
Many-valued Institutions for
Constraint Specification

Claudia Elena Chiriţă1, José Luiz Fiadeiro1 and Fernando Orejas2

1Dept. of Computer Science, Royal Holloway University of London, UK
claudia.elena.chirita@gmail.com, jose.fiadeiro@rhul.ac.uk

2 Dep. de Llenguatges i Sistemes Informàtics, Uni. Politècnica de Catalunya, Spain
orejas@lsi.upc.edu ?

Abstract. We advance a general technique for enriching logical systems
with soft constraints, making them suitable for specifying complex soft-
ware systems where parts are put together not just based on how they
meet certain functional requirements but also on how they optimise cer-
tain constraints. This added expressive power is required, for example, for
capturing quality attributes that need to be optimised or, more generally,
for formalising what are usually called service-level agreements. More
specifically, we show how institutions endowed with a graded semantic
consequence can accommodate soft-constraint satisfaction problems. We
illustrate our approach by showing how, in the context of service discovery,
one can quantify the compatibility of two specifications and thus formalise
the selection of the most promising provider of a required resource.

1 Introduction

The problem of supporting the process of building complex systems from simpler
parts has deserved a lot of attention since the birth of software engineering,
and has been addressed by formal methods of different kinds (e.g. [12]). One
such family of formal methods is known under the general heading of ‘algebraic
specification’ (e.g. [23]). In a nutshell, the method is based on the simple principle
that parts of software applications (components, modules, and so on) should
expose interfaces where they specify required and provided properties. Those
parts can then be connected if their interfaces match (in the sense that required
properties are met by those provided).

A well-known theory of algebraic specifications is based on the theory of
‘institutions’ [17]. Essentially, institutions provide logical languages for formulating
the properties that will go on the interfaces of parts and an algebra of models
that provide mathematical abstractions of the parts; properties and models are
related in a way that supports compositionality, i.e. that the properties of a
complex whole can be derived from those of its parts.
? Work partially supported by funds from the Spanish Ministry for Economy and
Competitiveness (MINECO) and the European Union (FEDER funds) under grant
COMMAS (ref. TIN2013-46181-C2-1-R)

2 C.E. Chiriţă, J. L. Fiadeiro and F. Orejas

That theory is based on exact matches between interfaces, i.e. either the
provided properties satisfy the required ones or they do not. Whereas this has
served well the specification of functional requirements, software development
has evolved in ways that require the specification of properties that can be met
in more than one way, i.e. that express ‘soft’ constraints. A typical example is
service-oriented software development where software applications (requesters)
can choose among several application suppliers (providers) every time a need for
a service arises; the requester first needs to discover a provider that can guarantee,
through an interface, the fulfilment of certain requirements, and then to bind to
a provider that optimises the satisfaction of certain constraints (e.g. shipment
costs in relation to delivery time) establishing a ‘service-level agreement’. Another
example arises in the context of software product lines, where the selection of
features may require the optimisation of given quality attributes of the resulting
software variant [18].

In this context, soft-constraint systems have been successfully employed for
capturing such non-functional requirements in service-oriented architectures [20,
27], including the negotiation of service-level agreements [6], as well as in the
context of software product lines (e.g. [2]). The two main approaches to soft
constraint satisfaction problems, scsp [4] and vcsp [24, 9], generalise the classical
crisp variant of constraint satisfaction problems (csp) by evaluating constraints
over c-semirings and valuation structures, respectively.

Our aim in this paper is to extend the institution-based theory of algebraic
specifications to address soft constraints. Although the idea of extending abstract
data types with soft constraints was already outlined, essentially through exam-
ples, in [15], it lacks a rigorous formalisation within the setting of institutions.
Such an extension is essential to provide a logic-independent foundation that,
on the one hand, can be used to support different specification languages and,
on the other hand, can be integrated in development environments that, like
Hets [21], offer automated support for the specification and analysis of systems.

To this end, in Sec. 2, we first extend the traditional notion of institution along
the lines of [10] by replacing the boolean space of truth values with residuated
lattices [16], which offer a unifying truth structure for both idempotent c-semirings
and valuation structures [3]. Using a simple example, we explain how first-order
logic specifications can be extended with soft constraints, and then show how
this extension can be generalised to define a logical system of soft constraints as
a many-valued institution parameterised by a stratified logic [1]. Based on this
construction, in Sec. 3, we formalise the mechanism of selecting a most promising
provider of a needed resource in the context of service discovery and binding
on the quantification of the compatibility of two constraint specifications as a
value of a residuated lattice; we achieve this by defining a compatibility score
using the concept of graded semantic consequence [10]. Lastly, in Sec. 4 we study
the evolutionary behaviour of service applications. We show how our framework
captures situations where different service components (constraint specifications)
are based on different truth spaces, which arise in heterogeneous complex systems.
We also take into account the dynamicity of preferences during the development

3

of a system (the change of the truth structures, or of the preferences expressed
as sentences of the specifications), and underline the uncertainties of predicting
the evolutionary behaviour of service applications. The paper relies on basic
knowledge of category theory, for example at the level of [11, 22].

2 Soft-constraint specification in institutions

In this section, after briefly recalling the notion of institution, we focus on the
construction of a particular type of institution that is suitable for defining soft
csp specifications. As an example, we describe in more detail how constraint
specifications can be written over the institution of first-order logic. This allows
us to identify the properties and the additional structure that an institution
I should have in order to deal with soft constraints, and to further define a
many-valued institution CSP(I).

2.1 Institutions

The notion of institution was introduced by Goguen and Burstall [17] at the
beginning of the 80’s to allow for studying concepts for structuring and mod-
ularising specifications, independently of the actual formalism to be used for
writing the specifications. Intuitively, the notion of institution is an abstract view
of the main ingredients of a logical or specification formalism. In particular, an
institution consists of:

– A category of signatures, where signatures are the basic elements that we use
for building formulas. For instance, in first-order logic, signatures are sets of
sorts and function and predicate symbols together with their arity.

– A functor Sen that associates, to each signature Σ, the set of all the formulas
that can be written using Σ. In the case of first-order logic, this would
mean all the formulas that can be written using the predicate and function
symbols in the signature, and including the standard logical connectives and
quantifiers. Sen is a functor and not just a mapping, because we want to
explicitly associate to each signature morphism ϕ : Σ → Σ′ that translates
symbols in Σ into symbols in Σ′, the mapping Sen(ϕ) that translates formulas
over Σ into formulas over Σ′.

– A functor Mod that associates, to each signature Σ, the category of all
its models. In the case of first-order logic, Mod(Σ) is the category of all
Σ-algebras. Again, Mod is a functor and not just a mapping, because we
want to explicitly associate to each signature morphism ϕ : Σ → Σ′ that
translates symbols in Σ into symbols in Σ′, the reduct associated to that
morphism. In particular, if A′ is a Σ′-algebra, its reduct along ϕ : Σ → Σ′

would be a Σ-algebra A, where each symbol s in Σ is interpreted like the
symbol ϕ(s) in A′.

– A satisfaction relation that, given a Σ-formula ρ and a Σ-model M , tells us
if M satisfies ρ. Moreover, it is required that institutions (i.e. the formalisms

4 C.E. Chiriţă, J. L. Fiadeiro and F. Orejas

that we consider valid) satisfy the satisfaction condition that states that
satisfaction does not depend on the choice of signature, i.e. satisfaction is
invariant under language translation.

Definition 1 (Institution). An institution I consists of

– a category SigI whose objects are called signatures,
– a sentence functor SenI : SigI → Set giving for every signature Σ the set

SenI(Σ) of Σ-sentences and for every signature morphism ϕ the sentence
translation map SenI(ϕ),

– a model functor ModI : (SigI)op → Cat defining for every signature Σ the
category ModI(Σ) of Σ-models and Σ-model homomorphisms, and for every
signature morphism ϕ the reduct functor ModI(ϕ),

– a satisfaction relation |=IΣ ⊆ |ModI(Σ)| × SenI(Σ) for every signature Σ,

such that the satisfaction condition ModI(ϕ)(M ′) |=IΣ ρ iff M ′ |=IΣ′ SenI(ϕ)(ρ)
holds for any signature morphism ϕ : Σ → Σ′, Σ′-model M ′ and Σ-sentence ρ.

We may omit sub- or super-scripts when there is no risk of confusion. The sentence
translation SenI(ϕ) and the reduct functor ModI(ϕ) may also be denoted by
ϕ(_) and _�ϕ. When M = M ′�ϕ we say that M is a ϕ-reduct of M ′ and that
M ′ is a ϕ-expansion of M .

A specification in an institution I is a pair (Σ,E) consisting of a signature
and a collection of sentences (axioms) in the language of that signature, i.e.
E ⊆ SenI(Σ) – what is usually called a (theory) presentation. A morphism of
specifications φ : (Σ,E) → (Σ′, E′) is a signature morphism φ : Σ → Σ′ such
that E′ |= φ(E), i.e. the axioms of (Σ,E) are semantic consequences of (Σ′, E′) –
such a morphism formalises the way (Σ,E) is a part of (Σ′, E′). Presentations
and their morphisms constitute a category, which we denote by PresI .

An example of a specification in first-order logic is given in Fig. 1 (written in
a Casl-like syntax [8]) – the specification of residuated lattices, i.e. the first-order
structures that satisfy the axioms of the specification are the residuated lattices,
which play an essential role in this paper.1

2.2 Generalising the truth space

As said above, institutions are an abstraction of logical formalisms, where you
describe its main ingredients, in particular, when a given formula is satisfied (or
is not satisfied) by a given model. However, when dealing with soft constraints,
we need to allow for different degrees of satisfaction. This means, replacing the
‘true’/‘false’ structure of truth values by a more complex kind of structures.
In this paper, we consider that these structures are residuated lattices. The
choice for residuated lattices is motivated by the fact that the addition of a
1 The residuated lattices thus specified are sometimes called commutative (because
the monoid is commutative), integral (because the unit of the monoid is a greatest
element of the lattice), and zero-bounded (because there is a lowest element 0) [16].

5
spec ResiduatedLattices =

sort Sat
ops 0 : Sat, 1 : Sat

_ ∨ _ : Sat × Sat −→ Sat [comm, assoc, unit 0, idem]
_ ∧ _ : Sat × Sat −→ Sat [comm, assoc, unit 1, idem]
_ ∗ _ : Sat × Sat −→ Sat [comm, assoc, unit 1]
_ → _ : Sat × Sat −→ Sat

pred _ ≤ _ : Sat × Sat
∀ a, b, c : Sat • a ∨ (a ∧ b) = a
• a ∧ (a ∨ b) = a • a ≤ b iff a ∨ b = b
• (a ∗ b) ≤ (a ∗ c) if b ≤ c • b ≤ (a → c) iff (a ∗ b) ≤ c

Fig. 1. The specification (ΣRL, ERL) of residuated lattices

residual operation to semirings and valuation structures has been shown in [3, 7]
to provide a unifying framework for soft csp: residuated lattices generalise both
commutative idempotent semirings and fair valuation structures, which are the
structures usually employed with local consistency techniques [5].

We actually need for the lattices to be complete (i.e. that a supremum and
an infimum exists for every set of degrees of satisfaction).

Definition 2 (Complete residuated lattices). A complete residuated lattice
L = (L,≤,∨,∧, ∗,→, 0, 1) is a complete lattice (with supremum ∨, infimum ∧,
smallest element 0 and greatest element 1) equipped with a monoidal structure (a
commutative and associative binary operation ∗ having 1 as identity) such that, for
all elements x, y, z ∈ L, (x ∗ y) ≤ (x ∗ z) if y ≤ z, and y ≤ (x→ z) iff x ∗ y ≤ z.

A morphism λ : L → L′ is a function λ : L → L′ that is simultaneously a
morphism of complete lattices and of commutative monoids, and is compatible
with the residual →. We denote the corresponding category by RL.

Intuitively, the set L provides the degrees of satisfaction (with 0 as dissatisfaction
and 1 as total satisfaction) which are ordered according to ∨ or, equivalently,
to ∧: a ≤ b iff a ∨ b = b. The operation ∗ captures the accumulation of truth
values that result from successive inferences, and→ corresponds to the entailment
between two degrees of satisfaction. To capture soft csp as a many-valued logical
system, we therefore extend the notion of institution in keeping with [10]:

Definition 3 (RL-institution). An RL-institution I is defined as a tuple
(SigI ,SenI ,ModI ,RLI , |=I) consisting of

– a category SigI , a functor SenI , and a functor ModI as for an institution,
– a truth space functor RLI : (SigI)op → RL giving for every signature a
complete residuated lattice, and

– a many-valued satisfaction relation |=IΣ : |ModI(Σ)| × SenI(Σ)→ RLI(Σ)
for every signature Σ,

such that the equality
(
ModI(ϕ)(M ′) |=IΣ ρ

)
= RLI(ϕ)

(
M ′ |=IΣ′ SenI(ϕ)(ρ)

)
holds for any signature morphism ϕ : Σ → Σ′, Σ′-model M ′ and Σ-sentence ρ.
The satisfaction relation extends to a consequence relation over E,Γ ⊆ Sen(Σ)
as follows: E |=IΣ Γ =

∧
{(M |=IΣ E)→ (M |=IΣ Γ) |M ∈ |Mod(Σ)|}.

6 C.E. Chiriţă, J. L. Fiadeiro and F. Orejas

The rest of this section is dedicated to showing how, starting from an institution I
that satisfies some structural properties, we can define an RL-institution CSP(I)
of soft-constraint satisfaction problems based on I.

2.3 The first-order soft-constraint RL-institution

To specify systems using constraints, which we evaluate over residuated lattices,
we consider only those presentations that extend (ΣRL, ERL), that is presentations
(Σ,E) with ΣRL ⊆ Σ and E |= ERL. This means that, on the one hand, every
(Σ,E)-model has an underlying residuated lattice (its reduct as a ΣRL-model)
and that, on the other hand, we can make use of the symbols in ΣRL when
writing the sentences of E. Moreover, we admit only morphisms of presentations
ϕ : (Σ,E)→ (Σ′, E′) that do not change the symbols of ΣRL.

Example 4. Fig. 2 depicts the specification of a customer’s book-buying prefer-
ences. Customer extends the specification BookData, which concerns a book
trader that stores a number of books and offers three kinds of delivery: standard,
express and online; for every book, two operations return the language in which
the book is written and the number of days associated with each delivery mode.

spec BookData = Nat
then sorts Book, Language, Delivery

ops en, fr, de, pt, ro, es : Language
standard, express, online : Delivery
language : Book −→ Language
deliveryTime : Book × Delivery −→ Nat

spec Customer = BookData and ResiduatedLattices
then ops languagePref : Language −→ Sat

deliveryPref : Delivery × Book × Nat −→ Sat
∀ b : Book; n, n’ : Nat
• languagePref(en) ≤ languagePref(de)
• languagePref(de) ≤ languagePref(fr)
• deliveryPref(express, b, n) ≤ deliveryPref(online, b, n’)
• deliveryPref(standard, b, n) ≤ deliveryPref(online, b, n’)
• deliveryPref(express, b, n) ≤ deliveryPref(standard, b, n’) iff n ≥ 3 ∧ n’ ≤ 7

Fig. 2. The specifications BookData and Customer

Customer also extends the specification of residuated lattices given in Fig. 1
and adds two new function symbols – languagePref and deliveryPref – both of
sort Sat. Because every model of Sat is a residuated lattice, the two new function
symbols can be used to express preferences through axioms of the specification:
German is preferred to English and French to German; regardless of the book and
delivery time, online delivery is preferred to express and to standard; standard
delivery is preferred to express when express delivery takes three days or more
and standard takes seven days or less.

7

In order to include constraints in specifications, we need a new syntactic
category through which we can declare constraint variables, and we need constraint
sentences through which we can express preferences over those variables that we
wish to be optimised. For example, in the case of Customer, we could specify
the following constraint variables and sentences:

cvars book : Book; delivery : Delivery
• languagePref(language(book))
• deliveryPref(delivery, book, deliveryTime(delivery, book))

A constraint sentence (or constraint for short) is a term of sort Sat. The
specified constraints express the existence of preferences on the language in
which the book is written, and the wish to optimise the method of delivery
relatively to the expected delivery period. This optimisation is made relative to
the axiomatisation of the preferences in Customer: given a model of Customer
and a valuation χ of the constraint variables (i.e. a choice of a book and of a
delivery mode), every constraint is assigned a value (degree of satisfaction) in
the residuated lattice; the degree of satisfaction of a constraint in a model can
then be defined as the supremum of all the degrees of satisfaction obtained by
varying χ, i.e. for all possible combinations of books and delivery modes, which
in soft csp is known as the best level of consistency [5].

The extension of first-order logic with constraint sentences is best accommo-
dated in what are called stratified institutions [1], which provide an elegant way
of capturing the valuations of constraint variables through states of models:

Definition 5 (Stratified institution). A stratified institution I is defined as
a tuple (SigI ,SenI ,ModI , J_KI , |=I)2 where

– SigI , SenI and ModI are as for an institution,
– J_KI is a stratification, i.e. a collection of
• functors J_KIΣ : ModI(Σ)→ Set for every signature Σ, and
• surjective3 natural transformations J_KIφ : J_KIΣ′ ⇒ ModI(φ) ; J_KIΣ for
every signature morphism φ : Σ → Σ′,

– the satisfaction relation M |=m
Σ ρ is parameterised by model states,

such that, for every φ : Σ → Σ′, M ′ ∈ |ModI(Σ′)|, m′ ∈ JM ′KIΣ′ , ρ ∈ SenI(Σ):
ModI(φ)(M ′) |=JM ′KI

φ(m′)
Σ ρ iff M ′ |=m′

Σ′ SenI(φ)(ρ).

The stratified version of the institution of first-order logic that we adopt, which
will be denoted by FOL, has as signatures pairs 〈Σ,V 〉 of a first-order signature
Σ and a set of sorted constraint variables V . The 〈Σ,V 〉-sentences are simply
sentences over Σ with the constraint variables V as constants (nullary operation
symbols). The models of a signature 〈Σ,V 〉 are the Σ-models, while the states
2 In order to simplify the notation, we will omit the stratified institution in the
super-script of the satisfaction relation.

3 By the surjectivity of the natural transformations we understand that for every
morphism φ : Σ → Σ′ and every M ′ ∈ |ModI(Σ′)|, JM ′KI

φ is surjective.

8 C.E. Chiriţă, J. L. Fiadeiro and F. Orejas

of a model M are the valuations χ : V → M , i.e., sorted functions from V to
the many-sorted carrier set of M . The satisfaction of a 〈Σ,V 〉-sentence ρ by a
〈Σ,V 〉-model M in a state χ ∈ JMK〈Σ,V 〉 is defined as the satisfaction of ρ in
(M,χ), i.e. in the extension of M with the interpretation χ of variables.

Notice that every specification in the institution of first-order logic defines
a specification in FOL by choosing an empty set of constraint variables, i.e. we
identify a first-order specification such as (ΣRL, ERL) with (〈ΣRL, ∅〉, ERL).

We can now summarise the construction of the RL-institution CSP(FOL) of
first-order soft-constraint satisfaction problems:
Signatures. A signature is a pair (L, ∆) of a complete residuated lattice L
and an extension ∆ : (ΣRL, ERL)→ (〈Σ,V 〉, E) of the specification of residuated
lattices. We include a residuated lattice as part of a signature in order to let
specifiers decide on which space of degrees of satisfaction they want to work with.
For simplicity we may denote (L, ∆ : (ΣRL, ERL)→ (〈Σ,V 〉, E)) by (L, Σ, V,E).
Constraint sentences. A constraint sentence (or constraint for short) for a
signature (L, Σ, V,E) is a 〈Σ,V 〉-term of sort Sat.
Models. The models of (L, Σ, V,E) are the models of (〈Σ,V 〉, E) whose reducts
along ∆ are complete and admit a morphism into L. Notice that it would be too
restrictive to choose only those models of (〈Σ,V 〉, E) whose reducts over ΣRL are
L because we wish to support mappings between specifications that use different
residuated lattices as their spaces of degrees of satisfaction. Formally, a model
of (L, ∆ : (ΣRL, ERL)→ (〈Σ,V 〉, E)) is a pair (M,f) consisting of a model M of
(〈Σ,V 〉, E) together with a morphism f : M�∆ → L.
Satisfaction relation. For every constraint signature (L, Σ, V,E) and every
model M , we define the value of c over M as the best level of consistency:(

(M,f) |=(L,Σ,V,E) c
)

= f
(∨

χ∈JMKΣ
eval(M,χ)(c)

)
,

where eval(M,χ)(c) is the usual (inductively defined) interpretation of the first-
order 〈Σ,V 〉-term c in (M,χ). Note that f translates the supremum to the
residuated lattice L chosen by the specifier.

2.4 The CSP(I) RL-institution of soft CSP over I

We now generalise the construction CSP(FOL) to an arbitrary stratified institu-
tion I = (SigI ,SenI ,ModI , J_KI , |=I) that satisfies the following conditions:

C1. To make residuated lattices available to the specifier, we require the existence
of an I-presentation (ΣRL, ERL) such that RL ⊆ ModI(ΣRL, ERL). This does
not restrict applicability as most institutions suitable for the domains where
soft constraints are useful will provide the ability to specify data structures.

C2. In order to be able to express constraints, we require the existence of a
functor C: SigI → Set that provides the set of constraints for each signature.
In addition, we assume that for every object ∆ : (ΣRL, ERL) → (Σ,E) of

9

the comma category (ΣRL, ERL)/PresI there exists a family of functors
|_|Σ : J_KΣ → [C(Σ) → ModI(∆)] such that, for any signature morphism
ϕ : Σ → Σ′, Σ′-model M ′, state χ′ ∈ JM ′KΣ′ , and constraint c ∈ C(Σ),
|M ′�ϕ|Σ(JM ′Kϕ(χ′))(c) = |M ′|Σ′(χ′)(ϕ(c)).

On this basis, we define the logical system CSP(I) as follows:

– The category SigCSP(I) of constraint signatures is the product category of
RLop and the comma category (ΣRL, ERL)/PresI .

– SenCSP(I)((L, ∆ : (ΣRL, ERL)→ (Σ,E)) = C(Σ).
– ModCSP(I)(L, ∆) = ModI(∆)/L, with ModI(∆) : ModI(∆)−1(RL)→ RL.
– Given an (L, ∆)-model (M,f : M�∆ → L) and a sentence ρ ∈ Sen(L, ∆), the

satisfaction of ρ by (M,f) is defined as:(
(M,f) |=(L,∆) ρ

)
= f

(∨
χ∈JMKΣ

|M |Σ(χ)(ρ)
)

Theorem 6. For any stratified institution I satisfying the conditions C1 and
C2 above, CSP(I) is an RL-institution.

The following results are important for Section 3.

Proposition 7. CSP(I) inherits the following properties of I:

1. If SigI is finitely cocomplete so is SigCSP(I).
2. If I has (weak) model amalgamation, so does CSP(I).
3. Given factorisation systems [19] (E,M) for SigI and (ERL,MRL) for RL, we

obtain a factorisation system for SigCSP(I) by taking the epimorphisms to be
the pairs of arrows in MRL and (ΣRL, ERL)/Epres, and the monomorphisms
to be the pairs of arrows in ERL and (ΣRL, ERL)/Mpres.

3 Soft constraints for service-oriented computing

As an application of our approach, we study how soft-constraint institutions
can be used for formalising structures and processes specific to service-oriented
computing: we describe service applications and modules by means of constraint
specifications, and define the requirements of applications and the properties
guaranteed by service modules as constraint sentences. Consequently, we obtain
a series of new results on the way in which service applications evolve through
the processes of service discovery, selection, and binding.

We fix an arbitrary RL-institution (SigI ,SenI ,ModI ,RLI , |=I) – see Defi-
nition 3 – for which the category of signatures has pushouts, is equipped with
a factorisation system, and for which the functor RLI preserves pullbacks. In
particular, for a soft constraint institution CSP(I), it suffices that SigI has
pushouts and admits a factorisation system (see Propositions 7.1 and 7.3). We
use n to denote the set {1, . . . , n}.

In our framework of service-oriented computing, for simplicity, we consider
that we have two kinds of units, service applications and service modules. Service

10 C.E. Chiriţă, J. L. Fiadeiro and F. Orejas

applications can be seen as units that require some services. We may consider
that they have an orchestration part, describing what the unit intends to do,
and some interfaces describing the services required. In particular, interfaces are
subspecifications of the given orchestration together with some property that
describes the preferences of the unit to use a given service.
Definition 8 (Service application). A service application (Σ, I,R) consists
of a signature Σ ∈ |Sig|, called orchestration, together with a finite family
I = {ix}x∈n of interfaces, that is, a family of monic signature morphisms
ix : Σx → Σ such that RL(Σx) = RL(Σ), and their associated requirements
R = {rx ∈ Sen(Σx)}x∈n. We will refer to a pair (Σx, rx) consisting of the domain
of an interface and its corresponding requirement as a requires-specification.

Example 9. As part of our running example, we consider a service application
C = (Σ, I,R) whose orchestration Σ is Customer (as in Fig. 2), and whose
single interface consists of the identity and the requirement

R = languagePref(language(book)) ∧
deliveryPref(delivery, book, deliveryTime(delivery, book)).

Service modules are like service applications but, in addition, they provide
functionalities or resources. In this sense, they have an orchestration part and
some interfaces for the services required, as well as a provides interface.

Definition 10 (Service module). A service module (Ω,P, J,Q) consists of
an orchestration Ω ∈ |Sig|, a provides-property P ∈ Sen(Ω), a finite family
J = {jy}y∈m of interfaces jy : Ωy → Ω, and a family of associated requirements
Q = {qy ∈ Sen(Ωy)}y∈m.

Σ

Σ1
...
Σn

r1

rn

ΩP

Ω1
...
Ωm

q1

qm

i1

in

j1

jm

Example 11. We define a service module S = (Ω,P, J,Q) for the applica-
tion C given in Ex. 9 by taking Ω as the specification Supplier in Fig. 3,
the provides-property P = available(book, delivery), and the requirement Q =
deliverable(book, delivery, days) defined over Ω (i.e. J consists of an identity). The
module guarantees the delivery of a book b for a method d within deliveryTime(b, d)
days, but in turn it depends on another external delivery-service provider.

Definition 12 (α-satisfiability of an application). A service application
(Σ, I,R) is α-satisfiable if all of its requirements can be satisfied at once with a
value greater than α, i.e. there exists a model of its orchestration that satisfies R
with at least the value α:

∨
M∈|Mod(Σ)|

(∧
x∈nM |= ix(rx)

)
≥ α.

4 The table is only a convenient abbreviation for a set of sentences that specify, for
example, that the book “Schiele” is available in German with 3-day express delivery.
The column “id” is just an annotation that we use to reference the rows.

11
spec Supplier = BookData and ResiduatedLattices
then ops Schiele : Book

available : Book × Delivery −→ Sat
deliverable : Book × Delivery × Nat −→ Sat

cvars book : Book; delivery : Delivery; days : Nat
∀ b : Book; d : Delivery; n, n’ : Nat
• deliverable(b, d, n) = 0 if n > deliveryTime(b, d)
• deliverable(b, d, n) ≤ deliverable(b, d, n’) if n ≤ n’
• available(b, d) = 1 ⇔ (b, d) belongs to the following table4

id book language delivery deliveryTime

1.1
Schiele de

standard 6
1.2 express 3
1.3 online 0

Fig. 3. The specification Supplier

Definition 13 (β-correctness of a service module). A service moduleM =
(Ω,P, J,Q) is said to be β-correct if P is a consequence of Q with a value βM
greater than β. Formally, this means that βM =

(
{jy(qy)}y∈m |=Ω P

)
≥ β.

We now focus on the execution of service applications in the context of a fixed set
Rep of service modules – a service repository. Each execution step is triggered by
the need to fulfil a requirement of the current application, which in the context
of our work corresponds to a requires-specification. Similarly to conventional
soft-constraint satisfaction problems, the goal is to maximize the satisfaction of
the requirement. To this end, we distinguish three elementary processes: discovery,
selection and binding.
Service discovery. Let A = (Σ, I,R) be a service application and (Σk, rk) one
of its requires-specifications. Unlike the selection and binding processes, we model
the discovery of new service modules to be bound to A in a minimal way: all
we assume is that it provides a set of possible matches – pairs (M, φ) of service
modules M = (Ω,P, J,Q) from Rep and attachment morphisms φ : Σk → Ω.
Note that the output of the discovery process only depends on the repository
and the selected requires-specification, and not on the application itself.

Service selection. In order to select from the set of discovered service modules
the best module that satisfies the requirement, we compute for each match (M, φ)
provided by the discovery process the compatibility score between the provides-
property P guaranteed by the correctness of the service moduleM and of the
requirement rk of the application. To this end, we first compute the pushout (i, j)
of the signature morphisms ik and φ linking the requires-specification (Σk, rk) to
the orchestrations of the application and of the service module (see the diagram
below), and then translate both the requirement and the provides-property to
the vertex Σ′ of the pushout:(
j(P) |= Sen(ik ;i)(rk)

)
=

∧
M∈|Mod(Σ′)|

(
M |=Σ′ j(P)

)
→
(
M |=Σ′ Sen(ik ;i)(rk)

)
.

12 C.E. Chiriţă, J. L. Fiadeiro and F. Orejas

These values belong to different lattices (of different service providers), hence we
have to further translate them to the lattice of the service application via the
morphisms RL(φ ; j) in order to be able to compare them. Here it is useful to
note that RL(φ ; j) = RL(φ) because RL(j) is an identity.

Σk Σ

Ω Σ′

Σx

Σ′x

Ωy Ω′y

po =

=

ik

φ i

j mx

ex

ix

myjy

ey

Σ′

Σ′x

Ω′y

eΣx (rx)

eΩy (qy)

mΣx

mΩy

However, computing such compatibility scores is not enough: the selection
of a best module for the distinguished requirement of the application must also
take into account the correctness of the modules. Thus, for every match (M, φ),
we have to multiply the score RL(φ)(j(P) |= Sen(ik ; i)(rk)) obtained as above
with βM, the correctness ofM. Finally, we will select those service modules for
which this product is maximal.

sel(Rep,A, Σk, rk) = arg max
(M,φ)

{βM ∗ RL(φ)
(
j(P) |= Sen(ik ; i)(rk)

)
}

Example 14. Consider the repository Rep = {S,S ′} where the new service
module S ′ = (Ω′, P ′, J ′, Q′) is such that Ω′ is as in Fig. 4, P ′ = P , and Q′ = Q.
When selecting a best supplier for the service application C from Ex. 9, the
books that best fit the preferences are the online version of “Schiele” (1.3) for
S and “Chagall – Ma vie” with an express delivery (2.2) for S ′. In principle,
we would need to compute the compatibility scores between Customer and
Supplier and OtherSupplier, respectively, using all possible models. However,
due to the way the specifications are written, the choice of the best book for
each supplier can be calculated directly from the axioms. First, the constraint
variables book and delivery are limited to the interpretations defined by the tables.
Second, the axioms of Customer that express specific preferences, such as for a
language, make it feasible to determine the best books provided by each supplier
for any model. With respect to language, Book 3 is the least preferred, while 2.1
and 2.2 are the most preferred because languagePref(en) ≤ languagePref(de) ≤
languagePref(fr). In order to determine the best buying option, it suffices now to
decide which variant of 2.1 and 2.2 is the most suitable for our constraints, which
we do by comparing their delivery options: since express delivery is preferred to
standard when the latter does not guarantee a delivery within seven days, the
best choice is 2.2, and thus the selection process chooses S ′ as the best supplier.

Service binding. After selecting a service module (non-deterministically from
the set sel(Rep,A, Σk, rk)), the application will commit to the chosen provider
through a binding process which changes the application as follows:

– The new orchestration is the vertex Σ′ of the pushout (i, j).

13
spec OtherSupplier = BookData and ResiduatedLattices
then ops ChagallMaVie, Munch : Book

available : Book × Delivery −→ Sat
deliverable : Book × Delivery × Nat −→ Sat

cvars book : Book; delivery : Delivery; days : Nat
∀ b : Book; d : Delivery; n, n’ : Nat
• deliverable(b, d, n) = 0 if n > deliveryTime(b, d)
• deliverable(b, d, n) ≤ deliverable(b, d, n’) if n ≤ n’
• available(b, d) = 1 ⇔ (b, d) belongs to the following table

id book language delivery dTime

2.1 ChagallMaVie fr standard 14
2.2 express 8

3.1
Munch en

standard 6
3.2 online 0

Fig. 4. The specification OtherSupplier

– Apart from the interface ik corresponding to the distinguished requirement,
the interfaces of the application are preserved via a factorisation of the
composition of the old interfaces and the morphism of orchestrations i: for
x ∈ n\{k}, we obtain the interface mΣ

x : Σ′x → Σ′ by taking the factorisation
eΣx ;mΣ

x of the composed morphism ix ; i.
– The interface ik is replaced by the interfaces of the selected service module:

for y ∈ m, mΩ
y : Ω′y → Σ′ is the monic in the factorisation of jy ; j.

– The distinguished requirement rk is replaced by the requirements {eΩy (qy)}y∈m
of the selected module, while the other requirements of the application are
kept: for x ∈ n \ {k}, rx is translated to eΣx (rx).

The final goal of binding a service application to different service modules is
to obtain an application with all the requirements fulfilled. It is thus natural
to be interested in determining a lower bound for the satisfiability of a service
application based on the satisfiability of the application that results from the
process of binding to a service module with a certain degree of correctness.

Proposition 15 (Correctness of service binding). LetM = (Ω,P, J,Q) be
a β-correct module that matches a service application A = (Σ, I,R) through a
morphism φ : Σk → Ω. If the selection process guarantees that the compatibility
score of the requirement rk of A and the provides-property P ofM is at least δ,
and if the resulting application A′ = (Σ′, I ′, R′) of their binding is α-satisfiable,
then A is ζ-satisfiable with ζ = RL(φ)(β ∗ δ ∗ α).

4 History and value systems

In this section, we analyse two distinguishing features of our method of selecting
a best service module: unlike previous boolean approaches [14, 13], it relies on
arbitrary residuated lattices that may change through binding; moreover, it takes

14 C.E. Chiriţă, J. L. Fiadeiro and F. Orejas

into account not only the properties of the supplier, but also the information
encoded in the orchestration of the application. Each of these features raises new
challenges in predicting which service modules will be bound to the application.

4.1 History matters

The choice of a best supplier is usually not invariant to the change of the
orchestration of an application. In this section, we identify those situations in
which the information contained by the orchestration of a service application
becomes irrelevant to the selection of a best service module.

Example 16. Consider the service application C′ = (Σ′, I ′, R) with the orches-
tration Σ′ defined as the specification Customer of the application C from Ex. 9
to which we add the sentence

∀ b : Book, d : Delivery, n : Nat. deliveryPref(d, b, n) = 0 if n > 7,

and having the same requirement R as C. If we repeat the selection process for
C′ and the repository Rep = {S,S ′}, the supplier S will be chosen instead of S ′.
This is due to the fact that the delivery time for Book 2 is greater than seven
days, and thus it does not meet the time-limit imposed by the new application.

Proposition 17. Let A = (Σ, I,R) be a service application and (Σk, rk) a
requires-specification written over an RL-institution having the model-amalgam-
ation property. If the interface ik : Σk → Σ ∈ I is a signature morphism that
admits model expansions, the compatibility score between the requirement rk of A
and the provides-property of a service moduleM = (Ω,P, J,Q) can be evaluated
directly with respect to the orchestration Ω of M, rather than having to first
compute the pushout of the application and the module.

Fact 18. For a CSP(I) institution having the model-amalgamation property, a
constraint signature morphism ϕ : (∆,L)→ (∆′,L′) in SigCSP(I), with underlying
morphisms ϕpr : (Σ,E) → (Σ′, E′) and ϕrl : L′ → L, admits model expansions
whenever the morphism of presentations ϕpr admits model expansions and the
reduct M�∆ of any (Σ,E)-model M is projective with respect to ϕrl.

4.2 Changing the truth space

The choice of a residuated lattice affects both the compatibility score (between a
requirement and a provides-property) and the correctness of a service module.

Example 19. Consider once again the service application C from Ex. 9 and two
suppliers S1 and S2 whose orchestrations have the same underlying signature –
SimpleSupplier as in Fig. 5. Moreover, they have the same provides-property

P1 = available(book, delivery) ∧ (available(book, delivery)→
deliverable(book, delivery, deliveryTime(book, delivery)))

15

and no requirements. The residuated lattices of the orchestrations of S1 and S2
differ: both S1 and C are based on the same Heyting algebra L with the underlying
set of truth values [0, 1], while S2 is based on the real-valued Łukasiewicz lattice
Ł = ([0, 1],min,max, ∗,→, 0, 1), with x ∗ y = max{0, x + y − 1} and x → y =
min{1, 1 − x + y}, for any x, y ∈ [0, 1]. The compatibility scores between the
requirement R = deliveryTime(book, delivery, deliveryTime(book, delivery)) of the
service application C and the provides-property P1 of S1 and S2 will be 1 and
0.5, respectively. Consequently, for any match φ between C and S2 such that
the morphism of residuated lattices RL(φ) : Ł→ L does not map 0.5 to 1, the
selection process will only determine S1 as a best service module. Notice that,
even when S1 and S2 have the same underlying residuated lattices, the selection
process may still depend on the matches between C and the two modules.

spec SimpleSupplier = BookData and ResiduatedLattices
then ops available : Book × Delivery −→ Sat

deliverable : Book × Delivery × Nat −→ Sat

Fig. 5. The specification SimpleSupplier

Similarly, the correctness of a service module depends on its associated lattice.

Example 20. Let S3 be a service module based on the extension of Simple-
Supplier with the sentence

∀ b : Book, d : Delivery. (deliverable(b, d, deliveryTime(b, d))→ available(b, d)) = 1.

Its provides-property is P = available(book, delivery), and it has only one require-
ment, deliverable(book, delivery, deliveryTime(book, delivery)). The correctness of
the module S3 will depend on the residuated lattice of its orchestration: for
any Heyting algebra, the module will be correct with the value 1, while for the
real-valued Łukasiewicz lattice, the module will only be 0.5-correct. Of course,
these values cannot be compared, as they belong to different lattices. Still, the
first one is absolute, while the second is not.

5 Conclusions and future work

We have developed a general technique for extending arbitrary institutions with
soft constraints that formalises and generalises the results presented in [15].
Our approach consists in adding constraints to specifications written over a
base stratified institution that provides functional requirements. The proposed
technique requires that the underlying stratified institution I is expressive enough
to capture residuated lattices, which provide the space of degrees of satisfaction in
which constraints are expressed, and that every signature of I provides constraint
variables, constraint sentences, and mappings through which each valuation of the
constraint variables determines an interpretation of the constraints as elements
of the residuated lattice. Building on this formalisation, we have shown how the

16 C.E. Chiriţă, J. L. Fiadeiro and F. Orejas

selection of a best supplier in the context of service discovery and binding can
be defined in terms of graded semantic consequence, and we have studied the
unpredictability of the evolution of service applications that originates from the
change of the truth structures that underlie the service components.

In order to facilitate an implementation of our model-theoretical approach to
choosing a best supplier, we intend to further examine sound and complete proof
systems defined in terms of many-valued rules as in [10]. These could be used
in the development of operational semantics for the execution of such service-
oriented applications (i.e. of a model for dynamic reconfiguration of systems in
the style of [14]) with evolving preferences and truth spaces. Towards that end,
the logic-programming semantics of services recently proposed in [26] provides a
starting point. Besides the obvious need to adapt the theory presented therein to
our many-valued setting (which means replacing linear temporal sentences with
soft constraint specifications), the main open question is how to generalise the
orchestrations of client applications and service modules in order to capture the
way in which the satisfaction of constraint sentences changes upon iterations of
the processes of service discovery, selection and binding.

We also consider worthwhile investigating how a graded variant of institution-
independent logic programming, which generalises service-oriented logic program-
ming, can be defined in relation to the developments presented in [25]. This would
necessitate adapting the institution-independent abstractions of the concepts
of Herbrand model, unification, resolution and computed answer (with a given
degree of confidence) to the many-valued nature of our setting.

Acknowledgements. The authors would like to thank the anonymous referees
for their very useful comments and suggestions. These have lead to an improved
overall readability of the paper and to a more accurate presentation of the
completeness requirement of the residuated lattices.

References

1. M. Aiguier and R. Diaconescu. Stratified institutions and elementary homomor-
phisms. Information Processing Letters, 103(1):5–13, 2007.

2. D. Benavides, P. T. Martín-Arroyo, and A. R. Cortés. Automated reasoning on
feature models. In O. Pastor and J. F. e Cunha, editors, Advanced Information
Systems Engineering, volume 3520 of LNCS, pages 491–503. Springer, 2005.

3. S. Bistarelli and F. Gadducci. Enhancing constraints manipulation in semiring-
based formalisms. In G. Brewka, S. Coradeschi, A. Perini, and P. Traverso, editors,
ECAI 2006, volume 141, pages 63–67. IOS Press, 2006.

4. S. Bistarelli, U. Montanari, and F. Rossi. Semiring-based constraint satisfaction
and optimization. Journal of the ACM, 44(2):201–236, 1997.

5. S. Bistarelli, U. Montanari, F. Rossi, T. Schiex, G. Verfaillie, and H. Fargier.
Semiring-based CSPs and valued CSPs: Frameworks, properties, and comparison.
Constraints, 4(3):199–240, 1999.

6. S. Bistarelli and F. Santini. A nonmonotonic soft concurrent constraint language
for SLA negotiation. Electr. Notes Theor. Comput. Sci., 236:147–162, 2009.

17

7. S. Bova. Soft constraints processing over divisible residuated lattices. In C. Sossai
and G. Chemello, editors, Symbolic and Quantitative Approaches to Reasoning with
Uncertainty, volume 5590 of LNCS, pages 887–898. Springer, 2009.

8. CoFI (The Common Framework Initiative). Casl Reference Manual, volume 2960
of LNCS. Springer, 2004.

9. D. A. Cohen, M. C. Cooper, P. Jeavons, and A. A. Krokhin. Soft constraints:
Complexity and multimorphisms. In F. Rossi, editor, Principles and Practice of
Constraint Programming, volume 2833 of LNCS, pages 244–258. Springer, 2003.

10. R. Diaconescu. Graded consequence: an institution theoretic study. Soft Comput.,
18(7):1247–1267, 2014.

11. J. L. Fiadeiro. Categories for software engineering. Springer, 2005.
12. J. L. Fiadeiro. The many faces of complexity in software design. In M. Hinchey

and L. Coyle, editors, Conquering Complexity, pages 3–47. Springer, 2012.
13. J. L. Fiadeiro and A. Lopes. An interface theory for service-oriented design. Theor.

Comput. Sci., 503:1–30, 2013.
14. J. L. Fiadeiro and A. Lopes. A model for dynamic reconfiguration in service-oriented

architectures. Software and System Modeling, 12(2):349–367, 2013.
15. J. L. Fiadeiro and F. Orejas. Abstract constraint data types. In R. D. Nicola

and R. Hennicker, editors, Software, Services, and Systems, volume 8950 of LNCS,
pages 155–170. Springer, 2015.

16. N. Galatos, P. Jipsen, T. Kowalski, and H. Ono. Residuated Lattices: An Alge-
braic Glimpse at Substructural Logics. Studies in Logic and the Foundations of
Mathematics. Elsevier Science, 2007.

17. J. A. Goguen and R. M. Burstall. Institutions: Abstract model theory for specifica-
tion and programming. Journal of the ACM, 39(1):95–146, 1992.

18. M. Harman, Y. Jia, J. Krinke, W. B. Langdon, J. Petke, and Y. Zhang. Search based
software engineering for software product line engineering: a survey and directions
for future work. In S. Gnesi, A. Fantechi, P. Heymans, J. Rubin, K. Czarnecki, and
D. Dhungana, editors, Software Product Line, pages 5–18. ACM, 2014.

19. H. Herrlich and G. Strecker. Category theory: an introduction. Allyn and Bacon
series in advanced mathematics. Allyn and Bacon, 1973.

20. M. M. Hölzl, M. Meier, and M. Wirsing. Which soft constraints do you prefer?
Electr. Notes Theor. Comput. Sci., 238(3):189–205, 2009.

21. T. Mossakowski, C. Maeder, and K. Lüttich. The heterogeneous tool set, Hets. In
O. Grumberg and M. Huth, editors, TACAS, volume 4424 of LNCS, pages 519–522.
Springer, 2007.

22. B. C. Pierce. Basic category theory for computer scientists. Foundations of
computing. MIT Press, 1991.

23. D. Sannella and A. Tarlecki. Foundations of Algebraic Specification and Formal
Software Development. Springer, 2012.

24. T. Schiex, H. Fargier, and G. Verfaillie. Valued constraint satisfaction problems:
Hard and easy problems. IJCAI (1), 95:631–639, 1995.

25. I. Ţuţu and J. L. Fiadeiro. From conventional to institution-independent logic
programming. Journal of Logic and Computation, 2015.

26. I. Ţuţu and J. L. Fiadeiro. Service-oriented logic programming. Logical Methods in
Computer Science, 11(3):1–38, 2015.

27. M. Wirsing, A. Clark, S. Gilmore, M. M. Hölzl, A. Knapp, N. Koch, and A. Schroeder.
Semantic-based development of service-oriented systems. In E. Najm, J. Pradat-
Peyre, and V. Donzeau-Gouge, editors, FORTE, volume 4229 of LNCS, pages 24–45.
Springer, 2006.

