r.
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Dynamics T ρ ur ua u uWCA,r uWCA,a Pcu urua uWCA,ruWCA,a

IP12 0.7 0.847 11.67 -14.03 -2.35 4.11 -6.46 0.995 -0.930 0.425
LJ 0.7 0.847 5.80 -11.94 -6.13 0.601 -6.74 0.959 -0.944 0.537

WCA 0.7 0.847 6.10 -12.06 -5.96 0.712 -6.67 0.972 -0.949 0.603

IP12 4 1.230 58.43 -30.48 27.94 37.27 -9.33 0.999 -0.926 0.151
LJ 4 1.230 24.27 -24.62 -0.349 9.12 -9.46 0.998 -0.951 0.335

WCA 4 1.230 24.39 -24.66 -0.265 9.19 -9.46 0.998 -0.952 0.344

IP12 60 2.289 781.7 -108.67 673.01 690.53 -17.53 1.000 -0.920 -0.298
LJ 60 2.289 293.6 -85.39 208.17 225.43 -17.25 1.000 -0.951 -0.571

WCA 60 2.289 293.4 -85.38 208.02 225.27 -17.25 1.000 -0.952 -0.580

Table 5.10: Thermodynamic averages and the Pearson coefficient, Rp, for three fluid state
points the configurations of which are generated according to three force fields specified
in the first column. Note that u = ur + ua = uWCA,r + uWCA,a. The acronym, ‘IP12’
indicates dynamics generated using the IP potential with n = 12. The acronym ‘WCA’
indicates that the MD dynamics were produced using the repulsive part of the LJ potential,
i .e., φWCA,r. The Rp values for three quantity correlations are given in the last three
columns.
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Figure 5.1: The correlation from left to right (a) Pc as a function of u (b) ua as a function of
ur and (c) uWCA,a as a function of uWCA,r where the quantities plotted are the differences
from their means. The state point is T = 60.00 and ρ = 2.289, using the LJ potential to
generate the dynamics, which is high up on the melting curve. The data in each frame is
normalised to fall within 0−1 for the abscissa and ordinate quantities. The solid lines are
least square fits to the data.
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Figure 5.2: As for Fig. 1 except that the state point is T = 4.00 and ρ = 1.229 is used.
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Figure 5.3: As for Fig. 1 except that the state point is T = 0.700 and ρ = 0.847 is used.
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Figure 5.4: The radial distribution function, g(r) expressed in LJ distance units, and in
isomorphic distance units, r̃ = ρ1/3r for the three state points along the fluid side of the
coexistence curve. The upper set curves, shifted upwards by 3 is g(r̃) and the lower set
are g(r). The LJ potential is also shown. The vertical line corresponding to the position
of the minimum in φLJ(r), which is equal to 21/6, is shown.
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Figure 5.5: The correlation between (from left to right columns, respectively), (a) LJ
u and Pc, (b) LJ ur and ua and (c) uWCA,r and uWCA,a where the quantities are the
differences from their means. The rows indicate from bottom to top, (a) LJ, (b) WCA
and (c) IP12 force field dynamics. The near-triple point state point of T = 0.70 and
ρ = 0.847 is considered. The data in each frame is normalised to fall within 0− 1 for the
abscissa and ordinate quantities.
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Figure 5.6: As for Fig. 5, except the state point T = 4.00 and ρ = 1.229 is considered.
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Figure 5.7: As for Fig. 5, except the state point T = 60.0 and ρ = 2.289 is considered.
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Figure 5.8: The function, Rp(t̃) defined in Eq. (5.15) is plotted for three cross-
correlations, < u(0)Pc(t̃) > and < ur(0)ua(t̃) > using the LJ potential terms, and
< ur,WCA(0)ua,WCA(t̃) >. The LJ potential was used in each case to calculate the forces
used in the equations of motion. For each quantity the difference from the mean is used.
Data for the fluid phase ML state points, [60.00, 2.289], [4.00, 1.229] and [0.70, 0.847], are
considered, and which are in the same order from bottom to top on the figure in the WCA
case.
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Figure 5.9: As for Fig. 8 except that WCA potential was used in each case to generate
the dynamics.
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Figure 5.10: As for Fig. 8 except that IP potential with n = 12 (‘IP12’) was used for the
dynamics.

125


