
Linearly Ordered Attribute Grammars
with Automatic Augmenting Dependency Selection

L. Thomas van Binsbergen 1

Jeroen Bransen 2 Atze Dijkstra 2

1ltvanbinsbergen@acm.org
Royal Holloway, University of London

2{j.bransen,atze}@uu.nl
Utrecht University

PEPM’15, Mumbai, India



Evaluating Expressions

+

-7

14



Evaluating Expressions

+

-7

14

10

7

1

3

4



Evaluating Expressions

+

-7

1x



Evaluating Expressions

+

-7

1x

x=6

x=6

x=6

x=6

x=6



Evaluating Expressions

+

-7

1x

12

7

1

5

6

x=6

x=6

x=6

x=6

x=6



Evaluating Expressions using Attribute Grammars

I Attribute Grammars extend trees with attributes.
I Every node N represents one or more functions, that:

I Receive a subset of the inherited attributes of N.
I Produce a subset of the synthesized attributes of N.

I Attribute Grammars form a DSL for tree-based computations.

+

-7

1x

12

7

1

5

6

x=6

x=6

x=6

x=6

x=6



Modularity of Attribute Grammars

I Define multiple computations on the same tree separately.

I The AG compiler combines them and generates an evaluator.

I By generating code we abstract away from the problem of
propagating changes.

-- evalExpr :: Non-terminal → InhAttrs → SynAttrs
evalExpr :: Expr → Env → (String , Int)
evalExpr (Plus e1 e2) env =
let (pp1 , v1) = evalExpr e1 env

(pp2 , v2) = evalExpr e2 env
in ("(" ++ pp1 ++ "+" ++ pp2 ++ ")", v1 + v2)



Utrecht University Attribute Grammar Compiler (UUAGC)

I The UUAGC generates Haskell code from UUAG descriptions.

I UUAG has experience-enhancing features such as copy-rules
and use-rules.

I For different classes UUAGC generates different evaluators:
I Lazy folds and algebras for any (cyclic) AG description.
I Strict dynamic evaluators for Absolutely Non-Circular AGs.
I Strict static evaluators for Ordered AGs.

I With higher-order attributes, UUAG allows looping
computations by adding nodes to the tree on the fly.



Static Evaluation Orders

I We are interested in finding static evaluation orders as
introduced by Kastens (1980).

I Static orders allow strict and efficient evaluators.
I To find a static evaluation order, we need to:

I Find an interface for every non-terminal.
I Show how every production implements it.

I AGs for which this is possible are linearly ordered (LOAG).

I Deciding whether an AG is linearly ordered is NP-hard.



Scheduling the Utrecht Haskell Compiler (UHC)

I UHC is partly generated from of a large number of AGs.
I The “main AG” is very large indeed:

I 30 non-terminals
I 134 productions
I 1332 attributes (44.4 per non-terminal!)
I 9766 dependencies

I Kastens’ algorithm does not find a static evaluation order for
the main AG.

I We know at least one exists, as Kastens’ algorithm can be
‘helped’ to find one using 24 augmenting dependencies.



LOAG scheduling

I Kastens’ algorithm recognises members of OAG ⊂ LOAG.
I We have given two algorithms for LOAG:

I AOAG: backtracking to find augmenting dependencies (paper).
I LOAG: generate SAT-problem and give it to SAT-solver

(future work).

I In the remainder of this talk we shall see:
I A general method for determining whether an AG is a LOAG.
I Why Kastens’ algorithm does not implement this method.
I Which dependencies are potential augmenting dependencies.
I Our implementation that automatically selects augmenting

dependencies.



Presentation overview

AG

X ∈ N, p ∈ P

inh(X ), syn(X )

DP(p) IDP(p) IDS (X )

?

Interfaces Visit-sequences LO(p) LOAG



Presentation overview

AG

X ∈ N, p ∈ P

inh(X ), syn(X )

DP(p)



UUAG - Non-terminals & Productions & Attributes

data Expr | Plus e1 : Expr e2 : Expr
| Min e1 : Expr e2 : Expr
| Nat n : Int
| Var id : String

type Env = [(String, Int)]
attr Expr
inh env : Env
syn val : Int
syn pp : String



Terminology

I We speak of three different kinds of attributes:
I Attributes, assigned to a non-terminal.
I Attribute occurrences, occurrences of attributes at productions.
I Attribute instances, instances of occurrences in a parse-tree.

I Attribute occurrences are input- or output-occurrences:
I Input: inherited of parent, synthesized of children.
I Output: synthesized of parent, inherited of children.

I UUAGC requires descriptions to be normalised:
I Every output-occurrence has a definition,
I in terms of input-occurrences and terminals only.



UUAG - Production graphs

Plus

lhs:Expr

e1:Expr e2:Expr

Var

lhs:Expr



UUAG - Production graphs

attr Expr
inh env : Env

Plus

lhs:Expr

e1:Expr e2:Expr

Var

lhs:Expr



UUAG - Production graphs

attr Expr
inh env : Env

Plus

lhs:Expr

env

e1:Expr

env

e2:Expr

env

Var

lhs:Expr

env



UUAG - Production graphs

attr Expr
inh env : Env
syn val : Int

Plus

lhs:Expr

env

e1:Expr

env

e2:Expr

env

Var

lhs:Expr

env



UUAG - Production graphs

attr Expr
inh env : Env
syn val : Int

Plus

lhs:Expr

env val

e1:Expr

env val

e2:Expr

env val

Var

lhs:Expr

env val



UUAG - Production graphs

attr Expr
inh env : Env
syn val : Int
syn pp : String

Plus

lhs:Expr

env val

e1:Expr

env val

e2:Expr

env val

Var

lhs:Expr

env val



UUAG - Production graphs

attr Expr
inh env : Env
syn val : Int
syn pp : String

Plus

lhs:Expr

env val pp

e1:Expr

env val pp

e2:Expr

env val pp

Var

lhs:Expr

env val pp



UUAG - Direct dependencies

sem Expr
| Plus
lhs.val = @e1 .val + @e2 .val
lhs.pp = "(" ++ @e1 .pp ++ "+" ++ @e2 .pp ++ ")"

| Nat
lhs.val = @n
lhs.pp = show @n
| Var
lhs.val = case lookup @id @lhs.env of
Nothing → error ("Variable " ++ @id ++ " undefined")
Just v → v

lhs.pp = @id



Direct dependency graph - DP(p)

Plus

lhs:Expr

env val pp

e1:Expr

env val pp

e2:Expr

env val pp

Var

lhs:Expr

env val pp



Presentation overview

AG

X ∈ N, p ∈ P

inh(X ), syn(X )

DP(p)

LOAG



LOAGs - Definition

I Xp,i is the i-th non-terminal in production p and is a
non-terminal occurrence of some non-terminal T (Xp,i ) ∈ N.

Definition
An AG is a Linearly Ordered Attribute Grammar (LOAG), if there
exist linear orders LO(p) for all p ∈ P such that:

1. Every linear order LO(p) respects the direct dependencies, i.e.
if (Xp,i · a→ Xp,j · b) ∈ DP(p)
then (Xp,i · a < Xp,j · b) ∈ LO(p).

2. The relative ordering of the attributes is the same for all
occurrences of a non-terminal, i.e.
if T (Xp,i ) = T (Xq,j) and (Xp,i · a < Xp,i · b) ∈ LO(p)
then (Xq,j · a < Xq,j · b) ∈ LO(q) for all p, q, i and j .



Linear Order for Expressions

Expr

lhs:Expr

env val pp

e1:Expr

env val pp

e2:Expr

env val pp

1 8 9

2 3 4 5 6 7

Var

lhs:Expr

env val pp

1 2 3



Linear Order for Expressions

Expr

lhs:Expr

env val pp

e1:Expr

env val pp

e2:Expr

env val pp

1 8 9

2 3 4 5 6 7

Var

lhs:Expr

env val pp

1 3 2



Presentation overview

AG

X ∈ N, p ∈ P

inh(X ), syn(X )

DP(p)

LO(p) LOAG



Induced dependency graphs - IDP(p), IDS(X )

I Add all edges from DP(p) to IDP(p).
I If there is a path (Xp,i · a→ Xp,i · b) ∈ IDP(p)

I Add (Y · a→ Y · b) to IDS(Y ), where Y = T (Xp,i )
I Add (Xq,j · a→ Xq,j · b) to IDP(q), for all T (Xq,j) = T (Xp,i )

I Continue until all paths have been propagated.

P1

lhs:X

a b

P2

lhs:Y

c d

x:X

a b

P3

lhs:Z

e f

y:Y

c d

x:X

a b



Induced dependency graphs - IDP(p), IDS(X )

I Add all edges from DP(p) to IDP(p).
I If there is a path (Xp,i · a→ Xp,i · b) ∈ IDP(p)

I Add (Y · a→ Y · b) to IDS(Y ), where Y = T (Xp,i )
I Add (Xq,j · a→ Xq,j · b) to IDP(q), for all T (Xq,j) = T (Xp,i )

I Continue until all paths have been propagated.

P1

lhs:X

a b

P2

lhs:Y

c d

x:X

a b

P3

lhs:Z

e f

y:Y

c d

x:X

a b



Induced dependency graphs - IDP(p), IDS(X )
I Add all edges from DP(p) to IDP(p).
I If there is a path (Xp,i · a→ Xp,i · b) ∈ IDP(p)

I Add (Y · a→ Y · b) to IDS(Y ), where Y = T (Xp,i )
I Add (Xq,j · a→ Xq,j · b) to IDP(q), for all T (Xq,j) = T (Xp,i )

I Continue until all paths have been propagated.

P1

lhs:X

a b

P2

lhs:Y

c d

x:X

a b

P3

lhs:Z

e f

y:Y

c d

x:X

a b



Induced dependency graphs - IDP(p), IDS(X )
I Add all edges from DP(p) to IDP(p).
I If there is a path (Xp,i · a→ Xp,i · b) ∈ IDP(p)

I Add (Y · a→ Y · b) to IDS(Y ), where Y = T (Xp,i )
I Add (Xq,j · a→ Xq,j · b) to IDP(q), for all T (Xq,j) = T (Xp,i )

I Continue until all paths have been propagated.

P1

lhs:X

a b

P2

lhs:Y

c d

x:X

a b

P3

lhs:Z

e f

y:Y

c d

x:X

a b



Induced dependency graphs - IDP(p), IDS(X )
I Add all edges from DP(p) to IDP(p).
I If there is a path (Xp,i · a→ Xp,i · b) ∈ IDP(p)

I Add (Y · a→ Y · b) to IDS(Y ), where Y = T (Xp,i )
I Add (Xq,j · a→ Xq,j · b) to IDP(q), for all T (Xq,j) = T (Xp,i )

I Continue until all paths have been propagated.

P1

lhs:X

a b

P2

lhs:Y

c d

x:X

a b

P3

lhs:Z

e f

y:Y

c d

x:X

a b



Induced dependency graphs - IDP(p), IDS(X )
I Add all edges from DP(p) to IDP(p).
I If there is a path (Xp,i · a→ Xp,i · b) ∈ IDP(p)

I Add (Y · a→ Y · b) to IDS(Y ), where Y = T (Xp,i )
I Add (Xq,j · a→ Xq,j · b) to IDP(q), for all T (Xq,j) = T (Xp,i )

I Continue until all paths have been propagated.

P1

lhs:X

a b

P2

lhs:Y

c d

x:X

a b

P3

lhs:Z

e f

y:Y

c d

x:X

a b



Induced dependency graphs - IDP(p), IDS(X )
I Add all edges from DP(p) to IDP(p).
I If there is a path (Xp,i · a→ Xp,i · b) ∈ IDP(p)

I Add (Y · a→ Y · b) to IDS(Y ), where Y = T (Xp,i )
I Add (Xq,j · a→ Xq,j · b) to IDP(q), for all T (Xq,j) = T (Xp,i )

I Continue until all paths have been propagated.

P1

lhs:X

a b

P2

lhs:Y

c d

x:X

a b

P3

lhs:Z

e f

y:Y

c d

x:X

a b



Presentation overview

AG

X ∈ N, p ∈ P

inh(X ), syn(X )

DP(p)

LO(p) LOAG

IDP(p) IDS (X )



Presentation overview

AG

X ∈ N, p ∈ P

inh(X ), syn(X )

DP(p) IDP(p) IDS (X )

Interfaces Visit-sequences LO(p) LOAG



Interfaces

I An interface for X ∈ N determines:
I How many visits we use for X .
I The inherited and synthesized attributes of every visit.

I An interface partitions all attributes of X in disjoint sets
Ii , Si such that (Ii ,Si ) forms the i-th visit.

I1 S1

i1 s5

i4 s2

i3

I2 S2

i2 s1

s4

s3



Visit-sequences

I Visit-sequences determine how every production of X executes
every visit to X , such that:

1. The j-th visit to X is executed after the i-th visit to X if i < j .
2. Every synthesized attribute of a visit is evaluated.
3. Every visit-instruction has to succeed the evaluation of the

inherited attributes of the corresponding visit.
4. If attribute a, depending on b, is evaluated in visit-sequence s:

4.1 b is an inherited attribute of the visit, or
4.2 b is produced by a visit-instruction in s before a.

I1 S1

env val

pp

1 : eval e1.env
2 : visit 1 e1
3 : eval e2.env
4 : visit 1 e2
5 : eval lhs.val
6 : eval lhs.pp



Visit-sequences

I The 4th property guarantees direct dependencies are
respected.

I The first 3 properties guarantee interfaces are respected.

I Visit-sequences prove the AG is linearly ordered!

I However, creating interfaces introduces a third type of cycle.



Intra-visit dependencies

Ii Si

a a

b b

lhs:Y

x1:X

a ab b

x2:X

a ab b



Intra-visit dependencies

Ii Si

a a

b b

lhs:Y

x1:X

a ab b

x2:X

a ab b



Intra-visit dependencies

Ii Si

a a

b b

Ii+1

x

y

z

lhs:Y

x1:X

a ab b

x2:X

a ab b



Presentation overview

AG

X ∈ N, p ∈ P

inh(X ), syn(X )

DP(p) IDP(p) IDS (X )

?

Interfaces Visit-sequences LO(p) LOAG



General procedure for LOAG

I Procedure:

1. Build graphs IDS(X ) from DP(p).
2. Construct interfaces from IDS(X ), such that the intra-visit

dependencies do not contradict DP(p).
3. Use the interfaces and DP(p) to build visit-sequences.
4. Generate evaluation function for every visit-sequence.

I Step 2 is a combinatorial problem.



AOAG algorithm

I A candidate is a non-induced intra-visit dependency.

1. Compute interfaces like Kastens’ algorithm.

2. Found a cycle without candidates: AG 6∈ LOAG.

3. Found a cycle c with candidates:
3.1 Select one, swap it, and propagate effects to interfaces.

I Found a cycle without candidates: backtrack.
I If all candidates in c are tried: failure or backtrack higher up.
I Found a cycle with candidates: step.
I Otherwise: AG ∈ LOAG.

4. Otherwise: AG ∈ LOAG.



Results

I We can now compile the UHC without manually adding
augmenting dependencies.

I 10 corrections without backtracking.

I Most time is spent propagating dependencies:
calculating and updating IDS and interfaces.

Algorithm Manual ADS? main AG

Kastens’ Y 16.7s
AOAG Y 5.9s
AOAG N 12.6s
K&W N 32.7s
LOAG N 9.0s

I Backtracking will be costly.

I But we expect backtracking is not required for practical AGs.



Related Work

I Variants of OAG exist:
I Chained Scheduling, Pennings 1994
I The Eli System, Kastens et al. 1998
I OAG*, Natori et al. 1999

I Polynomial algorithms for subclasses of LOAG.

I Can be combined with automatic augmenting dependency
selection.



Future Work

Schedule optimisation

I With a static evaluation order it is possible to optimise.
I Optimise with respect to:

I Runtime.
I Space complexity.
I Incremental evaluation.
I etc.



Future Work

Code efficiency

I Formalise the costs of schedules by fixing an execution model.

I Possibly by developing a specialised virtual machine for AGs.

I Compare existing algorithms and the schedules they produce.

I Extend the algorithm(s) with user defined optimisations.


