arXiv:1311.7579v3 [physics.data-an] 9 May 2014

Preprint typeset in JINST style - HYPER VERSION

Accelerated Event-by-Event Neutrino Oscillation
Reweighting with Matter Effects on a GPU

R G. Calland?, A. C. Kaboth?, D. Payne?

aUniversity of Liverpool, Department of Physics, Oliver lgedBld, Oxford Street, Liverpool, L69
7ZE, UK

bDepartment of Physics, Imperial College London, London7 Wz, UK
E-mail: | cal | and@ep. ph. |iv. ac. uk|

ABSTRACT. Oscillation probability calculations are becoming iresmgly CPU intensive in mod-
ern neutrino oscillation analyses. The independency oéighiting individual events in a Monte
Carlo sample lends itself to parallel implementation ographics processing unitThe library

Pr ob3++ was ported to the GPU using the CUDA C API, allowing for largale parallelized
calculations of neutrino oscillation probabilities thgbumatter of constant density, decreasing the
execution time by 2 orders of magnitude when compared t@mpwaence on a single CPU.

KeywoRDS. Neutrino; Neutrino Oscillation; Matter Effects; GPU; CBDPReweighting.

http://arxiv.org/abs/1311.7579v3
mailto:rcalland@hep.ph.liv.ac.uk

Contents

@. Introduction
.1 Neutrino Oscillation Probability
Event-By-Event Reweighting

1)

Implementation on a GPU
P31 Method
P.2 Results and Validation

Conclusion

1e0)] S @ @ [neie=Ri=]|

al

1. Introduction

Current and future long-baseline experiments are desiggetdserve an appearance or disappear-
ance of neutrino events by studying a neutrino beam at \ariistances from the beam origin.
This difference can be quantified by comparing the obserpedtsa to the non-oscillation case.
To do this, a probability distribution function (PDF) must bonstructed empirically from detec-
tor Monte Carlo (MC) and reweighted according to the neatoacillation model chosen and any
corresponding systematic uncertainties.

1.1 Neutrino Oscillation Probability

In the standard 3 neutrino formulation, neutrinos propagata superposition of three mass eigen-
statesmy » 3. A neutrino interaction is governed by its flavour, and carirtberred indirectly via
observation of the outgoing lepton from a neutrino intéoactertex. The probability that a neu-
trino of flavourvy and energye (GeV) will be be observed with a flavowy after propagation of
distancel. (km) through vacuum can be determined from its mass statagad the unitary PMNS
transition matriXUjavourmass:

P(Va — vg) = (1.2)

2
3
1 L
Ugiexp(—Zim?=
i; ai Xp(2' |E>

This equation is illustrated for the, — v, survival probability in the top plot of figurig 1.

The propagation of neutrinos through matter induces natigible effects onve andve due
to forward scattering on electrons in matter. These sedathatter effects add computational
complexity but can be calculated as prescribed in [1].

Table 1: Assumed oscillation parameters for all studiesgrted.

Parameter Value
Sinz(elz) 0.311
Sir?(623) 0.5
Sin(613) 0.0251
Am3, (eV?) 24x10°3
Ame, (eV?) 7.6x107°
Ocp 0
Earth Density ¢/cn?) 2.6
Baseline km) 295

Pl -V

Events (a.u

14 . 2

v, Energy (GeV)

Figure 1: Top: v, — vy neutrino survival probability calculated with matter etfe for a prop-
agation distance of 295 km through a constant matter deagigy6 g/cn® . Bottom: A mock

vy neutrino beam spectra under the influence of this osciligimbability, compared to the no
oscillation case. The trough of the oscillation probapifitnction can been seen to line up with
the trough of the oscillated spectra at 0.6 GeV. Oscillatiere calculated using parameter values
listed in tabldJ1 with normal hierarchy.

1.1.1 Event-By-Event Reweighting

Neutrino oscillation analyses are often performed by pcotua large sample of simulated events
in order to estimate the PDF, as many reconstruction efieetg be complex. These simulated
events are produced at a certain set of oscillation paramatel experimental parameters, all of
which must be varied in order to find the optimal output par@nsefor analysis. Binned maximum

likelihood analyses are an effective way to compare thetdateze MC to optimize the parameters.

Calculating the effect of the variation of oscillation arydt®matic parameters can be done in two
ways for these binned MC PDFs. One option is to calculate ffleeteof the variation at the center
of each bin and apply it to the whole bin; this has the advantiddeing relatively quick, but the
disadvantage of losing any shape information which rediggide the bin boundaries. The other
option is to retain all of the simulated events and calculaesariations on an event-by-event basis;
this has the advantage of retaining any shape informatidihimihe bin, but the disadvantage of
requiring many more calculations.

Both oscillation parameters and systematic uncertaintgirpaters are subject to this binning
effect. An example of a systematic uncertainty that woulthiggacted by binning is a scale uncer-
tainty for energy reconstruction, critical for oscillatianalyses. Using a binned weighting method
loses the information about the reconstructed energy ofjargn event, and so produce a different
predicted number of events than simply scaling the truensicocted energy of the constituent
MC events. Further discussion of systematic uncertaimsiéeyond the scope of this note, but it
comprises part of the motivation to find a computationalficefnt way to treat the constituent MC
events individually.

The binning effect on oscillation parameters can be as lagga few percent. One can see
this effect by placing an histogram bin with a typical widthab MeV from 0.6 GeV to 0.625
GeV (near to the oscillation maximum shown in figire 1). Cdesng the case of integrating the
true neutrino energy spectrum in this bin and multiplyingthg oscillation probability at the bin
center (0.6125 MeV), and comparing this with the result tégnating the product of the oscillation
probability and the input neutrino spectrum one finds a difiee of 2.6%. This difference arises
from the approximation that all neutrinos within the bin eddpave the same true energy.

This is a strong motivation to find a way to treat the constituMC events according to their
true properties. Since this method increases the numbeciiiadion weight calculations by several
orders of magnitude, it is not practical to perform thesewations on a CPU, and so we describe
the implementation of this calculation on a GPU.

2. Implementation on a GPU

A typical CPU consists of- 4 cores with clock speeds in the range of 3-4 GHz and have the
capacity to run multi-threaded applications. In contrastpodern consumer GPU has 100-1000
cores that are used for graphical calculations, howeveatbkitecture can now be exposed for
non-graphical applications with APIs such as CUDA [2] ance@@L [3]. Suchgeneral purpose
graphics processing unif&SPGPU) can greatly outperform a CPU if a problem can be ledizad
accordingly.

Because each event in a Monte Carlo sample is independailtatien weight calculations
can be performed in parallel. The libralfy ob3++ [4] was ported to the GPU using tlhtempute
unified device architecturflCUDA) API to enable fine-grained concurrent calculatiofige results
displayed in figur¢]2 show the execution times for varying hars of calculations in series (CPU)
and parallel (GPU). Also compared is the original code mgmultithreaded using OpenMP [5].

2.1 Method

In the results presented, a series of C/C++ algorithms flioutzting oscillation probabilities were

ported to CUDA. Functions that execute on the device mustobepded separately by thevcc
compiler provided by NVIDIA and linked into the host prograrsing a compiler such agc

Within the GPU code, an array of energy values were allocatednstantiated in host memory
(the system’s RAM) and then copied to the device memory (thphjcs card’s video RAM) using
API function calls provided by CUDA.

In addition to the event energies, components that are depérmnly on the oscillation pa-
rameters (i.e. Equation 10 of [1]) are computed on the CPUthed copied to the GPU in the
same manner as the energy array.

The calculations ifPr ob3++ were modified into a set of CUDA kernel functions (functions
that run in parallel on the GPU) and were then executed on elrhent of the array in paral-
lel, which performs the oscillation probability calcutai in double precision. The result of this
calculation is written to an array in the device memory, anthen copied back to the host. All
memory allocation and transfer operations to and from thel @é&vice are handled via CUDA API
functions. A simplified example of this process can be foumlisting 1.

Listing 1. Example of copying data to GPU memory and exeguditkernel.
/1 size of array

size_t size = n * sizeof(double);

/1 allocate host nenory
doubl e *true_energy_host = (doublex) malloc(size);
doubl e *osc_wei ght _host = (doubl ex) nalloc(size);

/1 allocate device nmenory

doubl e *true_energy_dev = cudaMal | oc((void **) & rue_energy_device, size);
doubl e *osc_wei ght _dev = cudaMal | oc((void **) &osc_wei ght _devi ce, size);

/1 fill energy array

/1 copy energy array to the device

cudaMentpy(true_energy_dev, true_energy_host, size, cudaMencpyHost ToDevi ce);
/1 instantiate and perform copy of mixing matrix

/1l execute GPU kernel on the array

cal cul at eOscProb<<<gridsi ze, bl ocksize>>>(...);

/1 copy the results back to the host
cudaMentpy(osc_wei ght _host, osc_wei ght _dev , size, cudaMentpyDevi ceToHost);

2.2 Reaultsand Validation

The Comparison of CPU vs. GPU execution times as a functioruofber of events reweighted
shows the CPU performing better at small number of events, tve GPU performing up to 132
times faster at 1.45 million calculations (figle 2). Thed&sover" point is hardware dependent,
and is expected to change with different CPU/GPU combinafi@nd also different algorithm

implementations. At best, the multi-threaded code gairhg 28 times speed improvement. fig-
ure[3 shows the benchmark with results plotted as a rationgiesicore execution time. As seen
in figures[and]3, the GPU implementation plateaus untildthes a point where all threads are
occupied and the limit of concurrent execution is reachéd [6

g' R 4444444 | ',;

[EEY
o

S Single Core
I — CUDA
— OpenMP

|

H
Q
=

Execution Time (seconds)
H
Q

=
Q
w

[EEY
Q
IS

105é_”'.'"”.”'.”.".”.‘.';'"”.“'.".".”.‘.'f"”i”'.".”.”.'.'.'§"”.‘"i".”.]'.'.'i : ””."'.'”.”.'i'.'.'i”'”".”“.”'."‘.T.".'.'i?

1 10 107 10° 10 10° 10°

Number of Oscillation Weight Calculations

Figure 2: Comparison of execution time for varying numbdrsaidculations between CPU and
GPU implementations. The plateau observed in the CUDA tessildue to the total number of
threads not yet fully occupied. At #a.0* number of calculations, the GPU becomes saturated and
starts to execute in series.

The overheads associated with copying to and from host aridedmemory across the PCI-E
bus can be a large source of latency, and as can be seen infAigine CPU will outperform the
GPU if the number of concurrent calculations is small.

To validate the GPU code, 10 million random energy valueswieawn from a uniform dis-
tribution between 0 and 30 GeV, and were used to calculaitaden weights on CPU and GPU.
The residuals between CPU and GPU calcuations were foureldn the order of 10 for double
precision, and are plotted in figufe 4. The residual is attet to the difference between hardware
implementations of arithmetic operations [7], and in tleisttis considered negligible.

The GPU implementation and original version Rifob3++ were also compared within a
simple toy oscillation fitter written using th@ayesian analysis toolk[B]. The motivation is to
give realistic measure of speed improvement for an apmitcah a physics analysis, as well as
to show that there is negligible difference between both @GR GPU methods when used in a
realistic way. The fit uses a Markov Chain Monte Carlo to sa&ntipé oscillation parameter space,
building a Bayesian posterior density via the Metropolistiteys algorithm, from which credible
intervals can be constructed. The likelihood function el as:

L(3, f|D) =[] p(Dla,) (2.1)
|

Whered are the two parameters of intere@tz and AmZ,, f are the nuisance parameters
612, 913,Am§2 and &p, and p is the probability mass function of a datagkigiven parameters
and f. The toy fit simulates a long baseling disappearance analysis by fitting a fake far-
detector energy spectid, created by sampling from a landau function and weightedgugie
oscillation parameters found in Taljle 1.

The PDF is constructed by taking a large number of samplesh@order of millions) from
the landau distribution and binning these samples into @driam weighted by the oscillation
probability calculated withPr ob3++. An example of oscillated and unoscillated spectra can be
seen in figurd]1.

As the Markov Chain Monte Carlo proposes a new set of osciligtarameters each step, the
PDF is reconstructed using the event-by-event method ibesicabove and compared to the data.
Therefore the calculation of oscillation weights providelsrge overhead to the fit method and is
directly related to the calculation of likelihood.

The 5 oscillation parameters have flat prior distributiond #aus have no likelihood constraint
term, and all parameters are fixed at the values listed irefabkcepB,; andAmé, which are free
to float.

The best fit and error value of the fitter was compared betwded &nd GPU oscillation
reweighting methods. The difference between CPU and GPWmaectras and posterior distribu-
tions using identical oscillation parameters was foundeti@doan acceptable precision, and plotted

L R R B 2 EE e E 2 L B EEE e e E R R L2 S S SR R R RREE T

=
Q

Ratio to Single Core
=
o

107

---= Single Core

O U O

1 10 107 10° 10* 10° 10°

Number of Oscillation Weights Calculated

Figure 3: Execution time plotted as a ratio to the single am@ementation.

S B L S E o E e e SExzooos
i T T T f

Absolute Residual

=

Number of Comparisons

; LRI Ex1022
4020 02040608 1 0 5 10 15 20 25 30

Wepy ™ Wepu Energy (GeV)

-0.8-0.6-0

= [

Figure 4:Left: Residuals between weights calculated on Giygy and GPUwgpy for the same
oscillation parameters and value of energight: The absolute difference between energy spectra
WEightE‘d byW(;pU andWGpu.

T T =)
© 3]
s 003 =
2 2
€ €o
50025 3
o [o
0.0
i 0.5
0.01 :
I -1
0.0 :
[-1.9-
0.009- 2f
O IIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIII -2. -II
0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8
sir’g,, Sirve,,,

Figure 5: Left: 1-dimensional si?(ezg) marginal distribution. Right: Difference between the
1-dimensional marginal distribution of §i(r923) generated on CPU and GPU. The marginal distri-
bution encodes information about the most probable valdefauncertainty of the parameter.

in figure[$. Furthermore, an order of magnitude speed inereas observed for the overall fitting
procedure by off-loading oscillation reweighting to the &GP

The results presented are prepared using an Intel Xeon EhGxtBcore processor running at
2.67 GHz, and an NVIDIA M2070 GPU with 448 CUDA cores runnirtgldl5 GHz. The code
is compiled for 64-bit hardware using the gcc compiler \arst.6.3 with the -O2 optimization
flag, and the CUDA toolkit version 5. OpenMP code is restddi® use 4 threads which ensures
execution on the physical cores of the CPU.

3. Conclusion

The parallel implementation of oscillation reweightingables the improvement of neutrino anal-
yses via the computation of Monte Carlo weights on an evgradent basis, which is a limiting
factor of an analysis if performed soley on a CPU. Eventmnéreweighting retains all the Monte
Carlo spectral shape information that is otherwise lostrwihieaned into an histogram. More im-
portantly, by being able to discriminate events within a glenof Monte Carlo, event migrations
can be modelled, and as statistics of neutrino experimantsases this systematic effect will be-
come more prominent. This has scope in current long-basakuitrino experiments like T2K and
NOvVA, and future ones such as LBNE.
The CUDA implementation dPr ob3++ is available at the following web address:

[http://hep.ph.l1v.ac. uk/~rcalland/ probGU

Acknowledgments

The author would like to thank R. Wendell for providing thégimal Pr ob3++ library, the Liver-
pool High Energy Physics computing staff for their suppant the T2K experiment for access to
official Monte Carlo and oscillation analysis software nfravhich this study was inspired.

References

[1] V. Barger, K. Whisnant, S. Pakvasa, and R. J. N. Phillipsatter effects on three-neutrino
oscillations,”Phys. Rev. Dvol. 22, pp. 2718-2726, 1980.

[2] NVIDIA Corporation,NVIDIA CUDA C Programming Guideluly 2013.
[3] Khronos OpenCL Working Groufd;he OpenCL Specification, version 1.0.2®December 2008.

[4] R. Wendell, “Prob3++ software for computing three flamautrino oscillation probabilities.”
htt p: //ww. phy. duke. edu/ ~r aw22/ publ i ¢/ Prob3++/,2012.

[5] OpenMP Architecture Review Board, “OpenMP applicatpyogram interface version 3.0.”
htt p: // www. opennp. or g/ np- docurnent s/ spec30. pdf , May 2008.

[6] P. Pomorski, “Programming GPUs with CUDA - Day 1 £cture, University of Waterlg@013.

[7]1 N. Whitehead and A. Fit-florea, “Precision & performan&ating point and ieee 754 compliance for
nvidia gpus,” 2011.

[8] A. Caldwell, D. Kollar, and K. Kroninger, “BAT - The Bay&m analysis toolkit,Computer Physics
Communicationsvol. 180, pp. 2197-2209, 2009.

http://hep.ph.liv.ac.uk/~rcalland/probGPU

