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Abstract 

 

The Niger Delta is a classic example of a passive margin delta that has 

gravitationally deformed above an overpressured shale decollement.  The 

outboard Niger Delta clastic wedge, including the Akata Formation 

overpressured shale decollement, is differentially thickened across relict 

oceanic basement steps formed at the Chain and Charcot fracture zones.  In 

this study, five analogue models were applied to investigate the effects of a 

*Manuscript_revised
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differentially thickened overpressured shale decollement across relict stepped 

basement on Niger Delta gravity-driven deformation.   Gravity-driven delta 

deformation was simulated by allowing a lobate, layered sandpack to deform 

by gravity above a ductile polymer.  A first series of experiments had a 

featureless, horizontal basement whereas a second series had differentially 

thickened polymer above Niger Delta-like basement steps.  Two syn-

kinematic sedimentation patterns were also tested.  Surface strains were 

analysed using digital image correlation and key models were reconstructed 

in 3D.  All five model deltas spread radially outward and formed arcuate delta 

top grabens and arcuate delta toe folds.  The arcuate structures were cut by 

dip-oriented radial grabens and delta toe oblique extensional tear faults.  The 

basement steps models formed dual, divergent spreading directions that had 

perturbed updip delta top growth faults.  Similarities between the analogue 

model structures and the Niger Delta strongly suggest that the lobate Niger 

Delta top has spread radially outward.  The basement step models indicate 

the potential for partitioned Niger Delta gravity spreading across the Chain 

and Charcot fracture zones basement steps due to a thicker or more highly 

overpressured Akata Fm. shale detachment.  Faster gravity spreading north 

of the Charcot fracture zone has potentially contributed to the Niger Delta toe 

‘dual lobe’ geometry and influenced Niger Delta top growth fault patterns, and 

implies that the Niger Delta western lobe toe thrusts have been very active. 
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1. Introduction 

 

The Niger Delta has prolific hydrocarbon reserves and is a well-documented 

example of gravity-driven deformation at a passive margin delta above an 

overpressured shale detachment (Fig. 1) (Doust and Omatsola, 1990; Haack 

et al, 2000; Corredor et al., 2005; Cobbold et al., 2009).  The Niger Delta 

clastic wedge is up to 12 km thick and has a concave-seaward, lobate profile 

in plan view (Fig. 1b) (Cobbold et al., 2009).  The main deltaic sedimentation 

pulse began in the Eocene and the delta front has prograded outward 

approximately 300 km to its present-day position (Evamy et al., 1978).  

Gravity-driven deformation is characterized by delta top extensional faults and 

delta toe imbricate fold-thrusts that detach within the Akata Formation, a 

prodelta marine shale that is typically overpressured (Figs. 1c & d).  

Deformation began in the Eocene and continues to the present-day (Doust 

and Omatsola, 1990; Cobbold et al., 2009). 

 

The outboard Niger Delta has gravitationally deformed above stepped oceanic 

basement formed by the Chain and Charcot fracture zones (Figs. 1a & b).  

The fracture zones were transforms during mid-Atlantic opening in the Aptian 

and have been inactive since the Santonian (Lehner and de Ruiter, 1977; 

Briggs et al., 2009).  Geodynamic models show that fossil transforms 

juxtapose oceanic lithosphere of different ages that thermally subside at 

different rates, producing differential sediment thickening across the transform 

(Sibuet and Mascle, 1978).  This appears to be true at the Niger Delta, where 

regional isopach maps show differential thickening of the Niger Delta clastic 
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wedge across the fossil fracture zones (Figs. 1a & b) (.cf MacGregor et al., 

2003; Cobbold et et al., 2009).  This has implications for the Akata Formation 

overpressured shale decollement, which is seen in seismic profiles to thicken 

and onlap across the fracture zones (see Figure 3 of Morgan, 2004).  

Thickening of the overpressured shale decollement across the stepped 

basement may have affected Niger Delta gravity-driven deformation but has 

not been fully evaluated. 

 

3D seismic studies have also beautifully illustrated the localised high 

basement relief along the fracture zones, including 1.4 km-high buried 

volcanoes near the Chain Fracture Zone landward termination (Davies et al., 

2005).  Other studies have shown an elongate, ~7 km-high, buried basement 

ridge across the Charcot Fracture Zone, outboard of the Niger Delta 

deformation front (Davies et al., 2005; Briggs et al., 2009).  It is quite probable 

that these local basement structures have likely played some role in 

buttressing or localising strains at the Niger Delta toe thrust belt.  For 

example, tear faults and segmented thrusts have formed above the Chain 

Fracture Zone volcanoes (Morgan, 2003; 2004).  Many have also noted that 

the prominent separation between the Niger delta toe thrust lobes above the 

Charcot Fracture Zone (Fig. 1c) (e.g. Cobbold et al., 2009).  

 

In this study dry sand and silicone polymer analogue models were applied to 

investigate the effects of relict oceanic fracture zone stepped basement on 

Niger Delta gravity-driven deformation, focusing on the potential effects of a 

differentially thickened overpressured shale decollement.  Sand-silicone 
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analogue models are a well-documented technique for modelling gravity-

driven delta systems (e.g. Cobbold and Szatmari, 1991).  The models allow 

deformation to be driven simply by the gravity potential of the initial delta load 

and applied syn-kinematic sedimentation patterns (e.g. Cobbold and 

Szatmari, 1991; Ge et al., 1997; McClay et al., 1998; Vendeville et al., 2005).  

Basement topographies and distal buttresses have been tested as boundary 

parameters (e.g. Loncke et al., 2010; Sellier et al., 2013).  Published studies 

using this modelling technique have reproduced many typical gravity-driven 

delta strain patterns including linked proximal extensional and distal 

compressional systems and spoke-like, radial extensional grabens (e.g. 

Cobbold and Szatmari, 1991; McClay et al., 1998; Gaullier and Vendeville, 

2005).  Other published studies have contributed important insights to gravity-

driven deformation across specific basement features at the offshore Nile fan 

and the Florence Rise, offshore Cyprus (Loncke et al., 2010; Sellier et al., 

2013).   

 

Here we present five 3D sand and silicone polymer analogue models that 

tested two parameters on gravity-driven deformation of a model lobate delta: 

(1) basement steps – a featureless, horizontal basement; and a Niger Delta-

like stepped basement that partitioned a differentially thickened pre-

deformation basal polymer; and, (2) syn-kinematic sedimentation styles – 

aggradational and progradational (Table 1 & Figs. 2, 3 & 4).  The two syn-

kinematic sedimentation patterns allowed the basement configurations to be 

tested against a range of differential loading patterns. 
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Deformation was closely monitored using digital image correlation (DIC) (e.g. 

Adam et al., 2005).  Key models were digitally reconstructed to visualize 

internal geometries in 3D.  Fault patterns were interpreted from plan view and 

cross-sectional photographs.  In this study we emphasize the regional-scale 

structural zonations in the models – and limit the analysis of individual 

structures – as the sand-silicone analogue models have well-known 

limitations that do not permit a full range of structural styles to be reproduced 

when used as a proxy for overpressured shales.  The limited range of 

structural styles is particularly evident at the model delta toe, where polymer-

cored detachment fold styles are typically produced (e.g. McClay et al., 1998).  

These structural styles more closely resemble other deltas above salt, or 

other deltas with overpressured shale substrates such as the offshore western 

Gulf of Mexico (e.g. Rowan et al., 2004; Alzaga-Ruiz et al., 2009).  Based on 

the model results, we show in this paper the following potential effects of 

differentially thickened overpressured shales across the Chain and Charcot 

oceanic basement fracture zones: (1) partitioning of radial outward gravity 

spreading into two main divergent directions at the Niger delta toe, providing a 

potential contributing factor for the dual lobe geometry, (2) localised oblique 

extensional strains above the basement steps, and (3) perturbed updip Niger 

delta top growth faults. 

 

2. Experimental method 

 

In all models a basal SGM36 silicone polymer layer simulated an 

overpressured shale substrate (Fig. 2a).  A 4-6 mm uniform layer of dry quartz 
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sand was mechanically sieved above the basal polymer layer to form a pre-

kinematic sequence (Fig. 2c).  A 20 mm-thick delta lobe of layered dry quartz 

sand was mechanically sieved to form a pre-kinematic differential load (Fig. 

2a).  Pre-kinematic sand layers were coloured blue or green, white, and black 

(Fig. 2c).  The lobate delta load was allowed to passively deform by gravity 

above the basal polymer layer over a period of up to 14.5 hours (Table 1). 

 

2.1 Syn-kinematic sedimentation 

 

During deformation syn-kinematic sedimentation was infilled at regular time 

intervals (see Fig. 2b, Fig 4 & Table 1).  The syn-kinematic sand layers 

alternated between red, white, and black colours (Fig. 2c).  The half-hour to 

hourly frequency of the syn-kinematic sedimentation events was sufficient to 

minimise emergent polymer structures (e.g. diapirs, overhangs, and nappes) 

that are more characteristic of gravity-driven deltas above salt.    

 

Models 1 & 4 had aggradational syn-kinematic sedimentation on the delta top 

only, whereas Models 2, 3 & 5 had progradational syn-kinematic 

sedimentation on both the delta top and delta toe (Figure 4 & Table 1).  Delta 

top sedimentation was performed by infilling the delta top grabens and 

mechanically sieving a 3-4 mm-thick layer of dry quartz sand layer on the 

delta top.  Delta top syn-kinematic sedimentation was maintained at a 

constant position relative to delta front.  This resulted in a slow incremental 

advance of the delta top syn-kinematic sedimentation per timestep.  Delta toe 

sedimentation was performed by hand sieving a thin 1-3 mm layer of dry 
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quartz sand above and between the fold belt synclines that terminated 10 cm 

ahead of the leading fold-thrust.  Models with progradational syn-kinematic 

sedimentation displayed a rapid outward deformation front advance, and 

hence Models 3 & 5 were designed with a double-length basal polymer layer 

to reduce distal polymer layer pinchout boundary effects (Fig. 4). 

 

2.2 Basement steps 

 

The Series 1 models had a featureless, horizontal basement overlain by a 1 

cm-thick polymer layer (Fig. 3a & Table 1).  The Series 2 models had 

basement steps that were oriented to simulate the Niger Delta oceanic 

fracture zones relative to the delta top (Fig. 3 & Table 1).  The basement 

steps were infilled by a flat-topped polymer layer that partitioned the basal 

polymer thicknesses along-strike (Fig. 3).  The thickest basal polymer was 

located within basement Domains B & C, consistent with regional Niger Delta 

sediment thickness (Fig. 3c) and 2D seismic profiles that show thickened 

Akata Formation overpressured shales between the Chain and Charcot 

fracture zones (Morgan, 2004).  The Series 2 basement configuration did not 

attempt to model other localised oceanic basement ridges and smaller-scale 

grabens documented by seismic studies (e.g. Davies et al., 2005; Briggs et 

al., 2009), but their potential effects are later discussed in Section 4.   

 

2.3 Materials and scaling 
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Dry quartz sand has a Navier-Coulomb rheology and has been used 

extensively to simulate the brittle deformation of sedimentary rocks in the 

upper 10 km of the Earth’s crust (e.g. Malavieille, 1984; McClay, 1990).  The 

dry quartz sand used in the experiments had a density of 1.42 g/cm3 and a 

cohesion of 95 to 105 Pa.  Ring shear testing of the sand indicated the 

following angles of internal friction: an initial peak angle of 33.8°, a stable 

static angle of 33.5°, and a stable dynamic angle of 31.3°.   

 

SGM36 is a trade name for polydimethylsiloxane (PDMS), a Newtonian 

viscous material manufactured by Dow Corning Ltd.  It has a density of 965 kg 

m-3 and an effective viscosity of 19-24 kPa s at a temperature of 25°C 

(Weijermars, 1986).  The use of SGM36 in analogue modelling is well 

documented (cf. Weijermars, 1986).  SGM36 has been widely used to 

simulate ductile substrates such as salt or overpressured shales in analogue 

experiments (e.g. Ge et al., 1997; McClay et al., 1998; McClay et al., 2000; 

McClay et al., 2003).  Here it is noted that shales are plastic and deform only 

after deviatoric stresses overcome the shale strength (cf. Rowan et al. 2004; 

Morency et al., 2007), whereas the viscous SGM polymer will instantly deform 

after loading.  For our experiments, overpressured shale plastic behaviour 

was approximated by instantaneously loading the viscous polymer with the 

initial differential load (i.e. the initial delta lobe in Fig. 2a).   

 

The scaling factor between model and prototype was 10-5 such that 1 cm in 

the models was approximately 1 km of brittle, sedimentary rock in the upper 

crust (cf. McClay, 1990).  The time scaling factor of the experiments was 10-9 
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to 10-10.  This timescale was appropriate to simulate instantaneous loading by 

very rapid sedimentary progradation (Vendeville et al., 1987). 

 

2.4 Basal polymer boundaries 

 

The edge of shale overpressures is a parameter that has potential influence 

on gravity-driven deformation but is not well-constrained at the Niger Delta.  

Studies of overpressured shales suggest that the distal overpressure 

boundary will move dynamically outward ahead of the deformation front (e.g. 

Cobbold et al., 2009; Ings and Beaumont, 2010), which implies that delta toe 

advance is usually not limited by the edge of overpressure.  In the 

experiments presented here, overpressured shales were simulated by either a 

single-length (i.e. 80 x 100 cm) or a double-length (158 x 100 cm) static basal 

polymer layer (Fig. 4).  The static basal polymer layer was designed to be 

long enough to allow forward delta advance with minimal edge effects.  

However, the static dimensions of the simplified overpressured shale proxy 

(i.e. the basal polymer) coupled with delta progradation inevitably produced 

edge effects.  These edge effects are carefully described in the model results 

and included a linear extensional fault across the proximal polymer edge and 

a linear fold belt across the distal polymer edge.  

 

2.5 Monitoring and analysis 

 

During the experiments the top model surface was photographed at 1 minute 

intervals.  In Models 2 to 5 a laser scanner also recorded the surface 
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topography at hourly intervals.  At the end of the experiments the completed 

models were impregnated with a gelling agent, serially sectioned at 4 mm 

increments and photographed.  Photographs from the serial sections were 

used to reconstruct the internal geometries of the models using Paradigm 

VoxelGeo seismic interpretation software (e.g. Wu et al., 2009; Frankowicz et 

al., 2009).  Digital image correlation (DIC) and strain analysis of the top 

surface photographs was conducted using LaVision 2D optical deformation 

and surface flow monitoring software (cf. Adam et al., 2005). 

 

3. Experimental Results 

 

All analogue model illustrations show the progradation direction of the model 

deltas from left to right.  The left-hand side of the model with the delta top is 

herein referred to as ‘landward’ and the right-hand side is ‘seaward’.  Plan 

view photographs are shown for Model 1, whereas photographs for 

subsequent experiments are shown in the supplemental material (Figs. S1 to 

S6). 

 

3.1 Series 1 Experiments 

 

Model 1 – Aggradational syn-kinematic sedimentation, featureless basement 

 

At 2 hours of differential loading, the delta top formed arcuate grabens near 

the shelf-slope break (Figs. 5a & b).  Arcuate, segmented folds were formed 

at the delta toe (Figs. 5a & b).  A linear graben formed above the left-hand 
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basal polymer edge due to its boundary effect (Fig. 5b).  DIC analyses show a 

uniform radial outward spreading pattern and peak spreading velocities at the 

delta slope (Fig. 6a).  Both the delta top extensional strains and delta toe 

compressional strains displayed an arcuate, linear pattern. A translational 

zone formed at the delta slope that had little to no strains and high horizontal 

displacements (Figs. 6d & g). 

 

As Model 1 evolved, new delta top regional and counter-regional faults 

propagated seaward of older faults that advanced the delta top grabens 

seaward (Fig. 5d).  Dip-oriented, radial grabens initiated at the shelf-slope 

break (Figs. 5c & d).  The radial graben extensional faults propagated up- and 

down-slope.  T-shaped grabens were formed at the shelf-slope break by the 

near-orthogonal linkage of delta top grabens and radial graben (Figs. 5c & d).  

At the toe-of-slope a pronounced polymer ridge formed that had minor 

emergent polymer (Fig. 5f).  The delta toe fold belt propagated seaward and 

had a general forward-breaking sequence (Figs. 5c & d).  A fold belt initiated 

at the right-hand polymer pinchout due to its boundary effect and broke 

backwards (i.e. from the pinchout back towards the delta toe) (Fig. 5d).  DIC 

analyses showed a continued radial outward spreading pattern (Figs. 6b & c).  

The slope translational zone became more diffuse and was cut by the radial 

extensional grabens (Figs. 6f & i).  The delta toe compressional strains were 

arcuate but segmented along-strike (Figs. 6e & f). 

 

Figure 7 shows the final delta morphology and interpreted fault systems.  The 

main extensional systems included: (1) an arcuate delta top grabens sub-
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parallel to the shelf-slope break, and (2) spoke-like radial grabens at the delta 

slope p (Fig. 7a).  The delta toe formed an arcuate fold belt that showed clear 

along-strike segmentation (Fig. 7a). 

 

In cross-section, the Model 1 delta top was formed by regional and counter-

regional growth fault arrays that separated partially grounded rafts (Figs. 7b-f).  

Growth fault footwalls had reactive polymer ‘roller’ geometries (Figs. 7b-f).  An 

expulsion rollover formed at the toe-of-slope, seaward of the initial pre-

kinematic instantaneous load, and was recorded by a polymer bulge and 

thickened syn-kinematic layers (Figs. 7b-f).  The boundary effect growth fault 

formed across the left-hand polymer limit was regional-dipping and long-lived 

(Figs. 7b-f).  The delta toe fold belt consisted of tight, isoclinal to overturned, 

polymer-cored detachment folds  (Figs. 7b-f).    

 

The 3D reconstruction of Model 1 permitted visualisation of the final basal 

polymer geometries, final model top surface, and interpreted fault 

architectures (Fig. 8).  In particular, the final basal ductile polymer layer 

geometries show the arcuate and segmented nature of the delta top 

extensional and delta toe contractional structures (Fig. 8a).  

 

Models 2 & 3  – Progradational syn-kinematic sedimentation, featureless 

basement 

 

Models 2 & 3 had progradational syn-kinematic sedimentation (ie. on both the 

delta top and delta toe) and differed only by their basal polymer layer 
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dimensions (Table 1 & Figure 4).  During the experiments, rapid delta toe 

advance was eventually buttressed by the distal polymer boundary (i.e. edge 

of overpressure) (e.g. Fig. 9).  Here Model 3 is presented in detail because it 

had a double-length polymer layer that allowed further delta toe advance.  

The full results of Model 2 are shown in the supplemental material (Figs. S1 to 

S3) and are summarised relative to Model 3 later in this section.  

 

Model 3 initially formed arcuate plan view delta top grabens and delta toe 

folds similar to Model 1 (Fig. 9a).  The delta load spread radially outward and 

formed a narrow delta slope translational zone similar to Model 1 (Figs. 9d & 

j).   

 

As Model 3 evolved, the delta top counter-regional growth faults became 

dominant, showing higher displacements relative to the regional growth faults 

(Figs. 9b & c).  The delta slope and inner delta toe were cut by oblique 

extensional tear faults (Figs. 9c & i).  The tear faults formed within the 

translational zone and accommodated differential radial spreading (Figs. 4k & 

l).  The delta toe fold belt advanced rapidly and had very active, segmented 

frontal folds (Figs. 9c & i).  A second boundary effect fold belt formed above 

the right-hand polymer that had closely-spaced, linear folds (Fig. 9c).  DIC 

analyses showed a general radial spreading pattern and rapid broadening of 

the translational zone (Fig. 9).  Model 2 had a similar initial evolution to Model 

3 but was clearly buttressed by the distal polymer pinchout after 8 hours of 

deformation (Figs. S1 to S3).  The Model 2 delta toe fold belt formed a high 
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relief fold across the distal polymer edge and an extensive delta toe tear fault 

array (Figs. S1 to S3).   

 

The final Model 3 delta top had similarities to Model 1 but had dominant 

counter-regional growth faults (Figs. 10a, b to f).  The Model 3 delta toe fold 

belt was formed by buried and widely-spaced, forward-vergent folds above a 

broad swell of inflated polymer (Figs. 10b to f).   

 

3.2 Series 2 Experiments 

 

Model 4  – Aggradational syn-kinematic sedimentation and basement steps 

 

Model 4 had the same initial parameters as Model 1 but was underlain by 

basement steps (Table 1 & Fig. 3).  During the experiment, the delta top 

aggradational syn-kinematic sedimentation also included parts of the delta 

slope to maintain the prescribed lobate syn-kinematic sedimentation pattern.  

 

At the initial stages arcuate delta top grabens and delta toe folds formed that 

were segmented across the basement steps (Fig. 11a).  The delta toe fold 

belt formed a slight salient across Domains B & C, which were underlain by 

thicker basal polymer (Figs. 11a & g).  Similar to other models a boundary 

effect linear graben initiated above the inboard basement step (Fig. 11a).  DIC 

analyses showed subradial outward spreading at Domain A (Fig. 11d). In 

contrast at Domains B & C had higher spreading velocities and spreading 

directions were aligned sub-parallel to the basement steps (Fig. 11d).  
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As Model 4 evolved, the delta top grabens advanced by initiating new delta 

top extensional faults seaward of older faults similar to Model 1 (Figs. 11b & 

c).  Extensional grabens initated at the delta slope above older, buried delta 

toe fold-thrusts (e.g. Figs. 11b & c).  These slope grabens were conspicuous 

by their narrow widths and had similar spacings to the delta toe folds (e.g. 

Figs. 11b & c).  The sub-arcuate delta toe fold belt continued to advance 

seaward (Fig. 11b).  A second fold belt that had linear folds initiated at the 

right-hand polymer pinchout due to its boundary effect (Fig. 11b).  Oblique 

extensional tear faults formed across the basement steps (Figs. 11b & k).  

The tear faults showed extensional strains and accommodated divergent 

spreading across the basement steps (e.g. Fig. 11e).  Peak horizontal 

displacements were centred at Domain B and seaward of the inboard 

basement step (Fig. 11k).   

 

The final laser scan and 3D basal polymer reconstruction revealed subarcuate 

delta top grabens and delta toe folds (Figs. 12a & 13).  These structures were 

segmented across the basement steps by oblique extensional tear faults that 

were cored by a polymer ridge (Figs. 12a & 13).  In cross-section, the delta 

top was deformed by regional and counter-regional growth faults and the delta 

toe formed polymer-cored detachment fold trains similar to Model 1 (Figs. 12b 

to e).  Growth fault patterns were perturbed near the inboard basement step 

(Fig. 12a).  Here expulsion of the thicker initial basal polymer produced a 

large rollover and outboard polymer bulge (Fig. 12d).  
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Model 5  – Progradational syn-kinematic sedimentation and basement steps, 

and double-length polymer layer 

 

Model 5 initially formed segmented delta top grabens and a subarcuate delta 

toe fold belt similar to Model 4 (Fig. 14a).  A tear fault formed across the 

Domain B & C basement step (Fig. 14a).  Spreading directions were clearly 

partitioned across the Domain A & B basement step (Fig. 14d).  Peak 

spreading velocities occurred at the delta top and slope across the Domain B 

& C basement steps (Figs. 14d & j).   

 

As Model 5 evolved the delta top grabens stepped forward and counter-

regional faults became dominant (Figs. 14b & c).  This showed some 

similarities to Model 3, which also had progradational syn-kinematic 

sedimentation (Fig. 9).  The tear faults formed across the basement steps 

propagated seaward (Figs. 14b & c).  The delta toe fold belt advanced rapidly 

and was segmented across the basement steps (Figs. 14b & c).  DIC 

analyses show continued dual, divergent outward spreading directions that 

were partitioned across the central basement step (Figs. 14e & f).  

 

The Model 5 final deformed state had subarcuate delta top grabens and delta 

toe folds that were highly segmented (Fig. 15a).  Oblique extensional tear 

faults were formed across the basement steps (Fig. 15a).  Delta top and slope 

fault patterns were perturbed near the inboard basement step (Fig. 15a).  The 

final Model 5 cross-section geometries showed similarities to Model 3, 

including dominant counter-regional growth faults relative to the regional 
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growth faults and buried, low-amplitude forward and backward-vergent delta 

toe fold-thrusts above a broad polymer swell (e.g. Figs. 15b to f).  Near the 

inboard basement step, expulsion of the thicker initial basal polymer produced 

a large expulsion rollover and outboard polymer bulge (Fig. 15e).   

 

4. Application to the Niger Delta 

 

4.1 Evidence for radial spreading 

 

Representation deformation styles from the four main models in this study are 

compared in Figure 16.  As first shown by previous studies (e.g. Cobbold and 

Szatmari, 1991; Gaullier and Vendeville, 2005; Loncke et al., 2010; Sellier et 

al., 2013) radial outward spreading in our models produced first-order 

concentric and radial strains (Fig. 16).  In our models these strain patterns 

formed regardless of syn-kinematic sedimentation patterns or basement 

configurations (Fig. 16).  Similar to previous studies, concentric strains in our 

models were characterised by an arcuate delta top grabens and an arcuate 

delta toe fold belt (e.g. Fig. 16e).  Radial strains included segmented delta top 

graben, delta slope radial grabens, delta toe tear faults and segmented delta 

toe fold-thrusts (e.g. Fig. 16e).  As first shown by Cobbold and Szatmari 

(1991) and Gaullier and Vendeville (2005), radial and concentric strains are 

characteristic of radial spreading.  They are geometric features necessitated 

by the progressive increase in delta lobe radius and lobe perimeter length 

during radial outward spreading. 
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When compared to the Niger Delta, similarities in radial and concentric strain 

zonations relative to delta morphology between the models and natural 

prototype provide new evidence for radial spreading at the Niger Delta.  In 

particular, both model and prototype have formed segmented counter-regional 

growth faults at the shelf break, delta slope radial grabens, delta toe tear 

faults, and segmented delta toe fold-thrusts (e.g. Figs. 1c & Fig 16).  Our 

Model 1 produced distinct plan view T-shaped grabens at the shelf-slope 

break from the linkage of delta top grabens to radial grabens (Fig. 7a).  These 

structures are consistent with previous analogue models (e.g. Gaullier and 

Vendeville, 2005) and are highly reminiscent of T-shaped grabens at the 

Niger Delta shelf-slope break (e.g. Rouby et al., 2011).  

 

One difference between our models and the Niger Delta prototype is that the 

basement underlying the inboard Niger Delta has a slight 1° to 3°seaward tilt 

(Fig. 1d).  Our Series 1 models had a simplified horizontal basement and did 

not attempt to simulate this feature of the natural prototype.  However, 

published analogue models show that a seaward basement tilt has the 

potential to produce more down-to-the-basin (i.e. regional) growth faulting and 

gravity gliding (e.g. Mourgues et al., 2009).  These factors may explain why 

the inner Niger Delta top is primarily deformed by regional growth faults (Fig. 

1c) whereas our models formed grabens of paired regional and counter-

regional growth faults (e.g. Fig. 7).  Based numerical modelling results that 

had dynamic basement that was simulated by an elastic beam response (e.g. 

Ings and Beaumont, 2010), it can be inferred that a slight seaward tilt would 
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have increased deformation along the maximum gradient direction but would 

not have completely eliminated radial outward spreading. 

 

4.2 Effects of Chain and Charcot fracture zone basement steps 

 

In our Series 2 models, as in earlier published experiments (Loncke et al., 

2011; Sellier et al., 2013), two divergent spreading directions developed 

across the basement steps (e.g. Fig. 16).  Model 5 in this study produced 

spreading patterns that were comparable to the inferred shortening directions 

at the Niger Delta toe (Fig. 17).  This suggests that the Niger basement steps 

may have contributed to the formation of the delta toe lobes, but it is important 

to here consider whether the Niger Delta overpressured shales have acted in 

the same manner as the basal polymer in our Series 2 models.  The Model 5 

spreading patterns resulted from faster outward flow of the overburden across 

a thicker basal polymer, a well-known effect seen in many analogue models 

(e.g. Loncke et al., 2010).  At the Niger Delta, faster outward flows would 

require a thicker or more highly overpressured shale section to substantially 

weaken the shale detachment.  The distribution of overpressures at the Niger 

Delta toe is not well-constrained due to a paucity of deepwater well 

penetrations, but it has been generally observed that Niger Delta 

overpressures and fluid flows initiate when the Akata Fm. has reached a 

burial depth of 4 km (Krueger and Grant, 2011).  The sedimentary infill is 

generally thicker across the Charcot and Chain fracture zones (e.g. Figs. 1b & 

3c), which allows the possibility for higher overpressures across the Niger 

Delta basement steps.  
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At the Niger Delta top, the growth faults updip of the basement fracture zones 

show uncharacteristic proximal counter-regional growth fault and distal 

regional growth fault patterns (Fig. 17d).  Downdip of the basement steps, 

many western lobe toe thrusts have been recently active in contrast to the 

less active southern lobe toe thrusts (Krueger and Grant, 2011).  These 

features are potentially explained by the basement step Models 4 & 5 from 

this study, which also developed perturbed inboard delta top growth fault 

patterns and very high delta toe spreading rates across the basement steps 

(Figs. 16c & d, g & h).  Although some of the perturbed delta top fault patterns 

in our models could be explained by the inboard basement step geometry 

(Fig. 3), similar perturbed delta top fault patterns have also formed in other 

analogue models without an inboard step (e.g. Loncke et al., 2011). 

 

One notable difference between model and natural prototype is that Model 5 

did not form a prominent fold belt re-entrant similar to the Niger Delta toe (Fig. 

14a), despite the apparent similarity in spreading directions (Fig. 17).  This 

may indicate that the Niger Delta toe re-entrant geometry is controlled in part 

by buttressing along a Charcot Fracture Zone basement high similar to Briggs 

et al. (2009), a localised feature that we did not attempt to simulate in the 

models presented here.  The Niger Delta toe re-entrant directly overlies the 

Charcot Fracture Zone, and correlations between the two features have also 

been implied by many earlier studies (e.g. Corredor et al., 2005; Cobbold et 

al., 2009).  
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4.3 Limitations of the analogue models 

 

As previously mentioned, the range of structural styles formed at the model 

delta toes presented here were limited by the analogue modelling materials.  

Our models formed symmetric to asymmetric polymer-cored detachment fold 

styles that did not resemble the Niger Delta toe imbricate thrust arrays (e.g. 

Figs. 1d & 7).  The detachment fold styles in our models are typical above salt 

or relatively weak shale decollements whereas the Niger Delta imbricate 

thrust arrays are more typical of a strong, frictional detachment (Rowan et al., 

2004).  These differences between model and natural prototype suggest that 

the overpressured shale detachments below the Niger Delta are stronger (i.e. 

more frictional) than the sand-polymer proxy in this study.  In Models 3 & 5, 

delta toe syn-kinematic sedimentation strengthened the overburden and 

produced forward and backward-vergent contractional structures that had 

more similarities to imbricate thrusts (e.g. Fig.10).  Imbricate thrust arrays 

have also been produced by analogue models that used only frictional 

Coulomb materials (i.e. dry sand) and compressed air (e.g. Cobbold and 

Castro, 1999; Mourgues et al., 2009; Cobbold et al., 2009).  Nonetheless, at 

the first-order, regional-scale similarities between our models and Niger Delta 

prototype suggest that similar strain patterns will form by radial outward 

gravity spreading above either a weak or a strong shale detachment. 

 

In our models, the plastic behaviour of overpressured shales was 

approximated by instantaneously loading the viscous polymer with a lobate 

differential load (i.e. the delta top).  This simplified the initial stages of Niger 
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delta progradation and did not permit progradation from a point source (i.e. 

fluvial system).  As a consequence, our model delta top extensional strains 

were localised behind the shelf-slope break (Fig. 5).  Our model delta top 

extensional strains appear similarly located relative to Niger Delta top 

extensional strains, which have been primarily coupled to the delta front since 

the Plio-Pleistocene (Rouby et al., 2011).  Hence, greater delta top 

progradation of our model deltas would have formed more forward-stepping 

growth fault belts more similar to the Niger Delta prototype.   

 

Our experiments used only dry sand to simulate the Niger Delta overburden.  

However, the proximal Niger Delta is subaerial whereas the distal toe is in a 

subaqueous setting.  Whereas analogue modelling techniques for submerged 

systems are currently in development, numerical models have compared 

gravity-driven delta deformation in subaerial and subaqueous settings 

(Gemmer et al., 2005).  The water column acted as a horizontal buttress force 

that stabilised the overburden and reduced deformation, and the saturated 

sediments reduced differential pressures between overburden and substrate 

(Gemmer et al., 2005).  These factors affected local structures but had 

relatively similar outcomes at larger regional scales (Gemmer et al., 2005).  

  

4.4 Implications for hydrocarbon exploration 

 

Our modelling results suggest that faster spreading has occurred across the 

Chain and Charcot fracture zone basement steps relative to the rest of the 

offshore Niger Delta.  At a broad regional scale, this would imply higher trap 
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risks at the Niger Delta western lobe relative to the southern lobe due to 

reactivated structures.  Our results also highlight trap risks at very active tear 

faults and thrust transfer zone-type structures formed across Chain and 

Charcot fracture zone basement steps.  On the other hand, it has already 

been shown by Morgan (2003) that the delta toe tear fault systems are 

conduits for deepwater channel systems and play an important role for 

reservoir sand distributions.  Finally, our models results explain that T-shaped 

grabens near the Niger Delta shelf-slope break have formed due to radial 

spreading (e.g. Fig. 5d).  Based on our results, these T-shaped grabens form 

by progressive linkage of shelf-break extensional faults with delta slope radial 

graben and could be a previously unrecognised shelf or slope play. 

 

5. Conclusions 

 

Comparison of the analogue model results from this study to the Niger Delta 

have provided the following insights on Niger Delta gravity-driven deformation: 

(1) Outward radial gravity spreading of the lobate Niger Delta top is 

evidenced by dip-oriented, extensional structures that include delta 

slope radial grabens and oblique extensional delta toe tear faults.  

Radial spreading has likely increased the segmentation of Niger delta 

top growth faults and delta toe fold-thrusts.   

(2) The analogue models presented here indicate the potential for 

partitioned gravity spreading across the Chain and Charcot fracture 

zones basement steps due to changes in the overpressured Akata Fm. 

shale detachment.  The models show that faster gravity spreading 
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north of the Charcot fracture zone could produce dual, divergent 

spreading directions at the Niger Delta toe that could have contributed 

to the formation of the Niger Delta toe dual lobes.  Other effects include 

perturbed updip growth fault systems and localised delta toe tear faults.  

The spreading patterns shown in the models presented here imply that 

the Niger Delta western lobe toe thrusts have been very active relative 

to the southern lobe.  This would have implications for trap risks for 

hydrocarbon exploration at the Niger Delta toe.   
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Figure Captions 
 
Figure 1: a) Location map of the Niger Delta and the offshore Chain and 
Charcot oceanic fracture zones shown by onshore SRTM3 digital elevation 
model and offshore free-air gravity data (Sandwell and Smith, 2009).  Note 
the delta sediments deposited across the basement fracture zones.  FZ = 
Fracture Zone.  b) Lobate shape of the Niger Delta clastic wedge revealed by 
a total sediment thickness isopach map (redrawn from Cobbold et al., 2009).  
The landward termination of the fracture zones is not well constrained.  c)  
Niger Delta structural map (modified from Saugy and Eyer, 2003; Krueger and 
Grant, 2011).  d) Schematic 2:1 vertical exaggeration cross-section across the 
Niger Delta (modified from Haack et al., 2000; Rouby et al., 2011).  Cross-
section location is shown in c). 
 
Figure 2: 3D schematics showing experimental setup for the gravity-driven 
delta analogue models.  a) Geometry of the pre-kinematic lobate differential 
load and the ductile polymer substrate.  The cutaway reveals the polymer 
geometry.  b) Syn-kinematic sand layers were progressively added to the 
delta top and/or delta toe during the experiment.  Details for specific 
experiments are shown in Figure 4.  c) Analogue model layering shown by 
photographs and line diagram.  Pre-kinematic sand layers were coloured 
alternating blue, black and white whereas syn-kinematic sand layers were 
coloured alternating red and white.   
 
Figure 3: Basement configurations for the analogue models in this study in 
comparison to the Niger Delta prototype.  a) Series 1 models had flat, 
horizontal featureless basement whereas b) Series 2 had basement steps 
patterned after the Chain and Charcot fracture zones, offshore Niger Delta.  c) 
Niger Delta total sediment thickness isopach map from Fig. 1b, reoriented for 
comparison to a) & b).  d) Schematic 3D view of Series 2 basement steps.   
 
Figure 4: Model for the 3D gravity-driven delta analogue models presented 
here.  Series 1 models had a horizontal basement whereas Series 2 models 
had basement steps.  Syn-kinematic sedimentation patterns were varied 
between ‘aggradational’ and ‘progradational’.  The basal polymer layer was 
doubled in length in Models 3 & 5 to allow the model deltas to advance further 
basinward. 
 
Figure 5: Progressive evolution of Model 1 with syn-kinematic sedimentation 
on the delta top only.  Plan view evolution illustrated at a-b) 0.5 hrs, c-d) 7 hrs, 
e-f) 13.5 hrs using sequential photographs and line drawing interpretations, 
respectively.   Photograph illumination is from the right. 
 
Figure 6: Model 1 evolution analysed using digital image correlation (DIC).  a-
c) show progressive spreading directions from 2-hour incremental particle 
movement vectors superimposed on a plan view photograph.  d) to f) 
progressive strain evolution from 2-hour incremental horizontal strain plots.  g) 
to i) show the translational zone from 2-hour incremental total horizontal 
displacement plots.  Model 1 was characterised by uniform radial outward 
spreading and the formation of arcuate delta top extensional, delta slope 
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translational, and delta toe compressional zones.  Extensional grabens radial 
to the delta lobe formed at the slope. 
 
Figure 7: a) Final plan view geometries of Model 1 at 13.5 hrs illustrated by 
the reconstructed final model topography and overlain by structural 
interpretation.  Deformation was characterised by delta top grabens, delta 
slope radial grabens, an emergent polymer bulge at the delta toe and a delta 
toe fold belt.  b-f) Interpreted internal vertical cross-sections from Model 1.  
Final slope angles are shown in d).  Cross-section locations are shown in a). 
 
Figure 8: 3D visualisation of the Model 1 reconstruction.  a) 3D view showing 
selected cross-sections and the final basal polymer surface.  The polymer 
ridges indicate the delta top graben and radial extensional graben systems.  
The delta toe fold-thrust belt was arcuate and highly segmented.  b) 3D view 
of the final top surface of the model showing the final lobate delta top 
differential load.  c) Final interpreted fault-fold geometries. 
 
Figure 9: Model 3 with progradational syn-kinematic sedimentation analysed 
using digital image correlation (DIC) plan view plots at progressive time 
intervals.  a) to c) 2-hour incremental particle displacement vectors overlain 
on a plan view photograph.  d) to f) 2-hour incremental horizontal strains.  g) 
to i) 2-hour incremental horizontal displacements.  The translational zone 
dramatically broadened.  The fold belt advanced rapidly, was cut by tear 
faults, and had very active frontal folds. 
 
Figure 10: a) Final plan view geometries of Model 3 at 11.5 hrs illustrated by 
laser scan topography overlain by structural interpretation.  The delta top 
grabens had dominant counterregional growth faults and the delta toe was cut 
by tear faults.  b-f) Interpreted internal vertical cross-sections from Model 3.  
Cross-section locations are shown in a). 
 
Figure 11: Model 4 with aggradational syn-kinematic sedimentation and 
basement steps analysed using digital image correlation (DIC).  a) to c) show 
interpreted structures from top photographs, d) to f) 2-hour incremental 
particle displacement vectors overlain on a plan view photograph,  g) to i) 2-
hour incremental horizontal strains, and j) to l) 2-hour incremental horizontal 
displacements.  Radial outward spreading was partitioned into two principal 
directions and the structures became segmented across the basement steps. 
 
Figure 12: a) Final plan view geometries of Model 4 at 14.5 hrs illustrated by 
laser scan topography overlain by structural interpretation.  The delta top 
graben system and delta toe fold belt became segmented above the 
basement steps.  b-e) Interpreted internal vertical cross-sections from Model 
4.  Final slope angles are shown in c) & d).  Cross-section locations are 
shown in a). 
 
Figure 13: 3D view of the Model 4 reconstruction showing the final basal 
polymer surface and selected cross-sections.  The underlying passive 
basement steps had differential basal polymer thicknesses of 1, 2 and 1.5 cm 
thickness in domains A, B & C, respectively.  Both delta top and delta toe 
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structures were segmented across the basement steps.  Delta top structures 
were perturbed updip of the inboard basement step. 
 
Figure 14: Model 5 evolution analysed using digital image correlation (DIC) 
plan view plots at progressive time intervals.  a) to c) show interpreted 
structures from photographs, d) to f) 2-hour incremental particle displacement 
vectors overlain on a plan view photograph,  g) to i) 2-hour incremental 
horizontal strains, and j) to l) 2-hour incremental horizontal displacements.  
Radial outward spreading was partitioned into two principal directions.  The 
translational zone dramatically broadened and was offset above the basement 
steps. 
 
Figure 15: a) Final plan view geometries of Model 5 with basement steps and 
progradational syn-kinematic sedimentation at 12.75 hrs illustrated by laser 
scan topography and overlain by structural interpretation.  Delta top and delta 
toe structures were segmented across the basement steps.  b-e) Interpreted 
internal vertical cross-sections from Model 5.  Cross-section locations are 
shown in a).   
 
Figure 16:  Comparison of plan view digital image correlation (DIC) between 
Models 1,3,4 & 5 at an intermediate deformation stage.  a) to d) 2-hour 
incremental particle displacement vectors overlain on a plan view photograph.  
e) to h) 2-hour incremental horizontal strains,  i) to l) 2-hour incremental 
horizontal displacements with main spreading directions indicated by red 
arrows.  All models spread radially outward.  Models 3 & 5 with progradational 
syn-kinematic sedimentation formed a wide translational zone.  Models 4 & 5 
with basement steps had partitioned spreading directions and segmented 
strains.  All images are at the same scale. 
 
Figure 17: Comparison between analogue models and Niger Delta spreading 
patterns.  a) to c) Model 5 DIC analysis showing 2-hour incremental horizontal 
translations and spreading directions.  d) Niger Delta fault map from Figure 
1c, rotated for comparison to the analogue model.  The dual, divergent 
spreading directions developed in Model 5 show similarities to the Niger Delta 
delta toe shortening directions. 
 
Figure 18: Conceptual model of structures formed by radial spreading across 
basement steps at the Niger Delta, based on insights from the analogue 
models in this study.   
 
Table Captions 
 
Table 1: Summary list of analogue experiments of gravity-driven delta 
systems.  Refer to Figure 4 for detailed model configurations. 
 
Supplemental figure captions 
 
Figure S1: Progressive evolution of Model 2 with syn-kinematic sedimentation 
on both the delta top and delta toe.  Plan view evolution illustrated at a-b) 2.75 
hrs, c-d) 8 hrs, and e-f) 13.5 hrs using sequential photographs and line 
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drawing interpretations, respectively.  Photograph illumination is from the 
right.   
 
Figure S2: Model 2 evolution analysed using digital image correlation (DIC) at 
progressive time intervals.  a) to c) 2-hour incremental particle displacement 
vectors overlain on a plan view photograph.  d) to f) 2-hour incremental 
horizontal strains.  g) to i) 2-hour incremental horizontal displacements.  The 
progradational syn-kinematic sedimentation produced dramatic widening of 
the translational zone and rapid advance of the delta toe fold-thrust belt.  
Radial outward spreading was buttressed by the distal polymer pinchout and 
a tear fault array formed at the inner delta toe. 
 
Figure S3: a) Final plan view geometries of Model 2 at 13.5 hrs illustrated by 
laser scan topography overlain by structural interpretation.  b) Interpreted 
internal vertical cross-section from Model 2.  Cross-section location is shown 
in a). 
 
Figure S4: Model 3 with syn-kinematic sedimentation on both the delta top 
and delta toe.  The basal polymer layer was doubled in length to allow the 
delta toe fold belt to propagate further outwards.  Plan view evolution 
illustrated at  a-b) 2 hrs, c-d) 8 hrs, and e-f) 11.5 hrs using sequential 
photographs and line drawing interpretations, respectively.  Illumination of the 
photographs is from the right. 
 
Figure S5: Model 4 with syn-kinematic sedimentation on the delta top only.   
The sandpack was allowed to deform above passive basement steps shown 
in b).   Plan view evolution illustrated at a-b) 2.5 hrs, c-d) 7.25 hrs, e-f) 14.5 
hrs using sequential photographs and line drawing interpretations, 
respectively.   Photograph illumination is from the right. 
 
Figure S6: Model 5 with syn-kinematic sedimentation on both the delta top 
and the delta toe.  The sandpack was allowed to deform above passive 
basement steps shown in b).  Plan view evolution illustrated at a-b) 2.25 hrs, 
c-d) 7.5 hrs, and e-f) 12.75 hrs using sequential photographs and line drawing 
interpretations, respectively.  Photograph illumination is from the right. 
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A = Syn-kinematic; B & C = Pre-kinematic; D = SGM36 polymer

10-20 mm

 4-6 mm20 mm Photo   Diagram

Delta top

Delta toe

c) Model layering

Delta top sedimentation
Delta toe

b) Syn-kinematic
sedimentation
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Figure 2: 3D schematics showing experimental setup for the gravity-driven delta analogue models.  a) 
Geometry of the pre-kinematic lobate differential load and the ductile polymer substrate.  The cutaway 
reveals the polymer geometry.  b) Syn-kinematic sand layers were progressively added to the delta top 
and/or delta toe during the experiment.  Details for specific experiments are shown in Figure 4.  c) 
Analogue model layering shown by photographs and line diagram.  Pre-kinematic sand layers were 
coloured alternating blue, black and white whereas syn-kinematic sand layers were coloured alternating 
red and white.  
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Basement step

a) Series 1 featureless basement b) Series 2 basement steps c) Niger Delta setting

Figure 3: Basement configurations for the analogue models in this study in comparison 
to the Niger Delta prototype.  a) Series 1 models had flat, horizontal featureless base-
ment whereas b) Series 2 had basement steps patterned after the Chain and Charcot 
fracture zones, offshore Niger Delta.  c) Niger Delta total sediment thickness isopach 
map from Fig. 1b, reoriented for comparison to a) & b).  d) Schematic 3D view of Series 2 
basement steps.  
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Figure 5: Progressive evolution of Model 1 with syn-kinematic sedimentation on the 
delta top only.  Plan view evolution illustrated at a-b) 0.5 hrs, c-d) 7 hrs, e-f) 13.5 hrs 
using sequential photographs and line drawing interpretations, respectively.   Photo-
graph illumination is from the right.
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Figure 6: Model 1 evolution analysed using digital image correlation (DIC).  a-c) show 
progressive spreading directions from 2-hour incremental particle movement vectors 
superimposed on a plan view photograph.  d) to f) progressive strain evolution from 2-hour 
incremental horizontal strain plots.  g) to i) show the translational zone from 2-hour incre-
mental total horizontal displacement plots.  Model 1 was characterised by uniform radial 
outward spreading and the formation of arcuate delta top extensional, delta slope transla-
tional, and delta toe compressional zones.  Extensional grabens radial to the delta lobe 
formed at the slope.
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Figure 7: a) Final plan view geometries of Model 1 at 13.5 hrs illustrated by the recon-
structed final model topography and overlain by structural interpretation.  Deformation was 
characterised by delta top grabens, delta slope radial grabens, an emergent polymer bulge 
at the delta toe and a delta toe fold belt.  b-f) Interpreted internal vertical cross-sections 
from Model 1.  Final slope angles are shown in d).  Cross-section locations are shown in a). 
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Delta toe fold belt
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Final top
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b) Model 1 final top surface

a) Model 1 reconstruction

c) Model 1 Interpreted fault geometries

Figure 8: 3D visualisation of the Model 1 reconstruction.  a) 3D view showing selected 
cross-sections and the final basal polymer surface.  The polymer ridges indicate the delta 
top graben and radial extensional graben systems.  The delta toe fold-thrust belt was 
arcuate and highly segmented.  b) 3D view of the final top surface of the model showing 
the final lobate delta top differential load.  c) Final interpreted fault-fold geometries.
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Figure 9: Model 3 with progradational syn-kinematic sedimentation analysed using digital 
image correlation (DIC) plan view plots at progressive time intervals.  a) to c) 2-hour 
incremental particle displacement vectors overlain on a plan view photograph.  d) to f) 
2-hour incremental horizontal strains.  g) to i) 2-hour incremental horizontal displace-
ments.  The translational zone dramatically broadened.  The fold belt advanced rapidly, 
was cut by tear faults, and had very active frontal folds.
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Figure 10: a) Final plan view geometries of Model 3 at 11.5 hrs illustrated by laser scan 
topography overlain by structural interpretation.  The delta top grabens had dominant 
counterregional growth faults and the delta toe was cut by tear faults.  b-f) Interpreted 
internal vertical cross-sections from Model 3.  Cross-section locations are shown in a). 
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Figure 11: Model 4 with aggradational syn-kinematic sedimentation and basement steps 
analysed using digital image correlation (DIC).  a) to c) show interpreted structures from 
top photographs, d) to f) 2-hour incremental particle displacement vectors overlain on a 
plan view photograph,  g) to i) 2-hour incremental horizontal strains, and j) to l) 2-hour 
incremental horizontal displacements.  Radial outward spreading was partitioned into two 
principal directions and the structures became segmented across the basement steps.
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Figure 12: a) Final plan view geometries of Model 4 at 14.5 hrs illustrated by laser scan 
topography overlain by structural interpretation.  The delta top graben system and delta 
toe fold belt became segmented above the basement steps.  b-e) Interpreted internal 
vertical cross-sections from Model 4.  Final slope angles are shown in c) & d).  Cross-
section locations are shown in a). 
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Figure 13: 3D view of the Model 4 reconstruction showing the final basal polymer surface 
and selected cross-sections.  The underlying passive basement steps had differential 
basal polymer thicknesses of 1, 2 and 1.5 cm thickness in domains A, B & C, respectively.  
Both delta top and delta toe structures were segmented across the basement steps.  
Delta top structures were perturbed updip of the inboard basement step. 
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Figure 14: Model 5 evolution analysed using digital image correlation (DIC) plan view 
plots at progressive time intervals.  a) to c) show interpreted structures from photographs, 
d) to f) 2-hour incremental particle displacement vectors overlain on a plan view photo-
graph,  g) to i) 2-hour incremental horizontal strains, and j) to l) 2-hour incremental hori-
zontal displacements.  Radial outward spreading was partitioned into two principal direc-
tions.  The translational zone dramatically broadened and was offset above the basement 
steps.
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Wu et al. Figure 15
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Figure 15: a) Final plan view geometries of Model 5 with basement steps and prograda-
tional syn-kinematic sedimentation at 12.75 hrs illustrated by laser scan topography and 
overlain by structural interpretation.  Delta top and delta toe structures were segmented 
across the basement steps.  b-e) Interpreted internal vertical cross-sections from Model 5.  
Cross-section locations are shown in a).  
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Wu et al. Figure 17

b) 7.5 hrs

c) 12.75 hrs

d) Niger Delta fault map

a) Model 5 - 2.25 hrs 10 cm

Figure 17: Comparison between analogue models and Niger Delta spreading patterns.  a) to c) Model 5 DIC 
analysis showing 2-hour incremental horizontal translations and spreading directions.  d) Niger Delta fault 
map from Figure 1c, rotated for comparison to the analogue model.  The dual, divergent spreading directions 
developed in Model 5 show similarities to the Niger Delta delta toe shortening directions.
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Figure 18: Conceptual model of structures formed by radial spreading across basement steps at the 
Niger Delta, based on insights from the analogue models in this study.  
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Syn-kinematic sedimentation: Aggradational - hourly sedimentation on delta top only
    Progradational - hourly sedimentation on delta top & delta toe fold belt
    *additional thin 1mm sand layer between fold belt synclines applied
    between every ‘progradational’ event

Table 1: Summary list of analogue experiments of gravity-driven delta systems.  Refer to 
Figure 4 for detailed model configurations.

Model
series

Model
number

Syn-kinematic 
sedimentation

Basement
topography

Basal polymer
dimensions

Deformation
time (hrs)

11 Aggradational

Aggradational

none standard (80 x 100 cm) 13.5
12 Progradational

Progradational*

Progradational

none standard 13.5
23 none double-length (158 x 100 cm) 11.5
24 basement steps standard 14.5
25 basement steps double-length 12.75

Wu et al. Table 1

Table_revised


