
LOAG scheduling problem
SAT formulation

Constraint generation

Linearly Ordered Attribute Grammar scheduling
using SAT-solving

Jeroen Bransen 1 L. Thomas van Binsbergen 2

Atze Dijkstra 1 Koen Claessen 3

1Utrecht University

2Royal Holloway, University of London

3Chalmers University of Technology

15 April, TACAS 2015, ETAPS, London

L. Thomas van Binsbergen Scheduling LOAGs with SAT



LOAG scheduling problem
SAT formulation

Constraint generation

Overview

Motivation.

LOAG scheduling problem.

SAT formulation.

Constraint generation using chordal graphs.

Based on an approach by Bryant & Velev (2000).

L. Thomas van Binsbergen Scheduling LOAGs with SAT



LOAG scheduling problem
SAT formulation

Constraint generation

Attribute Grammars

Attribute Grammars describe computations over trees.

Useful in compiler construction, e.g. for:
Code generation, static analysis, semantic evaluation.

An AG compiler generates an evaluator from a description.

UUAGC (Utrecht University Attribute Grammar Compiler).

To generate a strict evaluator, scheduling is required.

The scheduling problem is NP-hard.

L. Thomas van Binsbergen Scheduling LOAGs with SAT



LOAG scheduling problem
SAT formulation

Constraint generation

Compile-time scheduling

No compile-time scheduling:

Generate lazy code.

Some compile-time scheduling:

Find multiple schedules, covering all possible trees.
The actual schedule depends on the input tree.
Absolutely Non-Circular Attribute Grammars (ANCAGs).
Kennedy-Warren algorithm.

Full compile-time scheduling:

Find a single evaluation order.
It needs to be compatible with all possible trees.
Linearly Ordered Attribute Grammars (LOAGs).
Kastens’ algorithm (schedules subclass OAG).

L. Thomas van Binsbergen Scheduling LOAGs with SAT



LOAG scheduling problem
SAT formulation

Constraint generation

Motivation

Many tools at Utrecht University are developed using AGs.

Large projects require efficient and strict code.

Main motivation is the Utrecht Haskell Compiler.

L. Thomas van Binsbergen Scheduling LOAGs with SAT



LOAG scheduling problem
SAT formulation

Constraint generation

AG descriptions

An AG descriptions contains three components:
1 A context-free grammar (describing all possible input trees).
2 A set of attribute declarations (for every non-terminal).
3 A definition for every attribute (in each context it appears).

From the AG description, the AG compiler obtains a
dependency graph for every production.

L. Thomas van Binsbergen Scheduling LOAGs with SAT



LOAG scheduling problem
SAT formulation

Constraint generation

Production dependency graph

A production graph contains:

A parent node for the production’s left-hand side (lhs).
Children for all non-terminal occurrences of the right-hand side.
All attributes of the occurring non-terminals as vertices.

The children are named by the programmer (l and r for Bin).

The vertices are also called attribute occurrences.

Bin

lhs:Tree

a1 a2 a3 a4

l:Tree

a1 a2 a3 a4

r:Tree

a1 a2 a3 a4

Leaf

lhs:Tree

a1 a2 a3 a4

L. Thomas van Binsbergen Scheduling LOAGs with SAT



LOAG scheduling problem
SAT formulation

Constraint generation

Direct dependencies

From the AG description direct dependencies are obtained.

If attribute a is used in the definition of b, then a→ b.

Bin

lhs:Tree

a1 a2 a3 a4

l:Tree

a1 a2 a3 a4

r:Tree

a1 a2 a3 a4

Leaf

lhs:Tree

a1 a2 a3 a4

L. Thomas van Binsbergen Scheduling LOAGs with SAT



LOAG scheduling problem
SAT formulation

Constraint generation

LOAG scheduling

Find a linear order for every production graph, such that:

1) The direct dependencies are ‘respected’ (local).
2) Same relative ordering for non-terminal occurrences (global):

If a3 < a2 holds for a3 and a2 attached to the same
occurrence of non-terminal X ,

then a3 < a2 at all occurrences of X .

Bin

lhs:Tree

a1 a2 a3 a4

l:Tree

a1 a2 a3 a4

r:Tree

a1 a2 a3 a4

1 2

3 4 5 6 7 8 9 10

11 12

Leaf

lhs:Tree

a1 a2 a3 a4

1 2 3 4

Invalid schedule: 10 < 4.

L. Thomas van Binsbergen Scheduling LOAGs with SAT



LOAG scheduling problem
SAT formulation

Constraint generation

LOAG scheduling

Find a linear order for every production graph, such that:

1) The direct dependencies are ‘respected’ (local).
2) Same relative ordering for non-terminal occurrences (global):

If a3 < a2 holds for a3 and a2 attached to the same
occurrence of non-terminal X ,

then a3 < a2 at all occurrences of X .

Bin

lhs:Tree

a1 a2 a3 a4

l:Tree

a1 a2 a3 a4

r:Tree

a1 a2 a3 a4

1 2

3 10 5 6 7 8 9 4

11 12

Leaf

lhs:Tree

a1 a2 a3 a4

1 2 3 4

Invalid schedule: lhs has different order.

L. Thomas van Binsbergen Scheduling LOAGs with SAT



LOAG scheduling problem
SAT formulation

Constraint generation

LOAG scheduling

Find a linear order for every production graph, such that:

1) The direct dependencies are ‘respected’ (local).
2) Same relative ordering for non-terminal occurrences (global):

If a3 < a2 holds for a3 and a2 attached to the same
occurrence of non-terminal X ,

then a3 < a2 at all occurrences of X .

Bin

lhs:Tree

a1 a2 a3 a4

l:Tree

a1 a2 a3 a4

r:Tree

a1 a2 a3 a4

1 7

2 10 3 11 4 8 5 9

6 12

Leaf

lhs:Tree

a1 a2 a3 a4

1 2 3 4

No unsatisfied properties in Bin. lhs at Leaf still incorrect.

L. Thomas van Binsbergen Scheduling LOAGs with SAT



LOAG scheduling problem
SAT formulation

Constraint generation

LOAG scheduling

Find a linear order for every production graph, such that:

1) The direct dependencies are ‘respected’ (local).
2) Same relative ordering for non-terminal occurrences (global):

If a3 < a2 holds for a3 and a2 attached to the same
occurrence of non-terminal X ,

then a3 < a2 at all occurrences of X .

Bin

lhs:Tree

a1 a2 a3 a4

l:Tree

a1 a2 a3 a4

r:Tree

a1 a2 a3 a4

1 7

2 10 3 11 4 8 5 9

6 12

Leaf

lhs:Tree

a1 a2 a3 a4

1 3 2 4

Valid schedule.

L. Thomas van Binsbergen Scheduling LOAGs with SAT



LOAG scheduling problem
SAT formulation

Constraint generation

Sat formulation

Let a variable correspond to an undirected edge.

An assignment to that variable determines direction.

By sharing variables we enforce the same relative ordering for
occurrences of the same non-terminal.

Bin

lhs:Tree

a1 a2 a3 a4

l:Tree

a1 a2 a3 a4

r:Tree

a1 a2 a3 a4

Leaf

lhs:Tree

a1 a2 a3 a4

L. Thomas van Binsbergen Scheduling LOAGs with SAT



LOAG scheduling problem
SAT formulation

Constraint generation

Sat formulation

Let a variable correspond to an undirected edge.

An assignment to that variable determines direction.

By sharing variables we enforce the same relative ordering for
occurrences of the same non-terminal.

Bin

lhs:Tree

a1 a2 a3 a4

l:Tree

a1 a2 a3 a4

r:Tree

a1 a2 a3 a4

Leaf

lhs:Tree

a1 a2 a3 a4

L. Thomas van Binsbergen Scheduling LOAGs with SAT



LOAG scheduling problem
SAT formulation

Constraint generation

Sat formulation

Let a variable correspond to an undirected edge.

An assignment to that variable determines direction.

By sharing variables we enforce the same relative ordering for
occurrences of the same non-terminal.

Bin

lhs:Tree

a1 a2 a3 a4

l:Tree

a1 a2 a3 a4

r:Tree

a1 a2 a3 a4

Leaf

lhs:Tree

a1 a2 a3 a4

L. Thomas van Binsbergen Scheduling LOAGs with SAT



LOAG scheduling problem
SAT formulation

Constraint generation

Sat formulation

Let a variable correspond to an undirected edge.

An assignment to that variable determines direction.

By sharing variables we enforce the same relative ordering for
occurrences of the same non-terminal.

Bin

lhs:Tree

a1 a2 a3 a4

l:Tree

a1 a2 a3 a4

r:Tree

a1 a2 a3 a4

Leaf

lhs:Tree

a1 a2 a3 a4

L. Thomas van Binsbergen Scheduling LOAGs with SAT



LOAG scheduling problem
SAT formulation

Constraint generation

Initial formulation

Add every possible undirected edge to every production graph.

Assign a variable to every undirected edge with sharing.

Add constraints corresponding to the direct dependencies.

Add transitivity constraints.

Number of constraints is cubic to the number of attribute
occurrences.

L. Thomas van Binsbergen Scheduling LOAGs with SAT



LOAG scheduling problem
SAT formulation

Constraint generation

Solution

Less constraints are required when we:
1 Observe not all possible undirected edges have to be

considered.
2 Triangulate the graphs,

adding 2 clauses for all encountered triangles
and removing vertices with a safe neighbourhood.

Based on work by Bryant & Velev (2000).

3 Improving the heuristic for triangulating the graphs.
4 Constrain non-terminal subgraphs separately.

L. Thomas van Binsbergen Scheduling LOAGs with SAT



LOAG scheduling problem
SAT formulation

Constraint generation

Constraining triangles

In a triangulated graph every cycle has length 3 or has a chord.

By ruling out 3-cycles we rule out all bigger cyles.

n

s

w e

↗

↖

L. Thomas van Binsbergen Scheduling LOAGs with SAT



LOAG scheduling problem
SAT formulation

Constraint generation

Constraining triangles

In a triangulated graph every cycle has length 3 or has a chord.

By ruling out 3-cycles we rule out all bigger cyles.

n

s

w e

↗

↖

↑

L. Thomas van Binsbergen Scheduling LOAGs with SAT



LOAG scheduling problem
SAT formulation

Constraint generation

Constraining triangles

In a triangulated graph every cycle has length 3 or has a chord.

By ruling out 3-cycles we rule out all bigger cyles.

n

s

w e

↗

↖

↖

↑

L. Thomas van Binsbergen Scheduling LOAGs with SAT



LOAG scheduling problem
SAT formulation

Constraint generation

Constraining triangles

In a triangulated graph every cycle has length 3 or has a chord.

By ruling out 3-cycles we rule out all bigger cyles.

n

s

w e

↗

↖
↗

↑

L. Thomas van Binsbergen Scheduling LOAGs with SAT



LOAG scheduling problem
SAT formulation

Constraint generation

Triangulation

A graph is triangulated by selecting some vertex v ,
and adding a chord for all pairs of unconnected neighbours.

We add 2 clauses for every encountered triangle,
one for the clockwise and one for the counter-clockwise cycle.

After all neighbours are connected, v is removed.

Based on the notion of a perfect elimination order.

The order in which vertices are removed influences the
number constraints and variables.

And has a considerable impact on the time required to
generate the SAT-instance.

L. Thomas van Binsbergen Scheduling LOAGs with SAT



LOAG scheduling problem
SAT formulation

Constraint generation

Triangulation

Leaf

lhs:Tree

a1 a2 a3 a4

L. Thomas van Binsbergen Scheduling LOAGs with SAT



LOAG scheduling problem
SAT formulation

Constraint generation

Triangulation

Leaf

lhs:Tree

a1 a2 a3 a4

L. Thomas van Binsbergen Scheduling LOAGs with SAT



LOAG scheduling problem
SAT formulation

Constraint generation

Triangulation

Leaf

lhs:Tree

a1 a2 a3 a4

L. Thomas van Binsbergen Scheduling LOAGs with SAT



LOAG scheduling problem
SAT formulation

Constraint generation

Triangulation

Leaf

lhs:Tree

a2 a3 a4

L. Thomas van Binsbergen Scheduling LOAGs with SAT



LOAG scheduling problem
SAT formulation

Constraint generation

Triangulation

Leaf

lhs:Tree

a2 a3 a4

L. Thomas van Binsbergen Scheduling LOAGs with SAT



LOAG scheduling problem
SAT formulation

Constraint generation

Triangulation

Leaf

lhs:Tree

a3 a4

L. Thomas van Binsbergen Scheduling LOAGs with SAT



LOAG scheduling problem
SAT formulation

Constraint generation

Triangulation

Leaf

lhs:Tree

a1 a2 a3 a4

L. Thomas van Binsbergen Scheduling LOAGs with SAT



LOAG scheduling problem
SAT formulation

Constraint generation

Experimental results

K&W LOAG-b LOAG-SAT

UHC MainAG 33s 13s 9s
Asil Test 1.8s 4.4s 3.4s
Asil ByteCode 0.6s 29.4s 2.8s
Asil PrettyTree 390ms 536ms 585ms
Asil InsertLabels 314ms 440ms 452ms
UUAGC CodeGeneration 348ms 580ms 382ms

Pigeonhole principle+ 107ms 1970ms 191ms
Pigeonhole principle− 111ms 60.2s 103ms

MiniSat is the used SAT-solver.

L. Thomas van Binsbergen Scheduling LOAGs with SAT



LOAG scheduling problem
SAT formulation

Constraint generation

Schedule optimisations

Encoding LOAG as SAT allows us to define arbitrary
scheduling optimisations.

For example:

Reducing overhead from performing visits.
Demanding certain attributes to be evaluated ASAP.

L. Thomas van Binsbergen Scheduling LOAGs with SAT



LOAG scheduling problem
SAT formulation

Constraint generation

Conclusion

The LOAG scheduling problem is quite general:

Find a linear order on a number of graphs.
Where some pairs need to have the same ‘assignment’.

Generating the SAT-instance takes up most of the work.

We expect user-defined descriptions to be easy.

Benefits of using SAT:

Fastest algorithm for scheduling large LOAGs.
Enables (user-specified) scheduling optimisations.

L. Thomas van Binsbergen Scheduling LOAGs with SAT



LOAG scheduling problem
SAT formulation

Constraint generation

Scheduling the Utrecht Haskell Compiler (UHC)

UHC is partly generated from of a large number of AGs.

The “main AG” is large indeed:

30 non-terminals
134 productions
1332 attributes (44.4 per non-terminal!)
9766 dependencies

Kastens’ algorithm does not find a static evaluation order for
the main AG.

We know at least one exists, as Kastens’ algorithm can be
‘helped’ to find one using 24 augmenting dependencies.

L. Thomas van Binsbergen Scheduling LOAGs with SAT



LOAG scheduling problem
SAT formulation

Constraint generation

Triangulation heuristic

Order #Clauses #Vars Ratio Time
(d , s, c) 21,307,812 374,792 57.85 34s
(d , c , s) 8,301,557 220,690 37.62 17s
(s, d , c) 12,477,519 287,151 43.45 23s
(s, c , d) 8,910,379 241,853 36.84 18s
(c , d , s) 3,004,705 137,277 21.89 9s
(c , s, d) 3,359,910 156,795 21.43 10s

(d + s, c) 12,424,635 386,323 32.16 22s
(d , s + c) 8,244,600 219,869 37.50 17s
(d + c , s) 2,930,922 135,654 21.61 9s
(s, d + c) 8,574,307 236,348 36.28 17s
(s + c , d) 3,480,866 157,089 22.16 11s
(c , d + s) 3,392,930 157,568 21.53 11s

(c + d + s) 3,424,001 148,724 23.02 11s
(3 ∗ s ∗ (d + c) + (d ∗ c)2) 2,679,772 127,768 20.97 9s

L. Thomas van Binsbergen Scheduling LOAGs with SAT


	LOAG scheduling problem
	SAT formulation
	Constraint generation

