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Abstract 

To reveal in detail the process of initiation of a thrust fault, we conducted analog 

experiments with dry quartz sand using a high-resolution digital image correlation 

technique to identify minor shear strain patterns for every 27 m of shortening (with an 

absolute displacement accuracy of 0.7 m). The experimental results identified a 

number of “weak shear bands” and minor uplift prior to the initiation of a thrust in 

cross-section view. The observations suggest that the process is closely linked to the 

activity of an adjacent existing thrust, and can be divided into three stages. Stage 1 is 
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characterized by a series of abrupt and short-lived weak shear bands at the location 

where the thrust will subsequently be generated. The area that will eventually be the 

hanging wall starts to uplift before the fault forms. The shear strain along the existing 

thrust decreases linearly during this stage. Stage 2 is defined by the generation of the 

new thrust and active displacements along it, identified by the shear strain along the 

thrust. The location of the new thrust may be constrained by its back-thrust, generally 

produced at the foot of the surface slope. The activity of the existing thrust falls to zero 

once the new thrust is generated, although these two events are not synchronous. Stage 

3 of the thrust is characterized by a constant displacement that corresponds to the 

shortening applied to the model. Similar minor shear bands have been reported in the 

toe area of the Nankai accretionary prism, SW Japan. By comparing several transects 

across this subduction margin, we can classify the lateral variations in the structural 

geometry into the same stages of deformation identified in our experiments. Our 

findings may also be applied to the evaluation of fracture distributions in thrust belts 

during unconventional hydrocarbon exploration and production. 

 

1. Introduction 

Analog modeling has been used since the nineteenth century to evaluate how geological 
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structures are formed, and to understand the mechanisms controlling the geometry and 

kinematics of these structures (e.g., Koyi, 1997,). For many decades we have been 

concerned about how to measure experimental deformations quantitatively. Recently, 

improvements in computational resources and the resolution of digital charge coupled 

device (CCD) cameras have made it possible to calculate the displacement field at a 

high spatial resolution (Graveleau et al., 2012). Previous studies have shown that these 

new techniques can reveal in detail the styles of strain accumulation and distribution in 

analog models (e.g., Adam et al., 2005; Hoth et al., 2006a, 2007; Cruz et al., 2008; Pons 

and Mourgues, 2012, Yamada et al., 2014). 

By applying the digital image correlation (DIC) technique to the compressional 

wedge model, Adam et al. (2005) reported the complex interaction of different 

deformation mechanisms during shear localization (initiation of the frontal thrust) as 

follows. 

A: Underthrusting of the input layer prior to basal shear zone initiation. 

B: Basal shear zone propagation and diffuse shear strain in the input layer. 

C: Spontaneous strain localization in conjugate shear zones. 

D: New active thrusting and a continuous frontal–basal shear zone. 

Although these complex deformation stages have been reported, the DIC 
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technique has been used mainly for visualizing the overall deformation in a wide range 

of structures, for example on the scale of an accretionary wedge (Hoth et al., 2006b, 

2007; Yamada et al., 2014). Few studies have focused on the process by which a new 

thrust is initiated; e.g., Bernard et al. (2007), who used digital image based analysis. 

In this paper we aim to identify the phenomena that occur before new thrusts are 

initiated. Our observations focus on the frontal thrust area where the deformation is 

analyzed in detail using the DIC technique. 

 

2. Methods 

We used scaled 2D analog modeling experiments, with high-resolution DIC analysis, to 

extract the spatial and temporal distributions of the minor deformation (shear strain in 

this study) associated with the initiation of the frontal thrust. Scaled analog modeling 

has been widely used to represent the geometry and process of deformation of 

geological structures (see the following reviews: Koyi, 1997; Buiter, 2012; Graveleau et 

al., 2012). Previous studies have investigated the mechanical properties of granular 

materials and their scaling properties (Krantz, 1991; Schellart, 2000) and their 

non-linear strain-dependent mechanical behavior (Lohrmann et al., 2003; Adam et al., 

2005; Panien et al., 2006). Lohrmann (2003) argued that granular materials obey 
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elastic–frictional plastic deformation with pre-failure strain hardening and post-failure 

strain softening until a dynamically constant shear load is reached. This is similar to the 

nonlinear deformational behavior of brittle rocks, suggesting that granular material 

(especially dry quartz sand) can fulfil the conditions of dynamic similarity and 

accurately simulate crustal tectonic processes. To model the process of initiation of the 

thrust fault, we used a simple shortening experiment with dry quartz sand. 

 

2.1. Experimental setup 

The experimental setup consisted of a box of 25 × 90 × 30 cm (height, length, width) in 

dimensions equipped with a moving wall, a transparent side-glass, a plastic Teflon base, 

and digital cameras (Figure 1). As suggested by Schreurs et al (2006), the sidewall has 

frictional effects, and the shape of thrust fault is curved by the side-wall friction. To 

minimize this effect, the glass surfaces were coated with a low friction agent. 

We used low cohesion quartz sand (Toyoura sand) as the granular material, and its 

thickness was 4 cm. Toyoura sand is a beach sand, popular among Japanese civil 

engineers for physical tests. To minimize potential pre-defined weak planes and any 

heterogeneity in the initial state of the experimental material, we used a custom-made 

sand distributor, which automatically produces a homogeneous layer of sand. Marker 
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layers to visualize the deformation were not inserted, but we mixed sand that had been 

dyed in three different colors to emphasize the granular pattern for digital image 

correlation. The properties of the mixed sand and the Teflon base were tested using a 

series of ring shear tests under normal loads comparable to experimental conditions. 

The material tests confirmed that the Toyoura sand shows a nonlinear stress-strain 

relationship with elastic–frictional plastic deformation behavior. Shear zone formation 

is accompanied by a characteristic cycle of material compaction and decompaction 

caused by distributed strain during pre-failure strain hardening followed by shear failure 

at peak strength and shear localization with post-failure strain softening during ongoing 

deformation. As consequence of the decompaction and strain softening during shear 

localization, weaker pre-existing shear zones are characterized by lower strength and 

decreased frictional coefficients. All relevant material parameters for the experiment 

materials are summarized in Table 1. 

The strain softening of the sand material and pre-existing shear zones describes 

the drop in stress and strength during shear localization (see table 1). Strain softening 

for the Toyoura sand varies from 23.6 % for undeformed material to 14.6% for 

reactivation of internal shear zones. Strain softening along the basal interface of 

Toyoura sand to the Teflon base varies from 24.3 % for basal shear zone localization 
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(undeformed sand material on Teflon base) to 10.1% % for basal shear zone reactivation 

(deformed sand material on Teflon base). 

The sand layer was deformed by the moving wall, activated by an electrically 

controlled motor at a constant speed of 0.33 mm/minute (2.0 cm/hour). During the 

experiments, the deformation was recorded through the side-glass by digital cameras 

until the second thrust showed active deformation. Figure 2 shows an example of the 

final phase of the experiments, together with the location of the area of analysis and the 

first (existing) and the second (new) thrusts. Two cameras were used to cover the areas 

of interest (with 1.0 cm overlap) to maintain the required high resolution (Figure 1). 

 

2.2. DIC analysis with LES decomposition 

DIC is a technique used to extract the displacement field from pairs of time-lapsed 

digital images by matching the patterns of pixel color values. In other words, the 

resolution of DIC analysis is based on the resolution of digital images and the size of 

the recorded area. To extract information on a small deformation (strain), we used two 

16.0 megapixel digital cameras, each with a pixel size of 20 m in our configuration, 

and recording every 5 seconds (i.e., for 27.5 m of wall displacement). This analysis not 

only extracts the velocity field in the model but also the strain value from the velocity 
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pattern. To minimize the calculation errors derived from the stitching effect of the two 

images, we first calculated the strain value separately, then connected the two calculated 

results (Figure 3). Since we set the interrogation window (unit for pattern matching) 

size at 32 × 32 pixels with 50% overlap, the theoretical accuracy of displacement was 

0.025 pixels (0.5 m) (LaVision GmbH, 2012). This configuration of data acquisition 

made it possible for us to detect a finer detail of deformation than achieved previously 

in analog modeling (see Table 2). We used commercial software StrainMaster of 

LaVision GmbH.  

Since the deformation values obtained are extremely small, it is difficult to 

distinguish the small strain distribution pattern from the “artificial strain” due to the 

velocity gradient, because of errors caused by the random noise in the CCD acquisition 

patterns. To minimize this error and to clarify the very small deformation in the model, 

we applied the non-linear large eddy simulation (LES) decomposition filter (Adrian et 

al., 2000). There are a number of decomposition filters for detecting small-scale vortices 

in flow dynamics, and LES decomposition is the best method (Adrian et al., 2000; 

LaVision, 2012). In our study, given the quasi-static setting of the model and the 

short-term correlation interval (per 27.5 m of wall displacement), the turbulence or 

small-scale vortices in our results are unexpected. Therefore, we applied this filter to 
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remove most of the artificial small-scale vortices, after which we extracted the 

distribution of strain (Figure 4a). 

Although the artificial strain distribution is reduced by LES decomposition, an 

inhomogeneous strain distribution persists (Figure 4b). It has been reported that lens 

distortion can hamper the strain identification process (Lava et al., 2013). From Figure 

4b, we can identify the differences in the strain distribution between the center and the 

outer sides of the images. Therefore, in this paper we focus on the qualitative 

transitional pattern rather than the absolute value of the derived strain. 

 

3. Experimental results 

3.1. Overall deformation pattern 

Based on the time-series activity of two thrusts, one existing and one new, that can be 

identified from incremental shear strain patterns (Figure 5), we divide the initiation 

process of the frontal thrust into three stages. We have observed the detailed 

characteristics of the temporal strain patterns at each stage of deformation in the shear 

strain distributions calculated for every 27 m of wall displacement (Figure 6). 
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Stage 0 (Pre-stage 1) 

While the existing thrust maintains a constant slip rate (Figure 5a), we do not identify 

any shear-strain pattern in the foreland of the thrust (Figure 6a). The area that will be the 

hanging wall shows no motion (Figure 5b). 

 

Stage 1 

Shear strain along the existing thrust decreases linearly with convergence, and we 

identify a series of abrupt and short-lived subtle shear strains at the location of the new 

thrust. These “weak shear bands” are sub-parallel to each other and dip to the right-hand 

side, and the location of each band changes systematically and rapidly (Figure 6b). In 

other words, these bands do not stay in the same location for more than three 

consecutive increments (81 m of wall displacement). We observe the activity of the 

shear bands throughout this stage. The area that will be the hanging wall of the new 

thrust starts to uplift at a constant rate (Figure 5b), even prior to the formation of the 

thrust fault surface. 

 

Stage 2 

The weak shear bands start to localize at a specific location to form the new thrust 
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(Figure 6c), and the shear strain along this thrust starts to increase significantly (Figure 

5a). At the same time, the hanging wall of the thrust is uplifted significantly, but the rate 

(for every 18 m) is not constant, and it exhibits a peak in the middle of this stage 

(Figure 5b). Once the strain localization starts, the rapidly moving weak shear bands can 

no longer be observed. The shear strain along the existing thrust decreases significantly 

and falls to a background level (Figure 6c), but this was not synchronous with the 

emergence of the new thrust (Figure 5a). 

 

Stage 3 

The shear-strain along the new thrust reached a value similar to that of the existing 

thrust in stage 0, and subsequently the shear-strain value remains constant within a 

narrow shear band (Figures 5a and 6d). The uplift of the hanging wall continues during 

this stage (Figure 5b). 

 

3.2. Details of temporal strain accumulation in stage 1 

The experimental results show that the deformation pattern is characterized by weak 

shear bands during stage 1. To clarify the location of these weak shear bands, which do 

not remain in the same location, we calculated the distributions of incremental and 
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cumulative strains and compared their patterns. Figure 7 shows an example of the 

incremental and cumulative strains calculated for a shortening between 15.50 mm and 

15.75 mm. The cumulative strains, calculated using a Lagrangian summation of the 

incremental displacement field, show that the location of the weak shear bands is not 

random but the shear bands are generated at low strain regions between the bands. As 

the deformation proceeds, the shear strain is widely distributed without forming any 

concentrations of strain, except for a shear zone dipping to the opposite (i.e. back-thrust) 

at the foot of the surface slope. 

 

4. Discussion 

4.1. Conceptual model of thrust fault initiation 

Based on the observations described above, we propose the following conceptual model 

for initiation of a thrust fault (Figure 8). 

 

Stage 1: This is the deformation propagation stage (cf. Figures 6–8), characterized by 

ephemeral minor “weak shear bands” in front of an existing frontal thrust that is 

decreasing in activity. This stage may correspond to the “diffuse shear strain” 

distribution of Adam et al. (2005). However, our detailed observations in terms of 
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temporal and spatial resolution revealed that this “diffusive” deformation is the sum of 

the activity of numerous short-lived weak shear bands (Figure 7). These features are 

compatible with the previously reported patterns of shear banding in sand under plane 

strain compression where the shear strain is initiated along a number of parallel and 

conjugate planes prior to the peak stress (Rechenmacher, 2006). Therefore, during this 

stage, a number of minor thrust faults in the foreland may have been associated with the 

propagation of shortening deformation. The accommodation of the shortening by the 

minor shear bands may also be responsible for the uplift (cf. Figure 5b) in the area of 

the future hanging wall. 

 

Stage 2: This is the stage of strain localization and thrust initiation (cf. Figures 6–8). 

The shear strain starts to localize, and the location of the new frontal thrust is 

determined at one of the minor weak shear bands that form during the process of 

localization. Other weak shear bands become inactive, and the movements along the 

existing thrust abruptly cease. This process corresponds to what has previously been 

noted as the “strain localization” or “thrust initiation” stages that are associated with the 

time when the materials reach peak strength (Lohrmann et al., 2003; Adam et al., 2005). 

The rate of uplift of the hanging wall (Figure 5b) also shows a pattern similar to this 
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peak strength behavior. 

The location of the new frontal thrust seems to be constrained by its associated 

back-thrust whose location is generally at the foot of the surface slope (Figures 6-8). 

Since this surface topography is induced by the displacement of the previous thrust, the 

location of the new thrust is determined by the location of the previous thrust and the 

thickness above the detachment surface. Ruh et al (2012) reported a similar finding after 

their numerical simulations and also state that the dip of the new thrust is different from 

the ones within the wedge. We see the same thrust dip characteristics in our analog 

model. 

 

Stage 3: This is the active frontal thrust stage (cf. Figures 6–8), at which time the newly 

initiated thrust is the only active fault showing a constant rate of strain. The stage 

corresponds to the “after failure and stable sliding phase” of shear tests in granular 

materials (Lohrmann et al., 2003). During stage 3, the strain is released only by the new 

frontal thrust, and the total shear strain along the new thrust become significant. 

 

4.2. Comparisons with natural examples 

Since our experiments focused on the initiation process of a frontal thrust, we examined 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

 

the proto-thrust zones (PTZ) of two subduction margins for comparison. 

 

Cascadia 

The PTZ of the Cascadia accretionary margin, offshore from the northwestern coast of 

North America, contains a number of sub-parallel proto-thrusts with small 

displacements, and several of them show low-amplitude negative polarity reflection in 

the seismic dataset (Moore et al., 1995). This phenomenon suggests fluids may have 

migrated along these faults from depth.  

During stage 1 of our model (Figure 8), “weak shear bands” rapidly change their 

locations, and they may develop numerous sub-parallel active proto-thrusts that may act 

as fluid migration paths, following the idea presented by Yamada et al (2014). On the 

other hand, once the frontal thrust has been initiated, strain is mainly accommodated by 

the new thrust, and proto-thrusts are no longer generated. During stages 2 and 3, the 

fluids migrate mainly along the new active frontal thrust, and the proto-thrusts may not 

show any clear seismic anomaly of negative polarity. According to above discussion, we 

can infer that the sub parallel seismic anomaly at the toe of Cascadia margin suggest 

they are under Stage 1. 
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Nankai 

At the toe of the Nankai accretionary prism in SW Japan, there is a proto-thrust zone 

(PTZ) where the Philippine Sea plate is being subducted beneath the southwest Japan 

arc (Eurasian plate), and where sediment is actively accreting (Moore et al., 2001). 

According to previous studies (e.g., Morgan et al., 1995), the structural domain varies 

between two parallel transects of the Nankai prism off Cape Ashizuri and Cape Muroto, 

which are 130 km apart. The toe of the Ashizuri transect has a well-developed PTZ 

containing numerous sub-parallel dipping discontinuities, whereas the Muroto transect 

has only a narrow PTZ and few discontinuities. Moore et al. (2001) suggested that these 

variations might be the result of differences in mechanical properties and/or pore 

pressures. 

Based on the stages of deformation we proposed from our experiments (Figure 8), 

together with information from the Cascadia margin, the interpretation of the 

Muroto–Ashizuri transects by Moore et al. (2001) can be revised. The sub-parallel 

discontinuities in the Ashizuri PTZ may correspond to the “weak shear bands” observed 

in our experiments (Figure 7b), and the along-strike variation between the two transects 

may correspond to different stages in the initiation of the frontal thrust rather than 

changes in mechanical properties. Since the surface topography of the Muroto transect 
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PTZ indicates more deformation than in the Ashizuri transect, the Muroto PTZ may be 

at a later stage of development. In other words, the Ashizuri PTZ may be in stage 1 of 

its development, with numerous active proto-thrusts acting as the migration paths for 

fluids, and producing a seismic discontinuity (cf. Cascadia margin). On the other hand, 

the Muroto PTZ may be at stage 2 or stage 3, and only the one active thrust is 

seismically active due to the fluid flow being concentrated along that fault. By analogy 

with our model results, the Muroto PTZ might have been wider in the past with more 

proto-thrusts, but these minor features have now disappeared and can no longer be 

detected since their fault displacements are too small to be detected in the seismic data. 

This proposition is consistent with the existence of deformation bands with reverse 

displacements in the core samples recovered from the ODP 1174 site, which was drilled 

through the Muroto proto-thrust (Ujiie et al., 2004). 

 

4.3. Implications for hydrocarbon exploration/production 

Shale gas and oil have been highlighted in recent years as unconventional hydrocarbon 

resources, particularly in the USA (Montgomery et al., 2005; Bowker, 2007), and the 

detection of “sweet spots” (highly productive targets) has been the key issue. Since 

shale gas reservoirs are of extremely low permeability, natural fractures play a major 
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role in every stage of the accumulation, preservation, and production of the 

hydrocarbons (Curtis, 2002; Slatt and O’Brien, 2011; Ding et al., 2012, 2013). The 

detection of sub-seismic natural fracture systems using geophysical exploration 

techniques remains challenging, and the model proposed in this study may provide 

insights into a potential approach for thrust belts. For example, in the case that the 

deformation stage of a thrust belt, as identified from seismic and 

topographic/bathymetric datasets, can be considered to be in stage 1 of the model 

presented in this paper, we can expect relatively new (possibly permeable) minor 

fracture systems in the foreland of the frontal thrust. 

 

4.4. Implications for bridging the gap between seismic and well data 

Seismic data provide information on large geological structures over tens of kilometers 

in length, whereas geophysical logging and core data can be used to characterize small 

structures (mm to a few meters) at the wells (Gauthier and Lake, 1993). Thus, a 

significant scale gap exists between these subsurface data sources (Strijker et al., 2012), 

and the combined use of these data requires an in-depth knowledge of the methods that 

underlie the datasets (Yamada et al., 2011). Our conceptual model may help to bridging 

these scale gaps by providing a greater understanding of the geological process in detail. 
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5. Conclusions 

With the use of high-resolution digital image correlation analysis, we have conducted 

detailed analog sandbox modeling with a focus on the initiation of frontal thrusts. In our 

experiments, “weak shear bands” and strain concentration are identified in the area 

where the new thrust is later to be initiated. We divide initiation process of a thrust into 

three stages: 

Stage 1: Propagation of the deformation to the undeformed foreland of existing thrust. 

Stage 2: Strain localization and initiation of a new thrust. 

Stage 3: Active displacement upon the thrust. 

By comparing our experimental results with the geometry of the Nankai 

accretionary prism, we infer that the along-strike variations in structural geometry 

observed in the toe area may be due to these areas being at different stages of 

deformation. 

Since our experimental configuration is one of simple shortening, our conceptual 

model can be applied to any fold-and-thrust belt. By taking into account the 

deformation stage of the target structure, we can estimate the potential presence of 

sub-seismic scale fractures or minor faults, which may be significant in terms of 
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assessing the productivity of a hydrocarbon reservoir. 
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Figure 1. Experimental setup. The experimental material (dry sand) is set on a Teflon 

base. The left wall is fixed and the right wall is displaced at a constant speed by an 

electrical motor. Two cameras are used to record the 2D cross-sectional deformation 

around the thrust initiation area through the transparent glass-sidewall. 

 

Figure 2. Example of the final state of an experiment. The locations of the existing and 

new frontal thrusts are indicated by dashed and solid lines, respectively. The rectangular 

box shows the area of recording, focusing on the area in which the new frontal thrust 

initiates. 
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Figure 3. Analytical procedure used in this study. (a) Digital picture taken by two (left 

and right) cameras, (b) digital image analysis undertaken for the two pictures separately, 

and (c) connection of the two results to determine the spatial distribution of maximum 

shear strain around the area of initiation of the new (2nd) frontal thrust. 

 

Figure 4. Effects of LES decomposition filter. (a) Noise reduction by this method. These 

patterns are obtained by using images of the undeformed foreland area after 1.0 mm of 

shortening. The artificial shear strain due to the minor vortices (artifacts) widely 

distributed in the initial calculation (left) can be significantly reduced by applying the 

LES decomposition (right). The arrows are 400 times exaggerated. (b) Remaining 

pattern of inhomogeneous strain distribution (background noise) after LES 

decomposition. The distribution of artificial background noise across the images 

(above) are for an average of 5 time-lapsed analyses, and they show gradual increases 

towards the edges. 

 

Figure 5. Detailed time-series analysis of the frontal thrust. (a) Incremental maximum 

shear strain along the two thrusts, obtained by DIC analysis. The boxes (ca. 64 mm
2
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each) correspond to the sampling locations where the mean strains were calculated. (b) 

Amount of uplift of the hanging wall, showing the location used for the calculations 

(indicated by a box). 

 

Figure 6. Detailed temporal evolution of the shear strain distribution for each 27 m of 

wall displacement, representing the characteristics of the three stages of thrust initiation. 

The timings for these strain distributions are indicated in Figure 5. (a) Before stage 1, 

only the existing thrust is active. (b) In stage 1, the weak shear bands (marked by 

arrows) are active in the foreland area of the existing thrust while the thrust is still active. 

(c) In stage 2, the new thrust initiates and the activity of the existing thrust (marked by 

the arrow) decreases. (d) In stage 3, only the new thrust is active. 

 

Figure 7. Incremental (left) and cumulative (right) strain distributions in stage 1, based 

on the time-series data for wall displacement of 15.50 to 15.75 mm. It is clear that the 

“diffusive” strain in front of the previous frontal thrust is the sum of the minor shear 

strain generated by a number of short-lived weak shear bands. 

 

Figure 8. Conceptual model, in three stages, for the initiation of a frontal thrust: 
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propagation of deformation (stage 1), strain localization and thrust initiation (stage 2), 

and active displacement upon the frontal thrust (stage 3). See text for more detail. 
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Fig. 2 
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Fig. 3 

 

Fig. 4a 
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Fig. 4b 
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Fig. 5 

 

Fig. 6 
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Fig. 7 
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Fig. 8 

 

Table 1. Physical properties of analog materials used in the sandbox experiments. We 

used a ring shear tester (RST-01.pc) to measure the internal coefficient of friction and 

the cohesion C. The suffixes “peak”, “static”, and “dynamic” indicate the property of 

the undeformed material, previously deformed material, and active shear zones, 

respectively.  
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material 

Toyoura sand 

internal 

Toyoura sand 

on basal shear zone 

grain size (m) 106-300*1 ― 

preparation Sifted relative to sifted sand 

density (g/cm3) 1.602 ― 

peak 0.728±0.008 0.271±0.013 

Cpeak (Pa) 157±13 ― 

static 0.675±0.004 0.240±0.011 

Cstatic (Pa) 127±7 95±20 

dynamic 0.589±0.003 0.218±0.013 

Cdynamic (Pa) 105±5 78±17 

strain 

softening 

(%) 

undeformed 

material 

0.236-23.6*2 0.243-24.3*4 

shear zone 

reactivation 

0.146-14.6*3 0.101-10.1*5 

*1 Yamada et al., 2010 

*2 Ratio of the friction coefficients: [peak strength - dynamic strength] / dynamic 

strength in percent. For Toyoura sand strain softening: 0.236 ~ 23.6%. 

*3 Ratio of the friction coefficients [static strength - dynamic strength] / dynamic 

strength in percent. For Toyoura sand strain softening for fault reactivation: 0.146 ~ 

14.6%. 

*4 Ratio of the friction coefficients: [peak strength - dynamic strength] / dynamic 

strength in percent. For Toyoura sand on Teflon strain softening: 0.243 ~ 24.3%. 
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*5 Ratio of the friction coefficients: [static strength - dynamic strength] / dynamic 

strength in percent. For Toyoura sand on Teflon strain softening: 0.101 ~ 10.1%. 

 

Table 2. Comparisons of the temporal resolutions and displacement accuracies between this study 

and previous studies. 

method reference temporal resolution 

(mm of shortening) 

absolute displacement 

accuracy 

DIC Adam et al., 2005 22 0.05-0.5mm 

 Hoth et al., 2006b, 2007, 

2008 

7.5 0.5mm 

 Cruz et al., 2008, 2010 60 0.015mm 

 Pons and Mourgues, 

2012 

0.75 0.1-0.5mm 

 Yamada et al., 2014 0.25 2.43m 

 this study 0.027 0.5m 

optical flow Bernard et al., 2007 0.235 5% 

 

 

Graphical Abstract 

 

Highlights 
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 Thrust initiation process can be divided into three stages. 

 Many abrupt and short-lived weak shear bands are produced before thrust 

initiation. 

 Hanging wall starts to uplift before new thrust fault forms. 

 Location of new thrust is determined by its back-thrust. 

 Lateral structural variations can be due to different stages of thrust initiation. 
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