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Abstract

In this thesis we consider multiplicative properties of integers in short inter-

vals using techniques involving exponential sums, sieve methods and a wide

variety of other principles from analytic number theory.

The existence of products of three pairwise coprime integers are investi-

gated in short intervals of the form (x, x+ x
1
2 ]. A general theorem is proved

which shows that such integer products exist provided there is a bound on

the product of any two of them. The author’s result has been published in a

Journal of the London Mathematical Society [22].

A particular case of relevance to elliptic curve cryptography, when all

three integers are of order x
1
3 , is then presented as a corollary to this result.

The techniques used in the proof include Fourier series for fractional parts

and bounds for an exponential sum.

We investigate the sum of differences between consecutive primes where

the gap between these consecutive primes is greater than x1/2−∆ for some

fixed number 0 < ∆ < 1/48 and show by using Dirichlet polynomials and

the sieve of Harman that ∑
pn+1−pn>x1/2−∆

x≤pn≤2x

pn+1 − pn � x2/3+5∆
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and thereby generalise an existing result corresponding to ∆ = 0. We show

this bound provides significant improvements to several existing results for

constant 0 < ∆ ≤ −3 + 1
6

√
327 = 0.01385....

We establish a corollary which further improves the currently established

bound on the sum of squared differences between consecutive primes in cer-

tain intervals.

By applying the result on sums of differences between consecutive primes

we prove the existence of a significantly improved form of a prime-representing

function. We show that there exists α > 2 and β = 1/(1
2

+ ∆) for 0 < ∆ ≤
−3 + 1

6

√
327 such that the sequence

[αβ
n

] for α > 2 is prime for all n ∈ N

thereby reducing best known present result β = 2 in the exponent to 1/(1
2

+

∆) = 1.946067... .

We also establish the existence of a prime-representing function which

only takes values which are primes in Beatty sequences [mξ+η] for irrational

ξ > 1 and η ∈ R.
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Chapter 1

Introduction

In this thesis we consider multiplicative properties of integers in short inter-

vals using techniques involving both exponential sums and sieve methods.

The underlying theme is rooted in the property of primes and the methods

used involve many applications of fundamental results from analytic number

theory.

The existence of products of three pairwise coprime integers are investi-

gated in short intervals of the form (x, x+ x
1
2 ]. A general theorem is proved

which shows that such integer products exist provided there is a bound on

the product of any two of them [22]. A particular case of relevance to elliptic

curve cryptography, when all three integers are of order x
1
3 , is then presented

as a corollary to this result. The techniques used in the proof include Fourier

series for fractional parts and bounds for an exponential sum.

We also investigate sums of differences between consecutive primes where

the gap between these consecutive primes is greater than x1/2−∆ for some

fixed number 0 < ∆ < 1/48 and show by using Dirichlet polynomials and
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the sieve of Harman that ∑
pn+1−pn>x1/2−∆

x≤pn≤2x

pn+1 − pn � x2/3+5∆

and thereby generalise an existing result corresponding to ∆ = 0. We show

this bound provides significant improvements to several existing results for

constant 0 < ∆ ≤ −3 + 1
6

√
327 = 0.01385....

By applying the result on sums of differences between consecutive primes

we prove the existence of a significantly improved form of a prime-representing

function. We show that there exists α > 2 and β = 1/(1
2

+ ∆) for 0 < ∆ ≤
−3 + 1

6

√
327 such that the sequence

[αβ
n

] for α > 2 is prime for all n ∈ N

thereby reducing best known present result β = 2 in the exponent to 1/(1
2

+

∆) = 1.946067... A second corollary further improves the sum of squared

differences between consecutive primes in certain intervals.

We explore prime-representing functions further in the last chapter and

we establish the existence of a prime-representing function which only takes

values which are primes in Beatty sequences [mξ+η] for irrational ξ > 1 and

η ∈ R.

THE SIEVE METHOD

We introduce some standard notation and identities which lie at the heart

of the sieve of Harman, in particular the Buchstab’s identity and its itera-

tions. We also provide an outline of the sieve method to explain the strategy

adopted in establishing the main theorem.
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Definition: The expression a ∼ A is used when A < a ≤ 2A.

Let E be a finite subset of N. We denote the cardinality of E by |E|.
Define

Ed = {m|dm ∈ E}

and

S(E , z) = |{m ∈ E|(m,P (z)) = 1}|

where

P (z) =
∏
p<z

p.

The Buchstab identity is

S(E , z) = S(E , w)−
∑
w≤p<z

S(Ep, p),

when z > w ≥ 2.

LetA = (y, y+yδA]∩N and B = (y, y+yδB]∩N where δB = exp(−1
2
(log x)1/2).

A is the set to be sieved and B is called the comparison set.

The choice of the interval for the comparison set B arises from the need to

ensure this is a known set of integers which is required for the sieve method.

More specifically the set will always be larger than the set A which it will

contain and such that it is large enough for there to be asymptotically the

right number of primes in (y, y + yδB] by the prime number theorem with a

good error term.

Note that the choice of value for δB is for technical reasons as it enables

a clean y(log x)−1 main term without the need for Li(x) (see [14] p339-340

for details).
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With this notation we note that π(y+δAy)−π(y) is just S(A, 2x1/2) which

by Buchstab’s identity can be decomposed into sums that are more straight-

forward to handle and a similar decomposition is applied to S(B, 2x1/2).

Hence the quantity S(A, 2x1/2) can be compared to S(B, 2x1/2) which can be

regarded as known. The decompositions (which are always an even number

of iterations) will be of the form which we will write as follows:

S(A, 2x1/2) =
k∑
j=1

Sj −
l∑

j=k+1

Sj

and

S(B, 2x1/2) =
k∑
j=1

S∗j −
l∑

j=k+1

S∗j

where Sj, S
∗
j ≥ 0 and we can find asymptotic formulae of the form

Sj =
δA
δB
S∗j +

δAy

log y
(A(x, y) + o(1)).

We aim to obtain a non-trivial lower bound for S(A, 2x1/2) and we therefore

discard those parts of the positive sums in the decomposition for which there

do not exist asymptotic formulae. Using this approach and combining the

asymptotic formulae above gives a lower bound of the form (for j ≤ t ≤ k)

S(A, 2x1/2) ≥ δA
δB

(
S(B, 2x1/2)−

k∑
j=t+1

S∗j

)
+

δAy

log y
(A(x, y) + o(1)).

Next δB has been chosen sufficiently large as to use the prime number

theorem to obtain an asymptotic formula for S∗j . By standard methods (see

[14] p57-59) after 2n iterations of Buchstab’s identity we obtain n integrals

corresponding to the sums that cannot be further decomposed and for which

asymptotic formulae do not exist:
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∑
xν<pn<...<p1<xλ

S(Bp1...pn , pn) =

δBy

log y
(1 + o(1))

∫ λ

α1=ν

∫ α1

α2=ν

...

∫ αn−1

αn=ν

ω

(
1− α1 − ...− αn

αn

)
dαn...dα1

α1...αn−1α2
n

where ω(u) is Buchstab’s function (see for example [14] p14).

Notational convention: We define pj = xαj so that, for example, the

condition xγj ≤ pj ≤ xβj can be replaced by γj ≤ αj ≤ βj.

Crucially since S(Bp1...pn , pn) = δBy
log y

(1 + o(1)), then we obtain the result

(3.3) if the sum of all the contributions from the integrals corresponding to

S∗j with t < j < k is strictly less than 1 which will then accomplish a positive

lower bound. We therefore use numerical integration in this final step of the

proof since the integrals provide a significant contribution to the discarded

sums.

We will then often apply Buchstabs’ identity twice or a greater even num-

ber of iterations. For example after two applications of Buchstab’s identity

we obtain

S(A, 2x1/2) ≥ S(A, xν(0))−
∑

xν(0)≤p1<2x1/2

S(Ap1 , x
ν(α1)) (1.1)

+
∑

ν(0)≤α1<1/2
ν(α1)≤α2<min(α1,(1−α1)/2)

S(Ap1p2 , p2).

Here ν(α) is a piece-wise linear positive function of a non-negative variable

α.

The corresponding decomposition for S(B, 2x1/2) is

S(B, 2x1/2) = S(B, xν(0))−
∑

xν(0)≤p1<2x1/2

S(Bp1 , x
ν(α1)) (1.2)

11



+
∑

ν(0)≤α1<1/2
ν(α1)≤α2<min(α1,(1−α1)/2)

S(Bp1p2 , p2) +O

(
δBy

(log y)2

)
.

The objective is to obtain asymptotic formulae of the form

∑
m

amS(Am, z) =
δA
δB

∑
m

amS(Bm, z) +
δAy

log y
(A(x, y) + o(1)),

where

am =
∑
pi∼Pi

p1...pk=m

1

for certain Pi. We choose ν(α) such that we find asymptotic formulae of this

type for the first and second terms on the right hand side of (1.1). We will also

find asymptotic formulae for part of the third term often decomposing part

of this term two or a higher even number of iterations further of Buchstab’s

identity. Finally we will discard any parts of the decomposition that cannot

be dealt with via further asymptotic formulae.

To conclude this section we state the fundamental theorem of the sieve

of Harman (see [14] p51 for the proof) as a lemma since this is the key result

on which the sieve method is based.

Lemma 1 (The Fundamental Theorem). Let B = Z ∩ [x/2, x) and let A ⊆
B. Suppose that for any sequences of complex numbers am,bm that satisfy

|am| ≤ 1, |bm| ≤ 1 we have, for some λ > 0, α > 0, β ≤ 1/2,M ≥ 1, that

∑
mn∈A
m≤M

am = λ
∑
mn∈B
m≤M

am +O(Y )

and ∑
mn∈A

xα≤m≤xα+β

ambn = λ
∑
mn∈B

xα≤m≤xα+β

ambn +O(Y ).
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Let cr be a sequence of complex numbers such that |cr| ≤ 1, and if cr non-zero

then p|r =⇒ p > xε, for some ε > 0. Then if xα < M, 2R < min(x1−α,M)

and M > x1−α if 2R > xα+β, we have that∑
r∼R

crS(Ar, xβ) = λ
∑
r∼R

crS(Br, xβ) +O(Y log3 x).

THE VINOGRADOV NOTATION AND IMPLIED CONSTANTS

We make a remark on implied constants when using the standard Vinogradov

notation. The notation x � y means there is a positive constant C such

that |x| < Cy, where C may depend on any of the fixed parameters in

a theorem or lemma (ε, η etc). All implied constants could in theory be

calculated. However, as is the usual practice in analytic number theory, we do

not explicitly calculate these. It is worth pointing out that certain constants

in analytic number theory cannot be calculated with current knowledge, these

are referred to as the ineffective constants that arise when using results on

primes in arithmetic progressions. No such constants appear in this thesis.

DIRICHLET POLYNOMIALS

A Dirichlet polynomial is a finite Dirichlet series

N(s) =
∑

1≤n≤N

ann
−s, where an are complex coefficients.

Throughout the remainder of this thesis the term polynomial will be un-

derstood to be a Dirichlet polynomial.

The product of polynomials is a polynomial.
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A Dirichlet polynomial of length N is a finite Dirichlet series of the form

N(s) =
∑
n∼N

ann
−s, where an are complex coefficients.

As a convention we denote the length of a polynomial by the same letter

as the polynomial itself.

We note that the product of k Dirichlet polynomials of lengths N1, . . . , Nk

is the sum of k Dirichlet polynomials of lengths M, 2M, . . . , 2k−1M, where

M = N1 · · ·Nk. Such a product can therefore be treated essentially as a

Dirichlet polynomial of length M .

All polynomials we use will be divisor-bounded which means the coeffi-

cients satisfy |cm| ≤ τ(m)C for some C , where τ is the divisor function.

However this also implies that cm � mε for any ε > 0 and∑
m∼M

|cm| �M(logM)2C−1.

Many of the polynomials used will satisfy the following condition: A

polynomial R(s) =
∑

r∼R crr
−s is said to be prime-factored if there exists a

constant c > 0 such that∣∣∣∣∣∑
r∼R

crr
−1/2+it

∣∣∣∣∣� R
1
2 exp(−c(log x)

13
60 )

for all t ≥ T0 = exp(1
8
(log x)1/2).

A Dirichlet polynomial is called a zeta-factor if it is of type

K(s) =
∑
k∼K

k−s or K(s) =
∑
k∼K

(log k)k−s.

14



Zeta-factors are prime-factored when K > exp((log x)9/10).

We often work with polynomial of the form (for p and pi prime)

Pi(s) =
∑
p∼Pi

p−s,

and products of these types:

M(s) =
∑

p1<...<pn
pi∼Pi

(p1...pn)−s.

In this form of polynomial we can remove the dependence between some of

the pi at the cost of a factor (log x)C in the error term (see [12], Lemma 1).

We often use the generalized Vaughan identity [16] (see also [14] Chapter

2) to decompose polynomials of type M(s). Applying it to Pi(s) with Pi >

x1/8, by partial summation we obtain

|Pi(s)| ≤ g1(s) + ...+ gr(s) where r ≤ (log x)C ,

and each Gi is of form

(log x)B
h∏
i=1

|Ni(s)|, and h� 1, N1...Nh ≤ x,

Ni(s) is a zeta factor when Ni > x1/8 and all Ni(s) with Ni > xη are prime

factored.
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Chapter 2

Products of Three Pairwise

Coprime Integers in Short

Intervals

2.1 Introduction

We investigate the existence of a product of three pairwise coprime integers

in the interval (x, x + y] where y = x
1
2 . The approach to the problem is

to suppose that one of the integers is a prime p where p ∼ P and that the

remaining two integers m and n are coprime and we let n ∼ N . Here N,P

satisfy NP ≤ x
3
4 where N is a positive integer such that 2N is less than P.

We then count products of integers mnp in the interval with p - m and show

that for sufficiently large x an asymptotic formula exists for this sum. This

is achieved by considering the cases where there are no divisibilty conditions

between p and m and the case p | m, where n < p. The former case generates

a main term and all the error terms arising from the sums in the remaining

cases are shown to be smaller than this main term. As a corollary to this

result we prove the existence of three such integers where the order of each

integer is x
1
3 and show that there are pairwise coprime integers of this form

16



in the interval for sufficiently large x.

Certain problems relating to the existence of such pairwise coprime in-

tegers have originated in the study of elliptic curve cryptography. It was in

a discussion at Royal Holloway with Professor Glyn Harman that Professor

Steven Galbraith pointed out that no formal proof of the existence of three

pairwise coprime integers existed for short intervals despite forming the ba-

sis of certain protocols. In particular it had been noted that Bentahar [6]

required the existence of three coprime integers of roughly equal size x
1
3 in re-

lation to such an elliptic curve cryptographic protocol. The arguments used

for their existence in his paper are heuristic with a probabilitic reasoning

but without formal proof. Similarly Muzereau et al [29] consider products of

three primes in short intervals. Both papers assume the existence of these

numbers in applications to public key cryptography and the motivation for

the present chapter is to produce a formal proof of the result assumed by

these papers. However a more general result is proved in the form of The-

orem 1 and the particular case of equal order terms is provided as a corollary.

Let I = (x, x+y] be an interval with y = x
1
2 . We count products mnp ∈ I

such that (m,n) = 1. Since 2N < P we must have n < p. Hence consider

the sum: ∑
mnp∈I

(m,n)=1,p-m

1 =
∑
mnp∈I

(m,n)=1

1−
∑
mnp∈I

(m,n)=1,p|m

1. (2.1)

We begin by considering the first sum on the right of (2.1) with no divisibilty

conditions between p and m. This sum may be re-expressed as a double sum

17



involving the Mobius function in the following way:∑
mnp∈I

(m,n)=1

1 =
∑
mnp∈I

∑
r|(m,n)

µ(r)

=
∑
r

µ(r)
∑
mnp∈I
r|m,r|n

1

=
∑
r

µ(r)
∑

m′n′pr2∈I

1. (2.2)

Hence we require the counting of integers of the form m′n′pr2 ∈ I where

now in the inner sum of (2.2) r is a common divisor of m and n and

m = m′r, n = n′r.

It will be shown that for the case that r is a large common factor, greater

than a certain power of log x the bound is quickly obtained by elementary

methods. The case for r being a smaller common factor is more involved and

Fourier methods will be required to obtain a suitable nontrivial bound to a

Type I sum to achieve the result.

The main term (see (2.11)) will be obtained for small r and will be of

order � y/ log x, whilst the error term which we obtain will be

O

(
y

(log x)2
+ x

1
3

+3ε +
y

xη
+ x

2
5 + yxε−

1
8

)
. (2.3)

We prove the following theorem and corollary:

18



Theorem 1. Given ε > 0, there exists x0(ε) > 0 such that for all x ≥ x0(ε)

and all positive integers N and P with xε < 2N < P < x
2
5
−ε and

NP ≤ x
3
4

there exist numbers mnp ∈ (x, x + x
1
2 ] with n ∼ N , p ∼ P and m,n, p are

pairwise coprime.

Corollary 1. For all sufficiently large x there exist integers

mnp ∈ (x, x+ x
1
2 ], with n < p where

x
1
3

2
≤ m,n, p ≤ 2x

1
3

and m,n, p are pairwise coprime.

In order to count the number of times p divides m we observe that if

xε < P < x
1
8 we can give a completely elementary proof to the whole of

Theorem 1 quickly since we have, NP 2 ≤ x
3
8 < x

1
2 (i.e. we can always count

the number of integers in intervals like (x/np2, (x+ y)/np2] accurately). The

elementary proof when NP 2 < x
3
8 is as follows:∑

n,p

∑
mnp∈I

(m,np)=1

1 =
∑
p∼P

∑
d≤2N

µ(d)
∑
n∼N/d

∑
mnpd2∈I
p-m

1

=
∑
p∼P

∑
d≤2N

µ(d)
∑
n∼N/d

(
y

nd2p
+O(1)− y

nd2p2

)
=

6y log 2

π2

∑
p∼P

1

p
+O(X).

Where X consists of several error terms but all of smaller order than the

main term. We may henceforth assume that P ≥ x1/8.
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2.2 Case: Large Common Factors r > (log x)A

Consider that part of the inner sum in (2.2) for which r is larger than a power

of log x. We essentially count the number of integers of the form m′n′pr2 ∈ I
or equivalently we count integers of the form m′n′p ∈

(
x
r2 ,

x+y
r2

]
. Since the

number of such products m′n′p is bounded by the three-fold divisor function

τ3(k) =
∑

a1a2a3=k 1, we have∑
m′n′pr2∈I

1 ≤
∑

x/r2≤k≤x/r2+y/r2

τ3(k).

We appeal to the following lemma by P.Shiu [33].

Lemma 2. Given any ε > 0 and Z > W ε

∑
W≤k≤W+Z

τ3(k)� Z(logW )2

where τ3(k) is the three-fold divisor function.

Since n < p and r divides both m and n, if n > x
1
3 then p > x

1
3 then

mnp ∈ (x, x + x
1
2 ] only if m < 2x

1
3 . Hence we have the restriction r < 2x

1
3

on the size of r (which is smaller than the bound r < x
2
5
−ε implied by the

hypotheses). However, by this lemma with W = x/r2 and Z = y/r2, the

condition Z > W ε is satisfied only for r < x
1
4
−ε and in this range we quickly

obtain the bound ∑
m′n′pr2∈I

1� y

r2

(
log

x

r2

)2

� y

r2
(log x)2.

Letting L = (log x)A we obtain the result that for this part of the required

sum (2.2) we have the bound

∑
r>L

µ(r)
∑

m′n′pr2∈I

1�
∑
r>L

y

r2
(log x)2 = y(log x)2

∑
r>L

1

r2
.
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By comparison with an integral the final sum provides the bound

∑
r>L

µ(r)
∑

m′n′pr2∈I

1� y(log x)2

L
.

Thus for large x and suitable choice of A in L = (log x)A, this bound

will be smaller than the main term, as discussed in the introduction to this

chapter (see (2.3) for the explicit error term which is to be obtained).

Next consider the range x
1
4
−ε < r < 2x

1
3 . Using τ3(n)� nε we have∑

m′n′pr2∈I

1 =
∑

m′n′p∈( x
r2
,x+y

r2
]

1 ≤
∑

n∈( x
r2
,x+y

r2
]

τ3(n) ≤
∑

n∈( x
r2
,x+y

r2
]

nε

� xε(1 + y/r2) ≤ 2x3ε,

since in the range of r under consideration y/r2 < x2ε. Therefore the sum

(2.2) for this range gives the bound

∑
x

1
4−ε<r<2x

1
3

µ(r)
∑

m′n′pr2∈I

1�
∑

x
1
4−ε<r<2x

1
3

∑
m′n′pr2∈I

1� x
1
3

+3ε,

which will be smaller than the main term (see section 1 and (2.3)).

Hence for the complete range of possible values of r > L we obtain

∑
r>L

µ(r)
∑

m′n′pr2∈I

1� y(log x)2

L
+ x

1
3

+3ε. (2.4)

2.3 Case: p divides m

Before proceeding to deal with that part of sum (2.2) in the case of smaller

common factors r (see the next section) we deal with the second sum on the

right of (2.1) (the case p|m).

21



Letting m = m′p, so that mnp = m′np2, the total number of solutions

with p|m is

≤
∑
p∼P

∑
n∼N

∑
m′np2∈I

1�
∑
p∼P

(
1 +

y

p2

)
xε = xε

∑
p∼P

1 + yxε
∑
p∼P

1

p2

� x
2
5 + yxε−

1
8 ,

where we use the bounds x
1
8 < P < x

2
5
−ε in the first sum on the right of

the above equality. For the second sum on the right observe that there are

no more than P terms each of which is less than 1/P 2 so that the sum is

bounded by 1/P and hence by x−
1
8 . The bound obtained here is of smaller

order than the main term (see (2.3)).

2.4 Case: Small Common Factors r < (log x)A

We next consider the inner sum (2.2) in the case that r is smaller than a

power of log x. Suppose r < L then since m′n′pr2 ∈ (x, x+ y] we have

x ≤ m′n′pr2 ≤ x+ y so that
x

pr2
≤ m′n′ ≤ x+ y

pr2
.

Letting J =
(

x
pr2 ,

x+y
pr2

]
we may write

∑
m′n′pr2∈I

1 =
∑

m′n′∈J
n=n′r∼N,p∼P

1 =
∑

m′n′∈J
n′∼N/r,p∼P

1.

Next, define χ(m) as the number of integers in J divisible by m (using

square brackets to denote the integral part) as follows,

χ(m) =
∑
k∈J
m|k

1 =

[
x+ y

pmr2

]
−
[

x

pmr2

]
.
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Letting ψ = {x}− 1
2
, where the brace denotes the fractional part, we may

write χ(m) as:

χ(m) =
y

pmr2
+ ψ

(
x

pmr2

)
− ψ

(
x+ y

pmr2

)
.

This may be used to re-express the sum under consideration as a main term

with fractional parts:∑
m′n′∈J

n′∼N/r,p∼P

1 =
∑

n′∼N/r
p∼P

χ(n′)

=
∑

n′∼N/r
p∼P

y

n′pr2
+
∑

n′∼N/r
p∼P

(
ψ

(
x

n′pr2

)
− ψ

(
x+ y

n′pr2

))

= S1 + S2, say.

The sum S2 will be expressed as an exponential sum with an error term.

We aim to show that sufficient saving may be achieved in the subsequent

exponential sum such that the error terms will be smaller than the term S1

and the main term (refer to (2.11) and (2.3)) which it will generate.

Before proceeding we consider the sum S1 in more detail by first writing

S1 =
∑

n′∼N/r
p∼P

y

n′pr2
=

y

r2

∑
n′∼N/r

1

n′

∑
p∼P

1

p
.

The first sum on the right being over consecutive integers may be approx-

imated by using the standard asymptotic formula

∑
n≤A

1

n
= logA+ C +O

(
1

A

)
,
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from which we obtain ∑
n′∼N/r

1

n′
= log 2 +O

( r
N

)
.

To deal with the second sum on the right-hand side of the above expres-

sion for S1 we observe that in order to obtain a final expression for the main

term of a suitable order (refer to (2.3)) that application of Mertens Prime

Number Theorem (see Theorem 22.8 [9, p.466]) introduces an error term of

order O(1/ logP ) which is of the same order as the main term, log 2/ logP ,

obtained from Merten’s Theorem for the sum over the range p ∼ P . Explic-

ity, from Merten’s Theorem

∑
p∼P

1

p
= log

(
log 2P

logP

)
+O

(
1

logP

)
.

Then by applying the Taylor’s series for log(1+A) to log(log 2P/ logP ) with

A = log 2P/ logP − 1 and noting that |A| < 1 and that A simplifies to

A = log 2/ logP we obtain the following expression for the main term of the

above

log

(
log 2P

logP

)
=

log 2

logP
+O

(
1

(logP )2

)
,

which is of the same order as the error term in Merten’s Theorem.

Fortunately, however, it is possible to obtain this same main term log 2/ logP ,

for the sum with an error term of order O(1/(logP )2) using partial summa-

tion as detailed in the following discussion. To proceed we observe that

∫ N

2

1

log x
dx =

N∑
n=2

1

log n
+O(1),

and we note that any error from the Prime Number Theorem with the loga-

rithmic integral as the main term will be the same as that which is obtained

by using the sum on the right hand side of the above expression as the main
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term. Hence, using the Prime Number Theorem in the form

∑
p≤N

1 =
N∑
n=2

1

log n
+O

(
N

(logN)2

)
,

partial summation gives

∑
p∼P

1

p
=

log 2

logP

(
1 +O

(
1

logP

))
.

The argument for this partial summation (see [14, p.13]) is:

∑
p∼P

1

p
=
∑
n∼P

(
1

n
− 1

n+ 1

) ∑
P≤p≤n

1 +
1

2P + 1

∑
p∼P

1

=
∑
n∼P

(
1

n
− 1

n+ 1

) ∑
P≤m≤n

1

logm
+

1

2P + 1

∑
m∼P

1

logm
+O

(
1

(logP )2

)
=
∑
n∼P

1

n log n
+O

(
1

(logP )2

)
=

log 2

logP

(
1 +O

(
1

logP

))
,

since the third from final line in the above is essentially what is obtained by

applying partial summation to the second from final line.

It will be noted that whilst the error term in the Prime Number The-

orem can be as small as O(N exp (−(logN)α)) for α < 3
5

the larger error

O(N(logN)−2) is sufficient since a similar size error is introduced in the last

line of the partial summation argument above.

Hence we obtain the estimate for S1

S1 =
y(log 2)2

r2 logP
+O

(
y

r2(logP )2

)
+O

(
y

rN logP

)
. (2.5)
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Next consider S2. We use the truncated Fourier series for ψ (see, for

example, [14, p.108])

ψ(x) = − 1

2πi

∑
0<|h|<H

e(hx)

h
+O

(
min

(
1,

1

H||x||

))
.

We next use this expression for ψ and let t be the value of the argument of

ψ in S2 and write ch = − 1
2πih

. As a result of the application of this truncated

Fourier series we note that two error terms will be generated for ψ(t) at each

value of its argument t = x/n′pr2 and t = (x + y)/n′pr2. Explicitly these

will be

O

 ∑
n′∼N/r
p∼P

min

(
1,

1

H||x/n′pr2||

)+O

 ∑
n′∼N/r
p∼P

min

(
1,

1

H||(x+ y)/n′pr2||

) .

We must choose the largest of these two errors and for brevity we write this

as

O

 ∑
n′∼N/r
p∼P

max
n′pr2t=x or (x+y)

min

(
1,

1

H||t||

) ,

with the understanding that the maximum is being taken over t and can

occur only at either of the two values of the argument t of ψ(t) in S2. Hence

we now write
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S2 =
∑

n′∼N/r
p∼P

 ∑
0<|h|<H

che

(
hx

n′pr2

)
−

∑
0<|h|<H

che

(
h(x+ y)

n′pr2

)

+O

 ∑
n′∼N/r
p∼P

max
n′pr2t=x or (x+y)

min

(
1,

1

H||t||

)
= S3 + S4, say.

The sum S3 may, after changing the order of summation be written as

S3 = −
∑

0<|h|<H

1

2πih

∑
n′∼N/r
p∼P

(
e

(
hx

n′pr2

)
− e

(
h(x+ y)

n′pr2

))
.

Next by observing that

−
(
e

(
hx

n′pr2

)
− e

(
h(x+ y)

n′pr2

))
=

2πih

n′pr2

∫ x+y

x

e

(
Y h

n′pr2

)
dY,

we may write

S3 =

∫ x+y

x

1

r2

∑
0<|h|<H

∑
n′∼N/r
p∼P

1

n′p
e

(
Y h

n′pr2

)
dY.

The integrand is the product of 1/r2 and the sum

∑
0<|h|<H

∑
n′∼N/r
p∼P

1

n′p
e

(
Y h

n′pr2

)
.

By applying partial summation to the variable n′ (this being over con-

secutive integers) the coefficient 1/n′ may now be removed. On performing

partial summation (see for example [14, p13]) we may now re-express the
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sum as

∑
0<|h|<H
p∼P

1

p

 ∑
n′∼N/r

(
1

n′
− 1

n′ + 1

) ∑
N/r≤s≤n′

e

(
Y h

spr2

)

+
∑

0<|h|<H
p∼P

1

p

 1

[2N/r] + 1

∑
s∼N/r

e

(
Y h

spr2

) .

In the above expression we now have two exponential sums, one of which

is a truncated form of the other. Hence we require a bound for the sum

(where we replace the dummy variable s as in the original sum by n′ for

clarity) ∑
0<|h|<H

∑
N/r<n′<S

p∼P

1

p
e

(
Y h

n′pr2

)
for S ≤ 2N/r.

We will deal with the sum over n′ ∼ N/r. The same argument gives the

identical bound for the truncated sum. By this process we have reduced the

problem of bounding S3 essentially to demonstrating a nontrivial bound for

the sum ∑
0<|h|<H

∑
n′∼N/r
p∼P

1

p
e

(
Y h

n′pr2

)
.

The variable n′ runs over consecutive integers whilst the variable p runs

over primes. We therefore define c` as the function

c` =


p
`

if ` is prime,

0 otherwise
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and write the sum as

1

p

∑
0<|h|<H

∑
n′∼N/r
`∼P

c`e

(
ξh

n′`

)
where ξ =

Y

r2
(2.6)

and we note that in particular |c`| ≤ 1 (as will be required for the subsequent

lemma). This is a Type I sum (using the nomenclature of Vaughan) in which

the variable n′ runs over consecutive integers and we next appeal to the

following Lemma (see section 2 of [25] for a proof and where the result we

require follows immediately from Corollary 2).

Lemma 3. Let X > 1 and suppose X ≤ ξ < 2X. Suppose v ∈ (X
1
2 , X

4
5 ]

and K = (v, ev]. Suppose m ∼M where X
1
8 �M � X

2
5
−ε/2, and |am| ≤ 1.

Then ∑
h

∑
m,n

ame

(
ξh

mn

)
� vX−2η

where mn ∈ K, h ≤ vX−
1
2

+3η for some η = η(ε) > 0.

To apply this lemma to the Type I sum (2.6) we note that we have already

seen that we can assume that P > x
1
8 . We can then apply Lemma 3 with

X = x/r2, v = NP/r,K = (NP/r, eNP/r], ξ = Y/r2,M = P . We then have

P ≤ x
2
5
−ε � (x/r2)

2
5
−ε/2

All the other conditions are easily checked to be valid. We note that for

the sum (2.6) to satisfy Lemma 3 we must have H ≤ NP (x/r2)−
1
2

+3η =

(vx3η/y)r1−6η for some η = η(ε) > 0. We now have by this Lemma that

∑
0<|h|<H

∑
n′∼N/r
`∼P

c`e

(
Y h

n′pr2

)
� vx−2η. (2.7)

We emphasise the importance of the range H < (vx3η/y)r1−6η in the

above discussion as this will be required in the bound for S4 in what follows.

29



The bound on sum S3 is now readily obtained.

S3 �
∫ x+y

x

1

r2

r

N

vx−2η

p
dY � yx−2η.

v

rNP
� yx−2η

since v/rNP � 1/r2.

In fact we also find that S4 � yx−η. This is achieved by choosing

H = vx3η/y

(which is within the allowable range H < (vx3η/y)r1−6η for Lemma 3 as de-

tailed in the discussion above) for x
2
5 < v < x

3
4 and any η > 0. To show this

we first appeal to the following Lemma [2, p.18-21]. Note that for notational

convenience the letter ` has been employed in the subsequent lemma and

discussion regarding sum S4 but it is understood that this ` is different from

that used in the previous discussion regarding S3 and will take a different

range of values.

Lemma 4. Let

χ(z) =

1 if ||z|| < δ

0 otherwise

and let L be an integer at least of size δ−1. Then there are coefficients a+
`

and a−` with |a+
` | � δ and |a−` | � δ such that

2δ − 1

L+ 1
+
∑

0<|`|≤L

a−` e(`z) ≤ χ(z) ≤ 2δ +
1

L+ 1
+
∑

0<|`|≤L

a+
` e(`z)

with

|a+/−
` | ≤ min

(
2δ +

1

L+ 1
,

3

2`

)
.

By this lemma, choosing the upper bound and letting L = δ−1 we see

that given χ(z) as defined in the Lemma we have for |a`| � δ (where the
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plus superscipt is omitted on the understanding that we are dealing with the

upper bound)

χ(z)� δ +
δ−1∑
`=1

a`e(`z).

Using this bound and |a`| � δ we observe that if m is a positive integer and

m ∼M then given a sequence of real numbers zm we also have the following

bound

∑
||zm||<δ
m∼M

1�Mδ + δ
δ−1∑
`=1

∣∣∣∣∣∑
m∼M

e(`zm)

∣∣∣∣∣ . (2.8)

We note the similarity in the form of this bound to the Erdős-Turán

Theorem (see Theorem 2.1 [2, p.19]) but here we use a constant coefficient

δ rather than the harmonic coefficient in that theorem. We may employ

this to estimate sum S4 after suitable re-expression. The approach we take

is to majorize the sum over terms min(1, 1/H||t||) in S4 by comparing the

term 1/H||t|| with dyadic blocks of size 2−j for integers j. To achieve this

we therefore introduce a new variable j which takes positive integer values

and define Q := H2−j. Let ξ denote the value either x or x + y at which

t = ξ/n′pr2 achieves a maximum for the sum S4 (refer to previous discussion

after (2.5) regarding t). Then for some integer j we have 1/H||t|| ≥ Q/H =

2−j whenever ||t|| = ||ξ/n′pr2|| < 1/Q. The condition ||ξ/n′pr2|| < 1/Q

therefore enables us to majorize the sum over terms min(1, 1/H||t||) with

the most saving. In the following argument the notation for a summation

over Q = H2−j is understood to be a summation over all possible values of

Q given by integer values of j. Hence we may now write
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S4 =
∑

n′∼N/r
p∼P

max
n′pr2t=x or (x+y)

min

(
1,

1

H||t||

)

≤
∑

n′∼N/r
p∼P

min

1,
1

H
∣∣∣∣∣∣ ξ
n′pr2

∣∣∣∣∣∣


≤
∑

Q=H2−j

∑
n′∼N/r

p∼P,
∣∣∣∣∣∣ ξ

n′pr2

∣∣∣∣∣∣≤1/Q

min

(
1,
Q

H

)
.

We may replace the double sum conditions n′ ∼ N/r and p ∼ P of the

inner sum with a single sum condition upto the product of the top of each

of these ranges n ≤ 4NP/r (where we now use the variable n in the sum

over the combined range for notational convenience). We thereby majorize

the previous sum so that it is

≤
∑

Q=H2−j

∑
n≤4NP/r

|| ξ
nr2
||≤1/Q

min

(
1,
Q

H

)
.

Lemma 3 and the remarks which followed and in particular (2.8) may

now be applied to this sum with zn = ξ/nr2 and δ−1 = Q, noting that the

minimum function will select Q/H = 2−j by the restriction ||ξ/nr2|| < 1/Q,

thus giving the bound

�
∑

Q=H2−j

Q

H

NP
r

1

Q
+

1

Q

Q∑
`=1

∣∣∣∣∣∣
∑

n≤4NP/r

e

(
`ξ

nr2

)∣∣∣∣∣∣


=
∑

Q=H2−j

NP
Hr

+
1

H

Q∑
`=1

∣∣∣∣∣∣
∑

n≤4NP/r

e

(
`ξ

nr2

)∣∣∣∣∣∣

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� NP

H

logH

r
+

1

H

∑
Q=H2−j

Q∑
`=1

∣∣∣∣∣∣
∑

n≤4NP/r

e

(
`ξ

nr2

)∣∣∣∣∣∣ .
The first term of the last line above is � v/H since NP logH/r =

v logH/r � v. The inner sum of the second term of the last line above

is a simple exponential sum and by the Kusmin-Landau and van der Cor-

put bounds [8, p.7-8 Theorem 2.1 and Theorem 2.2] is readily shown to be

� NP/r < v (recall that v = NP/r). We now prove this and begin by

quoting these two theorems as lemmas.

Lemma 5. (Kusmin-Landau) If f is continuously differentiable, f ′ is mono-

tonic and ||f ′|| ≥ λ > 0 on I = (a, b] then∑
k∈I

e(f(k))� λ−1.

Lemma 6. (van der Corput) Suppose that f is a real valued function with

two continuous derivatives on I. Suppose also that there is some λ > 0 and

some α ≥ 1 such that λ ≤ |f ′′| ≤ αλ on I = (a, b] . Then∑
k∈I

e(f(k))� α|I|λ
1
2 + λ−

1
2 .

We take f(k) = `x/kr2 (where we recall that this ` relates to discussion

and treatment of S4 and has range 1 ≤ ` ≤ Q ) in the above two lemmas for

which we have chosen (without loss of generality) the value x for ξ. We then

obtain

||f ′|| ≥ `x

n2r2
> 0.

Thus we use lemma 4 when ||f ′|| < 1/2 (when NPr � `x since f ′ is of order
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`x/(NP )2r2) so that the above remains positive. Furthermore

`x

n3r2
< |f ′′| < 2α

`x

n3r2
for any α ≥ 1

for which range we use Lemma 5 (which is when (NPQr)2 < `x/2).

Hence by the lemmas for these two ranges (where k of the lemma is now

n of the sum under discussion) we obtain the bounds∣∣∣∣∣∣
∑

n≤4NP/r

e

(
`ξ

nr2

)∣∣∣∣∣∣� n2r2

`x
<

(
4NP

r

)2
r2

`x
� (NP )2

`x
=
v2

`x
.

which after summing over ` as in the original sum under discussion is equal

to
v2 logH

x
� v.

We also have for the second range∣∣∣∣∣∣
∑

n≤4NP/r

e

(
`ξ

nr2

)∣∣∣∣∣∣� α
4NP

r

(
`x

n3r2

) 1
2

+

(
n3r2

`x

) 1
2

� NP

r

(
r`x

(NP )3

) 1
2

+

(
(NP )3

r`x

) 1
2

.

After summing over ` (1 ≤ ` ≤ Q) the above is � NPx−1/16 � v.

Hence we now have

S4 �
v logH

H
� x2η v

H
.

We may now choose H = vx3η/y (which is in the allowable range by the

discussion following Lemma 2) giving the bound S4 � yx−η. By virtue of
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(2.7) and this bound for S4 we have

S2 = S3 + S4 � yx−η. (2.9)

2.5 Conclusion

We are now in a position to bring all the information regarding the sum (2.2)

under investigation together and apply it to (2.1). This original sum may

now be decomposed into several sums and associated error terms.

∑
mnp∈I

(m,n)=1,p-m

1 =
∑
r

µ(r)
∑

m′n′pr2∈I

1−
∑
mnp∈I

(m,n)=1,p|m

1

=
∑
r≤L

µ(r)
y(log 2)2

r2 logP
+O

(
y(log x)2

L
+ x

1
3

+3ε

)
+ E (2.10)

and

E = E1 + E2 + E3 + E4.

Where the main term arises from the main term of S1 in (2.5) and E1 is

the error resulting from this approximation. The second term of (2.10) is

the bound obtained for larger common factors in (2.5). The term E2 comes

from the error in reducing to exponential sums (this is essentially S4 and is

noted to become smaller as the range of h increases).The third error term

E3 arises from the estimation of the exponential sum (this being essentially

S3). However by (2.9) we have that E2 + E3 � yx−η. E4 is the error arsing

from the case p divides m in section 3, which was shown to be� x
2
5 +yxε−

1
8 .

Hence it remains to calculate E1 and show this is smaller than the main term.
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From (2.5) we have

E1 =
∑
r≤L

(
O

(
y

r2(logP )2

)
+O

(
y

rN logP

))

= O

(
y

(logP )2

∑
r≤L

1

r2

)
+O

(
y

N logP

∑
r≤L

1

r

)
.

Hence

E1 = O

(
y

(logP )2

)
+O

(
y log log x

N logP

)
,

where the summation over r in the second term has introduced an extra

factor O(logL) = O(log log x).

Since by hypothesis P > 2N > xε, we have

E1 = O

(
y

(log x)2

)
+O

(
y log log x

xε log x

)
.

Hence

E1 �
y

(log x)2
.

The sum over larger common factors r > L in the second term of (2.10) was

shown to be � y(log x)2/L+ x
1
3

+3ε (see section 2).

Also as P and logP are no larger than x
3
4 and log x respectively, the main

term given by the first term of (2.10) is

∑
r≤L

µ(r)
y(log 2)2

r2 logP
=
y(log 2)2

logP

∑
r≤L

µ(r)

r2
� y

log x
, (2.11)

since the sum is finite.
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From (2.10) we may then conclude that

∑
mnp∈I

(m,n)=1,p-m

1 =
∑
r≤L

µ(r)
y(log 2)2

r2 logP

+O

(
y(log x)2

L
+ x

1
3

+3ε +
y

(log x)2
+

y

xη
+ x

2
5 + yxε−

1
8

)
.

Since L = (log x)A (see section 2) we can therefore choose A = 4 giving

L = (log x)4 thus producing the anticipated error term in (2.3). Hence, for

sufficiently large x the error term E1 is a power of log x smaller than the main

term (2.11) and E2, E3 and E4 are a power of x smaller than the main term.

Furthermore the upper bound obtained in (2.4) suffices for larger common

factors (the second term of (2.10)). We have therefore established Theorem 1.

The corollary follows immediately from Theorem 1 since for n ∼ N and

p ∼ P given n < p with N and P about x
1
3 in size we have P < 2x

1
3 < x

2
5
−ε

with NP ≈ x
2
3 ≤ x

3
4 which satisfies the conditions of Theorem 1.

The asymptotic value of the main term is given by

∑
r≤L

µ(r)
y(log 2)2

r2 logP
=
y(log 2)2

logP

∑
r≤L

µ(r)

r2
=

6y(log 2)2

π2 logP
(1 + o(1)).

In particular there are integers of the form required in the corollary within

the interval (x, x+ x
1
2 ]. The number of such integers being

6y(log 2)2

π2 logP
(1 + o(1)).
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Chapter 3

Sums of Differences Between

Consecutive Primes

3.1 Introduction

We consider the sum of differences between consecutive primes pn and pn+1

where pn is the n-th prime. The result will be a generalisation of a result by

Matomäki [26], since the interval x1/2−∆ we shall consider will in fact be ar-

bitrarily shorter than the interval considered in that paper which dealt with

those consecutive primes with gaps greater than the fixed interval x1/2. More

specifically we show that sums of differences between consecutive primes with

gaps greater than x1/2−∆ where 0 ≤ ∆ ≤ −3 + 1
6

√
327 (the upper bound be-

ing a quadratic irratonal of approximate value 0.01385...) provides significant

refinements of existing results. In particular we are motivated by the appli-

cations of this result. These include a significant refinement to a result on a

prime-representing function [27] which is explored in chapter 4 (see Theorem

3) and a corollary providing further insight into the sum of square differences

between consecutive primes [31]. There is potential for a further corollary

on Diophantine approximations [10] however this will require an extension

of the results on squared differences between consecutive primes. It is hoped

38



that the result established will give further insight.

A significant finding of this investigation is that a key lemma, Lemma 13,

has been shown to have the greatest dependence on T1 (as defined in Lemma

8) arising from the R̂5 term from the large and mean value results (3.38) and

(3.40) and it is this which restricts further improvements that are possible

via more refined large value, sieve and other approaches. As will be seen in

the following sections the exponent of 5∆ in the upper bound of the main

theorem, Theorem 2, arises predominently from Lemma 17 which ultimately

determines the size of the exponent of this upper bound.

The result of this investigation represents in some sense a perturbation of

the result in [26] however the nonlinear nature of the large and mean value

results for Dirichlet polynomials results in a significant nontrivial change to

many of the lemmas required to achieve the result of this paper. For instance,

the final estimates for the sizes of the required polynomials are affected by

the additional fixed ∆ > 0 in many of the exponents found in the lemmas

and in the presence of additional terms as the reader will discover in the

subsequent sections.

The overall approach will be to transform the problem to one involving

the counting of primes in short intervals and then applying the seive method

of Harman to provide asymptotic formulae used in the decomposition of

the sums via iterations of Buchstab’s identity. For clarity a synopsis of the

method is provided in the following section.

At present it has been established that [26]:

∑
pn+1−pn>x1/2

x≤pn≤2x

pn+1 − pn � x2/3 (3.1)
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where the interval between consecutive primes in the sum is greater than x1/2.

We prove

Theorem 2. Let pn be the n-th prime and let 0 < ∆ < 1/48 be a fixed

positive number. Then,

∑
pn+1−pn>x1/2−∆

x≤pn≤2x

pn+1 − pn � x2/3+5∆. (3.2)

This theorem will be needed in the next chapter where it will be applied

to produce significant results for prime-representing functions.

We point out that Theorem 2 holds true for ∆ > 1/48 but is no longer the

most efficient approach as far as the applications of the result are concerned.

Also, it will be convenient to have an upper bound on ∆ for the lemmas and

their proofs (for example in Case 2 of Lemma 14).

Next we obtain a corollary to the theorem which provides a result on the

sum of squares differences between consecutive primes.

Corollary 2. Let pn be the n-th prime and let ∆ > 0 be a small positive

number. Then

∑
x1/2≥pn+1−pn>x1/2−∆

x≤pn≤2x

(pn+1 − pn)2 � x7/6+4∆.

Proof. Let U be defined by 2−U ≤ x−∆ < 21−U and V by 2V−1 < x1/40 < 2V .

Then

∑
x1/2≥pn+1−pn>x1/2−∆

pn∈[x,2x]

(pn+1 − pn)2 �
V∑

m=−U

2mx1/2
∑

pn+1−pn∼2mx1/2

pn∈[x,2x]

(pn+1 − pn).
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For m ≤ 0, Theorem 2 gives ∑
pn+1−pn∼2mx1/2

pn∈[x,2x]

� x2/32−5m.

But since
V∑

m=−U

2−4m � x4∆

we have

∑
x1/2≥pn+1−pn>x1/2−∆

pn∈[x,2x]

(pn+1 − pn)2 �
V∑

m=−U

x1/22mx2/32−5m � x7/6

V∑
m=−U

2−4m

which is � x7/6+4∆, as required.

We observe that since Peck’s result (in his DPhil thesis [32]) bounds the

squared differences sum by x5/4, then if we set

7

6
+ 4∆ <

5

4
,

we now see that this corollary provides a better bound than Peck for ∆ < 1
48

.

We will use methods from Peck [31], Matomäki [26] and the sieve of

Harman [14],[11],[12], and we begin with the proof of the following lemma

which is essentially derived from the first two of these papers. The lemma

will then enable the problem to be reduced to considering primes in short

intervals. In the lemma we start with a formula for the number of primes in

a short interval (3.3) and consider a prime pn counted by the sum (3.5). We

note that there are no primes in the interval (y, y+δy) when y ∈ (pn,
1
2
(pn+1+

pn)) and δ = 1/(4x1/2+∆) and find that we may conclude that to estimate the
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sum (3.5) it suffices to obtain mean value estimates of the functions A(i)(x, y)

of the form (3.4). We will be using 4-th and 6-th powers (i = 4, 6).

Lemma 7. Let a ≥ 21/40 and δA = 1/(4x1/2+∆). If we suppose there exists

a constant c > 0 and functions A(x, y), A(4)(x, y), A(6)(x, y) and E(x, y) such

that for fixed ∆ > 0

π(y + δAy)− π(y) ≥ δAy

log y
(c+ A(x, y) + E(x, y)), (3.3)

where E(x, y) = o(1), A(x, y)� |A(4)(x, y)|+ |A(6)(x, y)| and where∫ 2x

x

|A(i)(x, y)|idy � xa, for i = 4, 6. (3.4)

Then ∑
pn+1−pn>x1/2−∆

x≤pn≤2x

pn+1 − pn � xa. (3.5)

Proof. We select a prime pn counted by the sum (3.5) and since there is

at most one such prime pn which has consecutive prime pn+1 > 2x this can

contribute to the sum in (3.5) by at most � x21/40 ≤ xa by [5]. So, as this

will not affect the bound in (3.5), we may assume that pn+1 < 2x . Next

choose y ∈ (pn,
1
2
(pn + pn+1)) then we see that (by writing y/4x1/2+∆ in the

form(y/2x).(x1/2−∆/2))

y + δAy ≤
1

2
(pn + pn+1) +

y

2x
.
x1/2−∆

2
<

1

2
(pn + pn+1) +

y

2x

1

2
(pn+1 − pn)

since we have pn+1 − pn > x1/2−∆. As y ∈ (x, 2x) we note that y/2x < 1

hence the above inequality gives

y + δAy <
1

2
(pn + pn+1) +

1

2
(pn+1 − pn) = pn+1.
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This implies that π(y+δAy)−π(y) = 0 and hence A(x, y)� 1 in the interval

(pn,
1
2
(pn + pn+1)). For each pn counted by (3.5) there is an interval of length

� pn+1 − pn where |A(4)| + |A(6)| � |A| � 1. As these intervals are disjoint

the assertion of the lemma follows by integrating over (x, 2x) since we have∫ 2x

x

|A(4)(x, y)|4dy +

∫ 2x

x

|A(6)(x, y)|6dy �
∑

pn+1−pn>x1/2−∆

pn,pn+1∈(x,2x)

∫ 1/2(pn+pn+1)

pn

dy

�
∑

pn+1−pn>x1/2−∆

pn,pn+1∈(x,2x)

pn+1 − pn.

By hypothesis the integrals on the left hand side of the above inequalities

are � xa which completes the proof.

We will proceed to prove that the assumptions of the above lemma are

satisfied for the shorter interval pn+1 − pn > x1/2−∆ for a = 2/3 + 5∆ + ε for

any ε > 0.

3.2 Dirichlet Polynomials and Definitions

In this section we begin by introducing some of the main parameters used

in the subsequent sections and then define some of the key properties of the

Dirichlet polynomials we use. Several properties of Dirichlet polynomials are

further detailed for reference in the introductory chapter.

Throughout this chapter we let ∆ > 0 be a small fixed number.

The resulting theorem will generalise Theorem 1.1 of [26] and we now

state the parameters which are used throughout the following sections for
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clarity. Let

γ = exp (log x)9/10

S0 = exp

(
2

(
log x

log γ

)2

log log x

)
= exp(2(log x)1/5 log log x).

T0 = exp
(

1
8
(log x)1/2

)
.

Let η and ηi for i = 1, 2 be small arbitrary positive numbers.

We use variables x and x1 (defined later) which will be related by the

inequality

x� x1+η
1 .

We let,

T1 = x1/2+∆+η.

By the above relations we have

T1 � x
1/2+∆+2η
1 .

We now introduce assumptions regarding the shape of polynomials we

consider. We wish to consider those polynominals which consist of one of

two main forms. Firstly to enable the optimum use of mean value and large

value results for Dirichlet polynomials we wish to work with polynominals

and their products which are of short length. The second form of polynomial

which we would like to work with are those which may consist of products

of zeta factors since results for these can be achieved by relatively straight-

forward methods.
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Heath-Brown generalised Vaughan Identity fortunately often provides

Dirichlet polynomials with either longer zeta factors or many prime factored

short Dirichlet polynomials. We raise these Dirichlet polynomials to powers

to obtain another Dirichlet polynomial whose length is as near T1 (as defined

in Lemma 8) in value as possible and this can be achieved if the polynomials

are short.

For these reasons we will consider only polynomials which are composed

of a finite product of several Dirichlet polynomials and with properties which

restrict the overall shape as detailed in the following assumption:

ASSUMPTION: We restrict the choice of polynomials F (s) to the follow-

ing type. Let

F (s) =

(
k∏
i=1

Gi(s)

)
H(s) = G(s)H(s), (3.6)

where F ∼ x, k ≥ 2 is bounded, all the polynomials are divisor-bounded,

H � xo(1), Gi > η = exp((log x)9/10) and all Gi(s) are prime-factored. Fur-

ther, we assume that all the polynomials Gi(s) with length greater than G1/8

are zeta factors.

We now develop the machinery required to obtain asymptotic formulae

of the type

∑
m∈A

cm =
δA
δB

∑
m∈B

cm +
δAy

log y
(A(x, y) +O((log x)−B)). (3.7)

We may consider cm as coefficients of the Dirichlet polynomial

F (s) =
∑
m∼x

cmm
−s

and we next use the Perron formula to convert the problem of obtaining an
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asymptotic formulae of type (3.7) to that of bounding Dirichlet polynomials

using this polynomial F (s) in the following lemma (see also [14] Lemma 7.2

p122):

Lemma 8. Let

F (s) =
∑
m∼x

cmm
−s

be a divisor-bounded Dirichlet polynomial. Then

∑
m∈A

cm =
δA
δB

∑
m∈B

cm (3.8)

+
δAy

log y

(
log y

2πi

(∫ T1

T0

+

∫ −T0

−T1

)
f(t)y−

1
2

+itdt+O((log x)−B)

)
where f(t)� |F (1

2
+ it)|.

Proof. The proof is based on [16] and can also be found in [26]. By the

Perron formula (using the same form of the Perron formula as in [16] p1371)

∑
y<n≤y+δy

cn =
1

2πi

∫ 1/2+iT1

1/2−iT1

F (s)ys
(1 + δ)s − 1

s
ds (3.9)

+O

(
xη/2

(
1 +

x

T1

))
for δ = δA and also for δ = δB. Let s = 1/2 + it and let

C(δ, s) =
(1 + δ)s − 1

s
.

We separate the integral into regions |t| ≤ T0 and T0 ≤ |t| ≤ T1. Since

δT0 < 1 we now have

C(δ, s) =

δ +O(T0δ
2) if |t| ≤ T0,

O(δ) if T0 ≤ |t| ≤ T1.
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We may therefore write the integral as

1

2πi

∫ 1/2+iT0

1/2−iT0

F (s)ys
(1 + δ)s − 1

s
ds = δ

1

2πi

∫ 1/2+iT0

1/2−iT0

F (s)ysds

+O(T 2
0 δ

2x(log x)C).

Hence in (3.9), letting

f(t) = F

(
1

2
+ it

)(
C(δA, s)

δA
− C(δB, s)

δB

)
, (3.10)

the proof is complete.

Next we identify the integral between positive limits T0 to T1 in (3.8) and

call it B1(x, y):

B1(x, y) =

∫ T1

T0

f(t)y−
1
2

+itdt.

We are interested in using mean and large value estimates for Dirichlet

polynomials to bound B1(x, y) when the Dirichlet polynomial F (s) (as in

(3.10)) is of a certain type.

We note firstly that B1(x, y) is bounded by the absolute value of the

integral between T and 2T for some T0 ≤ T ≤ T1 at which the absolute

value within these limits is maximum. Explicitly

B1(x, y)� (log T1) max
T0≤T≤T1

∣∣∣∣∫ 2T

T

f(t)y−
1
2

+itdt

∣∣∣∣ .
In view of this bound we exploit large value estimates for polynomials F (s)

and we introduce integrals Jn,T (for positive integers n where T − 1 < n <

2T ), which are essentially a collection of the integrals of the form B1(x, y) but

in integer steps of limits of integration between max(n, T ) and min(n+1, 2T ).

These Jn,T will be of key importance in the remainder of the sections and

will form the basic objects whose bounds and bounds of power moments will
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be used to achieve the proof of Lemma 9 and identify polynomials for which

there exist asymptotic formulae for the sieve. The definition is

Jn,T =

∫ min(n+1,2T )

max(n,T )

f(t)y−
1
2

+itdt. (3.11)

We follow the argument of Peck in [31] and write

∣∣∣∣∫ 2T

T

f(t)y−
1
2

+itdt

∣∣∣∣ =

∣∣∣∣∣∣∣
∑

T−1<n<2T
n≡0 mod 2

Jn,T +
∑

T−1<n<2T
n≡1 mod 2

Jn,T

∣∣∣∣∣∣∣
�

∣∣∣∣∣∣∣
∑

T−1<n<2T
n≡κ mod 2

Jn,T

∣∣∣∣∣∣∣ for either of κ = 0 or κ = 1 .

Next select the value of t for which F (1/2 + it) is maximum in the range

max(n, T ) ≤ t ≤ min(n + 1, 2T ), where n ≡ κ mod 2. We define this value

of t to be tn.

Observe that the points tn ∈ [T, 2T ] are well-spaced : |tm − tn| ≥ 1 for all

m 6= n.

We next divide x into dyadic blocks and write ur = x/2r for some 0 ≤
r ≤ R and where x/2R < x−1 ≤ x/2R−1. Using this definition of ur for

convenience we define the k-tuple

u = (u0, ..., uk) and ui =
x

2r
for some 0 ≤ r ≤ R (3.12)

as a means of referring to the collection of all ui.

We now introduce the set I(u) which is of central importance in this
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investigation and is defined as

I(u) = The set of n for which tn satisfies both (3.13)

ui <

∣∣∣∣Gi

(
1

2
+ itn

)∣∣∣∣ ≤ 2ui and u0 <

∣∣∣∣H (1

2
+ itn

)∣∣∣∣ ≤ 2u0,

where Gi and H are as defined in (3.6).

Crucially it is the number of elements of this set (or cardinality) defined

as

R = |I(u)| (3.14)

which we use to find the key bounds for the sums of the Jn,T and their power

moments.

From the definitions we note that there are O((log x)k+1) sets I(u). If

there is a factor of size� x−1 (where the size of a polynomial Ki(s) is defined

as w if |Ki(s)| ∼ w) for some tn then

|f(tn)y−1/2+itn| � x−1x1/2x−1/2(log x)C ,

so these factors contribute in total � x−1T1(log x)C . We therefore have

B1(x, y)� (log x)C max
T,u

∣∣∣∣∣∣
∑
n∈I(u)

Jn,T

∣∣∣∣∣∣+O((log x)−B).

In this expression we can now estimate the Jn,T by using, in (3.11) the

bound

|f(t)| �
∏
i

ui. (3.15)

Fortunately the cardinality R of the set I(u) is restricted by the fact that

there exist exactly R = |I(u)| well-spaced points tn satisfying |Gi(s)| ≥ ui

and |H(s)| ≥ u0 by definition. Hence we are able to use established mean
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and large value estimates for Dirichlet polynomials (see Lemma 12 and in

particular (3.31)) to bound |I(u)| and therefore obtain bounds for B1(x, y)

thereby obtaining the requisite asymptotic formulae of the form (3.7).

We now introduce the definition of a good Dirichlet polynomial F (s).

This will be a polynomial which via our definition (3.11) for Jn,T , which is

an integral with f(t) in its integrand, and also by (3.10) (relating f(t) by

its definition to the polynomial F (t)) will by definition immediately provide

asymptotic formulae of the type (3.7).

Definition: A Dirichlet Polynomial F (s) for this problem is a good Dirich-

let Polynomial if there exists a partition K1 ∪K2 ∪K3 of possible values of

(T,u) then : ∣∣∣∣∣∣
∑
n∈I(u)

Jn,T

∣∣∣∣∣∣� (log x)−B, if (T,u)∈ K1 , (3.16)

2x∫
x

∣∣∣∣∣∣
∑
n∈I(u)

Jn,T

∣∣∣∣∣∣
4

dy � x2/3+5∆+ε, if (T,u)∈ K2 , (3.17)

2x∫
x

∣∣∣∣∣∣
∑
n∈I(u)

Jn,T

∣∣∣∣∣∣
6

dy � x2/3+5∆+ε, if (T,u)∈ K3 (3.18)

for any ε > 0 and fixed ∆ > 0.

We will prove the following lemma which will form the basis for identify-

ing good polynomials in the following sections. The proof will occupy several

of the subsequent sections and the approach to the proof will be structured

to follow of the stages of the arguments of Matomäki [26] and Peck [31].

However, we will in this chapter be required to make some major adapta-

tions to the arguments of those works. In Matomäki [26] the results from

Peck [31] could be in certain instances (for example the case for longer zeta
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factors) quoted verbatim, whereas the shorter intervals required in Theorem

2 cause technical difficulties in certain ranges. Examples of some of the more

significant adaptations can be seen, for instance, in the section on longer zeta

factors and in the final estimates Lemma 17.

Lemma 9. Let F (s) = G(s)H(s) be a Dirichlet polynomial of the assumed

form (3.6). Let Ni(s) be a Dirichlet polynomial of length Ni = xβi. Let

K(s), K1(s) and K2(s) be zeta factors. Then F (s) is good if one of the

following hold:

(i) G(s) = N1(s)N2(s)N3(s)K(s),

β1 ≤
1

2
, β3 ≤ β2, 2β2 + β3 ≤

1

2
and

3

4
β2 + β3 ≤

1

4

(ii) G(s) = N1(s)N2(s)N3(s)K(s),

β1 ≤
1

2
, β3 ≤ β2, 2β2 + β3 ≤

1

2
and β3 ≤

1

8

(iii) G(s) = N1(s)N2(s)N3(s)K(s),

β1 ≤
1

2
, β3 ≤

1

16
, and either β2 ≤

1

4
or N2 is a zeta factor.

(iv) G(s) = N1(s)N2(s)K(s),

β1 ≤
1

2
and β2 ≤

9

32

(v) G(s) = N1(s)N2(s),

where
13

27
≤ βi ≤

14

27
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(vi) G(s) = N1(s)N2(s),

where
7

15
≤ βi ≤

8

15

and G(s) can be grouped into products H(s) such that G(s) =
∏j

i=1Hi(s),

where each Hi = xγi is either a zeta-factor of length ≥ x
1
4
−η2 or γi ∈ G where

G is the union of the following intervals

G =

(
0,

41

180

]
∪
[

13

54
,
1

4
− η2

]
∪
[

1

3
, c

]

where c = 751+
√

11041
1920

= 0.445873... (see (3.49) for full derivation of c).

(vii) G(s) = K1(s)K2(s)N1(s)N2(s)N3(s),

where β3 ≤ β2 ≤
1

8
and β1 + β2 ≤

1

2

(viii) G(s) = K1(s)K2(s)N1(s)N2(s)

where β2 ≤
1

8
and β1 ≤

1

2
.

The lemma will provide several shapes of Dirichlet polynomial which will

be used to provide asymptotic formulae to be applied to the sieve in the final

sections. We begin in the next section by setting up the main definitions and

terminology required for the remainder of this chapter and introduce the

fundamentally important functions R(k) which enable the required bounds

(3.16), (3.17) and (3.18) to be established for polynomials.
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3.3 Functions R and R(k) : Establishing Good

Polynomials

The main objective of this section is to introduce and define the functions

R and R(k) which will prove to be of fundamental importance in providing

bounds for the left hand sides of (3.16), (3.17) and (3.18). The functions will

then enable, by our definition, the idenitfication of good polynomials.

Before defining R and R(k) we start by introducing some further termi-

nology and definitions which we use for Dirichlet polynomials.

DEFINITIONS

For clarity we initially list here the definitions for a ∼ A and for the size

and length of polynomials from the introductory chapter.

We use the expression a ∼ A when A < a ≤ 2A.

The length of the general Dirichlet polynomial R(s) =
∑

r∼A f(r)r−s is

defined as A.

We define the size of a polynomial Ki(s) as w if |Ki(s)| ∼ w.

From our general assumption about the shape of the required polynomials

we recall that

F (s) = G(s)H(s) =
k∏
i=1

Gi(s)H(s),

where we now define x1 to be the length of G(s) and hence by definition the
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product of the lengths of the Gi(s)

x1 =
k∏
i=1

Gi = G, (3.19)

and we defiine x2 as the length of H(s) whose value H we use to estimate

trivially. Let

x2 = H.

We see that these definitions allow us to write

x1x2 = F where F ∼ x.

Next we define the size of the Gi(s) at s = 1/2 + itn as ui so that∣∣∣∣Gi

(
1

2
+ itn

)∣∣∣∣ ∼ ui (3.20)

where we now define 0 ≤ σGi ≤ 1 by

ui = G
σGi−

1
2

i for i = 1, ..., k.

This enables the size of Gi(s) to be expressed as a power of its length with

the trivial value corresponding to σGi = 1.

In particular we define 0 ≤ σ ≤ 1 by

k∏
i=1

ui = x
σ− 1

2
1 = Gσ− 1

2 where σ = σG.

This definition of σ will be central to the proof of the main theorem as we will

establish the existence of non-trivial bounds for all values of sigma 0 ≤ σ ≤ 1.

In a similar manner we define the size of H(s) at s = 1/2 + itn as u0 so
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that ∣∣∣∣H (1

2
+ itn

)∣∣∣∣ ∼ u0 (3.21)

but this time we note that

u0 = x
1/2
2

since we will take the trivial estimate for H(s).

The definition of σGi above will be extended in a natural way for products

of the Gi(s) so that if G = G1...Gk = xκ1
1 ...x

κk
1 we have

σ = σG =
k∑
i=1

logGi

log x1

σGi =
k∑
i=1

κiσGi

σN = max
i

(σGi)

We will use the following notation throughout the following sections:

N(s) = Gi(s) with the largest σN amongst the Gi(s)

In the case of section (vi) of the lemma at the end of the last section we use

this N(s) to denote the same but for Hi(s) instead.

So in particular we may now write∣∣∣∣∣
k∏
i=1

Gi

(
1

2
+ itn

)∣∣∣∣∣ ∼
k∏
i=1

ui = x
σ− 1

2
1 ,

which along with the definition of u0 gives an important expression for the
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size of the assumed shape of the polynomial :

∣∣∣∣F (1

2
+ itn

)∣∣∣∣ =

∣∣∣∣∣
k∏
i=1

Gi

(
1

2
+ itn

)
H

(
1

2
+ itn

)∣∣∣∣∣ ∼
(

k∏
i=1

ui

)
u0

= x
σ− 1

2
1 x

1
2
2 .

We now use the above definitions and the expression defining f(t) in

terms of the Dirichlet polynomial F (1
2

+ it) in the previous section together

with the assumption regarding the shape of F (s) as F (s) =
∏k

i=1Gi(s)H(s)

to write an upper bound for f(t) in terms of powers of the sizes of these

polynomials. From the above list of definitions we may now write

|f(t)| �
∣∣∣∣F (1

2
+ it

)∣∣∣∣� x
σ− 1

2
1 x

1
2
2 . (3.22)

We recall the following important definition introduced in (3.13) which

will be key to the proofs

I(u) = The set of n for which tn satisfy (3.20) and (3.21)

where (each ui as defined in (3.20) and (3.21)) the u was defined in (3.12).

We point out that in definition (3.12) we restrict the smallest values of

ui by x/2R < x−1 ≤ x/2R−1 so that there are O((log x)k+1) sets I(u).

Using the important definition for R in (3.14) together with (3.15) and

(3.22) we may bound the left and side of (3.16):∣∣∣∣∣∣
∑
n∈I(u)

Jn,T

∣∣∣∣∣∣� x
σ− 1

2
1 x

1
2
2

∣∣∣∣∣∣
∑
n∈I(u)

1

∣∣∣∣∣∣� x
σ− 1

2
1 x

1
2
2 x
− 1

2R� xσ−1
1 R.

We now introduce functions R(2) and R(3) to bound the left hand sides

of (3.17) and (3.18) respectively. The beauty of these functions is the ability
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to estimate them using methods introduced by Heath-Brown [18],[19]. We

proceed by expanding the left hand side of (3.17):

2x∫
x

∣∣∣∣∣∣
∑
n∈I(u)

Jn,T

∣∣∣∣∣∣
4

dy =

2x∫
x

∣∣∣∣∣∣
∑
n∈I(u)

∫
(n)

f(t)y−1/2+itdt

∣∣∣∣∣∣
4

dy

=

2x∫
x

∑
n∈I(u)

∫
(n1)

...

∫
(n4)

f(t1)f(t2)f(t3)f(t4)y−2+i(t1+t2−t3−t4)dt1..dt4dy

Since f(t) is independent of y, we can integrate the above firstly by y to find

that it is

� x4σ−2
1 x2

2

∑
n1,...,n4

∫
(n1)

∫
(n2)

...

...

∫
(n4)

∣∣∣∣(2x)−1+i(t1+t2−t3−t4) − x−1+i(t1+t2−t3−t4)

−1 + i(t1 + t2 + t3 + t4)

∣∣∣∣ dt1...dt4.
But we have

|(2x)−1+i(t1+t2−t3−t4) − x−1+i(t1+t2−t3−t4)| � x−1

and

| − 1 + i(t1 + t2 + t3 + t4)| � 1 + |t1 + t2 + t3 + t4| � 1 + |n1 + n2 − n3 − n4|,

so that we now have the left hand side of (3.17) bounded as follows:

2x∫
x

∣∣∣∣∣∣
∑
n∈I(u)

Jn,T

∣∣∣∣∣∣
4

dy � x4σ−3
1 x2

∑
n1,...,n4

1

1 + |n1 + n2 − n3 − n4|
.
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We also have∑
n1,...,n4

1

1 + |n1 + n2 − n3 − n4|
=

∑
−2T≤m≤2T

g(m)

1 + |m|
, (3.23)

where g(m) is the number of solutions of n1 +n2−n3−n4 = m for ni ∈ I(u).

We claim that

g(m) ≤ g(0) for integers m ≥ 0 . (3.24)

This is seen by first writing

N2(a) = |{(n1, n2) : ni ∈ I(u), n1 + n2 = a}|,

whence

g(m) =
∑
a,b∈Z
a−b=m

N2(a)N2(b) =
∑
b∈Z

N2(b)N2(b+m).

By Cauchy-Schwarz inequality we see this is

≤

(∑
b∈Z

N2(b)2

)1/2(∑
b∈Z

N2(b+m)2

)1/2

=
∑
b∈Z

N2(b)2 = g(0).

Hence the claim (3.24) is proved.

From (3.24) we see that the sum on the right hand side of (3.23) is

� (log T )R(2) where we have defined R(2) as the function

R(2) = |{(n1, n2, n3, n4) : ni ∈ I(u), n1 + n2 = n3 + n4}|.

Therefore we may now bound the left hand side of (3.17) as follows:

2x∫
x

∣∣∣∣∣∣
∑
n∈I(u)

Jn,T

∣∣∣∣∣∣
4

dy � (log T )x2x
4σ−3
1 R(2),
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We define R(3) in a similar way and bound (3.18) with this function (see

(3.27)) and write in general for positive integer k:

R(k) = |{(n1, ..., n2k) : n1 + ...+ nk = nk+1 + ...+ n2k for ni ∈ I(u)}|.

Note that R = R(1).

THE BOUNDS FOR SUMS OF Jn,T IN TERMS OF R(k)

Employing the above terminology along with the fact that we have R well

spaced points s = 1/2 + itn satisfying |Gi(s)| ≥ ui we now list the expression

for the bounds for sum of the Jn,T and its power moments as in the left hand

sides of (3.16), (3.17) and (3.18) in terms of R and R(k):∣∣∣∣∣∣
∑
n∈I(u)

Jn,T

∣∣∣∣∣∣� xσ−1
1 R, (3.25)

2x∫
x

∣∣∣∣∣∣
∑
n∈I(u)

Jn,T

∣∣∣∣∣∣
4

dy � (log T )x2x
4σ−3
1 R(2), (3.26)

2x∫
x

∣∣∣∣∣∣
∑
n∈I(u)

Jn,T

∣∣∣∣∣∣
6

dy � (log T )x2x
6σ−5
1 R(3). (3.27)

These bounds, now expressed in terms of R(k) will enable the development

of a series of lemmas and the use of existing large and mean value results for

Dirichlet polynomials to enable the identification of good polynomials and

prove the assertions of the Lemma 9. In the next section we develop the

main estimates required to achieve this objective.
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3.4 Polynomial Products M(s) and Estimates

for R and R(k)

We begin by estimating R. Recall that R is the number of well-spaced points

s = 1/2 + itn satisfying |Gi(s)| ≥ ui.

Firstly we consider a general product of g of the Dirichlet polynomials

Gi(s) and we allow for the possibility of repetitions.

G(s) =

g∏
j=1

Gij(s) for any 1 ≤ ij ≤ k not necessarily distinct.

We now introduce a change of symbol to emphasize this is a finite product

and for clarity (as we will be using the letter g for other objects in the

following sections) and we define this product to be M(s). We may also

write the product as the sum

M(s) =
∑

M<k≤M0

m(k)k−s with M ≤ x.

We may write this since in general the product of any two Dirichlet poly-

nomials is a Dirichlet polynomial as detailed in the introductory chapter

(??).

As we have a product of g polynomials in M(s) we have M0 = 2gM.

So our assumption that each Gi(s) is bounded below by ui at the R well-

spaced points s = 1/2 + itn (so that n ∈ I(u)) provides a lower bound for

the product M(s). We call this lower bound w and write

|M(s)| ≥ w
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Using the notation of the previous section we write

w = MσM− 1
2 .

We now introduce two Lemmas which will be used to obtain bounds in

particular situations in the following sections. These are estimates based

upon Deshouillers-Iwaniec mean value theorem [7] and Watt’s mean value

theorem [34] respectively.

Lemma 10. Let M(s) = N1(s)N2(s)K(s) with Ni(s) some product of factors

Gi(s) with boundedly many repetitions, Ni(s) = xβi and K(s) = Gi(s) a zeta

factor with β2 ≤ β1, 2β1 + β2 ≤ 1
2

and 3
4
β1 + β2 ≤ 1

4
. Then

R� T 1+ε
1 w−2.

Proof.

From the proof of the Deshouillers-Iwaniec mean value theorem [7] and

from Matomäki [26] we see that we have for M2 ≤M1∫ 2T

T

∣∣∣∣L(1

2
+ it

)
M1

(
1

2
+ it

)
M2

(
1

2
+ it

)∣∣∣∣2 dt
� T ε(T + T 1/2M

3/4
1 M2 + T 1/2M1M

1/2
2 +M

7/4
1 M

3/2
2 ). (3.28)

In this expression L(s) =
∑

L≤l≤L1
l−s and L < L1 ≤ 2L ≤ T. We use

the following identity (see for instance Iwaniec and Kowalski [23] p 233) to

convert the continuous mean value theorem to a discrete mean value theorem:

for a smooth function f(t) on [0, 1] by partial integration we have (where we

have put the actual value 1/2 in the argument instead of any arbitrary value

61



in [0, 1])

∣∣∣∣f (1

2

)∣∣∣∣ =

∣∣∣∣∣
∫ 1

0

f(t)dt+

∫ 1/2

0

tf ′(t)dt+

∫ 1

1/2

(t− 1)f ′(t)dt

∣∣∣∣∣
≤
∫ 1

0

(
|f(t)|+ 1

2
|f ′(t)|

)
dt.

We let f(t) = M(1
2

+ i(t− 1
2

+ t0))2 for each t0 ∈ I(u) and obtain

∑
t0∈I(u)

∣∣∣∣M (
1

2
+ it0

)∣∣∣∣2

≤
∫ 2T

T

(∣∣∣∣M (
1

2
+ it

)∣∣∣∣2 +

∣∣∣∣M ′
(

1

2
+ it

)
M

(
1

2
+ it

)∣∣∣∣
)
dt.

Then by applying (3.28) to the first of the integrands on the right and

side we can now obtain∫ 2T

T

|M(s)|2dt =

∫ 2T

2

|K(s)N1(s)N2(s)|2dt� T 1+ε
1 .

To deal with the second integrand we note that

|M(s)M ′(s)| � |N ′1(s)N1(s)N2(s)2K(s)2|+ |N ′2(s)N2(s)N1(s)2K(s)2|

+|N1(s)2N2(s)2K(s)K ′(s)|. (3.29)

We group the products on the right hand side of (3.29) in the first sum in

as (N1(s)N2(s)K(s)) = A and (N ′1(s)N2(s)K(s)) = B, say. Then applying

the Cauchy-Schwarz inequality (with limits suppressed) in the form
∫
AB ≤

(
∫
A2)1/2(

∫
B2)1/2 we may write the integral of the first sum of the right
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hand side of (3.29) as∫ 2T

T

|N ′1(s)N1(s)N2(s)2K(s)2|dt

≤
(∫ 2T

T

|N ′1(s)N2(s)K(s)|2dt
)1/2(∫ 2T

T

|N1(s)N2(s)K(s)|2dt
)1/2

.

Repeating this process of applying Cauchy-Schwarz inequality to the other

two sums on the right and side of (3.29) and then factorizing we obtain

∫ 2T

T

|M(s)M ′(s)|dt�
(∫ 2T

T

|N1(s)N2(s)K(s)|2dt
)1/2

(I1 + I2 + I3)

where

I1 =

(∫ 2T

T

|N ′1(s)N2(s)K(s)|2dt
)1/2

I2 =

(∫ 2T

T

|N1(s)N ′2(s)K(s)|2dt
)1/2

I3 =

(∫ 2T

T

|N1(s)N2(s)K ′(s)|2dt
)1/2

.

We may now apply (3.28) as before since F ′(s) and F (s) have the same length

and the logarithm in the coefficients may be included in the error term. The

last term in I3 above involves K ′(s) rather than K(s) however the logarithm

can be removed by partial summation. Hence we have

∑
t∈I(u)

∣∣∣∣M (
1

2
+ it

)∣∣∣∣2 � T 1+ε
1 .

However |M(1/2 + it)|2 ≥ w2 hence

w2R = w2
∑
t∈I(u)

1 ≤
∑
t∈I(u)

∣∣∣∣M (
1

2
+ it

)∣∣∣∣2 � T 1+ε
1
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and we obtain

R� T 1+ε
1 w−2,

as required.

Lemma 11. Let M(s) = N1(s)2K(s)4 with N1(s) some product of factors

Gi(s) with boundedly many repetitions N1(s) = xβ1 with β1 ≤ 1
8

and K(s) =

Gi(s) a zeta factor. Then

R� T 1+ε
1 w−1.

Proof.

In the case that N1 ≥ T we have K < T ≤ x1/8 so that by the Dirichlet

Mean Value Theorem

R� (T +N1K
2)xε1w

−1 � T 1+ε
1 w−1.

Hence we may now assume N1 < T . Then by [5] Lemma 2, which in turn

is based on Watt’s mean value theorem [34] and following the reasoning in

Matomäki [26] we have

∫ 2T

T

∣∣∣∣∣K1

(
1

2
+ it

)4

M1

(
1

2
+ it

)2
∣∣∣∣∣ dt� T 1+ε(1 +M2

1T
−1/2),

with K1(s) a zeta factor and M1 ≤ T . The remainder of the proof follows

the same approach as the previous lemma but using Hölder’s inequality with

weights 1/4, 3/4 instead of the Cauchy-Schwarz inequality to separate K(s)

and K ′(s) in the term 4K(s)3K ′(s)N1(s)2. This completes the proof.

We will now denote by R1 the best of the estimates achieved by the lem-

mas above (based on the Deshouillers-Iwaniec mean value theorem [7] and

Watt’s mean value therorem [34]). We compare these estimates to those

achieved via Montgomery’s mean value theorem for Dirichlet polynomials

(see for instance [14] p 346), Huxley’s large value theorem (see for instance
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[14] Lemma 7.1) and estimates from the fourth and twelfth power moments

of the Riemann zeta function. The combined set of results are amalgamated

in the following lemma which will form the main point of reference for the

estimates of Dirichlet polynomials throughout the paper.

Lemma 12. (Estimates for Dirichlet Polynomials) Let T1 be the limit of the

integral specified in (3.8) with T0 ≤ T ≤ T1 where T0 is as defined in the

beginning of section 3.2 and let Jn,T be as defined in (3.11). Let S0 be as

defined in section 3.2 and x1 as definition (3.19) (with x� xη1 for arbitrary

η > 0) and let C > 0 be arbitrary. Then∣∣∣∣∣∣
∑
n∈I(u)

Jn,T

∣∣∣∣∣∣� S4
0(log x)Cxσ−1

1 R̂ (3.30)

where

R̂ = min
(

min
M(s)=Ki(s)

(T1w
−4, T 2

1w
−12), (3.31)

min
M(s)

(Mw−2 + T1w
−2,Mw−2 + T1Mw−6), R1

)
,

where the second minimum runs over all the zeta-factors Ki(s) = G(s) and

the the third minimum over all the products M(s) =
∑

k∼M m(k)k−s, possibly

with repeats, of g of the Dirichlet polynomials Gi(s) satisfying M ≤ x and

|M(s)| ∼ w = Mσ− 1
2 specified at the beginning of this section.

We now conclude this section by stating the key lemma which will enable

bounds to be establised for the left hand sides of (3.17) and (3.18). The full

proof can be found in [31] section 10. For the purpose of the derivation it

should be noted that the trivial bound R(k) ≤ R2R(k−1) together with (3.26)

and (3.27) are used along with the bounds (log T )x2 � xη1 and R � xη1R̂,

for arbitrary η1 > 0.
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Lemma 13.
2x∫
x

∣∣∣∣∣∣
∑
n∈I(u)

Jn,T

∣∣∣∣∣∣
4

dy � x14η1x4σ−3
1 R̂(2),

and
2x∫
x

∣∣∣∣∣∣
∑
n∈I(u)

Jn,T

∣∣∣∣∣∣
6

dy � x24η1x6σ−5
1 R̂(3),

where

R̂(2) = min(R̂3,min
M(s)

(R̂3w−2 + T
1/4
1 R̂21/8w−2 + R̂5/2M1/2w−2 (3.32)

+T
4/5
1 R̂9/5w−16/5 + T

2/5
1 R̂8/5M4/5w−16/5 + R̂M2w−4)),

and

R̂(3) = min(R̂5,min
M(s)

(R̂5w−2 + T
1/4
1 R̂(2)3/8R̂7/2w−2 (3.33)

+R̂(2)1/2R̂3M1/2w−2 + T
4/5
1 R̂(2)3/5R̂2w−16/5

+T
2/5
1 R̂(2)4/5R̂6/5M4/5w−16/5 + R̂(2)M2w−4)).

Here η1 > 0 is arbitrary and the latter minima run over all the prod-

ucts M(s) with possible repetitions, of g of the Dirichlet polynomials Gi(s)

satisfying M ≤ x.

3.5 Longer Zeta Factors and the case σN >
5
6 + ∆ + 3η2 or σN < 1

2

We now show that at least one of the required bounds (3.16),(3.17) and (3.18)

will be satisfied when the largest σN corresponds to a zeta factor of length
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greater than x1/4−δ . We will also show that σN larger than 5/6 + η2 or

smaller than 1/2 will also result in the bounds being satisfied.

First, we consider the case σN ≤ 1/2. Using the trivial bound R̂(2) � T 3
1 ,

we obtain

x4σN−3
1 R̂(2) � x4σN−3

1 x
3( 1

2
+∆+2η)

1 � x
1
2

+3∆+6η

1 � x
2
3

+5∆+ε

1 .

In the following we may therefore assume without further comment that

σN > 1/2.

We remark that its is in the next lemma that we are required to make a

major adaptation of the work of Peck [31] and Matomäki [26]. In Matomäki

[26] the results from Peck [31] could be quoted verbatim as Peck had proved

much more than he needed, however the shorter intervals required in the

proof of the result of this chapter instantly cause a problem in this range and

requires significant adaptation.

Lemma 14. Suppose δ is given with 0 < δ ≤ η. Let N(s) be the factor with

largest σN . If this is a zeta factor of length N > x
1
4
−δ then one of the bounds

(3.16),(3.17) and (3.18) is satisfied.

To see this we consider five cases. The first four of which correspond to

those of section 11 of Peck [31].

First as defined in section 3.3 of this chapter we let N(s) be a zeta factor

with largest σN . Therefore N(s) = Gi(s) with the largest σN among the

Gi(s) in all cases of lemma 9 except case (vi) where N(s) = Hi(s) with the

largest σN among the Hi(s).

In the following we will let w = NσN−1/2 and recall that T1 � x
1/2+∆+2η
1

where ∆ > 0 is fixed and η > 0 is a small arbitrary postive number.
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For simplicity of notation we suppress the N and write σ instead of σN

in the following cases.

Case 1: N ≥ x1/4−δ and σ ≤ 2
3

+ 2∆. Using the trivial bound for R̂(2)

from (3.32) we have

R̂(2) ≤ R̂3 ≤ (T1w
−4)3 = T 3

1w
−12 = T 3

1N
6−12σ .

Since σ > 1/2 this decreases with N so we can substitute the value N =

x
1/4−η
1 to obtain

x4σ−3
1 R̂(2) � x

4σ−3/2+3∆+6η
1 x

(1/4−η)(6−12σ)
1 � xσ+3∆+12η

1 .

This will be � x
2
3

+5∆+ε

1 for σ ≤ 2
3

+ 2∆ which satisfies the required bound

(3.17).

Case 2: N > x1/3 and σ ≥ 2/3. We include this case simply to be

able to assume N < x1/3 in case 4. We could have considered a case N ≥
x(18∆+1)/(48∆+4)+aη for some fixed real a > 0 and σ ≥ 2

3
+ 2∆ if need be here.

We use the following estimate from (3.31)

R̂ ≤ T1w
−4 ≤ T1N

2−4σ � x
1/2+∆+2η
1 x

(2−4σ)/3
1 .

Hence

xσ−1
1 R̂� x

∆+1/6−σ/3+2η
1 .

As the right hand side of the last bound decreases with increasing σ we

substitute σ = 2
3

and we obtain

xσ−1
1 R̂� x

2η+∆−1/18
1 � x−η1 ,

using ∆ < 1/48. We have thus established the required bound (3.16) for this
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case.

Case 3: N ≥ x1/4+2η and σ > 3
4

+ ∆.

We use the bound from (3.31).

R̂ ≤ T 2
1w
−12 � (x

1/2+∆+2η
1 )2N6−12σ

� (x
1/2+∆+2η
1 )2(x1/4+2η)6−12σ � x

1−3σ+3/2+2∆+12η−24ση+4η
1

Hence

xσ−1
1 R̂� x

3/2−2σ+2∆++16η−24ησ
1 .

As the bound is decreasing with increasing σ we may substitute σ = 3
4
+∆

so we now obtain

xσ−1
1 R̂� x

4η−6η(1+4∆)
1 � x−η1 .

Hence we see this satisfies (3.16).

Case 4: N ≥ x1/4−δ and 2/3 + ∆ ≤ σ ≤ 8
7

(
2
3

+ 17
8

∆
)
.

We take the bound for R̂(2) in (3.32) (using R̂ ≤ T1w
−4 ≤ T1N

2−4σ)

and then observe that the dominant term in the bound for x4σ−3
1 R̂(2) in the

range we are considering is the second term (T
1/4
1 R̂21/8w−2). We justify this

statement below. Assuming the truth of our assertion we obtain

x4σ−3
1 R̂(2) � x4σ−3

1 (x
1/2+∆+2η
1 )1/4(x1−σ+∆+2η

1 )21/8x
(1/4)(1−2σ)
1

� x
7
8
σ+ 23

8
∆+ 23

4
η

1 � x
2
3

+5∆+ε

1 ,

for σ ≤ 8
7

(
2
3

+ 17
8

∆
)

as required.

We now check the contribution from the other terms in (3.32).
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(a) R̂3w−2. This leads to a bound

x4σ−3
1 T 3

1N
7−14σ � x

4σ−3+3/2+3∆+6η+(1/4−η)(7−14σ)
1 .

This is no more than

x
σ/2+1/4+3∆+13η
1 ≤ x2/3+5∆+ε ,

for σ ≤ 5/6. Hence this term gives a suitable contribution.

(b) R̂5/2N1/2w−2. This leads to a bound

x4σ−3
1 T

5/2
1 N1/2−6(2σ−1) .

For σ > 2/3 this is decreasing in N so the bound is

≤ x
4σ−3+5∆/2+5/4+2η+(1/4−δ)(1/2−6(2σ−1))
1 � x

2/3+5∆+ε
1

for σ < 19/24 + 5∆/2. This is another suitable bound in the range.

(c) T
4/5
1 R̂6/5w−16/5. Working as above this give a suitable bound for

σ < 5/6 + 3∆/2.

(d) T
2/5
1 R̂8/5N4/5w−16/5. Working as in the previous cases this gives the

correct bound for σ < 19/24 + 15δ/8.

(e) R̂N2w−4. This leads to a bound

x4σ−3
1 x1/2+∆+2ηN6−8σ .

By case 2 we can suppose N < x
1
2 and so the above is an increasing function

of σ and for σ > 3/4 it is a decreasing function of N . We can therefore
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obtain a suitable bound when σ < 5/6 + 2∆.

Our claim that all the other terms in (3.32) give valid bounds in the range

covered by this case is therefore vindicated.

Case 5: x
1/4−δ
1 < N < x

1/4+2η
1 and σ > 16/21 + 17∆/7. We argue as in

Case 3. Our upper bound is now

xσ−1
1 x

1+2∆+4η+(1/4−δ)(6−12σ)
1 < x

9η−1/42−20∆/7
1 < x−η1

for σ > 16/21 + 17∆/7 and assuming, as we may, that η < 1/420. This

concludes the proof of this case and so the lemma is established.

We may now assume that in all cases (except case (vi) of Lemma 9) that

the zeta factor N(s) with the largest σ (which we defined as σN) has length

N < x1/4−δ.

Next we note that for arbitrary δ > 0 since

2.[1/6− δ/2, 1/4− δ] ⊆ [1/3− δ, 1/2− δ]

since the length of the left hand side is 1/6− δ and the right hand side is 1/6

and the end points of the left hand interval are contained in the right hand

interval.

We also note that

1/6− δ/2 ≤ (1/2− δ)− (1/3− δ)

so that we are able to assume that for some k > 1, M1 = Nk satisfies

x1/3−δ ≤M1 ≤ x1/2−δ. (3.34)

71



We can now consider the case when σN is large. More specifically when

σN > 5/6 + ∆ + 3η. We have by (3.31) the bound

R̂ ≤ min
M1(s)

(M1w
−2 + T1w

−2,M1w
−2 + T1M1w

−6),

where the minimum runs over all the products M1(s) , possibly with repiti-

tions, of g of the Dirichlet polynomials Gi(s) satisfying M ≤ x.

We have w = M
σ−1/2
1 hence we write (again supressing the N in σN for

ease of notation)

R̂ ≤M2−2σ
1 + min(T1M

1−2σ
1 , T1M

4−6σ
1 ).

Case: M2−2σ
1 dominates. Here, since x1/3−δ ≤M1 ≤ x1/2−δ we have

R̂ ≤ (x
1/2−δ
1 )2−2σ ≤ x1−σ−2δ+2σδ

1 .

Hence

xσ−1
1 R̂ ≤ xσN−1

1 R̂� x
2δ(σ−1)
1 .

However, we also have x1 ≥ N (so, since σ − 1 < 0 we can replace x1 by N

in the above) and the fact that N(s) is prime factored which by definition

means

|N(−1/2 + it)| � N
1
2 exp(−c(log x)13/60),

so that

xσ−1
1 R̂� x

2δ(σN−1)
1 ≤ N2δ(σN−1) � exp(−c(log x)13/60)(log x)2.
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Hence we achieve bound (3.16) via (3.30). As this bound is not dependent

on the value of σN we may now assume that

R̂� min(T1M
1−2σN
1 , T1M

4−6σN
1 ).

We now consider this case when σN > 5/6 + ∆ + 3η2 for arbitrary η2 > 0.

Since T1 � x1/2+∆+2η we have

R̂� T1M
4−6σN
1 � T1x

(4−6σN )( 1
3
−δ)

1

� x
1
2

+∆+2η

1 x
4
3
−2σN−δ(4−6σN )

1 .

Therefore

xσN−1
1 R̂� x

(σN−1)+( 1
2

+ 4
3
−2σN+∆+2η−δ(4−6σN ))

1

� x
5
6
−σN+∆+2η−δ(4−6σN )

1 .

The expression on the right hand side decreases when σN increases, for small

η so that we may take σN = 5/6 + ∆ + 3η in the range σN > 5/6 + ∆ + 3η

(where we drop the subscript 2 in η, since it is arbitrary, we let it equal the

arbitrary η > 0 in the bound for T1). This gives

xσN−1
1 R̂� x

−η+δ(1+6∆+18η)
1

So we once again achieve bound (3.16) via (3.30).

We now make a crucial observation which will be required in section 3.10.

Remark. We note that the lower limit for σ in the above is determined by

the lower limit on M1. We observe that if M1 ≥ x
3
8
1 then σ does not need to

be much more than 4
5
. So, a result we shall require later is that

(3.16) holds if M1 ≥ x
3
8
1 and σ ≥ 5

6
. (3.35)
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We now conclude this section having ascertained that we may assume

from now on that 1
2
≤ σ ≤ 5

6
+ ∆ + 3η2 for arbitrary η2 > 0.

3.6 Estimates for R̂ in the range 1
2 ≤ σ ≤ 5

6 +

∆ + 3η2

We now consider bounds for R̂ in the range 1/2 ≤ σ ≤ 5/6 + ∆ + 3η2 in

relation to the special conditions on the Dirichlet polynomials in Lemma 9.

The following convexity lemma ([31], p59) will be used throughout this

and subsequent sections of the paper.

Lemma 15 (The Convexity Lemma). Let A1, , ..., An be arbitrary positive

numbers. Then

min(A1, ..., An) ≤ Ap1

1 ...A
pn
n

where the indices pi are positive numbers satisfying
∑n

i=1 pi = 1. We say this

convexity relation has indices (p1, ..., pn).

In the following lemma we prove the key bound on R̂ which will be

required throughout the subsequent sections and in particular the region

1/2 ≤ σ ≤ 5/6 + ∆ + 3η2. The lemma will establish the bound in this range

of σ for each of the cases of Lemma 9.

Lemma 16. Let η > 0 and δ > 0 be arbitrary numbers and let 0 < ∆ < 1/48

a fixed number.

Let θ be a positive number such that θ ∈ {0, 1/27, 1/15} then in Lemma

9 write in cases(i)-(iv) and (vii)-(viii) that θ = 0 , in case (v) θ = 1/27 and

in case (vi) θ = 1/15. Then assuming one of the conditions of that lemma

hold we have

R̂� x
1−σ+θ/4+∆+2η
1 if 1

2
≤ σ ≤ 3

4
,
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R̂� x
11/8+θ/4−3σ/2+∆+2η
1 + x1−σ+∆+2η

1 if 3
4
≤ σ ≤ 5

6
+ ∆ + 3η2.

Proof. Let, in Lemma 9 Ni(s) be of size wi, K(s) of size v, Ki(s) of

size vi and G(s) of size w. Also we recall that w = Gσ−1/2 = x
σ−1/2
1 and

that x � x1+η
1 for arbitrarily small η > 0 and T1 = x1/2+∆+η so that

T1 � x
1/2+∆+2η
1 .

Case (i) By Lemma 10 for polynomial M(s) = N2(s)N3(s)K(s) and for

M(s) = N1(s) and convexity lemma with indices (1/2, 1/2)

R̂� min{T 1+η
1 (w2w3v)−2, T1w

−2
1 } � (T 1+η

1 (w2w3v)−2)1/2(T1w
−2
1 )1/2

� T
1+η/2
1 (w1w2w3v)−1 � x

1/2+∆+2η
1 w−1 � x1−σ+∆+2η

1 .

Case (ii): we use Lemma 11 for M(s) = N3(s)2K(s)4 and (3.31) for

M(s) = N1(s) and M(s) = N2(s)2N3(s) so that by the convexity lemma

with indices (1/4, 1/2, 1/4)

R̂� min(T 1+η1

1 w−2
3 v−4, T1w

−2
1 , T1w

−4
2 w−2

3 )� x1−σ+∆+2η1

1

Case (iii): Using Lemma 11 for M(s) = N3(s)4K(s)4 and (3.31) for

M(s) = N1(s) and M(s) = N2(s) or M(s) = N2(s)2 we have

R̂� min(T 1+η1

1 w−4
3 v−4, T1w

−2
1 , T1w

−4
2 )� x1−σ+∆+2η1

1

Case (iv):The proof of this is essentially the same as the corresponding

case in Lemma 6.1 of [26].

If β2 ≤ 1
4
, we use part (ii) with N3(s) = 1. So we assume that β2 >

1
4
.
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Letting N2(s) = L1...Lk(s), where Li = xδi , δi ≤ δj for i < j and each Li(s)

with δi > 1/8 is a zeta factor.

First, suppose that no subproduct of the L1...Lk lies in [x1/16, xβ2−1/16]

then the product of all Li that are less than x1/16 is itself by this restriction

still going to be less than x1/16. There will therefore be only one remaining

factor since 2(β2 − 1/16) > β2. Hence Lk > xβ2−1/16 and Lk is a zeta factor.

The claim now follows from (iii). Next suppose that there is a subproduct

xδ of the Li with δ ∈ [1/16, β2 − 1/16]. Then let γ1 = min(δ, β2 − δ) and

γ2 = β2 − γ1. Then γ1 ≤ γ2, therefore

2γ2 + γ1 = 2β2 − γ1 ≤ 9/16− 1/16 = 1/2

and

3γ2/4 + γ1 = 3β2/4 + γ1/4 ≤ 7β2/8 ≤ 1/4.

Then the claim follows from (i).

Cases (v) and (vi) : We have 1−θ
2
≤ βi ≤ 1+θ

2

where wi = xβi is the size of Ni(s) where i = 1, 2. For these cases we have

G(s) = N1(s)N2(s). These restrictions provide the contraints Ni ≤ x(1+θ)/2

and we will use that by definition w = w1w2 = x
σ−1/2
1 and G = N1N2 = x1.

By the standard bounds in (3.31) we have for σ ≤ 3/4 that

R̂ ≤ min{(N1 +N2)w−2
1 , (N2 + T1)w−2

2 }

which by convexity with indices (1/2, 1/2) gives

R̂� ((N1N2)1/2 + T
1/2
1 (N

1/2
1 +N

1/2
2 ) + T1)(w1w2)−1

� (x
1/2
1 + (x

1/2+∆+2η
1 )1/2(x

1+θ
2

1 )1/2 + x
1/2+∆+2η
1 )(x

σ−1/2
1 )−1

76



� x
1−σ+∆/2+θ/4+2η
1

which for σ ≤ 3/4 is � x
1−σ+θ/4+∆+2η
1 as required.

Similarly for the range σ ≥ 3/4 we use the estimates from (3.31)

R̂ ≤ min{N1w
−2
1 + T1N1w

−6
1 , N2w

−2
2 + T1N2w

−6
2 }

� (N1N2)1/2(w1w2)−1 + T
1/4
1 N

3/4
1 N

1/4
2 (w1w2)−3/2

+T
1/4
1 N

1/4
1 N

3/4
2 (w1w2)−3/2 + T1(N1N2)1/2(w1w2)−3

� x
1/2
1 (x

σ−1/2
1 )−1 + (x

1/2+∆+2η
1 )1/4x

1/4
1 (x

1+θ
2

1 )1/2

+x
1/2+∆+2η
1 x

1/2
1 (x

σ−1/2
1 )−3

� x1−σ
1 + x

11/8+θ/4−3σ/2+∆/4+η/2
1 + x

5−6σ
2

+∆+2η

1 .

Now 5−6σ
2
≤ 1−σ is clearly satisfied when σ ≥ 3/4 hence we can now conclude

that

R̂� x1−σ+∆+2η
1 + x

11/8+θ/4−3σ/2+∆+2η
1

as required.

Case (vii):

Using Lemma 11 with M(s) = N2(s)2K(s)
4 and M(s) = N3(s)2K2(s)4

and by (3.30) withM(s) = N1(s)N2(s) and M(s) = N1(s)N3(s). Then

R̂� min(T 1+∆+η
1 v−4

1 w−2
2 , T 1+∆+η

1 v−4
2 w−2

3 , T1w
−2
1 w−2

3 , T1w
−2
1 w−2

2 )

� T 1+∆+η
1 w−1 � x1−σ+∆+2η

1 .
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Finally,

Case (viii):

Using Lemma 11 with M(s) = N2(s)2K1(s)4 and M(s) = N2(s)2K2(s)4

and (3.30) with M(s) = N1(s), then

R̂� min(T 1+∆+η
1 v−4

1 w−2
2 , T 1+δ+η

1 v−4
2 w−2

3 , T1w
−2
1 )

� T 1+δ+η
1 w−1 � x1−σ+∆+2η

1 .

This completes the proof of the lemma.

We have established the lemma and in the next section we proceed to

establish the final estimates for R, R(2) and R(3).

3.7 Final Estimates for R, R(2) and R(3)

We proceed by using the bounds from the previous sections obtained from

M1(s) as previously defined and which for small δ > 0 was found to satisfy

x1/3−δ ≤M1 ≤ x1/2−δ.

Our choice of bound is determined by the values of M1 and σ and we will

ensure all possible combinations of the values of these are accounted for.

By factorising the x2η
1 from Lemma 16 from the previous section and by

using

R̂� min{T1M
1−2σ
1 , T1M

4−6σ
1 }

from the section on long zeta factors (where the above bound is then deter-

mined by the value of σ), we define

R̂� x2η
1 R̃, (3.36)
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where from Lemma 16

R̃ =

min
(
x

1−σ+θ/4+∆
1 , T1M

1−2σ
1

)
if σ ≤ 3

4

min
(
x

11/8+θ/4−3σ/2+∆
1 + x1−σ+∆

1 , T1M
4−6σ
1

)
if 3

4
≤ σ ≤ 5

6
+ ∆ + 3η2.

Or since T1 � x1+∆+2η
1 we can rewrite the above expressions in the fol-

lowing lemma. The second half of the lemma deals with the case when M1

is large.

Lemma 17. We have

R̂� x2η
1 R̃,

where

R̃ =

min
(
x

1−σ+θ/4+∆
1 , x

1/2+∆
1 M1−2σ

1

)
if σ ≤ 3

4

min
(
x

11/8+θ/4−3σ/2+∆
1 + x1−σ+∆

1 , x
1/2+∆
1 M4−6σ

1

)
if 3

4
≤ σ ≤ 5

6
+ ∆ + 3η2

for η and δ > 0, θ ∈ {0, 1/27, 1/15} and fixed ∆ > 0. Furthermore, we

have R̂(2) � x6η1+2η2

1 R̄(2) and R̂(3) � x16η1+4η2

1 R̄(3) for small arbitrary η1 and

η2 > 0, where

R̄(2) = R̃3M1−2σ
1 + R̃5/2M

(3−4σ)/2
1 x

∆/2
1 + R̃M4−4σ

1 x2∆
1 (3.37)

and

R̄(3) = R̃5M1−2σ
1 + R̄(2)1/2R̃3M

(3−4σ)/2
1 x

∆/2
1 + R̄(2)M4−4σ

1 x2∆
1 . (3.38)

If the last term dominates in R̄(2) then the second and third terms dominate

in R̄(3).

When M1 = N g for g > 1,we define M3(s) = N(s)[(g+1)/2] such that M3

satisfies

M
1/2
1 ≤M3 ≤M

2/3
1 .
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In this case we have

R̂(2) � x6η1+2η2

1 R̃(2)

and

R̂(3) � x16η1+4η2

1 R̃(3)

where

R̃(2) = min(R̄(2), R̃3M1−2σ
3 + x

1/8
1 R̃21/8M1−2σ

3 x
∆/4
1 + R̃5/2M

(3−4σ)/2
3 (3.39)

+x
2/5
1 R̃9/5M

(8−16σ)/5
3 x

4∆/5
1 + x

1/5
1 R̃8/5M

(12−16σ)/5
3 x

2∆/5
1 + R̃M

(4−4σ)
3 )

and

R̃(3) = R̃5M1−2σ
1 + R̃(2)1/2R̃3M

(3−4σ)/2
1 x

∆/2
1 + R̃(2)M4−4σ

1 x2∆
1 . (3.40)

Proof. By (3.32) and (3.33) we may estimate R̂(2) and R̂(3) following a

similar line of argument to Peck [31] section 14, we let M(s) = M1(s).

We show that

R̂3w−2
1 + T

1/4
1 R̂21/8w−2

1 + R̂5/2M
1/2
1 w−2

1 + T
4/5
1 R̂9/5w

−16/5
1

+T
2/5
1 R̂8/5M

4/5
1 w

−16/5
1 + R̂M2

1w
−4
1

� x2η2

1 (R̂3w−2
1 + R̂5/2M

1/2
1 x

∆/2
1 w−2

1 + R̂M2
1x

2∆
1 w−4

1 ).

Then using

M1 ≥ x1/3−η2 and w1 ≥M
σ−1/2
1

for arbitrary η2 > 0, and then by either / or and convexity arguments with
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indices (1/4, 3/4), (2/5, 3/5), (2, 5, 3/5) respectively the above inequality will

now be shown to be true.

To see this observe that

x2η2

1 (R̂3w−2
1 + x

∆/2
1 R̂5/2M

1/2
1 w−2

1 )� x2η2

1 R̂3/4+15/8M
3/8
1 w−2

1 � T
1/4
1 R̂21/8w−2

1

since M1 ≥ T
2/3−η2

1 . Also we have

x2η2

1 (R̂3w−2
1 +x2∆

1 R̂M2
1w
−4
1 )� x2η2

1 R̂6/5+3/5M
6/5
1 w

−4/5−12/5
1 � T

4/5
1 R̂9/5w

−16/5
1 .

Finally,

x2η2

1 (x
∆/2
1 R̂5/2M

1/2
1 w−2

1 + x2∆
1 R̂M2

1w
−4
1 )

� x2η2

1 (R̂1+3/5M
1/5+6/5
1 w

−4/5−12/5
1 )� T

2/5
1 R̂8/5M

4/5
1 w

−16/5
1

and hence the claim follows.

So by (3.36), (3.32) and w1 ≥ M
σ−1/2
1 as |M1(s)| ∼ M

σ−1/2
1 at s =

1/2 + itn, we obtain the estimate by factorisation:

R̂(2) � x6η1+2η2

1 R̄(2)

where

R̄(2) = (R̃3M1−2σ
1 + R̃5/2M

(3−2σ)/2
1 x

∆/2
1 + R̃M4−4σ

1 x2∆
1 ). (3.41)

In an analogous manner we may prove that

R̂(3) � x10η1+2η2

1 (R̃5M1−2σ
1 + R̂(2)1/2R̃3M

(3−4σ)/2
1 x

∆/2
1 + R̂(2)M4−4σ

1 x2∆
1 ).

Hence by factorization we obtain the estimate

R̂(3) � x16η1+4η2

1 R̄(3).
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where

R̄(3) = R̃5M1−2σ
1 + R̄(2)1/2R̃3M

(3−4σ)/2
1 x

∆/2
1 + R̄(2)M4−4σ

1 x2∆
1 . (3.42)

In the case that R̄(2) is dominated by the last term in (3.41) then

R̄(3) � R̄(2)1/2R̃3M
(3−4σ)/2
1 x

∆/2
1 + R̄(2)M4−4σ

1 x2∆
1 . (3.43)

To see this note that in the case that R̄(2) is dominated by the last term in

(3.41) then

R̃5/2M
(4−4σ)/2
1 � min(R̃M4−4σ

1 x
∆/2
1 , R̄(2))� R̄(2)1/2R̃1/2M2−2σ

1 x
∆/2
1

hence multiplying by R̃5/2M
−1/2
1 gives

R̃5M1−2σ
1 � R̄(2)1/2R̃3M

(3−4σ)/2
1 x

∆/2
1

as required by the claim.

Next consider the case when M1 is large and define M3(s) = N(s)[(g+1)/2],

so that M3 satisfies

M
1/2
1 ≤M3 ≤M

2/3
1 .

Using M(s) = M3(s) in Lemma 13 together with R̂ � x2η1

1 R̃ and w3 ≥
M

σ−1/2
3 we obtain

R̂(2) ≤ R̂3w−2
3 + T

1/4
1 R̂21/8w−2

3 + R̂5/2M
1/2
3 w−2

3 + T
4/5
1 R̂9/5w

−16/5
3

+T
2/5
1 R̂8/5M

4/5
3 w

−16/5
3 + R̂M2

3w
−4
3

� x6η1

1 (R̃3M1−2σ
3 + x

1/8
1 R̃21/8M1−2σ

3 x
∆/4
1 + R̃5/2M

(3−4σ)/2
3

+x
2/5
1 R̃9/5M

(8−16σ)/5
3 x

4∆/5
1 + x

1/5
1 R̃8/5M

(12−16σ)/5
3 x

2∆/5
1
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+R̃M4−4σ
3 ).

We now define

R̃(2) = min(R̄(2), R̃3M1−2σ
3 + x

1/8
1 R̃21/8M1−2σ

3 x
∆/4
1 + R̃5/2M

(3−4σ)/2
3 (3.44)

+x
2/5
1 R̃9/5M

(8−16σ)/5
3 x

4∆/5
1 + x

1/5
1 R̃8/5M

(12−16σ)/5
3 x

2∆/5
1 + R̃M4−4σ

3 ),

and

R̃(3) = R̃5M1−2σ
1 + R̃(2)1/2R̃3M

(3−4σ)/2
1 x

∆/2
1 + R̃(2)M4−4σ

1 x2∆
1 , (3.45)

so that

R̂(2) � x6η1+2η2

1 R̃(2)

and

R̂(3) � x16η1+4η2

1 R̃(3)

which concludes the proof of the lemma.

Note that we will frequently require the use of the trivial bounds R̂(2) �
R̄(2) and R̃(3) � R̄(3).

We observe that the highest power of R̃ in the above Lemma 17 is R̃5 (in

the expressions for R̄(3) and R̃(3)). It is for this reason that the additional

fixed exponent ∆ > 0 for x1 in the expression for R̃ therefore produces a

maximum additional fixed exponent of 5∆ for x1 in the upper bound for the

original sum of the main theorem of this chapter, Theorem 2.

In Lemma 17 above we note that if M1(s) itself is a factor of G(s) rather

than a power of a factor (in other words g = 1) we may not use M3(s).

However from Lemma 9 in cases (i)-(v) and (vii),(viii) we may assume that

N ≤ x1/4 so that g ≥ 2. Since in these cases, all possible longer factors N(s)
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are zeta factors and by Lemma 14 these are dealt with. We prove Lemma 9

using the previous lemma with θ = 1/27 for all

M1 = xκ1 (3.46)

where 1/3 − η1 ≤ κ ≤ 1/2 and g > 1. This in turn implies the result for

θ = 0.

In case (vi) of Lemma 9 N(s) is in fact one of the Hi(s) in that lemma

we may not assume N ≤ x
1/2−η2

1 . Consequently we may use M3(s) in this

case only when N ≤ x
1/4−η2

1 , in which case g > 1.

The next lemma will be used to restrict the size xκ of M1.

Lemma 18. Let β ∈ G where G is defined in Lemma 9 part (vi) as G =(
0, 41

180

]
∪
[

13
54
, 1

4
− η2

]
∪
[

1
3
, c
]

and let κ = gβ be some multiple of of β where

M1 = N g and N = xβ so that M1 = N g = xgβ = xκ. Then the following the

constraints apply to κ and g:

(i)κ ∈
[

1

3
, c

]
and g ≥ 1,

(ii)κ ∈
[
c,

41

90

]
∪
[

13

27
,
1

2

]
and g > 1,

(iii)κ ∈
[

41

90
,
13

27

]
and g = 3.

Proof.

If β ∈ [1/3, c] take g = 1 and (i) is satisfied so κ = gβ ∈ [1/3, c] ⊂ G.

Further if β ∈ [1/6, 41/180] ∪ [13/54, 1/4 − η2] take g = 2 and either (i) or

(ii) is satisfied so κ = gβ ∈ [13/27, 1/2− 2η2] ⊂ G.
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If β ∈ [1/9, 1/6] take g = 3 and either one of (i),(ii) or (iii) is satisfied.

We therefore obtain κ in the appropriate intervals.

If β ≤ 1/9 there is a g such that κ = gβ ∈ [1/3, c] since 1/9 < c − 1/3

which concludes the proof of the lemma.

In the specific case (vi) of Lemma 9 we need only prove the result for

M1 = N g = xκ satisfying one of (i) - (iii) of the previous lemma.

We may now proceed by proving that for the range 1/2 ≤ σ ≤ 5/6 + ∆ +

3η2 one of the the following is true:

R̃� x1−σ−3η2

1 ,

R̂(2)x4σ−3
1 � x

2/3+5∆+6η1+2η2+ε
1 ,

R̂(3)x6σ−5
1 � x

2/3+5∆+16η1+4η2+ε
1 .

3.8 Case: 1
2 ≤ σ ≤ 3

4

For σ ≤ 3/4 the bounds for x4σ−3
1 R̄(2), x6σ−5

1 R̄(3), x4σ−3
1 R̃(2) and x6σ−5

1 R̃(3)

increase with increasing σ. We may therefore consider just the case σ = 3/4.

Then by Lemma 17

R̃ = min(x
1+θ/4−3/4+∆
1 , x

1/2+∆
1 M1−2σ

1 )

and

R̄(2) = R̃3M1−2σ
1 + R̃5/2x

∆/2
1 M

(3−4σ)/2
1 + R̃x2∆

1 M4−4σ
1

= R̃3M
−1/2
1 + R̃5/2x

∆/2
1 + R̃x2∆

1 M1, as σ = 3/4
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� x
3
4

(1+θ)+3∆− 1
2

(1/3−η2)

1 + x
5
8

(1+θ)+3∆

1 + min(x
1
4

(1+θ)+3∆

1 M1, x
1
2

+3∆

1 M
1
2

1 )

for θ ≤ 1/15. Hence we may now assume that

R̄(2) � min(x
(1+θ)

4
+3∆

1 M1, x
1
2

+3∆

1 M
1
2

1 ).

So

R̄(3) � R̄(2)1/2R̃3x
∆/2
1 + R̄(2)M1x

2∆
1

by (3.43) as R̄(2) is dominated by its last term. So from the bound above for

R̄(2) and the expression for R̃

R̄(3) � min(x
7
8

(1+θ)+5∆

1 M
1
2

1 , x
7
4

+5∆

1 M
− 5

4
1 ) + min(x

(1+θ)
4

+5θ

1 M2
1 , x

1
2

+5∆

1 M
3
2

1 ),

which by convexity in the first minimum with indices (5/7, 2/7) is

� x
5
7

( 7
8

(1+θ)+5∆)+ 2
7

( 7
4

+5∆)

1 + min(x
(1+θ)

4
+5∆

1 M2
1 , x

1
2

+5∆

1 M
3
2

1 )

� x
2
3

+ 1
2

+5∆

1 + min(x
(1+θ)

4
+5∆

1 M2
1 , x

1
2

+5∆

1 M
3
2

1 )

for θ ≤ 1/15. Here we have x
(1+θ)

4
+5∆

1 M2
1 ≤ x

2
3

+ 1
2

+5∆

1 when

2κ+
(1 + θ)

4
+ 5∆ ≤ 2

3
+

1

2
+ 5∆

so that

κ ≤ (11− 3θ)

24
.

This gives

κ =
49

108
when θ =

1

27

κ =
9

20
when θ =

1

15
.
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We may therfore now assume that κ ≥ (11−3θ)
24

. We have also established the

required bound for the case g = 1 and may assume g > 1.

We next use the estimate R̃ � x
1/2+∆
1 M1−2σ

1 with σ = 3/4 giving R̃ �
x

1/2+∆
1 M

−1/2
1 . Recalling that by hypothesis we also have M

1/2
1 ≤M3 ≤M

2/3
1

which by the expression for R̃(2) in Lemma 17 gives by dominance of the

second term (see Peck [31] p66 after (15.3))

R̃(2) � x
23
16

+ 23
8

∆

1 M
− 25

16
1 .

Similarly by the expression for R̃(3) in Lemma 17 gives by dominance of the

third term

R̃(3) � x
23
16

+ 39
8

∆

1 M
− 9

16
1 � x

2
3

+ 1
2

+5∆

1

for M1 ≥ x
13/27
1 .

We next use the estimate R̃ ≤ x
(1+θ)/4+∆
1 (from the beginning of this section)

and M
1/2
1 ≤M3 ≤M

2/3
1 which by Lemma 17 gives

R̃(2) � x
3
4

(1+θ)+3∆

1 M
− 1

4
1 + x

25
3

+ 21
32
θ+ 21

8
∆

1 M
− 1

4
1 + x

5
8

(1+θ)+ 5
2

∆

1

+x
17
20

+ 9
20
θ+ 13

5
∆

1 M
− 4

5
1 + x

3
5

+ 2
5
θ+2∆

1 + x
(1+θ)

4
+∆

1 M
2
3

1 .

We observe that the third, fifth and sixth terms are � x
2/3+5∆
1 for θ ≤

1/15 and the second term dominates the first and the fourth terms when

1/27 ≤ θ ≤ 1/15 and κ ≥ 9/20. Hence we may now assume that

R̃(2) � x
25
3

+ 21
32
θ+ 21

8
∆

1 M
− 1

4
1 .

Then by Lemma 17

R̃(3) � x
5
4

(1+θ)+5∆

1 M
− 1

2
1 + x

73
64

+ 69
64
θ+ 77

16
∆

1 M
− 1

8
1 + x

25
32

+ 21
32
θ+ 37

8
∆

1 M
3
4

1
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which is� x
2/3+1/2+5∆
1 for θ = 1/27 in the remaining range κ ∈ [49/108, 13/27]

and for θ = 1/15 in the range κ ∈ [9/20, 41/90].

Finally we consider the remaining case θ = 1/15 and when g = 3 so

that x
41/90
1 ≤ N3 ≤ x

13/27
1 . In this case, by Lemma 17, M1 = N3 and

M3 = N2 = M
2/3
1 . Since R̃� x

(1+θ)/4+∆
1 for θ = 1/15 we have R̃� x

4/15+∆
1

from which we obtain the estimate

R̃(2) � x
4
5

+3∆

1 M
− 1

3
1 + x

33
40

+ 23
8

∆

1 M
− 1

3
1 + x

2
3

+ 5
2

∆

1

+x
22
25

+ 13
5

∆

1 M
− 8

15
1 + x

47
75

+2∆

1 + x
4
15

+∆

1 M
2
3

1 .

If the second term does not dominate we have R̃(2) � x
2/3+5∆
1 for κ ∈

[41/90, 13/27]. Thus we may assume that the second term dominates. Then

by Lemma 17

R̃(3) � x
4
3

+∆

1 M
− 1

2
1 + x

97
80

+ 71
16

∆

1 M
− 1

6
1 + x

33
40

+ 39
8

∆

1 M
2
3

1 � x
2
3

+ 1
2

+5∆

1

for x
41/90
1 ≤M1 ≤ x

13/27
1 which completes the proof required in this section.

3.9 Case: 3
4 ≤ σ ≤ 3

4 + θ
2

We now use, for σ > 3/4, the bound (from Lemma 17)

R̃� min
(
x

11/8+θ/4−3σ/2+∆
1 + x1−σ+∆

1 , x
1/2+∆
1 M4−6σ

1

)
.

We observe that in the range under consideration we have

x
11/8+θ/4−3σ/2+∆
1 ≥ x1−σ+∆

1 .
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Hence by Lemma 17 we obtain

R̄(2) � x
33
8

+ 3
4
θ− 9

2
σ+3∆

1 M1−2σ
1 + x

55
16

+ 5
8
θ− 15

4
σ+ 1

2
∆

1 M
3−4σ

2
1

+ min(x
11
8

+ θ
4
− 3

2
σ+3∆

1 M4−4σ
1 , x

1
2

+2∆

1 M8−10σ
1 ).

If the first or second term dominates then the bound for x4σ−3
1 R̄(2) de-

creases as σ increases and we may therefore take σ = 3/4. In this case, since

M1 ≥ x
1/3−η
1 we have the bound R̄(2) � x

2/3+5∆
1 for θ ≤ 1/15. We may

therefore now assume from now on that

R̄(2) � min(x
11
8

+ θ
4
− 3

2
σ+3∆

1 M4−4σ
1 , x

1
2

+2∆

1 M8−10σ
1 ).

Hence by Lemma 17 we use this bound to obtain

x6σ−5
1 R̄(3) � x

3
4
σ− 3

16
+ 7

8
θ+5∆

1 M
7
2
−4σ

1

+ min(x
9
2
σ− 29

8
+ θ

4
+5∆

1 M8−8σ
1 , x

6σ− 9
2

+4∆

1 M12−14σ
1 ).

If the first term dominates then the bound for x6σ−5
1 R̄(3) decreases as σ

increases so that we may take σ = 3/4. We observe that by using κ ≤ 1/2

for θ = 1/27 and κ ≤ c for θ = 1/15 we obtain the bound � x
2/3+5∆
1 . Hence

sufficient bounds are obtained when

9

2
σ − 29

8
+
θ

4
+ κ(8− 8σ) + 5∆ ≤ 2

3
+ 5∆

or

6σ − 9

2
+ 4∆ + κ(12− 14σ) ≤ 2

3
+ 5∆.

These will be satisfied if

9

2
σ − 29

8
+
θ

4
+ κ(8− 8σ) ≤ 2

3
(3.47)
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or

6σ − 9

2
+ κ(12− 14σ) ≤ 2

3
. (3.48)

Next we consider which value of κ equalises the bounds (3.47) and (3.48).

The first bound (3.47) requires larger values of κ as σ increases in order

to satisify the inequality. Therefore if, in (3.47), we let σ = 3/4 + θ/2, the

largest value of σ in the range being considered, then we obtain the restriction

κ ≤ 45/104. Consider next when this does not hold. Then the second bound

(3.48) requires κ to become larger as σ decreases hence by letting the left

hand sides of (3.47) and (3.48) be equal we find that the value of σ for which

these bounds are the same value is given by

σ =
4k − 7

8
− θ

4

6k − 3
2

.

Then substituting this expression for σ into the equality for (3.48)

6σ − 9

2
+ κ(12− 14σ) =

2

3

we obtain the following quadratic in κ:

960κ2 − 751κ+ 144 = 0

with solution

κ =
751 +

√
11041

1920
, which we call c. (3.49)

We now assume k ≥ c for the remainder of this section and and use the

estimate

R̃� min(x
11
8

+ θ
4
− 3

2
σ+∆

1 , x
1
2

+∆

1 M4−6σ
1 )

and we recall

M
1
2

1 ≤M3 ≤M
2
3

1 .
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Then by Lemma 17 we obtain

R̃(2) � min(x
33
8

+ 3
4
θ− 9

2
σ+3∆

1 M
1
2
−σ

1 , x
3
2
1M

25
2
−19σ

1 ) (3.50)

+ min(x
239
64

+ 21
32
θ− 63

16
σ+ 23

8
∆

1 M
1
2
−σ

1 , x
23
16

+ 1
4

∆

1 M
11− 67

4
σ

1 )

+x
55
16

+ 5
8
θ− 15

4
σ+ 5

2
∆

1 M
3
4
−σ

1

+ min(x
23
8

+ 9
20
θ− 27

10
σ+ 13

5
∆

1 M
4
5
− 8

5
σ

1 , x
13
10

+ 4
5

∆

1 M
8− 62

5
σ

1 )

+x
12
5

+ 2
5
θ− 12

5
σ+2∆

1 M
6
5
− 8

5
σ

1

+x
11
8

+ θ
4
− 3

2
σ+∆

1 M
8
3
− 8

3
σ

1 .

If the third, fifth or sixth terms dominate then we immediately estabish

the bound x4σ−3
1 R̃(2) � x

2
3

+5∆

1 . For θ ≤ 1/15 and 3/4 ≤ σ ≤ 3/4 + θ/2 with

κ ≥ c we observe from the terms of R̃(2) above that

x
33
8

+ 3
4
θ− 9

2
σ+3∆

1 M
1
2
−σ

1 � x
239
64

+ 21
32
θ− 63

16
σ+ 23

8
∆

1 M
1
2
−σ

1

and

x
3
2
1M

25
2
−19σ

1 � x
23
16

+ 1
4

∆

1 M
11− 67

4
σ

1 .

Hence we may assume that the second or fourth term dominate in R̃(2).

Assuming the second term dominates then by Lemma 17 we obtain

R̃(3) � x
55
8

+ 5
4
θ− 15

2
σ+5∆

1 + x
767
128

+ 69
64
θ− 207

32
σ+ 79

16
∆

1

+ min
(
x

239
64

+ 21
32
θ− 63

16
σ+ 23

8
∆

1 M
9
2
−5σ

1 , x
23
16

+ ∆
4

1 M
15− 83

4
σ

1

)
.
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If in this expression the first or second term dominate we establish x6σ−5
1 R̃(3)

is � x
2
3

+5∆

1 for κ ≥ c and θ ≤ 1/15. We may therefore assume the last term

dominates in R̃(3) above. Hence in the case when the second term of R̃(2) in

(3.50) dominates we will obtain sufficient bounds when in the exponents of

the expression for x6σ−5
1 R̃(3) from R̃(3) above, either (with the ommision of

the delta terms on each side of the inequalities as in the previous argument

which led to (3.47) and (3.48))

33

16
σ − 81

64
+

21

32
θ + κ

(
9

2
− 5σ

)
≤ 2

3

or

6σ − 57

16
+ κ

(
15− 83

4
σ

)
≤ 2

3

We observe that the first inequality gives an upper bound for κ and that

for κ ≥ c it becomes more favourable as σ increases. Hence by taking σ = 3/4

we achieve a sufficient bound for

κ ≤ 37

72
− 7

8
θ.

This gives

κ ≤ 13

27
when θ =

1

27

and

κ ≤ 41

90
when θ =

1

15
.

The second inequality gives a lower bound for κ and becomes more

favourable as σ increases. Hence by taking σ = 3/4 we obtain a sufficient

bound for κ ≥ 13/27.

Next we assume that the fourth term of (3.50) dominates. Then

R̃(3) � x
55
8

+ 5
4
θ− 15

2
σ+5∆

1 M1−2σ
1 + x

89
16

+ 39
40
θ− 117

20
σ+ 76

18
∆

1 M
19
10
− 14

5
σ

1
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+x
13
10

+ 4
5

∆

1 M
12− 82

5
σ

1 .

Hence x6σ−5
1 R̃(3) � x

2
3

+5∆

1 for θ ≤ 1/15 and κ ≥ c as required.

Next we must consider the case θ = 1/15 and x
41
90
1 ≤ N3 ≤ x

13
27
1 . As in the

preceding section we recall M1 = N3 and M3 = N2 = M
2
3

1 . By the bound

for R̃ at the beginning of this section this gives

R̃� x
167
120
− 3

2
σ+∆

1 .

Hence by Lemma 17 we obtain

R̃(2) � x
167
40
− 9

2
σ+3∆

1 M
2
3
− 4

3
σ

1 + x
1209
320
− 63

16
σ+ 23

8
∆

1 M
2
3
− 4

3
σ

1

+x
167
48
− 15

4
σ+ 5

2
∆

1 M
1− 4

3
σ

1 + x
581
200
− 27

10
σ+ 13

5
∆

1 M
16
15
− 32

15
σ

1 + x
182
75
− 12

5
σ+2∆

1 M
8
5
− 32

15
σ

1

+x
167
120
− 3

2
σ+∆

1 M
8
3
− 8

3
σ

1 .

In this bound the first three terms multiplied by x4σ−3
1 decrease as σ increases.

We let σ = 3/4 and see that if the first or third term dominates we achieve

the bound� x
2/3+5∆
1 . The last three terms multiplied by x4σ−3

1 increase as σ

increases. By setting σ = 47/60 we see that if one of these terms dominates

we achieve the bound x4σ−3
1 � x

2/3+5∆
1 . Hence we may assume that the

second term dominates. In this case we have

R̃(3) � x
167
24
− 15

2
σ+5∆

1 + x
3881
640
− 207

32
σ+ 79

16
∆

1 M
11
6
− 8

3
σ

1

+x
1209
320
− 63

16
σ+ 39

8
∆

1 M
14
3
− 16

3
σ

1 .

In this bound the terms multiplied by x6σ−5
1 decrease as σ increases. Letting

σ = 3/4 we now see that x6σ−5
1 R̃(3) � x

2/3+5∆
1 as required, concluding this
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section.

3.10 Case: 3
4 + θ

2 ≤ σ ≤ 5
6 + ∆ + 3η2

In this range where σ > 3/4 + θ/2 we now use the bound for R̃ in Lemma 17

for σ > 3/4 (where the first term in the following expression for the minimum

is readily shown to be the larger of the two terms in the sum in the first term

of the expression shown in that lemma for the range of σ in this section;

enabling the use of the more simple form of the bound used here).

R̃� min(x1+∆−σ
1 , x

1
2

+∆

1 M4−6σ
1 ).

Observe that if

x
1
2

+∆

1 M4−6σ
1 ≤ x1−σ−3η1

1

then we have a sufficient bound. That is if

∆ + κ(4− 6σ) ≤ 1

2
− σ − 3η1,

then we have nothing to prove.

We therefore use the bound R̃� x1−σ+∆
1 to obtain

R̄(2) � x3−3σ+3∆
1 M1−2σ

1 + x
5
2

(1−σ)+3∆

1 M
1
2

(3−4σ)

1 + x1−σ+3∆
1 M4−4σ

1 . (3.51)

If the first term dominates in the right hand side of this bound then

x4σ−3
1 R̄(2) � x

σ+( 1
3
−η1)(1−2σ)+3∆

1 � x
2
3

+5∆

1 .

We may therefore assume that the second and third terms dominate. The

bounds for x4σ−3
1 R̄(2) and x6σ−5

1 R̄(3) increase as σ increases. Hence we assume

in this case that σ = 5/6 + ∆ + 3η (where we supress the subscript 2 as it
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is arbitrary and we may allow it to equal the η in the bound for T1). For

this value of σ we have R̃ � x
1
6
−3η

1 and we note that the third term in R̄(2)

dominates which gives R̄(2) � x
1
6

+2∆

1 M
2
3
−4∆

1 . Hence by (from Lemma 17)

R̄(3) � x
7
12

+ 3
2

∆

1 M
1
6
−4∆

1 + x
1
6

+4∆

1 M
4
3
−8∆

1

and since M1 = xκ1 we see that whilst the first term immediately satifies the

required bounds the second term of this bound will certainly be � x
2
3

+5∆

1

whenever κ ≤ 3
8
.

Now we return to considering σ in the full range under consideration in

this section rather than fixing it. We may now assume κ > 3
8
.

We now appeal to the remark at the end of section 3.5, referring to (3.35).

As κ > 3
8

we have by definition (3.46) that M1 > x
3
8
1 so by (3.35) we can now

assume that σ ≤ 5
6
.

In this case the third term of R̄(2) in (3.51) above dominates.

Then

x6σ−5
1 R̄(3) � x

5
2
σ− 3

2
+5∆

1 M
7
2
−4σ

1 + x5σ−4+5∆
1 M8−8σ

1 .

The first term increases with increasing σ and for σ = 5/6 this term is

� x
31
48

+5∆

1 � x
2
3

+5∆

1 . Hence a sufficient bound is achieved when

5σ − 4 + κ(8− 8σ) + 5∆ ≤ 2

3
+ 5∆.

This will be satisfied when

5σ − 4 + κ(8− 8σ) ≤ 2

3
.

Combining this with the inequality in kappa from the first bound considered

in this section

∆ + κ(4− 6σ) ≤ 1

2
− σ − 3η1,
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we find that in the range 3
4

+ θ
2
≤ σ ≤ 5

6
+∆+3η2 we obtain sufficient bounds

when

κ ≤
14
3
− 5σ

8− 8σ

or

κ ≥
σ − 1

2
+ 3η1 + ∆

6σ − 4
.

By elementary calculation the latter bound is smaller than the former when

σ ∈ [3
4

+ θ
2
, 5

6
+ ∆ + 3η2] and θ ≥ 1

27
. Hence, since the ranges for κ overlap,

in this case we obtain sufficient bounds for θ ∈ { 1
15
, 1

27
} for all values of κ as

required.

3.11 Regions where θ = 1
15 may be used

We recall that we wish to consider polynomials of the form

F (s) =
k∏
i=1

Ri(s)
l∏

i=1

Mi(s)K(s)H(s)

where Mi < x
1
15
1 , K(s) is a zeta-factor and H(s) = xo(1). When Ri = xαi1 is

written then 1/27 ≤ αi ≤ 13/27 and αi+1 ≤ min
(
αi,

1
2
(1− α1 − ...− αi)

)
.

Furthermore Ri(s) =
∏ji

j=1Rij(s), where all non-zeta factors have lenghth ≤
x

1/8
1 and all the factors are prime-factored. We join the terms with length ≤ η

arising from Pi(s) to H(s). Assuming our polynomials are of this particular

form we obtain the following lemma (see [26] p 510-511 for the proof since

the polynomials (i)-(viii) considered in lemma 2.4 of that paper are the same

as in lemma 9 of this chapter and numbered in the same order).

Lemma 19. If some product of Ri is in the range [x
7/15
1 , x

8/15
1 ] and one of

the following is satisfied:

(i) αi ≤ 1/8 for some 1 ≤ i ≤ k,
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(ii) α1 ≤ 41/90 and α2 ≤ 41/180,

(iii) k ≥ 4 and α2 ≤ c− 13/54

then F (s) is good.
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3.12 Sieve Asymptotic Formulae

From this section onwards, having established Lemma 9, the working will

now be identical to Matomäki [26]. The previous sections have provided the

arithmetical information which will now enable the production of asymptotic

formulae which we use in the sieve of Harman. We require formulae of the

form∑
m∼M

amS(Am, η) =
δA
δB

∑
m∼M

amS(Bm, η) +
δAy

log y
(A(x, y) + o(1)), (3.52)

where η = exp((log x)9/10), and we will use (3.52) to obtain similar formulae

with η replaced by a larger value. We also note that∑
m∼M

amS(Am, η) =
∑
m∼M

am
∑
ml∈A

d|(l,P (η))

µ(d).

We bound the length of the sum over d using the following two lemmas

from Heath-Brown [20].

Lemma 20. Let γ > 1, then

∑
d|(n,P (η))

µ(d) =
∑

d|(n,P (η))
d≤γ

µ(d) +O

 ∑
d|(n,P (η))
γ≤d≤γη

1

 .

Lemma 21. Let a and u be positive numbers, z0 = x1/u and D = xa. Suppose

that
1

a
< u < (log x)1−ε.

Then ∑
d|P (z0)
d>D

1

d
� exp(log log z0 + 2ua− ua log(ua)).
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We are now in a position to obtain some asymptotic formulae. The proof

of the following lemma follows that in [4] (the proof of Lemma 12) and can

also be found in relation to the present problem in [26] (proof of lemma 12.3,

since the polynomials (i)-(viii) considered in lemma 2.4 of that paper are the

same as in lemma 9 of this paper and numbered in the same order).

Lemma 22. Let M(s) =
∑

m∼M amm
−s, with M ≤ x

1/8
1 or with M(s)K(s)

good, where K =
∑

k∼x1−η1
1 /M

k−s. Then (3.52) holds.

Proof. Let

ck =
∑
ml=k

d|(l,P (η))

amµ(d)

and write

c′k =
∑

ml=k,d≤γ
d|(l,P (η))

amµ(d), c′′k =
∑

ml=k,γ≤d<ηγ
d|(l,P (η))

|am|

with γ = ητ , τ = (log log x)2. Now γη � xµ1 ,for arbitrary µ1 > 0. By

Lemma 20 we have

∑
k∈A

ck =
∑
k∈A

c′k +O

(∑
k∈A

c′′k

)
.

If Mγη > x
1/4
1 then we obtain asymptotic formulae for sums with c′k and c′′k

by our assumptions since the polynomial in d can be incorporated in H(s).

We still need to show that the sums with c′′k is O((log x)−B). By Lemma 21

we have

δA
δB

∑
k∈B

c′′k � δAy
∑
m

|am|
m

exp

(
−1

2
(log log x)2 log log log x

)

� δAy
log y

(log x)−B.

hence the claim follows in this case. If Mγη ≤ x
1/4
1 , the sums with N � x

1/4
1
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are of the form

∑
nl∈A
n∼N

an =
∑
n∼N

an

(
δAy

n
+O(1)

)
=
δA
δB

∑
nl∈B
n∼N

an +O

(∑
n∼N

|an|

)

=
δA
δB

∑
nl∈B
n∼N

an +O(x1/4+ε).

We see that in this case we also have an asymptotic formula and the proof

is complete.

To conclude this section we state two lemmas which extend the results for

asymptotic formulae to cases where η is replaced by a larger value. We refer

the reader to [26](section 12 Lemma 12.4 and 12.5) for the proofs. The first

Lemma is a modification of the sieve of Harman and provides asymptotic

formulae in cases (i)-(v) of Lemma 9 and 19. The second Lemma provides

asymptotic formulae in certain more specific cases of Lemma 9 and Lemma

19.

Lemma 23. Let M(s) = N1(s)N2(s)N3(s) =
∏k

i=1RI(s), and let Ni = xβi1

be such that the polynomial K(s)N1(s)N2(s)N3(s) satisfies Lemma 19 or one

of the conditions (i) - (v) of Lemma 9.

Let θ = 1
15

and let

Ih =

[
1− θ

2
− hθ, 1− θ

2
− (h− 1)θ

)
for h ≥ 1 and

ν(α) =

min
(

1
8
,

1+θ
2
−α
h

)
if α ∈ Ih,

θ if 7
15
≤ α ≤ 1

2
.
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Then∑
m∼M

amS(Am, ν(β1)) =
δA
δB

∑
m∼M

amS(Bm, ν(β1)) +
δAy

log y
(A(x, y) + o(1)).

Lemma 24. Let

P (s) =
∑
p∼P

1

ps
.

If M(s)P (s)K(s) satisfies condition (v) Lemma 9 or M(s)P (s) satisfies the

assumptions of Lemma 19, then

∑
m∼M
p∼P

amS(Amp, p) =
δA
δB

∑
m∼M
p∼P

amS(Bmp, p) +
δAy

log y
(A(x, y) + o(1)).

3.13 The Final Decomposition

We now apply the sieve method. We apply Buchstab’s identity twice and

subsequently in certain areas we apply this identity a further two or four

times (as an even number of iterations are needed in each case). The previous

sections will provide a reasonable collection of regions over which asymptotic

formulae can be obtained and used in the sieve. The advantage of this will

be that we will not need to discard too much of the required sum.

We now introduce a piecewise-linear function ν(α) as the exponent of x

in our application of Buchstab’s idenity. The importance of this function is

that we will use the arguments (usually indexed) to plot a graphical repre-

sentation of the regions representing sums derived from repeated iterations of

Buchstab’s identity and within certain of these regions we obtain asymptotic

formulae. Let xν(0) ≤ p1 < 2x1/2 where ν(α) is a positive piecewise linear

real valued function of the real non-negative variable α. We define xα1 = p1

where p1 is the first prime which is indexed by 1. Similarly and in general

xαj = pj for the j-th indexed prime.
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With this notation we decompose S(A, 2x1/2) with two iterations of Buch-

stab’s identity and write

S(A, 2x1/2) ≥ S(A, xν(0))−
∑

ν(0)≤α1<x
1
2

S(Ap1 , x
ν(α1))

+
∑

ν(0)≤α1<
1
2

ν(α1)≤α2<min{α1,
1−α1

2
}

S(Ap1p2 , p2)

=
∑

1
−
∑

2
+
∑

3
, say.

.

We have by Lemma 23 asymptotic formulae for
∑

1 and
∑

2. Define

Hk = {(α1, ..., αk)|θ ≤ αk ≤ ... ≤ α1 ≤
13

27
, α1 + ...+ αk−1 + 2αk ≤ 1},

and further define

Gk = {(α1, ..., αk) ∈ Hk| asymptotic formulae achieveable by Lemma 24}.

Next we define sets A,B,B′, C,D and E:

A = {(α1, α2) ∈ H2|α1 + α2 ≥ 14
27
, α2 ≤ 1

7
} \G2

B = {(α1, α2) ∈ H2|α1 + α2 ≥ 9
32
, α1 − α2 ≤ 1

27
} \G2

B′ = {(α1, α2) ∈ H2|α1 + 2α2 ≥ 26
27
, α2 ≤ 9

32
} \G2

C = {(α1, α2) ∈ H2|α1 + α2 ≥ 14
27
} \ (G2 ∪ A ∪B ∪B′)

D = {(α1, α2) ∈ H2|α1 + 2α2 ≥ 13
27
, α2 ≤ 1

7
} \G2
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E = {(α1, α2) ∈ H2|α1 + α2 ≥ 13
27
} \ (G2 ∪D).

The regions are illustrated in the following diagram (from [26]).

Next we split sum
∑

3 according to the regions defined above as follows:∑
3

=
∑

A
+
∑

B
+
∑

B′
+
∑

C
+
∑

D
+
∑

E
+
∑

G2

.

We observe that in B and B′, only products of three primes are counted

and that (α1, α2) satisfies the conditions for αi in the definition of B′ if and

only if (1− α1 − α2, α2) satisfies the condition in the definition of B. Hence∑
B

=
∑

B′

and ∑
3

=
∑

A
+ 2
∑

B
+
∑

C
+
∑

D
+
∑

E
+
∑

G2

.

First consider the sum
∑

A. In the region A we have α2 ≤ 1
7

which allows

the use of Buchstab’s identity twice more by appealing to case (i) of Lemma

9 and Lemma 23. We obtain∑
A

=
∑

(α1,α2)∈A

S(Ap1p2 , ν(α1))−
∑

S(Ap1p2p3 , ν(α1)) +
∑

S(Ap1p2p3p4 , p4)
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The summation conditions have been suppressed for clarity. Lemma 23

ensures that we have asymptotic formulae for the first and second sums

on the right hand side of the above expression. We also have asymptotic

formulae for those parts of the third sum on the right hand side for which

some combination of the αi lies in [7/15, 8/15] by Lemma 24 via condition

(iii) of Lemma 19. More specifically we have asymptotic formulae for α1 >
7
15

.

Hence by discarding only those parts of the third sum on the right hand side

for which we do not have asymptotic formulae we can calculate the total loss

from the sum
∑

A for region A is:

∫ 7
15

α1= 41
105

∫ 1
7

α2= 8
15
−α1

∫ α2

α3=ν(α1)

∫ α3

α4=ν(α1)

ω

(
1− α1 − α2 − α3 − α4

α4

)
dα4dα3dα2dα1

α1α2α3α2
4

.

where (α1, . . . , α4) /∈ G2.

By numerical methods of integration this loss from region A is less than

0.018.

In region B we proceed to decompose a further two times using Lemma

9 (iv) as α2 ≤ 9/32 and α1 + α3 ≤ α1 + (1− α1 − α2)/2 ≤ 14/27 :

∑
B

=
∑

(α1,α2)∈B

S(Ap1p2 , ν(α1))−
∑

S(Ap1p2p3 , ν(α1 + α3))

+
∑

S(Ap1p2p3p4 , p4).

Working in the same way as in region A we see the loss from B is < 0.019.

The region C may be left without further decomposition and produces a

loss of < 0.81.

In region D we may decompose via the Buchstab idenity four times as

α1 = α2 + α3 ≤ 1/2 and α4α5 ≤ 1/7 hence by case (i) for Lemma 9. As
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there are six variabes many of the sums are in asymptotic formulae regions

and the loss in D will be reduced to less than 0.0003.

In region E we decompose twice more and use case (iv) of Lemma 9 since

here we have α1 + α3 ≤ 1/2 and α2 ≤ 1/4. The loss is less than 0.12.

The total loss is therefore less than 0.99 < 1 as required.

Theorem 2 is therefore proved with exponent a = 2
3

+ 5∆ + ε. However

by continuity of the argument ε may be removed to obtain the final desired

result.
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Chapter 4

Prime-representing Functions

4.1 Application of Chapter 3

A significant application of the result of the previous chapter is an improve-

ment to a prime representing function [27]. We therefore provide a further

discussion of such functions and by doing so we give further insight into how

development of results regarding differences between consecutive primes have

been key in establishing the existence of prime representing functions.

We will prove the following theorem.

Theorem 3. There exists α > 2 and β = 1/(1
2

+ ∆) where 0 < ∆ ≤
−3 + 1

6

√
327 such that the sequence [αβ

n
] contains only prime numbers. The

set of such numbers α has the cardinality of the continuum, is nowhere dense

and has measure zero. The smallest value for β is 1.946067...

Prime representing functions are typically functions of one parameter α,

all of whose values are prime. The parameter will usually depend on the

prime sequence which the function represents. Whilst it is not presently pos-

sible to determine the values of α which lead to prime representing functions

it is possible to prove the existence of such a number. Mills [28] in 1947
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showed that there exits α > 1 such that

[α3n ] (4.1)

is prime for all n ∈ N which was later improved by Niven [30] who reduced

the exponent 3 to any real number

c >
8

3
=

1

1− 5/8
.

The value 5/8 is from Ingham’s [21] result that the interval [x, x + Cx5/8]

contains primes for some C > 0 and sufficiently large x. The best result

presently improving on Ingham’s early result is by Baker, Harman and Pintz

[5]:

Lemma 25. There exists a positive constant d0 such that

π(x+ x21/40)− π(x) ≥ d0
x21/40

log x

for sufficiently large x.

Niven’s argument then ensures that (4.1) is still true if 3 is replaced by

exponent

c ≥ 1

1− 21/40
.

An improvement to this result was produced by Matomäki [27] who reduced

the exponent to c = 2 by using a similar approach to Wright [35] who had

established in 1954 that previous authors’ results could be obtained via a

more general approach. We will follow a similar approach to that paper and

prove Theorem 3.

Firstly we define a φ-sequence: Let λn(x) = xcn , let φ0(x) = x and φn(x)
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be the composed function

φn(x) = λn ◦ · · · ◦ λ1(x) = xCn

where

Cn = c1 · · · cn.

Here, for our purposes ci ∈ R and ci > 1 and we will be considering values

of ci less than 2.

We say that a sequence (an) of positive integers is a φ-sequence if for

some fixed α > 1, an = [φn(α)] for every n ∈ N.

We point out that in Wright’s paper [35] as mentioned in Matomäki [27]

the choice of function λn(x) satisfy the conditions of the functions in Wright’s

paper so that the results of that paper may be applied. We use the following

lemma from Wright [35]:

Lemma 26. Assume that a0 > 2,

λn+1(an) ≤ an+1 ≤ λn+1(an + 1)− 1

for all n ∈ N and

an+1 < λn+1(an + 1)− 1

for infinitely many n ∈ N. Then the sequence (an) is a φ-sequence.

We can now see that if it can be shown that there is a prime sequence

(an) satifisfying the conditions of this lemma then we will obtain a prime

representing function.

In a more general setting let D be an infinite set of positive integers and

c ≥ 2 and Ec(φ,D) be the set of all α ≥ c such that [φ(α)] ∈ D. It can

be shown (see [27] p 309 Lemma 6) that there are fairly straightforward
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conditions by which it can be determined if Ec(φ,D) is non-empty, has the

cardinality of the continuum, is nowhere dense or is of zero measure.

In fact the set of all possible α such that [αCn ] contains only primes in

Theorem 3 is nowhere dense and has measure zero as it satisfies conditions

(iii) and (iv) of lemma 6 of [27]. The non-emptiness and cardinality of the

continuum will follow from Theorem 2 of this paper.

The proof of Theorem 2 (refer especially to Lemma 7) will in fact imply

the following stronger result.

Lemma 27. There exist positive constants d′ < 1 and D′ such that for every

sufficiently large x the interval [x, 2x] contains at most D′x1/6+6∆ disjoint

intervals [n, n+ n1/2−∆] for which

π(n+ n1/2−∆)− π(n) ≤ d′n1/2−∆

log n
.

We quote the following comparative result based upon (3.1) as a lemma:

Lemma 28. There exist positive constants d′ < 1 and D′ such that for

every sufficiently large x the interval [x, 2x] contains at most D′x1/6 disjoint

intervals [n, n+ n1/2] for which

π(n+ n1/2)− π(n) ≤ d′n1/2

log n
.

We now make an interesting remark that the above two lemmas may be

compared to Lemma 25 which essentially states that the number of primes

in the interval [x, x+ xγ] is of the expected order of magnitude by the prime

number theorem when γ ≥ 21/40. If the Riemann hypothesis was assumed

true then this range could be extended to γ ≥ 1/2 + ε for any ε > 0. The

existing result Lemma 28 then effectively show unconditionally that at γ =

1/2 there are in fact few exceptional intervals.

We state and prove the following lemma from corollary 4 of [27].
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Lemma 29. There exists α > 2 such that the sequence [α2n ] contains only

prime numbers. The set of such α has the cardinality of the continuum, is

nowhere dense and has measure zero.

Proof. The proof is inductive. By Lemma 28 we construct a sequence

(an) consisting of primes satisfying the conditions of Lemma 26 for a φ-

sequence which by definition will provide a prime representing function for

the sequence (an).

We let λn(x) = x2 and note that a prime sequence (an) will clearly satisfy

the conditions of Lemma 26 if

a0 ≥ 4 and an+1 ∈ [a2
n, a

2
n + an].

A sequence (an) may be constructed recursively. Let d′ and D′ be as in

Lemma 28. Let a0 be a large enough prime such that the interval [a2
0, a

2
0 +

a0] contains at least d′a0/(2 log a0) primes. Such an a0 exists by the prime

number theorem.

Proceeding by induction let k ≥ 0. Assume that we have chosen prime

numbers a0, ..., ak such that the interval

[a2
j , a

2
j + aj] for j = 0, ..., k

contains, by Lemma 28, at least d′aj/(2 log aj) primes and

aj ∈ [a2
j−1, a

2
j−1 + aj−1] for j = 1, ..., k.

To complete the induction we now wish to find a prime ak+1 ∈ [a2
k, a

2
k+ak]

such that the interval [a2
k+1, a

2
k+1 + ak+1] contains at least d′ak+1/(2 log ak+1)

primes.

For p prime with p ∈ [a2
k, a

2
k + ak]∩P the intervals [p2, p2 + p] are disjoint

and contained in [a22

k , 2a
22

k ]. By Lemma 28 at most D′(a4
k)

1/6 = D′a
2/3
k of

these intervals contain less than d′p/(2 log p) primes.
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But for large enough a0 we have

D′a
2/3
k < d′ak/(2 log ak) ≤ |[a2

k, a
2
k + ak] ∩ P|.

We are therefore supplied with sufficient primes to choose a prime ak+1 ∈
[a2
k, a

2
k + ak] ∩ P such that the interval [a2

k+1, a
2
k+1 + ak+1] contains at least

d′ak+1/(2 log ak+1) primes. This completes the induction.

Now by Lemma 26 (an) is a φ-sequence of prime numbers which by defini-

tion means there exists α such that an = [α2n ]. The multiple choices of ai at

each step of the recursion implies the set of all possible α has the cardinality

of the continuum and the proof is complete.

We now show that Theorem 2 enables Lemma 29 above to be improved

by reducing the value of the exponent β in [αβ
n
] from β = 2 to a number

β < 2 (as stated in Theorem 3). We show that we can in fact reduce the

value of β to 1/(1
2

+ ∆) for 0 < ∆ ≤ −3 + 1
6

√
327.

We now prove Theorem 3.

Proof. We follow a similar approach to the proof of Lemma 29. This

time, however, we let λn(x) = xc for some c > 0 we show that there exists a

c < 2 which satisfy the conditions of Lemma 26.

We wish to find a prime sequence (an) with an+1 ∈ [acn, (an + δ)c] =

[acn, a
c
n + ac−1

n ] for some 0 < c < 2. Comparing this to the proof of Lemma 29

we see that this gives the same intervals as in that proof when c = 2. Firstly

we note that transforming the interval [acn, a
c
n + ac−1

n ] by letting z = ac we

have a−1 = z−1/c so we may write the interval as [z, z+z1−1/c] and by Lemma

28 this will therefore contain
d′ac−1

n

c log a

primes. To see this we have by Lemma 28 that [z, z+z1−1/c] contains at most

d′z(1−1/c)/ log z primes and this is just d′(ac)(1−1/c)/ log(ac) = d′ac−1/c log a.
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Further by Theorem 2 of this paper the number of intervals containing

too few primes will be D′a
c2(1/6+6∆)
n . To see this note that the sum of the

lengths of the intervals containing too few prime will be, by the result of this

paper � x2/3+5∆ so dividing by x1/2−∆ for the interval length in Theorem 2

the exponents give (2/3 + 5∆)− (1/2−∆) = 1/6 + 6∆.

We also note, as before, that a prime sequence (an) will clearly satisfy

the conditions of Lemma 26 if for large enough 0 < c < 2

a0 ≥ 4 and an+1 ∈ [acn, a
c
n + ac−1

n ].

A sequence (an) may once again be constructed recursively.

Let d′ and D′ be as in Lemma 28. Let a0 be a large enough prime such

that the interval [ac0, a
c
0 +ac−1

0 ] contains at least d′ac−1
0 /(c log a0) primes. Such

an a0 exists by the prime number theorem.

Proceeding by induction let k ≥ 0. Assume that we have chosen prime

numbers a0, ..., ak such that the interval

[acj, a
c
j + ac−1

j ] for j = 0, ..., k

contains, by Lemma 28, at least d′ac−1
j /(c log aj) primes and

aj ∈ [acj−1, a
c
j−1 + ac−1

j−1] for j = 1, ..., k.

To complete the induction we now wish to find a prime ak+1 ∈ [ack, a
c
k +

ac−1
k ] such that the interval [ack+1, a

c
k+1+ac−1

k+1] contains at least d′ac−1
k+1/(c log ak+1)

primes.

We observe that for p prime with p ∈ [ack, a
c
k+a

c−1
k ]∩P the intervals [pc, pc+

pc−1] are disjoint and contained in [ac
2

k , 2a
c2

k ]. However, as an outcome of

Theorem 2 of this paper we find that by Lemma 27 at most D′(ac
2

k )(1/6+6∆) =

D′a
c2(1/6+6∆)
k of these intervals contain less than d′pc−1/(c log p) primes.
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But for large enough a0 we have

D′a
c2(1/6+6∆)
k < d′ac−1

k /(c log ak) ≤ |[ack, ack + ac−1
k ] ∩ P|. (4.2)

We are therefore supplied with sufficient primes to choose a prime ak+1 ∈
[ack, a

c
k + ac−1

k ] ∩ P such that the interval [ack+1, a
c
k+1 + ac−1

k+1] contains at least

d′ac−1
k+1/(c log ak+1) primes. This completes the induction.

Now by Lemma 26 (an) is a φ-sequence of prime numbers which by defini-

tion means there exists α such that an = [αc
n
] where 0 < c < 2. The multiple

choices of ai at each step of the recursion implies the set of all possible α has

the cardinality of the continuum and the proof is complete.

We next consider which value of ∆ in Theorem 2 provides an improvement

over the prime-representing function of Lemma 29. We consider intervals

[pc, pc+pc−1] ⊂ [ac
2

k , 2a
c2

k ] where p is a prime selected in the recursive approach

of the preceding proofs. As a result of Theorem 2 we find that by Lemma

27 at most D′(ac
2

k )(1/6+6∆) = D′a
c2(1/6+6∆)
k of these intervals contain less than

d′p(c−1)/(c log p) primes. We require, as we have seen in the inductive step

(4.2) of the proof of the corollary above, that

D′a
c2(1/6+6∆)
k < d′ac−1

k /(c log ak).

By equating exponents and ignoring logs and constants we see that equality

would occur when

c2

(
1

6
+ 6∆

)
= c− 1. (4.3)

Transforming as before by z = pc the interval [pc, pc + pc−1] we obtain [z, z+

z1−1/c]. From Theorem 2 the interval between primes in the sum is 1
2
− ∆,

so we also require that

1− 1

c
=

1

2
−∆. (4.4)
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Solving (4.3) and (4.4) simultaneously in ∆ and c we obtain the quadratic

equation

12∆2 + 72∆− 1 = 0.

This has the quadratic-irrational solution

∆ = −3 +
1

6

√
327 = 0.013856...

Therefore we now see that for

0 < ∆ ≤ −3 +
1

6

√
327

we will achieve a significant improvement in the exponent c in the prime-

representing function [αc
n
] for n ∈ N reducing c from the value 2 (see Lemma

29) down to the value (using c from (4.4))

c =
1

1
2

+ ∆
.

The smallest value that we can achieve for c being

c = 1.946067....

4.2 Primes in Beatty Sequences

In this section we apply the general prime-representing lemma of Wright,

Lemma 26, and produce a result on prime-representing function only taking

values which are primes in Beatty sequences.

Definition. The sequence [ξn + η], for fixed ξ and η, is called a Beatty

sequence.

A Beatty sequence can be seen to essentially generalise the notion of an

arithmetic progression and for integer values of ξ that is exactly what it is.
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We write π(x; ξ, η) for the number of primes of the form [ξn + η] ≤ x. We

state the following lemma, which is Theorem 2 of [15]:

Lemma 30. If ξ > 1 is irrational and y = xθ with θ > 5/9 then

π(x+ y; ξ, η)− π(x; ξ, η) >
y

10ξ log x
(1 + o(1)).

In the case ξ is the rational q
a

and δ(ξ, η) > 0 this becomes

π(x+ y; ξ, η)− π(x; ξ, η) >
99y

100 log x
(1 + o(1))δ(ξ, η).

This lemma show that for all large x the number of primes in the Beatty

equence [ξn + η] where ξ is an irrational is greater than 1, in the interval

[x, x+ x
5
9 ], is greater than 1/10 of the expected number.

Theorem 4. Let ξ > 1 be irrational and η ∈ R. Then there exists α > 2

such that the sequence [αc
m

] only takes values which are primes in the Beatty

sequence [ξn+ η] for

c >
1

1− 5
9

=
9

4
.

Proof

We wish to find sequence of primes (am) which is a subequence of a Beatty

sequence [ξn+ η] with am+1 ∈ [acm, a
c
m + ac−1

m ], for some c. However we note

that the sequence (am) will clearly satisfy the conditions of Lemma 26 if for

large enough c

a0 ≥ 4 and am ∈ [acm, a
c
m + ac−1

m ].

We observe that Lemma 30 shows that for all large x the number of primes

in the Beatty sequence [ξn + η] where ξ > 1 is an irrational, in the interval

[am, am + a
5
9
m], is greater than 1/10 of the expected number. Hence (am) is a

φ-sequence consisting of primes in a Beatty sequence by the same inductive

argument of the previous section which by definition implies there exists an

α such that am = [αc
m

].
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Transforming the interval [am, am + a
5
9
m] by letting z = acm so that a−1

m =

z−1/c we can write the interval as [z, z + z1− 1
c ]. Using the argument of the

final part of the previous section we see that we can obtain a Beatty prime

representing function with

1− 1

c
<

5

9

which gives

c >
1

1− 5
9

=
9

4
.
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