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Evaluating Expressions
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Evaluating Expressions using Attribute Grammars

I Attribute Grammars extend trees with attributes.
I Every node N represents one or more functions, that:

• Receive a subset of the inherited attributes of N.
• Produce a subset of the synthesized attributes of N.

I Attribute Grammars form a DSL for tree-based computations.
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Scheduling Multiple Computations

I Easily define multiple computations on the same tree.
I Leave worrying about the evaluation order to some compiler:

• Host compiler: generating catamorphisms.
• AG compiler: finding a static evaluation order.
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Scheduling Multiple Computations

I To find a static evaluation order, we need to:
• Find an interface for every nonterminal.
• Show how every production implements it.

I An AG for which this is possible is linear ordered (LOAG).

I Decision problem:
“Is there an assignment i → s or s → i , for every pair (i , s) of
every nonterminal X with i ∈ inh(X ) and s ∈ syn(X ), such
that there are no dependency cycles?”

I Membership decision is NP-Hard.
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Linear Ordered AGs

I Largest class that allows static evaluation schedules.

I Assumed to generate efficient code.

I Only algorithms for subclasses exist.
I Paper describes an algorithm to schedule LOAGs:

• Exponential in theory, efficient in practice.
• Compiles the UHC without assistance from the programmer.
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Scheduling the UHC

I UHC is partly generated from of a large number of AGs.
I The “main AG” is very large indeed:

• 30 nonterminals
• 134 productions
• 1332 attributes (44.4 per nonterminal!)
• 9766 dependencies

I The main AG is written as a linear ordered AG.

I Kastens Algorithm does not recognise it.

I More then 20 fake dependencies required to help scheduling.
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iModule: Types

module BinIntTrees
flatten :: Tree → [ Int ]
sum :: Tree → Int

where
data Tree = Bin Tree Tree

| Leaf Int
flatten (Leaf i) = [ i ]
flatten (Bin l r) = flatten l ++ flatten r
...

Module

lhs:Module

h:[TySig] b:Body
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iModule: Exports
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iModule Combined

h:[TySig] b:Body

ts err ss ts ex err ts

Module

lhs:Module

ts exerr ts
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iModule Combined

h:[TySig] b:Body

ts err ss ts ex err ts

“Is there an assignment i → s or s → i , for every pair (i , s) of
every nonterminal X with i ∈ inh(X ) and s ∈ syn(X ), such that
there are no dependency cycles?”
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iModule Combined
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Kastens Algorithm

I1 S1

T1

T2

T1

T2

I1 S1

h:[TySig]

ts err ss ts err

ss

b:Body

ts ex err ts err

tsts

ex

“Say a→ b if a is at the i ’th and b at the (i − 1)’th position in
the partial order implied by the dependencies.”
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iModule: Exports Alternative

Module

lhs:Module

h:[TySig] b:Body

err ex

exss
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iModule: Exports Alternative

Module

lhs:Module

h:[TySig] b:Body
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exss ss
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iModule Combined Alternative

h:[TySig] b:Body

ts err ss ss ts ex err ts

“Is there an assignment i → s or s → i , for every pair (i , s) of
every nonterminal X with i ∈ inh(X ) and s ∈ syn(X ), such that
there are no dependency cycles?”
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Kastens Algorithm

I1 S1

T1

T2

T1

T2

I1 S1

h:[TySig]

ts err ss ts err

ss

b:Body

ss ts ex err ts err

tsts

ss ex

“Say a→ b if a is at the i ’th and b at the (i − 1)’th position in
the partial order implied by the dependencies.”
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Applying Kastens Algorithm

h:[TySig] b:Body

ts err ss ss ts ex err ts
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Applying Kastens Algorithm

h:[TySig] b:Body

ts err ss ss ts ex err ts
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Approach

1. Make all missing assignments optimistically.

2. When a cycle without optimistic assignments is encountered:
AG 6∈ LOAG.

3. When a cycle c with optimistic assignments is encountered:
3.1 Select an optimistic assignment, swap it and recurse (goto 1).

• The assignment is not considered optimistic anymore.
• If AG 6∈ LOAG is returned: swap other assignment and recurse.
• If no more optimistic assignments in c: AG 6∈ LOAG.
• Otherwise: AG ∈ LOAG.

4. AG ∈ LOAG.
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Results

I We can now compile the UHC without fake dependencies.

I In comparable time, 25 sec vs 35 sec.

I 10 corrections and no backtracking required!

I Most time is spent propagation dependencies.
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Conclusions and Contributions

I We have given a decision procedure for the class of LOAGs.

I Exponential algorithm in theory, efficient in practice.

I Backtracking should be rare.
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Future Work

LOAG algorithm

I We built a fast LOAG algorithm using SAT-solving (< 10 sec).

I We wish to show it can be optimised for specific needs.

I Perhaps the approach can be generalised for other problems.

Code efficiency

I Formalise the costs of schedules by fixing an execution model.

I Possibly by developing a specialised virtual machine for AGs.

I Compare existing algorithms and the schedules they produce.

I Extend the algorithm(s) with user defined optimisations.
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Attribute Grammars

Why AGs are used

I AGs form a DSL for tree-based computations.
• Semantics.
• Static analyses.

I Declarative programming in imperative settings.

I High level of abstraction and concern separation.

I UUAGC generates the boilerplate code we need.

Why AGs aren’t used

I Generated code is often not optimal.
I Finding a static evaluation order is hard:

• Scheduling UHC requires manual assistance.
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Questions

How fast discovers the algorithm that an AG 6∈ LOAG?

I Very fast for Circular AGs.

I Problematic on Absolutely Non-Circular AGs (time ???).
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Questions

Why is LOAG preferred over ANCAG?

I Static schedules. (simple evaluators, optimisations)

I Context-free evaluation.
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To program with AGs is

1. Specifying the Abstract Syntax Tree.

2. Add attributes to nonterminals.

3. Specifying the ‘arrows’.

AG Syntax

data Module | Module h : [TySig ] b : Body
...
attr Module

syn err : Bool
...

sem Module | Module
lhs.err = @b.err ∨ @h.err
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Design Choices

I Which AG compiler to use?

I Which host language to use?

I Which code generation procedure to use?

I Which (data)types to use for the attributes?

I How to compute all attributes with incoming arrows?
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Using the UUAGC

I Copy rules generate ‘logistics’.

I Use rules combine 0,1,2,. . . attributes.

Module

lhs:Module

h:[TySig] b:Body

err

errerr ts

ts

I Local attributes act like new terminals.

I Higher-order attributes act like new nonterminals.
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Code Generation Procedures

I Circular AGs: Relying on Haskell’s laziness.

I Absolutely Non-Circular AGs: Kennedy-Warren algorithm.

I Ordered AGs: Kastens algorithm.
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Code Generation Procedures
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I Absolutely Non-Circular AGs: Kennedy-Warren algorithm.

I Linear Ordered AGs.

I Ordered AGs: Kastens algorithm.


