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DEX: Self-healing Expanders

Gopal Pandurangan · Peter Robinson · Amitabh Trehan

Abstract We present a fully-distributed self-healing

algorithm dex that maintains a constant degree ex-

pander network in a dynamic setting. To the best of
our knowledge, our algorithm provides the first efficient

distributed construction of expanders — whose expan-

sion properties hold deterministically — that works even

under an all-powerful adaptive adversary that controls

the dynamic changes to the network (the adversary has
unlimited computational power and knowledge of the

entire network state, can decide which nodes join and
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leave and at what time, and knows the past random

choices made by the algorithm). Previous distributed

expander constructions typically provide only probabilis-
tic guarantees on the network expansion which rapidly

degrade in a dynamic setting; in particular, the expan-

sion properties can degrade even more rapidly under

adversarial insertions and deletions.

Our algorithm provides efficient maintenance and

incurs a low overhead per insertion/deletion by an adap-

tive adversary: only O(log n) rounds and O(log n) mes-
sages are needed with high probability (n is the num-

ber of nodes currently in the network). The algorithm

requires only a constant number of topology changes.

Moreover, our algorithm allows for an efficient imple-

mentation and maintenance of a distributed hash table

(DHT) on top of dex with only a constant additional

overhead.

Our results are a step towards implementing efficient

self-healing networks that have guaranteed properties

(constant bounded degree and expansion) despite dy-

namic changes.

1 Introduction

Modern networks (peer-to-peer, mobile, ad-hoc, Internet,

social, etc.) are dynamic and increasingly resemble self-

governed living entities with largely distributed control

and coordination. In such a scenario, the network topol-

ogy governs much of the functionality of the network.

In what topology should such nodes (having limited re-

sources and bandwidth) connect so that the network has

effective communication channels with low latency for

all messages, has constant degree, is robust to a limited

number of failures, and nodes can quickly sample a ran-

dom node in the network (enabling many randomized

protocols)? The well known answer is that they should

connect as a (constant degree) expander (see e.g., [1]).

How should such a topology be constructed in a dis-
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tributed fashion? The problem is especially challenging

in a dynamic network, i.e., a network exhibiting churn

with nodes and edges entering and leaving the system.

Indeed, it is a fundamental problem to scalably build

dynamic topologies that have the desirable properties

of an expander graph (constant degree and expansion,

regardless of the network size) in a distributed manner

such that the expander properties are always maintained

despite continuous network changes. Hence it is of both

theoretical and practical interest to maintain expanders

dynamically in an efficient manner.
Many previous works (e.g., [23,18,10]) have add-

ressed the above problem, especially in the context of

building dynamic P2P (peer-to-peer) networks. How-

ever, all these constructions provide only probabilistic

guarantees of the expansion properties that degrade ra-

pidly over a series of network changes (insertions and/or

deletions of nodes/edges) — in the sense that expan-

sion properties cannot be maintained ad infinitum due

to their probabilistic nature1 which can be a major

drawback in a dynamic setting. In fact, the expansion

properties can degrade even more rapidly under adver-

sarial insertions and deletions (e.g., as in [18]). Hence, in

a dynamic setting, guaranteed expander constructions

are needed. Furthermore, it is important that the net-

work maintains its expander properties (such as high

conductance, robustness to failures, and fault-tolerant

multi-path routing) efficiently even under dynamic net-

work changes. This will be useful in efficiently building

good overlay and P2P network topologies with expan-

sion guarantees that do not degrade with time, unlike

the above approaches.

Self-healing is a responsive approach to fault-
tolerance, in the sense that it responds to an attack

(or component failure) by changing the topology of the

network. This approach works irrespective of the ini-

tial state of the network, and is thus orthogonal and

complementary to traditional non-responsive techniques.
Self-healing assumes the network to be reconfigurable

(e.g. P2P, wireless mesh, and ad-hoc networks), in the

sense that changes to the topology of the network can

be made on the fly. Our goal is to design an efficient

distributed self-healing algorithm that maintains an ex-

pander despite attacks from an adversary.

Our Model: We use the self-healing model which is

similar to the model introduced in [12,29] and is briefly

described here (the detailed model is described in Sec. 2).

We assume an adversary that repeatedly attacks the

1 For example, even if the network is guaranteed to be an
expander with high probability (w.h.p.), i.e. a probability of
1 − 1/nc, for some constant c, in every step (e.g., as in the
protocols of [18] and [23]), the probability of violating the
expansion bound tends to 1 after some polynomial number of
steps.

network. This adversary is adaptive and knows the net-

work topology and our algorithm (and also previous

insertions/deletions and all previous random choices),

and it has the ability to delete arbitrary nodes from the

network or insert a new node in the system which it can

connect to any subset of nodes currently in the system.

We also assume that the adversary can only delete or

insert a single node at a time step. The neighbors of

the deleted or inserted node are aware of the attack

in the same time step and the self-healing algorithm

responds by adding or dropping edges (i.e. connections)
between nodes. The computation of the algorithm pro-

ceeds in synchronous rounds and we assume that the

adversary does not perform any more changes until the

algorithm has finished its response. As typical in self-

healing (see e.g. [12,24,29]), we assume that no other

insertion/deletion takes place during the repair phase 2

(though our algorithm can be potentially extended to

handle such a scenario). The goal is to minimize the

number of distributed rounds taken by the self-healing

algorithm to heal the network.

Our Contributions: In this paper, we present dex,

in our knowledge the first distributed algorithm to effi-

ciently construct and dynamically maintain a constant

degree expander network (under both insertions and

deletions) under an all-powerful adaptive adversary. Un-

like previous constructions (e.g.,[23,18,10,2,15]), the

expansion properties always hold, i.e., the algorithm

guarantees that the dynamic network always has a con-

stant spectral gap (for some fixed absolute constant)

despite continuous network changes, and has constant

degree, and hence is a (sparse) expander. The mainte-

nance overhead of dex is very low. It uses only local
information and small-sized messages, and hence is scal-

able. The following theorem states our main result:

Theorem 1 Consider an adaptive adversary that ob-

serves the entire state of the network including all past

random choices and inserts or removes a single node

in every step. Algorithm dex maintains a constant de-

gree expander network that has a constant spectral gap.

The algorithm takes O(log n) rounds and messages in the
worst case (with high probability3) per insertion/deletion

where n is the current network size. Furthermore, dex

requires only a constant number of topology changes.

Note that the above bounds hold w.h.p. for every

insertion/deletion (i.e., in a worst case sense) and not

2 One way to think about this assumption is that inser-
tion/deletion steps happen somewhat at a slower time scale
compared to the time taken by the self-healing algorithm to
repair; hence this motivates the need to design fast self-healing
algorithms.
3 With high probability (w.h.p.) means with probability

> 1− n−1.
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just in an amortized sense. Our algorithm can be ex-

tended to handle multiple insertions/deletions per step

in (cf. Section 5). We also describe (cf. Sec. 4.4.4) how

to implement a distributed hash table (DHT) on top of

our algorithm dex, which provides insertion and lookup

operations using O(log n) messages and rounds.

Our results answer some open questions raised in

prior work. In [10], the authors ask: Can one design

a fully decentralized construction of dynamic expander

topologies with constant overhead? The expander main-

tenance algorithms of [10] and [18] handle deletions

much less effectively than additions; [10] also raises the

question of handling deletions as effectively as inser-

tions. Our algorithm handles even adversarial deletions

as effectively as insertions.

Technical Contributions: Our approach differs from

previous approaches to expander maintenance (e.g., [18,

23,10]). Our approach simulates a virtual network (cf.

Sec. 3.1) on the actual (real) network. At a high level,

dex works by stepping between instances of the guaran-

teed expander networks (of different sizes as required)

in the virtual graph. It maintains a balanced mapping

(cf. Def. 2) between the two networks with the guar-

antee that the spectral properties and degrees of both

are similar. The virtual network is maintained as a p-

cycle expander (cf. Def. 1). Since the adversary is fully

adaptive with complete knowledge of topology and past
random choices, it is non-trivial to efficiently maintain

both constant degree and constant spectral gap of the

virtual graph. Our maintenance algorithm dex uses ran-

domization to defeat the adversary and exploits various

key algorithmic properties of expanders, in particular,

Chernoff-like concentration bounds for random walks
([9]), fast (almost) uniform sampling, efficient permuta-

tion routing ([28]), and the relationship between edge

expansion and spectral gap as stated by the Cheeger

Inequality (cf. Theorem 2 in App. A). Moreover, we use

certain structural properties of the p-cycle and stagger-

ing of “complex” steps that require more involved recov-

ery operations over multiple “simple” steps to achieve

worst case O(log n) complexity bounds. It is technically

and conceptually much more convenient to work on the

(regular) virtual network and this can be a useful algo-

rithmic paradigm in handling other dynamic problems
as well.

Related Work and Comparison: Expanders are a

very important class of graphs that have applications

in various areas of computer science (e.g., see [14]

for a survey) e.g. in distributed networks, expanders

are used for solving distributed agreement problems

efficiently[16,3]. In distributed dynamic networks (cf.

[3]) it is particularly important that the expansion does

not degrade over time. There are many well known

(centralized) expander construction techniques see e.g.,

[14]) .

As stated earlier, there are a few other works address-

ing the problem of distributed expander construction;

however all of these are randomized and the expan-

sion properties hold with probabilistic guarantees only.

Figure 3 compares our algorithm with some known dis-
tributed expander construction algorithms. [18] give a

construction where an expander is constructed by com-

posing a small number of random Hamiltonian cycles.

The probabilistic guarantees provided degrade rapidly,

especially under adversarial deletions. [10] builds on

the algorithm of [18] and makes use of random walks

to add new peers with only constant overhead. How-

ever, it is not a fully decentralized algorithm. Both

these algorithms handle insertions much better than

deletions. Spanders [8] is a self-stabilizing construction

of an expander network that is a spanner of the graph.

[6] shows a way of constructing random regular graphs

(which are good expanders, w.h.p.) by performing a se-

ries of random ‘flip’ operations on the graph’s edges. [26]

maintains an almost d-regular graph, i.e. with degrees

varying around d, using uniform sampling to select, for

each node, a set of expander-neighbors. The protocol

of [23] gives a distributed algorithm for maintaining

a sparse random graph under a stochastic model of

insertions and deletions. [20] gives a dynamic overlay

construction that is empirically shown to resemble a

random k-regular graph and hence is a good expander.

[11] gives a gossip-based membership protocol for main-

taining an overlay in a dynamic network that under

certain circumstances provides an expander.

In a model similar to ours, [17] maintains a DHT

(Distributed Hash Table) in the setting where an adap-

tive adversary can add/remove O(log n) peers per step.

Another paper which considers node joins/leaves is [15]

which constructs a SKIP+ graph within O(log2 n) rou-

nds starting from any graph whp. Then, they also show

that after an insert/delete operation the system recov-

ers within O(log n) steps (like ours, which also needs

O(log n) steps whp) and with O(log4 n) messages (while

ours takes O(log n) messages whp). SKIP+ assumes the

LOCAL model [25] and thus requires large-sized mes-

sages, unlike DEX, that works in the CONGEST model

(small, i.e., logarithmic-sized, messages). However, the

SKIP+ graph has an advantage that it is self-stabilizing,

i.e., can recover from any initial state (as long as it

is weakly connected). [15] assume (as do we) that the

adversary rests while the network converges to a SKIP+

graph. It was shown in [2] that skip graphs contain

expanders as subgraphs w.h.p., which can be used as

a randomized expander construction. Skip graphs (and

its variant SKIP+ [15]) are probabilistic structures (i.e.,
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their expansion holds only with high probability) and

furtherm ore, they are not of constant degree, their de-

gree grows logarithmic in the network size. The work

of [22] has guaranteed expansion (like ours). However,

as pointed out in [2], its main drawback (unlike ours)

is that their algorithm has a rather large overhead in

maintaining the network.

A variety of self-healing algorithms deal with main-

taining topological invariants on arbitrary graphs [12,

24,29,13,27]. The self-healing algorithm Xheal of [24]

maintains spectral properties of the network (while al-

lowing only a small increase in stretch and degree), but

it relied on a randomized expander construction and

hence the spectral properties degraded rapidly. Using

our algorithm as a subroutine, Xheal can be efficiently

implemented with guaranteed spectral properties.

2 The Self-Healing Model

The model we are using is similar to the models used in

[12,24]. We now describe the details. Let G = G0 be a

small arbitrary graph3 where nodes represent processors

in a distributed network and edges represent the links

between them. Each step t > 1 is triggered by a deletion

or insertion of a single4 node from Gt−1 by the adversary,

yielding an intermediate network graph Ut. The neigh-

bors of the (inserted or deleted) node in the network Ut
react to this change by adding or removing edges in Ut,

yielding Gt — this is called recovery or repair. The dis-

tributed computation during recovery is structured into

synchronous rounds. We assume that the adversary rests

until the recovery is complete, and subsequently triggers
the next step by inserting/deleting a node. During re-

covery, nodes can communicate with their neighbors (i.e.

along the edges) by sending messages of size O(log n),

which are neither lost nor corrupted. We assume that

local computation (within a node) is free, which is a stan-

dard assumption in distributed computing (e.g. [25]).

Our focus is only on the cost of communication (time

and messages).

Initially, a newly inserted node v only knows its

unique id (chosen by the adversary) and does not have

any a priori knowledge of its neighbors or the current

network topology. In particular, this means that a node

u can only add an edge to a node w if it knows the id

of w. If node u knowing the id of w desires to make an

edge with w, it requests the underlying system which

establishes a connection i.e. an edge between u and w.

In case of an insertion, we assume that the newly

added node is initially connected to a constant number

of other nodes. This is merely a simplification; nodes are
not malicious but faithfully follow the algorithm, thus

4 See Section 5 for multiple insertions/deletions per step.

we could explicitly require our algorithm to immediately

drop all but a constant number of edges. The adversary

is fully adaptive and is aware of our algorithm, the

complete state of the current network including all past

random choices. As typically the case (see e.g. [12,24]),

we assume that no other node is deleted or inserted until

the current step has concluded (though our algorithm

can be modified to handle such a scenario).

3 Preliminaries and Overview of Algorithm

DEX

It is instructive to first consider the following natural

(but inefficient) algorithms:

Flooding: First, we consider a naive flooding-based

algorithm that also achieves guaranteed expansion and

node degree bounds, albeit at a much larger cost: When-

ever a node is inserted (or deleted), a neighboring node

floods a notification throughout the entire network and

every node, having complete knowledge of the current

network graph, locally recomputes the new expander

topology. While this achieves a logarithmic runtime

bound, it comes at the cost of using Θ(n) messages in

every step and, in addition, might also result in O(n)

topology changes, whereas our algorithms requires only

polylogarithmic number of messages and constant topol-

ogy changes on average.

Maintaining Global Knowledge: As a second exam-

ple of a straightforward but inefficient solution, consider

the algorithm that maintains a global knowledge at some

node p, which keeps track of the entire network topology.

Thus, every time some node u is inserted or deleted,

the neighbors of u inform p of this change, and p then

proceeds to update the current graph using its global

knowledge. However, when p itself is deleted, we would

need to transfer all of its knowledge to a neighboring

node q, which then takes over p’s role. This, however,

requires at least Ω(n) rounds, since the entire knowl-

edge of the network topology needs to be transmitted

to q.

Our Approach — Algorithm DEX: As mentioned

in Sec. 2, the actual (real) network is represented by a

graph where nodes correspond to processors and edges

to connections. Our algorithm maintains a second graph,

which we call the virtual graph where the vertices do not

directly correspond to the real network but each (virtual)

vertex in this graph is simulated by a (real) node 5 in the

network. The topology of the virtual graph determines

the connections in the actual network. For example,

suppose that node u simulates vertex z1 and node v

simulates vertex z2. If there is an edge (z1, z2) according

5 Henceforth, we reserve the term “vertex” for vertices in a
virtual graph and (real) “node” for vertices in the real network.



DEX: Self-healing Expanders 5

Algorithms Expansion Guarantees Adversary Max Degree Recovery Time Messages Topology Changes

Law-Siu[18]$ Prob> 1− 1/n0 Oblivious O(d) O(logd n) O(d logd n) O(d)
Skip Graphs [2]‡ w.h.p.† Adaptive O(logn) O(log2 n) O(log2 n) O(logn)
SKIP+ [15]! w.h.p.† Adaptive O(logn) O(logn)† O(log4 n) O(log4 n)†

dex (this paper) Deterministic Adaptive O(1) O(logn)† O(logn)† O(1)
† With high probability.
$ n0 is the initial network size. Parameter d = # of Hamiltonian cycles in ’healing’ graph (H).
‡ Costs given under certain assumptions about key length.
! SKIP+ is a self-stabilizing structure and assumes the LOCAL model [25] (i.e., requires large messages); costs here are for

single join/leave operations once a valid Skip+ graph is achieved.

Fig. 1 Comparison of distributed expander constructions.

to the virtual graph, then our algorithm maintains an

edge between u and v in the actual network. In other

words, a real node may be simulating multiple virtual
vertices and maintaining their edges according to the

virtual graph.

Figure 2 on page 5 shows a real network (on the

right) whose nodes (shaded rectangles) simulate the

virtual vertices of the virtual graph (on the left). In

our algorithm, we maintain this virtual graph and show

that preserving certain desired properties (in particular,

constant expansion and degree) in the virtual graph

leads to these properties being preserved in the real
network. Our algorithm achieves this by maintaining

a “balanced load mapping” (cf. Def. 3) between the

virtual vertices and the real nodes as the network size

changes at the will of the adversary. The balanced load

mapping keeps the number of virtual nodes simulated

by any real node to be a constant — this is crucial

in maintaining the constant degree bound. We next

formalize the notions of virtual graphs and balanced

mappings.

3.1 Virtual Graphs and Balanced Mappings
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Fig. 2 A 4-balanced virtual mapping of a p-cycle expander to
the network graph. On the left is a (virtual) 3-regular 23-cycle
expander on Z23; on the right is the network Gt with (real)
nodes {A, . . . , G}.

Consider some graph G and let λG denote the second

largest eigenvalue of the adjacency matrix of G. The

contraction of vertices z1 and z2 produces a graph H

where z1 are z2 merged into a single vertex z that is

adjacent to all vertices to which z1 or z2 were adjacent

in G. We extensively make use of the fact that this op-
eration leaves the spectral gap 1−λG intact, cf. Lem. 10

in App. A.

As mentioned earlier, our virtual graph consists

of virtual vertices simulated by real nodes. Intuitively

speaking, we can think of a real node simulating z1 and

z2 as a vertex contraction of z1 and z2. The above stated

contraction property motivates us to use an expander

family (cf. Def. 4 in App. A) as virtual graphs. We now

define the p-cycle expander family, which we use as vir-

tual graphs in this paper. Essentially, we can think of
a p-cycle as a numbered cycle with some chord-edges

between numbers that are multiplicative inverses of each

other. It was shown in [19] that this yields an infinite

family of 3-regular expander graphs with a constant

eigenvalue gap. Figure 2 shows a 23-cycle.

Definition 1 (p-cycle, cf. [14]) For any prime num-

ber p, we define the following graph Z(p). The vertex

set of Z(p) is the set Zp = {0, . . . , p − 1} and there is

an edge between vertices x and y if and only if one of

the following conditions hold: (1) y = (x + 1) mod p,

(2) y = (x− 1) mod p, or (3) if x, y > 0 and y = x−1.

Moreover, vertex 0 has a self-loop.

At any point in time t, our algorithm maintains a

mapping from the virtual vertices of a p-cycle to the

actual network nodes. We use the notation Zt(p) when

Z(p) is the p-cycle that we are using for our mapping in

step t. (We omit p and simply write Zt if p is irrelevant

or clear from the context.) At any time t, each real node

simulates at least one virtual vertex (i.e. a vertex in the

p-cycle) and all its incident edges as required by Def. 1,

i.e., the real network can be considered a contraction of

the virtual graph; see Figure 2 on page 5 for an example.

Formally, this defines a function that we call a virtual

mapping:

Definition 2 (Virtual mapping) For step t > 1, con-

sider a surjective map Φt : V (Zt)→ V (Gt) that maps

every virtual vertex of the virtual graph Zt to some
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(real) node of the network graph Gt. Suppose that

there is an edge (Φt(z1), Φt(z2)) ∈ E(Gt) for every edge

(z1, z2) ∈ E(Zt), and these are the only edges in Zt .

Then we call Φt a virtual mapping. Moreover, we say that

node u ∈ V (Gt) is a real node that simulates virtual

vertices z1, · · · , zk, if u = Φt(z1) = · · · = Φt(zk).

In the standard metric spaces on Zt and Gt induced by

the shortest-path metric Φ is a surjective metric map

since distances do not increase:

Fact 1 Let distH(u, v) denote the length of the shortest

path between u and v in graph H. Any virtual mapping

Φt guarantees that distZt(z1, z2) > distGt(Φ(z1), Φ(z2)),

for all z1, z2 ∈ Zt.

We simply write Φ instead of Φt when t is irrelevant.

We consider the vertices of Zt to be partitioned into

disjoint sets of vertices that we call clouds and denote

the cloud to which a vertex z belongs as cloud(z).

Whereas initially we can think of a cloud as the set of

virtual vertices simulated at some node in Gt, this is not

true in general due to load balancing issues, as we discuss
in Section 4. We are only interested in virtual mappings

where the maximum cloud size is bounded by some

universal constant ζ, which is crucial for maintaining a

constant node degree. For our p-cycle construction, it

holds that ζ 6 8.

We now formalize the intuition that the expansion

of the virtual p-cycle carries over to the network, i.e.,

the second largest eigenvalue λGt of the real network is

bounded by λZt of the virtual graph. Recall that we can

obtain Gt from Zt by contracting vertices. That is, we
contract vertices z1 and z2 if Φ(z1) = Φ(z2). According

to Lemma 10 (in the appendix), these operations do not

increase λGt and thus we have shown the following:

Lemma 1 Let Φt : Zt → Gt be a virtual mapping.

Then it holds that λGt 6 λZt .

Next we formalize the notion that our real nodes

simulate at most a constant number of nodes. Let

Simt(u) = Φ−1t (u) and define the load of a node u in

graph Gt as the number of vertices simulated at u, i.e.,

Loadt(u) = |Simt(u)|. Note that due to locality, node u

does not necessarily know the mapping of other nodes.

Definition 3 (Balanced mapping) Consider a step t.

If there exists a constant C s.t. ∀u ∈ Gt : Loadt(u) 6 C,

then we say that Φt is a C-balanced virtual mapping and

say that Gt is C-balanced.

Figure 2 on page 5 shows a balanced virtual mapping.

At any step t, the degree of a node u ∈ Gt is exactly

3 · Loadt(u) since we are using the 3-regular p-cycle as

a virtual graph. Thus our algorithm strives to maintain

a constant bound on Loadt(u), for all t. Given a virtual

mapping Φt, we define the (not necessarily disjoint) sets

Lowt = {u ∈ Gt : Loadt(u) 6 2ζ}; (1)

Sparet = {u ∈ Gt : Loadt(u) > 2}. (2)

Intuitively speaking, Lowt contains nodes that do not

simulate too many virtual vertices, i.e., have relatively

low degree, whereas Sparet is the set of nodes that

simulate at least 2 vertices each. When the adversary

deletes some node u, we need to find a node in Lowt that

takes over the load of u. Upon a node v being inserted,

on the other hand, we need to find a node in Sparet
that can spare a virtual vertex for v, while maintaining

the surjective property of the virtual mapping.

4 Expander Maintenance Algorithm

We describe our maintenance algorithm dex and prove

the performance claims of Theorem 1. We start with a

small initial network G0 of some appropriate constant

and assume there is a virtual mapping from a p-cycle

Z0(p0) where p0 is the smallest prime number in the

range (4n0, 8n0). The existence of p0 is guaranteed by
Bertrand’s postulate [4]. (Since G0 is of constant size,

nodes can compute the current network size n0 and

Z0(p0) in a constant number of rounds in a centralized

manner. For example, nodes can broadcast their infor-

mation to each other in the constant sized graph. Each

node now has a picture of the complete constant sized

graph and can compute the required information.) Start-

ing out from this initial expander, we seek to guarantee

expansion ad infinitum, for any number of adversarial

insertions and deletions.

As suggested earlier, we always maintain the invari-

ant that each real node simulates at least one (i.e. the

virtual mapping is surjective) and at most a constant

number of virtual p-cycle vertices. The adversary can

either insert or delete a node in every step. In either
case, our algorithm reacts by doing an appropriate re-

distribution of the virtual vertices to the real nodes

with the goal of maintaining a C-balanced mapping (cf.

Definition 3).

Depending on the operations employed by the algo-

rithm, we classify the response of the algorithm for a

given step t as being either a type-1 recovery or a type-2

recovery and call t a type-1 recovery step (resp. type-2

recovery step). At a high level, a type-1 recovery is a

simple redistribution of the virtual vertices with the

virtual graph remaining the same. Type-1 recovery is

very efficient, as (w.h.p.) it suffices to execute a single

random walk of O(log n) length.

However, a type-2 recovery is significantly more com-

plex than type-1 and requires replacement of the entire
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virtual graph by another virtual graph and subsequent

redistribution i.e. moving from a p-cycle of a prime num-

ber p to another p-cycle for a higher p (we call this

inflation)or lower p (we call this deflation). It is some-

what more complicated to show a worst case O(log n)

performance for type-2 recovery: Here, the current vir-

tual graph is either inflated or deflated to ensure a

C-balanced mapping (i.e. bounded degrees). For the

sake of exposition, we first present a simpler way to han-

dle inflation and deflation, which yields amortized com-

plexity bounds. We then describe a more complicated
algorithm for type-2 recovery that yields the claimed

worst case complexity bounds of O(log n) rounds and

messages, and O(1) topology changes per step with high

probability.

The first (simplified) approach (cf. Sec. 4.2) replaces

the entire virtual graph by a new virtual graph of appro-

priate size in a single step. This requires O(n) topology

changes and O(n log2 n) message complexity, because

all nodes complete the inflation/deflation in one step.

Since there are at least Ω(n) steps with type-1 recovery

between any two steps where inflation or deflation is nec-

essary, we can nevertheless amortize their cost and get

the amortized performance bounds of O(log n) rounds

and O(log2 n) messages (cf. Cor. 1). We then present

an improved (but significantly more complex) way of

handling inflation (resp. deflation), by staggering these

inflation/deflation operations across the recovery of the

next Θ(n) following steps while retaining constant ex-

pansion and node degrees. This yields a O(log n) worst

case bounds for both messages and rounds for all steps

as claimed by Theorem 1. In terms of expansion, the

(amortized) inflation/deflation approach yields a spec-

tral gap no smaller than of the p-cycle, the improved

worst case bounds of the 2nd approach come at the

price of a slightly reduced, but still constant, spectral

gap. Algorithm 4.1 presents a high-level pseudo code

description of our approach.

4.1 Type-1 Recovery

When a node u is inserted, a neighboring node v initiates

a random walk of length at most Θ(log n) to find a

“spare” virtual vertex, i.e., a virtual vertex z that is

simulated by a node w ∈ SpareGt−1 (see Algorithm 4.2

for the detailed pseudo code). Assigning this virtual

vertex z to the new node u, ensures a surjective mapping

of virtual vertices to real nodes at the end of the step.

When a node u is deleted, on the other hand, the no-

tified neighboring node v also initiates random walks, ex-

cept this time with the aim of redistributing the deleted

node u’s virtual vertices to the remaining real nodes in

the system(cf. Algorithm 4.3). We assume that every

node v has knowledge of LoadGt−1
(w), for each of its

neighbors u. (This can be implemented with constant

overhead, by simply updating neighboring nodes when

the respective LoadGt−1
changes.) Since the deleted

node u might have simulated multiple vertices, node v

initiates a random walk for each z ∈ LoadGt−1(u), to

find a node w ∈ LowGt−1
to take over virtual vertex z.

In a nutshell, type-1 recovery consists of (re)balancing

the load of virtual vertices to real nodes by performing

random walks. Rebalancing the load of a deleted node

succeeds with high probability, as long as at least θn

nodes are in LowGt−1 , where the rebuilding parameter
θ is a fixed constant. For our analysis, we require that

θ 6 1/(68ζ + 1), (3)

where ζ 6 8 is the maximum (constant) cloud size

given by the p-cycle construction. Analogously, for in-

sertion steps, finding a spare vertex will succeed w.h.p.

if SpareGt−1 has size > θn. If the size is below θn, we

handle the insertion (resp. deletion) by performing an

inflation (resp. deflation) as explained below. Thus we

formally define a step t to be a type-1 step, if either

(1) a node is inserted in t and |SpareGt−1 | > θn or

(2) a node is deleted in t and |LowGt−1
| > θn.

If a random walk fails to find an appropriate node,

we do not directly start an inflation resp. deflation, but

first deterministically count the network size and sizes of

SpareGt−1
and LowGt−1

by simple aggregate flooding

(cf. Procedures computeLow and computeSpare). We re-

peat the random walks, if it turns out that the respective

set indeed comprises > θn nodes. As we will see below,

this allows us to deterministically guarantee constant

node degrees. The following lemma shows an O(log n)

bound for messages and rounds used by random walks

in type-1 recovery:

Lemma 2 Consider a step t and suppose that Φt−1 is a

4ζ-balanced virtual map. There exists a constant ` such

that the following hold w.h.p:

(a) If |SpareGt−1 | > θn and a new node u is attached

to some node v, then the random walk initiated by v

reaches a node in SpareGt−1
in ` log n rounds.

(b) If |LowGt−1 | > θn and some node u is deleted,

then, for each of the (at most 4ζ ∈ O(1)) vertices

simulated at u, the initiated random walk reaches a
node in SpareGt−1

in ` log n rounds.

That is, w.h.p. type-1 recovery succeeds in O(log n) mes-

sages and rounds, and a constant number of edges are

changed.

Proof We will first consider the case where a node is

deleted (Case (b)). The main idea of the proof is to

instantiate a concentration bound for random walks

on expander graphs [9]. By assumption, the mapping

of virtual vertices to real nodes is 4ζ-balanced before
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Case 1: Adversary inserts a node u:

Try to find a spare vertex for u via a random walk (type-1 recovery).

if type-1 recovery fails then

if most nodes simulate only 1 vertex then

Perform type-2 recovery by inflating.

else

Retry type-1 recovery until it succeeds.

Case 2: Adversary deletes a node u:

Try distributing vertices that were simulated at u via random walks (type-1 recovery).

if type-1 recovery fails then

if most nodes simulate many vertices then

Perform type-2 recovery by deflating.

else

Retry type-1 recovery until it succeeds.

Algorithm 4.1: High-level overview of our algorithm

the deletion occurs. Thus we only need to redistribute

a constant number of virtual vertices when a node is

deleted.

We now present the detailed argument. By assump-

tion we have that |Low| = an > θn, for a constant

0 < a < 1. We start a random walk of length ` log n for

some appropriately chosen constant ` (determined be-

low). We need to show that (w.h.p.) the walk hits a node

in Low. According to the description of type-1 recovery

for handling deletions, we perform the random walk on

the graph G′t, which modifies Gt−1 \{u}, by transferring

all virtual vertices (and edges) of the deleted node u

to the neighbor v. Thus, for the second largest eigen-

value λ = λG′t , we know by Lemma 1 that λ 6 λGt−1 .

Consider the normalized n× n adjacency matrix M of

G′t. It is well known (e.g., Theorem 7.13 in [21]) that

a vector π corresponding to the stationary distribution

of a random walk on Gt−1 has entries π(x) = dx
2|E(G′t)|

where dx is the degree of node x. By assumption, the

network Gt−1 is the image of a 4ζ-balanced virtual map.

This means that the maximum degree ∆ of any node

in the network is ∆ 6 12ζ, and since the p-cycle is a

3-regular expander, every node has degree at least 3. If

the adversary deletes some node in step t, the maximum

degree of one of its neighbors can increase by at most

∆. Therefore, the maximum degree in Ut and thus G′t
is bounded by 2∆, which gives us the bound

π(x) > 3/(2∆n), (4)

for any node x ∈ G′t. Let ρ be the actual number of

nodes in Low that the random walk of length ` log n

hits. We define q to be an n-dimensional vector that is

0 everywhere except at the index of u in M where it is

1. Let E be the event that ` log n · π(Low)− ρ > γ, for

a fixed γ > 0. That is, E occurs if the number of nodes

in Low visited by the random walk is far away (> γ)

from its expectation.

In the remainder of the proof, we show that E occurs

with very small probability. Applying the concentration

bound of [9] yields that

Pr [E ] 6

(
1 +

γ(1− λ)

10` log n

)
·
∣∣∣∣∣∣∣∣ q√

π

∣∣∣∣∣∣∣∣
2

· e
−γ2(1−λ)
20` logn , (5)

where q/
√
π is a vector with entries (q/

√
π)(x) =

q(x)/
√
π(x), for 1 6 x 6 n. By (4), we know that

π(Low) > 3a/2∆. To guarantee that we find a node

in Low w.h.p. even when π(Low) is small, we must

set γ = 3a`
2∆ log n. Moreover, (4) also gives us the bound

||q/
√
π||2 6

√
2∆/3

√
n. We define

C =

(
1 +

3a

20∆

)√
2∆/3.

Plugging these bounds into (5), shows that

Pr [E ] 6 C
√
ne

(
− (3a`/2∆)2(1−λ) logn

20`

)

= Cn

(
1
2−

9a2`(1−λ)
80∆2

)
.

To ensure that event E happens with small probability,

it is sufficient if the exponent of n is smaller than −C,

which is true for sufficiently large `. Since θ, ∆, and the

spectral gap 1 − λ are all O(1), it follows that ` is a

constant too and thus the running time of one random

walk is O(log n) with high probability. Recall that node

v needs to perform a random walk for each of the virtual

vertices that were previously simulated by the deleted

node u; there are at most 4ζ ∈ O(1) such vertices, since

we assumed that Φt−1 is 4ζ balanced. Therefore, all

random walks take O(log n) rounds in total (w.h.p.).
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Now consider Case (a), i.e., the adversary inserted

a new node u and attached it to some existing node v.

By assumption, |Spare| = an > θn, and the random

walk is executed on the graph Gt−1 (excluding newly

inserted node u). Thus (4) and the remaining analysis

hold analogously to Case (b), which shows that the walk

reaches a node in Spare in O(log n) rounds (w.h.p.).

Note that we only transfer a constant number of

virtual vertices to a new nodes in type-1 recovery steps,

i.e., the number of topology changes is constant.

The following lemma summarizes the properties that

hold after performing a type-1 recovery:

Lemma 3 (Worst Case Bounds Type-1 Rec.) If

type-1 recovery is performed in t and Gt−1 is 4ζ-balanced,

it holds that

(a) Gt is 4ζ-balanced,

(b) step t takes O(log n) (w.h.p.), rounds,

(c) nodes send O(log n) messages in step t (w.h.p.), and

(d) the number of topology changes in t is constant.

Proof For (a), we first argue that the mapping Φt
is surjective: This follows readily from the above de-

scription of type-1 recovery (see insertion(u, θ) and

deletion(u, θ) for the full pseudo code): In the case of

a newly inserted node, the algorithm repeatedly per-

forms a random walk until it finds a node in Spare

since |Spare| > θn. If some node u is deleted, then a

neighbor initiates random walks to find a new host for

each of u’s virtual vertices, until it succeeds. Thus, at

the end of step t, every node simulates at least 1 virtual

vertex. To see that no node simulates more than 4ζ ver-

tices, observe that the load of a node can only increase

due to a deletion. As we argued above, however, the

neighbor v that temporarily took over the virtual ver-

tices of the deleted node u, will attempt to spread these

vertices to nodes that are in Low and is guaranteed to
eventually find such nodes by repeatedely performing

random walks.

Properties (b), (c), and (d) follow from Lemma 2.

4.2 Type-2 Recovery: Inflating and Deflating

We now describe an implementation of type-2 recovery

that yields amortized polylogarithmic bounds on mes-

sages and time. We later extend these ideas (cf. Sec. 4.4)

to give O(log n) worst case bounds. Recall that we per-

form type-1 recovery in step t, as long as at least θn

nodes are in SpareGt−1
when a node is inserted, resp.

in LowGt−1
, upon a deletion.

Fact 2 If the algorithm performs type-2 recovery in t,

the following holds:

(a) If a node is inserted in t, then |SpareGt−1 | < θn.

(b) If a node is deleted in t, then |LowGt−1
| < θn.

4.2.1 Inflating the Virtual Graph

If node v fails to find a spare node for a newly inserted

neighbor and computes that |SpareGt−1
| < θn, i.e.,

only few nodes simulate multiple virtual vertices each, it

invokes Procedure simplifiedInfl (cf. Algorithm 4.5

for the detailed pseudo code), which consists of two

phases:

Phase 1: Constructing a Larger p-Cycle Node v initiates

replacing the current p-cycle Zt−1(pi) with the larger p-

cycle Zt(pi+1), for some prime number pi+1 ∈ (4pi, 8pi).

This rebuilding request is forwarded throughout the

entire network to ensure that after this step, every node

uses the exact same new p-cycle Zt. Intuitively speaking,

each virtual vertex of Zt−1 is replaced by a cloud of

(at most ζ 6 8) virtual vertices of Zt and all edges are

updated such that Gt is a virtual mapping of Zt.
For simplicity, we use x to denote both: an integer

x ∈ Zp and also the associated vertex in V (Zt(p)).
At the beginning of step t, all nodes are in agree-

ment on the current virtual graph Zt−1(pi), in par-
ticular, every node knows the prime number pi. To get

a larger p-cycle, all nodes deterministically compute

the (same) smallest prime number pi+1 ∈ (4pi, 8pi), i.e.,

V (Zt(pi+1)) = Zpi+1
. (Local computation happens in-

stantaneously and does not incur any cost (cf. Sec. 2).)

Bertrand’s postulate [4] states that for every n > 1,

there is a prime between n and 2n, which ensures that

pi+1 exists. Every node u needs to determine the new

set of vertices in Zt(pi+1) that it is going to simulate:

Let α = pi+1

pi
∈ O(1). For every currently simulated

vertex x ∈ SimGt−1
(u), node u computes the constant

c(x) = bα(x+ 1)c − bαxc − 1, (6)

and replaces x with the new virtual vertices y0, . . . , yc(x)
where

yj = (bαxc+ j) mod pi+1, for 0 6 j 6 c(x). (7)

Note that the vertices y0, . . . , yc(x) form a cloud (cf.

Sec. 3.1) where the maximum cloud size is ζ 6 8. This

ensures that the new virtual vertex set is a bijective

mapping of Zpi+1
.

Next, we describe how we find the edges of Zt(pi+1):

First, we add new cycle edges (i.e. edges between x and

x+ 1 mod pi+1), which can be done in constant time

by using the cycle edges of the previous virtual graph

Zt−1(pi). For every x that u simulates, we need to add

an edge to the node that simulates vertex x−1. Since

this needs to be done by the respective simulating node

of every virtual vertex, this corresponds to solving a

permutation routing instance. Corollary 7.7.3 of [28]

(cf. Corollary 3) states that, for any bounded degree
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Assumption: the adversary attaches inserted node u to arbitrary node v

// Try to perform a type-1 recovery:

1: Node v initiates a random walk of length ` log n by generating a token τ and sending it to a neighbor u′ chosen

uniformly at random, but excluding u. Node u′ in turn forwards τ by chosing a neighbor at random and so

forth. Note that the newly inserted node u is excluded from being reached by the random walk. The walk

terminates upon reaching a node w ∈ Spare (cf. Equation (2)).

2: if found node w ∈ Spare then

3: Transfer a virtual vertex and all its edges (according to the virtual graph) from w to u. Remove edge between

u and v unless required by Zt.

4: else // the walk did not hit a node in Spare; perform type-2 recovery if necessary:

5: Determine current network size n and |Spare| via computeSpare (cf. Algorithm 4.4).

6: if |Spare| < θn then // Perform type-2 recovery:

7: Invoke simplifiedInfl (cf. Algorithm 4.5).

8: else // Sufficiently many nodes with spare virtual vertices are present but the walk did not find them.

Happens with probability 6 1/n.

9: Repeat from Line 1.

Algorithm 4.2: insertion(u, θ)

Assumption: adversary deletes an arbitrary node u which simulated k virtual vertices. (We prove that

k ∈ O(1)).

1: A (former) neighbor v of node u attaches all edges of u to itself.

// Try to perform a type-1 recovery:

2: for each of the k vertices do

3: Node v initiates a random walk of length ` log n by generating a token τ and sending it to a uniformly at

random chosen neighbor u′. Node u′ in turn forwards τ by chosing a neighbor at random and so forth. The

walk terminates upon reaching a node w ∈ Low (cf. Equation (1)).

4: if all random walks found nodes w1, . . . , wk ∈ Low: then

5: Distribute the virtual vertices of u and their respective edges (according to the virtual graph) from v to

w1, . . . , wk.

6: else // Some of the random walks did not find a node in Low; perform type-2 recovery if necessary:

7: Determine network size n and |Low| via computeLow (cf. Algorithm 4.4).

8: if |Low| < θn then // Perform type-2 recovery:

9: Invoke simplifiedDefl (cf. Algorithm 4.6).

10: else // Sufficiently many nodes with low load are present but the walk(s) did not find them. This happens

with probability 6 1/n:

11: Repeat from Line 3.

Algorithm 4.3: Procedure deletion(u, θ)

expander with n nodes, n packets, one per node, can be

routed (even online) according to an arbitrary permuta-

tion in O( logn(log logn)2

log log logn ) rounds w.h.p. Note that every

node in the network knows the exact topology of the

current virtual graph (but not necessarily of the network
graph Gt), and can hence calculate all routing paths in

this graph, which map to paths in the actual network

(cf. Fact 1). Since every node simulates a constant num-

ber of vertices, we can find the route to the respective

inverse by solving a constant number of permutation

routing instances. The following lemma follows from the

previous discussion:

Lemma 4 Consider a t > 1 where some node performs

type-2 recovery via simplifiedInfl. If the network

graph Gt−1 is a C-balanced image of Zt−1(pi), then

Phase 1 of simplifiedInfl ensures that every node

computes the same virtual graph in O(log n(log log n)2)

rounds such that the following hold:
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Given: diam is the diameter of Zt (i.e. diam ∈ O(log n)).

1: Node u broadcasts an aggregation request to all its neighbors. In addition to the network size, this request

indicates whether to compute |Low| or |Spare|. That is, the request of u traverses the network in a BFS-like

manner and then returns the aggregated values to u.

2: If a node w receives this request from some neighbor, it computes the aggregated maximum value, according to

whether w ∈ Spare for computeSpare (resp. w ∈ Low for computeLow).

3: If node w has received the request for the first time, w forwards it to all neighbors (except v).

4: Once the entire network has been explored this way, i.e., the request has been forwarded for diam rounds, the

aggregated maximum values of the network size and |Low| (resp. |Spare|) are sent back to u, which receives

them after 6 2diam rounds.

Algorithm 4.4: Procedures computeSpare and computeLow.

(a) pi+1 = |Zt(pi+1)| ∈ (4pi, 8pi), the network graph

is (Cζ)-balanced, and the maximum clouds size is

ζ 6 8.

(b) There is a bijective map between Zpi+1
and

V (Zt(pi+1)).

(c) The edges of Zt(pi+1) adhere to Definition 1.

Proof Property (a) follows from the previous discussion.
For Property (b), we first show set equivalence. Consider

any z ∈ Zpi+1 and assume in contradiction that z /∈
V (Zt(pi+1)). Let α = pi+1/pi and let x be the greatest

integer such that z = bαxc+ k, for some integer k > 0.

If k > α, then

z = bαx+ kc > bαx+ αc = bα(x+ 1)c,

which contradicts the maximality of x, therefore, we have

that k < α. It cannot be that x < pi, since otherwise

z ∈ V (Z(pi+1)) according to (7), which shows that

x > pi. This means that

z = bαxc+ k > bαpic+ k = bpi+1c+ k > pi+1,

which contradicts z ∈ Zpi+1 , thus we have shown

Zpi+1 ⊆ V (Zt(pi+1)). The opposite relation, i.e.

V (Zt(pi+1)) ⊆ Zpi+1
, is immediate since the values as-

sociated to vertices of Zt(pi+1) are computed modulo

pi+1.

To complete the proof of (b), we need to show that

no two distinct vertices in V (Zt(pi+1)) correspond to

the same value in Zpi+1
, i.e., V (Zt(pi+1)) is not a multi-

set. Suppose, for the sake of a contradiction, that there

are y = (bαxc + k) mod pi+1 and y′ = (bαx′c + k′)

mod pi+1 with y = y′. By (7), we know that k′ 6 c(x),

hence to bound k′ it is sufficient to show that c(x) < α:

By (6), we have that

c(x) = bαx+ α− (bαxc+ 1)c < bαx+ α− αxc 6 α.

Note that the same argument shows that k 6 α. Thus

it cannot be that y′ = bαxc + k + mpi+1, for some

integer m > 1. This means that x 6= x′; wlog assume

that x > x′. As we have shown above, k′ 6 c(x) < α,

which implies that

y′ = bαx′c+ k′ < bα(x′ + 1)c 6 bαxc 6 y,

yielding a contradiction to y = y′.

For property (c), observe that all new cycle edges

(i.e., of the form (x, x ± 1)) of Zt(pi+1) are between

nodes that were already simulating neighboring vertices

of Zt−1(pi), thus every node u can add these edges in

constant time. Finally, we argue that every node can

efficiently find the inverse vertex for its newly simu-

lated vertices: Corollary 7.7.3 of [28] states that for any

bounded degree expander with n nodes, n packets, one
per processor, can be routed (online) according to an

arbitrary permutation in T = O( logn(log logn)2

log log logn ) rounds

w.h.p. Note that every node in the network knows the

exact topology of the current virtual graph (nodes do

not necessarily know the network graph Gt!), and can
hence calculate all routing paths, which map to paths

in the actual network (cf. Fact 1). Since every node

simulates a constant number of vertices, we can find the

route to the respective inverse by performing a constant

number of iterations of permutation routing, each of

which takes T rounds.

Phase 2: Rebalancing the Load Once the new virtual

graph Zt(pi+1) is in place, each real node simulates a

greater number (by a factor of at most ζ) of virtual

vertices and now a random walk is guaranteed to find

a spare virtual vertex on the first attempt with high

probability, according to Lemma 2.(a). At the beginning

of the step, the virtual mapping Φt−1 was 4ζ-balanced.

This, however, is not necessarily the case after Phase 1,

i.e., replacing Zt−1 by Zt. A node could have been

simulating 4ζ virtual vertices before simplifiedInfl

was invoked and now might be simulating 4ζ2 vertices

of Zt(pi+1). In fact, this can be the case for a θ-fraction

of the nodes. To ensure a 4ζ-balanced mapping at the

end of step t, we thus need to rebalance these additional

vertices among the other (real) nodes. Note that this
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Given: current network size n (as computed by computeSpare). All virtual vertices and all nodes are unmarked.

Phase 1. Compute larger p-cycle:

1: Inserted node u forwards an inflation request through the entire network.

2: Initiating node u floods a request to all other nodes to run this process simultaneously; takes O(log n) time.

3: Since every node u knows the same virtual graph Zt−1(pi), all nodes locally compute the same prime pi+1 ∈
(4pi, 8pi) and therefore the same virtual expander Zt(pi+1) with vertex set Zpi+1

.

4: (Compute the new set of locally simulated virtual vertices.)

Let α = pi+1

pi
and define the function

c(x) = bα(x+ 1)c − bαxc − 1. (8)

Replace every x ∈ Sim(u) (i.e. x ∈ Zt−1(pi)) with a cloud of virtual vertices y0, . . . , yc(x) where yk = (bαxc+ k)

mod pi+1, for 0 6 k 6 c(x). That is, cloud(y0) = · · · = cloud(yc(x)) = {y0, . . . , yc(x)}.
5: for every x ∈ Sim(u) and every yk, (0 6 k 6 c(x)) do

(Compute the new set of edges.)

Cycle edges: Add an edge between u and the nodes v and v′ that simulate yk − 1 and yk + 1 by using the

cycle edges of Zt−1(pi) in Gt.

Inverse edges: Add an edge between u and the node v that simulates y−1k ; node v is found by solving a

permutation routing instance.

6: After the construction of Zt(pi+1) is complete, we transfer a (newly generated) virtual vertex to the inserted

node u from its neighbor v.

Phase 2. Perform load balancing:

7: if a node w has Load(w) > 2ζ (i.e. w /∈ Low) then

8: Node w marks all vertices in Sim(w) as full.

9: if a node v has load k′ > 4ζ vertices then

(Distribute all except 4ζ vertices to other nodes.)

10: for each of the k′ − 4ζ vertices do

11: Node v marks itself as contending.

12: while v is contending do

13: Every contending node v performs a random walk of length T = Θ(log n) on the virtual graph Zt(pi+1)

by forwarding a token τv. This walk is simulated on the actual network Ut (with constant overhead). To

account for congestion, we give this walk ρ = O(log2 n) rounds to complete; once a token has taken T

steps it remains at its current vertex.

14: If, after ρ rounds, τv has reached a virtual vertex z (simulated at some node w), no other token is

currently at z, and z is not marked as full, then v marks itself as non-contending and transfers a virtual

vertex to w. Moreover, if the new load of w is > 2ζ, we mark all vertices at w as full.

Algorithm 4.5: Procedure simplifiedInfl. This is a simplified inflation procedure yielding amortized bounds.

Note that Procedure inflate provides the same functionality using O(log n) rounds and messages whp even in the

worst case.

is always possible, since (1 − θ)n nodes had a load of

1 before invoking simplifiedInfl and simulate only ζ

virtual vertices each at the end of Phase 1. A node v

that has a load of k′ > 4ζ vertices of Zt(pi+1), proceeds

as follows, for each vertex z of the (at most constant)

vertices that it needs to redistribute: Node v marks all

of its vertices as full and initiates a random walk of

length Θ(log n) on the virtual graph Zt(pi+1), which is
simulated on the actual network. If the walk ends at a

vertex z′ simulated at some node w that is not marked

as full, and no other random walk simultaneously ended

up at z′, then v transfers z to w. This ensures that z

is now simulated at a node that had a load of < 4ζ. A

node w immediately marks all of its vertices as full, once

its load reaches 2ζ. Node v repeatedly performs random

walks until all of the k′ − 4ζ vertices are transfered to

other nodes.

Lemma 5 (Simplified Type-2 recovery) Suppose

that Gt−1 is 4ζ-balanced and type-2 recovery is per-

formed in t via simplifiedInfl or simplifiedDefl.

The following holds:

(a) Gt is 4ζ-balanced.
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(b) With high probability, step t completes in O(log3 n).

(c) With high probability, nodes send O(n log2 n) mes-

sages.

(d) The number of topology changes is O(n).

Proof Here we will show the result for simplifiedInfl.

In Sec. 4.2.2, we will argue the same properties for

simplifiedDefl (described below).

Property (d) follows readily from the descrip-

tion of Phase 1. For (a), observe that, in Phase 1,

simplifiedInfl replaces each virtual vertex with a

cloud of virtual vertices. Moreover, nodes only redis-

tribute vertices such that their load does not exceed 4ζ.

It follows that every node simulates at least one vertex,

thus Φt is surjective. What remains to be shown is that

every node has a load 6 4ζ at the end of t.
Consider any node u that has Load(v) ∈ (2ζ, 4ζ)

after Phase 1. To see that u’s load does not exceed

4ζ, recall that, according the description of Phase 2,

u will mark all its vertices as full and henceforth will
not accept any new vertices. By Fact 2.(a), at most

θn nodes have a load > 1 in Ut. Let Balls0 be the set

of vertices that need to be redistributed. Lemma 4.(a)

tells us that the every vertex in Zt−1(pi) is replaced by

(at most) ζ new vertices in Zt(pi+1), which means that

|Balls0| 6 4θ(ζ2 − ζ)n, since every such high-load node

continues to simulate 4ζ vertices by itself.

To ensure that this redistribution can be done in

polylogarithmic time, we need to lower bound the to-

tal number of available places (i.e. the bins) for these

virtual vertices (i.e. the balls). By Fact 2.(a), we know

that > (1 − θ)n nodes have a load of at most ζ after

Phase 1. These nodes do not mark their vertices as full,

and thus accept to simulate additional vertices until

their respective load reaches 2ζ. Let Bins be the set

of virtual vertices that are not marked as full ; It holds

that |Bins| > (1− θ)ζn.
We first show that with high probability, a constant

fraction of random walks end up at vertices in |Bins|.
Since Zt(pi+1) is a regular expander, the distribution of

the random walk converges to the uniform distribution

(e.g., [21]) within O(log σ) random steps where σ =

|Zi+1| ∈ Θ(n). More specifically, the distance (measured

in the maximum norm) to the uniform distribution,

represented by a vector (1/σ, . . . , 1/σ), can be bounded

by 1
100σ . Therefore, the probability for a random walk

token to end up at a specific vertex is within [ 99
100σ ,

101
100σ ].

Recall that, after Phase 1 all nodes have computed the

same graph Zt(pi+1) and thus use the same value σ.

We divide the random walks into epochs where an

epoch is the smallest interval of rounds containing c log n

random walks. We denote the number of vertices that

still need to be redistributed at the beginning of epoch

i as Ballsi.

Claim Consider a fixed constant c. If |Ballsi| > c log n,

then epoch i takes O(log2 n) rounds, w.h.p. Otherwise,

if |Ballsj | < c log n, then j comprises O(log3 n) rounds

w.h.p.

Proof We will now show that an epoch lasts at most

O(log3 n) rounds with high probability. First, suppose

that |Ballsi| > c log n. By Lemma 11, we know that

even a linear number of parallel walks (each of length

Θ(log n)) will complete within O(log2 n) rounds w.h.p.

Therefore, epoch i consists of O(log2 n) rounds, since

Ω(log n) random walks are performed in parallel. In the

case where |Ballsj | < c log n, it is possible that an epoch

consists of random walks that are mostly performed

sequentially by the same nodes. Thus we add a log n

factor to ensure that epoch j consists of c log n walks.

By Lemma 11 we get a bound of O(log3 n) rounds.

Next, we will argue that after O(log n) epochs, we have

|Ballsj | < c log n. Thus consider any epoch i where

|Ballsi| > c log n. We bound the probability of the

indicator random variable Yk that is 1 iff the walk as-

sociated with the k-th vertex ends up at a vertex that

was already marked full when the walk was initiated.

(In particular, Yk = 0 if the k-th walk ends up at z

and z became full in the current iteration but was not

marked full before.) Note that all Yk are independent.

While the number of available bins (i.e. non-full ver-

tices) will decrease over time, we know from (3) that

|Bins| − |Balls0| > 9
10 |Bins|; thus, at any epoch, we

can use the bound |Bins| > (9/10)(1−θ)ζn. This shows

that

Pr [Yk = 1] 6
101

100σ
(σ − |Bins|)

6
101

100

(
1− 9(1− θ)ζn

10σ

)
.

From σ 6 ζ(1 − θ)n + 4ζ2θn and the fact that

(3) implies 1 − 9(1−θ)ζ
10((1−θ)ζ+4ζ2θ) < 3/20, we get that

Pr [Yk = 1] 6 (101/100) · (3/20). Let Y =
∑
k∈Ballsi Yk.

Since |Ballsi| = Ω(log n) , we can use a Chernoff bound

(e.g. [21]) to show that

Pr [Y > (909/1000)|Ballsi| > 6E[Y ]] 6 2−
909
1000 |Ballsi|,

thus with high probability (in n), a constant fraction

of the random walks in epoch i will end up at non-full
vertices. We call these walks good balls and denote this

set as Goodi.

We will now show that a constant fraction of good

balls do not end up at the same bin with high proba-

bility, i.e., we are able to successfully redistribute the

associated vertices in this epoch. Let Xk be the indicator

random variable that is 1 iff the k-th ball is eliminated.
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We have Pr[Xk = 1] > (1− 101
100|Bins| )

|Goodi|−1 > e−Θ(1),

i.e., at least a constant fraction of the balls in Goodi are

eliminated on expectation.

Let W denote the number of eliminated vertices in
epoch i, which is a function f(B1, . . . , B|Goodi|) where

Bj denotes the bin chosen by the j-th ball. Observe that

changing the bin of some ball can affect the elimination

of at most one other ball. In other words, W satisfies

the Lipschitz condition and we can apply the method of

bounded differences. By the Azuma-Hoeffding Inequality

(cf. Theorem 12.6 in [21]), we get a sharp concentration

bound for W , i.e., with high probability, a constant

fraction of the balls are eliminated in every epoch.

We have therefore shown that after O(log n) epochs,

we are left with less than c log n vertices that need to

be redistributed, w.h.p. Let j be the first epoch when

|Ballsj | < c log n. Note that epoch j consists of Ω(log n)

random walks where some nodes perform multiple ran-

dom walks. By the same argument as above, we can

show that with high probability, a constant fraction of

these walks will end up at some non-full vertices without

conflicting with another walk and are thus eliminated.

Since we only need c log n walks to succeed, this ensures

that the entire set Ballsj is redistributed w.h.p. by the

end of epoch j, which shows (a).

By Claim 4.2.1, the first O(log n) epochs can each

last O(log2 n) rounds, while only epoch j takes O(log3 n)

rounds. Altogether, this gives a running time bound of

O(log3 n), as required for (b). For Property (c), note

that the flooding of the inflation request to all nodes

in the network requires O(n) messages. This, however,
is dominated by the time it takes to redistribute the

load: each epoch might use O(n log n) messages. Since

we are done w.h.p. in O(log n) epochs, we get a total

message complexity of O(n log2 n). For (d), observe that

the sizes of the virtual expanders Zt−1(pi) and Zt(pi+1)

are both in O(n). Due to their constant degrees, at

most O(n) edges are affected by replacing the edges of

Zt−1(pi) with the ones of Zt(pi+1, yielding a total of

O(n) topology changes for) simplifiedInfl. ut

4.2.2 Deflating the Virtual Graph

When the load of all but θn nodes exceeds 2ζ and

some node u is deleted, the high probability bound of

Lemma 2 for the random walk invoked by neighbor v no

longer applies. In that case, node v invokes Procedure

simplifiedDefl to reduce the overall load (cf. Algo-

rithm 4.6). Analogously as simplifiedInfl, Procedure

simplifiedDefl consists of two phases:

Phase 1: Constructing a Smaller p-Cycle To reduce

the load of simulated vertices, we replace the current

p-cycle Zt−1(pi) with a smaller p-cycle Zt(ps) where ps
is a prime number in the range (pi/8, pi/4).

Let α = pi/ps. Any virtual vertex x ∈ Zt−1(pi),

is (surjectively) mapped to some yx ∈ Zt(ps) where

y = bx/αc. Note that we only add y to V (Zt(ps)) if

there is no smaller x′ ∈ Zt−1(pi) that yields the same y.

This mapping guarantees that, for any element in Zps ,
we have exactly 1 virtual vertex in Zt(ps): Suppose that

there is some y ∈ Zps that is not hit by our mapping,

i.e., for all x ∈ Zpi , we have y > b xαc. Let x′ be the

smallest integer such that y = bx
′

α c. For such an x′, it

must hold that αy 6 x′ < α(y+ 1). Since α > 1, clearly

x′ exists. By assumption, we have x′ > pi, which yields

bpi/αc 6 bx′/αc = y < ps. Since ps = pi/α, we get

bpsc < ps, which is a contradiction to ps ∈ N. Therefore,

we have shown that Zs ⊆ V (Zt(ps)). The opposite set

inclusion can be shown similarly.

For computing the edges of Zt(ps), note that any

cycle edge (y, y ± 1) ∈ E(Zt(ps)), is between nodes u

and v that were at most α hops apart in Gt, since their

distance is at most α in the virtual graph Zt−1(pi). Thus

any such edge can be added by exploring a neighborhood

of constant-size in O(1) rounds via the cycle edges (of
the current virtual graph) Zt−1(pi) in Gt. To add the

edge between y and its inverse y−1, we proceed along the

lines of Phase 1 of simplifiedInfl, i.e., we solve per-

mutation routing on Zt−1(pi), taking O( logn(log logn)2

log log logn )

rounds. The following lemma summarizes the proper-

ties of Phase 1:

Lemma 6 If the network graph Gt−1 is a balanced map

of Zt−1(pi), then Phase 1 of simplifiedDefl ensures

that every node computes the same virtual graph Zt(ps)
in O(log n(log log n)2) rounds such that

(a) ps = |Zt(ps)| ∈ (pi/8, pi/4), for some prime ps;

(b) there is a 1-to-1 mapping between Zps and

V (Zt(ps));
(c) the edges of Zt(ps) adhere to Definition 1.

Proof Property (a) trivially holds. For (b), observe that

by description Phase 1, we map x ∈ Zt−1(pi) surjectively

to yx ∈ Zt(ps) using the mapping yx = b xαc where

α = pi
ps

. Note that we only add yx to V (Zt(ps)) if there

is no smaller x ∈ Zt−1(pi) that yields the same value in

Zps , which guarantees that V (Zt(ps)) is not a multiset.

Suppose that there is some y ∈ Zps that is not hit by

our mapping, i.e., for all x ∈ Zpi , we have y > b xαc. Let

x′ be the smallest integer such that y = bx
′

α c. For such

an x′, it must hold that αy 6 x′ < α(y+1). Since α > 1,

clearly x′ exists. By assumption we have x′ > pi, which
yields⌊pi
α

⌋
6

⌊
x′

α

⌋
< ps.
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Given: current network size n (as computed by computeLow). All virtual vertices and all nodes are unmarked.

Phase 1. Compute smaller p-cycle:

1: Node u forwards a deflation request through the entire network.

2: Initiating node u floods a request to all other nodes to run this procedure simultaneously; takes O(log n) time.

3: Since every node u knows the same virtual graph Zt−1(pi) of size pi, all nodes locally compute the same prime

ps ∈ (pi/8, pi/4) and therefore the same virtual expander Zt(ps) with vertex set Zps .
4: (Compute the new set of locally simulated virtual vertices NewSim(u) ⊂ Zt(ps).)

Let α = pi
ps

. For every x ∈ Sim(u) (i.e. x ∈ Zt−1(pi)) we compute yx = b xαc.
If there is no x′ < x such that yx′ = yx, we add yx to NewSim(u). This yields the (possibly empty) set

NewSim(u) = {yx1
, . . . , yxk},

where x1, . . . , xk ∈ Zt−1(pi) are a subset of the previously simulated vertices at u. If NewSim(u) = ∅, we mark

u as contending. For every vertex yxj , we set

cloud(yxj ) = {m : (m− 1)bαc 6 yxj < mbαc}.
5: for every yxj ∈ NewSim(u), (1 6 j 6 k), do

(Compute the new set of edges.)

Cycle edges: Add an edge between u and the nodes v and v′ that simulate yxj − 1 and yxj + 1 by using the

cycle edges of Zt−1(pi) in Gt.

Inverse edges: Add an edge between u and the node v that simulates y−1k ; node v is found by solving a

permutation routing instance.

Phase 2. Ensure Surjective Mapping:

6: if Sim(v) = ∅ then

7: Node v marks itself as contending.

8: else

9: Node v reserves one vertex z ∈ Sim(v) for itself by marking z as taken.

10: while v is contending do

11: Every contending node v performs a random walk of length T = Θ(log n) on the virtual graph Zt(pi+1) by

forwarding a token τv. This walk is simulated on the actual network Ut (with constant overhead). To account

for congestion, we give this walk ρ = O(log2 n) rounds to complete; after T random steps, the token remains

at its current vertex.

12: If, after ρ rounds, τv has reached a virtual vertex z (simulated at some node w), no other token is currently

at z, and z is not marked as taken, then v marks itself as non-contending and requests z to be transfered

from w to v where it is marked as taken.

Algorithm 4.6: Procedure simplifiedDefl. This is a simplified deflation procedure yielding amortized bounds.

Note that Procedure deflate provides the same functionality using O(log n) rounds and messages whp even in the

worst case.

Since α = pi
ps

, we get

bpsc =
⌊pi
α

⌋
< ps,

which is a contradiction to ps ∈ N. Therefore, we have

shown that Zs ⊆ V (Zt(ps)). To see that V (Zt(ps)) ⊆ Zs,
suppose that we add a vertex y > ps to V (Zt(ps)). By

the description of Phase 1, this means that there is an

x ∈ V (Zt−1(pi)), i.e., x 6 pi − 1, such that y = b xαc.
Substituting for α yields a contradiction to y > ps, since

y =
⌊x
α

⌋
6

⌊
pi − 1

α

⌋
=

⌊
ps −

ps
pi

⌋
< ps.

For property (c), note that any cycle edge (y, y±1) ∈
E(Zt(ps)), is between nodes u and v that were at most α

hops apart in Gt, since their distance can be at most α in

Zt−1(pi). Thus any such edge can be added by exploring

a neighborhood of constant-size in O(1) rounds via the

cycle edges of Zt−1(pi) in Gt. To add an edge between

y and its inverse y−1, we proceed along the lines of the

proof of Lemma 4, i.e., we solve permutation routing on

Zt−1(pi), taking O( logn(log logn)2

log log logn ) rounds.

Phase 2: Ensuring a Virtual Mapping After Phase 1 is

complete, the replacement of multiple virtual vertices

in Zt−1(pi) by a single vertex in Zt(ps), might lead to

the case where some nodes are no longer simulating any

virtual vertices. A node that currently does not simulate

a vertex, marks itself as contending and repeatedly keeps
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initiating random walks on Zt(ps) (that are simulated

on the actual network graph) to find spare vertices.

Moreover, a node w that does simulate vertices, marks

an arbitrary vertex as taken and transfers its other

vertices to other nodes if requested. To ensure a valid

mapping Φt, we need to transfer non-taken vertices to

contending nodes if the random walk of a contending

node hits a non-taken vertex z and no other walk ends

up at z simultaneously. A similar analysis as for Phase 2

of simplifiedInfl shows Lemma 5 for deflation steps.

Lemmas 3 and 5 imply the following:

Lemma 7 At any step t, the network graph Gt, is 4ζ-

balanced, i.e., Gt has constant node degree and λGt 6 λ

where 1− λ is the spectral gap of the p-cycle expander

family.

Proof The result follows by induction on t. For the base

case, note that we initialize G0 to be a virtual mapping

of the expander Z0(p0), which obviously guarantees

that the network is 4ζ-balanced. For the induction step,

we perform a case distinction depending on whether

t is a simple or inflation/deflation step and apply the

respective result, i.e. Lemmas 3 or 5.

4.3 Amortizing (Simplified) Type-2 Recovery

We will now show that the expensive inflation/deflation

steps occur rather infrequently. This will allow us to

amortize the cost of the worst case bounds derived in

Section 4.2. Suppose that step t was an inflation step.

By Fact 2.(a), this means that at least (1− θ)n nodes

had a load of 1 at the beginning of t, and thus a load

of 6 ζ at the end of t. Thus, even after redistributing

the additional load of the θn nodes that might have had

a load of > 4ζ, a large fraction of nodes are in Low

and Spare at the end of t. This guarantees that we

perform type-1 recovery in Ω(n) steps, before the next

inflation/deflation is carried out. A similar argument ap-

plies to the case when simplifiedDefl is invoked, thus

yielding amortized polylogarithmic bounds on messages

and rounds per every step.

Lemma 8 There exists a constant δ such that the

following holds: If t1 and t2 are steps where type-

2 recovery is performed (via simplifiedInfl or

simplifiedDefl), then t1 and t2 are separated by at

least δn ∈ Ω(n) steps with type-1 recovery where n is

the size of Gt1 .

For the proof of Lemma 8 we require the following 2

technical results:

Claim Suppose that t is an inflation step. Then

|Lowt| > (θ + 1
2 )n.

Proof (of Claim 4.3)

First, consider the set of nodes S = Ut \ SpareUt ,
i.e., LoadUt(u) = 1 for all u ∈ S. By Fact 2.(a), we

have |S| > (1 − θ)n. Clearly, any such node u ∈ S

simulates at most ζ virtual vertices after generating its

own vertices for the new virtual graph, hence the only

way for u to reach Loadt(u) > 2ζ is by taking over

vertices generated by other nodes. By the description

of procedure simplifiedInfl, only (a subset of) the

nodes in SpareUt redistribute their load by performing

random walks. By Lemma 7, we can assume that Gt1−1
is 4ζ-balanced. Since |SpareUt | < θn, we have a total

of 6 (4ζ − 4)θn clouds that need to be redistributed.

Observe that v continues to simulate 4 clouds (i.e. 4ζ

nodes) by itself. Since every node that is in S, has at

most ζ virtual nodes, we can bound the size of Lowt by

subtracting the redistributed clouds from |S|. For the

result to hold we need to show that

(θ + 1/2) 6 1− θ − (4ζ − 4)θ,

which immediately follows by Inequality (3).

Claim Suppose that t is a deflation step. Then

|Sparet| > (θ + 1
4ζ )n.

Proof (of Claim 4.3)

Consider the set S = {u : LoadUt(u) > 2ζ}. Since
S = Ut \ LowUt , Fact 2.(b) tells us that |S| >
(1 − θ)n and therefore we have a total load of least

(1− θ)(2ζ + 1)n+ θn in Ut. By description of procedure

simplifiedDefl, every cloud of virtual vertices is con-

tracted to a single virtual vertex. After deflating we are

left with

Load(Gt) >

(
(1− θ)(2 +

1

ζ
) +

θ

ζ

)
n.

To guarantee the sought bound on Sparet, we need to

show that Load(Gt) > (1 + θ+ 1
4ζ )n. This is true, since

by (3) we have θ 6 1
3 + 1

4ζ . Therefore, by the pigeon

hole principle, at least θ + 1
4ζ nodes have a load of at

least 2.

Proof (Proof of Lemma 8)

Observe that the values computed by procedures

computeSpare and computeLow cannot simultaneously

satisfy the thresholds of Fact 2, i.e., simplifiedInfl

and simplifiedDefl are never called in the same step.

Let t1, t2, . . . be the set of steps where, for every i >
1, a node calls either Procedure simplifiedInfl or
Procedure simplifiedDefl in ti. Fixing a constant δ

such that

δ 6 1/4ζ, (9)

we need to show that ti+1 − ti > δn.

We distinguish several cases:
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1. ti simplifiedInfl; ti+1 simplifiedInfl:

By Fact 2.(a) we know that SpareUti contains less

than θn nodes. Since we inflate in ti, every node

generates a new cloud of virtual vertices, i.e., the

load of every node in Uti is (temporarily) at least ζ

(cf. Phase 1 of simplifiedInfl). Moreover, the only

way that the load of a node u can be reduced in ti,

is by transferring some virtual vertices from u to a

newly inserted node w. However, by the description

of simplifiedInfl and the assumption that ζ > 2,

we still have Loadt(u) > 1 (and Loadt(w) > 1), and
therefore SpareGti ⊇ V (Gti)\{w}. Since the virtual

graph (and hence the total load) remains the same

during the interval (ti, ti+1), it follows by Lemma 7

that Spare can shrink by at most the number of

insertions during (ti, ti+1). Since |SpareUti+1
| < θn,

more than (1− θ)n− 1 > δn insertions are necessary.

2. ti simplifiedDefl; ti+1 simplifiedDefl: We first

give a lower bound on the size of LowGti
. By

Lemma 5, we know that load at every node is at

most 4ζ in Uti . Since every virtual cloud (of size ζ)

is contracted to a single virtual zertex in the new

virtual graph, the load at every node is reduced to

at most 4. Clearly, the nodes that are redistributed

do not increase the load of any node beyond 4, thus

Lowt = Gt. Analogously to Case 1, the virtual graph

is not changed until ti+1 and Lemma 7 tells us that

Low is only affected by deletions, i.e., (1− θ)n > δn

steps are necessary before step ti+1.

3. ti simplifiedInfl; ti+1 simplifiedDefl:

By Claim 4.3, we have |LowGti
| > (θ+ 1/2)n, while

Fact 2.(b) tells us that |LowGti+1
| < θn. Again,

Lemma 7 implies that the adversary must delete at
least n/2 > δn nodes during (ti, ti+1].

4. ti simplifiedDefl; ti+1 simplifiedInfl:

By Claim 4.3, we have |SpareGti | > (θ + 1
4ζ )n, and

by Fact 2.(a), we know that |SpareGti+1
| < θn.

Applying Lemma 7 shows that we must have more
than 1

4ζn > δn deletions before ti+1.

The following corollary summarizes the bounds that we

get when using the simplified type-2 recovery:6

Corollary 1 Consider the (simplified) variant of dex

that uses Procedures 4.5 and 4.6 to handle type-2 recov-

ery. With high probability, the amortized running time

of any step is O(log n) rounds, the amortized message

complexity of any recovery step is O(log2 n), while the

amortized number of topology changes is O(1).

6 We will show in Sec 4.4 how to get worst case O(logn)
complexity bounds.

4.4 Worst Case Bounds for Type-2 Recovery

Whereas Lemma 3 shows O(log n) worst case bounds for

steps with type-1 recovery, handling of type-2 recovery

that we have described so far yields amortized poly-

logarithmic performance guarantees on messages and

rounds w.h.p. per step (cf. Cor. 1). We now present a

more complex algorithm for type-2 recovery that yields

worst case logarithmic bounds on messages and rounds

per step (w.h.p.). The main idea of Procedures inflate

and deflate is to spread the type-2 recovery over Θ(n)

steps of type-1 recovery, while still retaining constant

node degrees and spectral expansion in every step.

The coordinator The node w that currently simulates

the virtual vertex with integer-label 0 ∈ V (Zt−1(pi)) =

Zpi is called coordinator and keeps track of the current

network size n and the sizes of Low and Spare as fol-

lows: Recall that we start out with an initial network of

constant size, thus initially coordinator w can compute

these values with constant overhead. If an insertion or

deletion of some neighbor of v occurs and the algorithm

performs type-1 recovery, then v informs coordinator w

of the changes to the network size and the sizes of Spare

and Low (by routing a message along a shortest path

in Zt−1(pi)) at the end of the type-1 recovery. Node

v itself simulates some vertex x ∈ Zpi and hence can

locally compute a shortest path from x to 0 (simulated

at w) according to the edges in Zt(pi) (cf. Fact 1). The

neighbors of w replicate w’s state and update their copy
in every step. If the coordinator w itself is deleted, the

neighbors transfer its state to the new coordinator that

subsequently simulates 0. The coordinator state requires

only O(log n) bits and thus can be sent in 1 message.

Keep in mind that the coordinator does not keep track
of the actual network topology or Spare and Low, as

this would require Ω(n) rounds for transferring the state

to a new coordinator. Algorithm 4.7 contains the pseudo

code describing the operation of the coordinator.

4.4.1 Staggering the Inflation

We proceed in 2 phases each of which is staggered over

dθne steps. Let PC denote the p-cycle at the beginning

of the inflation step. If, in some step t0 the coordinator

is notified (or notices itself) that |Spare| < 3θn, it

initiates (staggered) inflation to build the new p-cycle

PC ′ on Zpi+1 by sending a request to the set of nodes

I that simulate the set of vertices S = {1, . . . , d1/θe}.
The d1/θe nodes in I are called active in step t0.

Phase 1: Adding a larger p-cycle For every x ∈ S, the

simulating node in I adds a cloud of vertices as described

in Phase 1 of simplifiedInfl. More specifically, for
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Assumption: Let node w be the node that simulates vertex 0.

1: Coordinator w maintains local counters of |Spare|, |Low| and the network size n.

2: The neighbors of w replicate the state of w, i.e., everytime w updates any of its counters, it sends a message to

all of its neighbors. If w itself is deleted, normal recovery is performed to find a node w′ to take over vertex 0.

Then, the neighbors transfer the coordinator state to the new coordinator w′. Recall that, according to the

virtual graph structure, all former neighbors of w become neighbors of w′.

Upon insertion of some node u attached to v:

3: Node v tries to perform type-1 recovery (as in insertion(u, θ)).

4: if the recovery succeeds then

5: Some vertex was transferred to u from some node u′. Node v sends a message along a shortest path in the

virtual graph Zt to the coordinator w. This message also contains information about changes in the number

of nodes in Spare and Low. This information only depends on the load at u′ and thus does not require any

additional communication.

6: Coordinator w increases/decreases its local counters accordingly.

7: else

8: Node v sends a request to the coordinator, informing about the failed type-1 recovery. Coordinator w checks

its (updated) local counters and, if |Spare| < 3θ, starts invoking inflate.

Upon deletion of some node u previously attached to v:

9: Node v tries to perform type-1 recovery (as in deletion(u, θ)).

10: if the recovery succeeds then

11: The vertices simulated at u were transferred to other nodes u′1, . . . , u
′
k. Node v sends a message along a

shortest path in Zt to the coordinator w. This shortest path can be computed locally, since every node

knows the complete virtual graph. This message also contains information about changes in the number

of nodes in Spare and Low. This information only depends on the load at u′1, . . . , u
′
k and thus does not

require additional communication.

12: Coordinator w increases/decreases its local counters accordingly.

13: else

14: Node v sends a request to the coordinator, informing about the failed type-1 recovery. Coordinator w checks

its (updated) local counters and, if |Low| < 3θ, starts invoking deflate.

Algorithm 4.7: Advanced handling of type-2 recovery via a coordinator node w which yields O(log n) worst case

bounds on messages and rounds per insertion/deletion. (Needed for inflate and deflate.)

vertex x we add a set Y ⊂ V (PC ′) of c(x) vertices, as

defined in Eq. (7) on page 9. We denote this set of new

vertices by NewSim(v). That is, node v now simulates

|Load(v)| + |NewSim(v)| many vertices. In contrast

to simplifiedInfl, however, vertex x ∈ PC and its

edges are not replaced by Y (yet). For each node in

y ∈ Y , the simulating node v computes the cycle edges

and inverse y−1 ∈ PC ′. It is possible that y−1 is not

among the vertices in S, and hence is not yet simulated

at any node in I. Nevertheless, by Eq. (7), v can locally

compute the vertex x′ ∈ PC that is going to be inflated

to the cloud that contains y−1 ∈ PC ′. Therefore, we

add an intermediate edge (y, x′), which requires O(log n)

messages and rounds. Note that |NewSim(v)| could

be as large as 4ζ2. Therefore, similarly as in Phase 2

of simplifiedInfl, a node in I needs to redistribute

newly generated vertices if |NewSim| > 4ζ as follows:

The nodes in I proceed by performing random walks to

find node with small enough NewSim. Note that, even

though inflate has not yet been processed at nodes in

V (Gt) \ I, any node that is hit by this random walk can

locally compute its set NewSim and thus check if it is

able to simulate an additional vertex in the next p-cycle

PC ′. Since we have O(1) nodes in I each having O(1)

vertices in their NewSim set, these walks can be done

sequentially, i.e., only 1 walk is in progress at any time,

which takes O(log n) rounds in total.

After these walks are complete and all nodes in I

have |NewSim| 6 4ζ, the coordinator is notified and

forwards the inflation request to nodes I ′ that simulate

vertices S′ = {d1/θe + 1, . . . , 2d1/θe}. (Again, this is

done by locally computing the shortest path in PC.) In

step t0 + 1, the nodes in I ′ become active and proceed

the same way as nodes in I in step t0, i.e., clouds and

intermediate edges are added for every vertex in S′.
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Phase 2: Discarding the old p-cycle. Once Phase 1 is

complete, i.e., all nodes are simulating the vertices in

their respective NewSim set, the coordinator sends an-

other request to the set of nodes I —the active nodes in

the next step—that are still simulating the set S of the

first d1/θe vertices in the old p-cycle PC. Every node

in I drops all edges of PC and stops simulating vertices

in V (PC). In the next step, this request is forwarded

to the nodes that simulate the next dθne vertices and

reaches all nodes within θn steps. After T = 2θn steps7,

the inflation has been processed at all nodes.

Finally, we need to argue that type-1 recovery suc-

ceeds with high probability while the staggered infla-

tion is ongoing: If the adversary inserts a node w in

any of these T steps, we can simply assign one of the

newly inflated vertices to w. If, on the other hand,

the adversary deletes nodes, we need to show that,

for any t ∈ [t0, t0 + T ], it holds that |Lowt| > θn.

Recalling that the coordinator invoked the inflation

in step t0 because |Sparet0 | < 3θn, it follows that

|Lowt0 | > n − 3θn. In the worst case, the adversary

deletes 1 node in every one of the following T steps,

which increases the load of at most 2θn nodes. This

yields that |Lowt| > |Lowt0 | − 2θn = n − 5θn > θn,

due to (3). Thus, since the assumption of Lemma 2.(b)

holds throughout steps [t0, t0 + T ], type-1 recovery suc-

ceeds with high probability as required.

4.4.2 Staggering the Deflation

We now describe the implementation of deflate that

yields a worst case bound of O(log n) for the recovery

in every step. Similarly to inflate, the coordinator

initiates a staggered deflation whenever the threshold
|Low| < 3θ is reached and the algorithm proceeds in

two phases:

Phase 1: Adding a smaller p-cycle Phase 1 is initiated

during the recovery in some step t0 by the (current) coor-

dinator w who sends a message to nodes S that simulate

vertices I = {1, . . . , d1/θe}. The nodes in S become ac-

tive in the recovery of step t0 and will start simulating

the (smaller) p-cycle Z(ps) in addition to the current

p-cycle Zt0(pi) by the end of the step, as described be-

low. As in the case of inflate, w can efficiently find S

(requiring only O(log n) messages and rounds) by fol-

lowing the shortest path in the current p-cycle Zt0(pi).

Let α = pi/ps and consider some node v ∈ S. For every

x ∈ Sim(v), node v computes yx = bx/αc and starts

simulating yx ∈ Z(ps), if there is no x′ < x such that

x′ = bx′/αc. That is, the new vertices are determined

7 For clarity of presentation, we assume that 2θn is an
integer.

exactly the same way as in Phase 1 of simplifiedDefl

and node v adds yx to NewSim(v).

Assuming that there is a yx ∈ NewSim(v), node v

marks all x1, . . . , xk ∈ Zt0(pi) that satisfy yx = bxj/αc,
for 1 6 j 6 k, as taken. We say that x dominates

x1, . . . , xk and we call the set {x1, . . . , xk} a deflation

cloud. Note that some of the vertices of a deflation

cloud might be simulated at other nodes. Nevertheless,

according to the edges of Zt0(pi), these nodes are in

an O(1) neighborhood of v and can thus be notified to

mark the corresponding vertices as taken. Intuitively

speaking, if a node v simulates such a dominating vertex

x, then v is guaranteed to simulate a vertex in the new

p-cycle Z(ps), and the surjective requirement of the

virtual mapping is satisfied at v. Thus our goal is to

ensure that every node in S simulates a dominating

vertex by the end of the recovery of this step.

The problematic case is when none of the vertices

currently simulated at node v dominates for some yx ∈
Z(ps). To ensure that v simulates at least 1 vertex of

the new p-cycle Z(ps), node v initiates a random walk

on the graph Z(ps) to find a dominating vertex that

has not been marked taken. We thus lower-bound the

size of dominating vertices that are never marked as

taken, in any of the θn steps during which deflate is

in progress:

Recall that the coordinator invoked deflate because

|Low| < 3θ. This means that > (1 − 3θ)n nodes have

Loadt0 > 2ζ and the total load in the network is at least
(2ζ(1− 3θ) + 3θ)n since every node simulates at least

1 vertex. If some node simulates a dominating vertex

x, then all of the (at most α 6 8) dominated vertices

x′ > x that also satisfy yx = bx′/αc are marked as

taken. Considering that ζ 6 8, the number of dominating
vertices is at least (2ζ(1−3θ)+3θ)n/8 > (2−θ(6+3/ζ))n.

In each of the θn steps while Phase 1 of deflate is in

progress, the adversary might insert some node that

starts simulating a dominating vertex. Thus, in total we

must give up n+ θn dominating vertices. It follows that

the number of dominating vertices that are available

(i.e. not needed by any node) is at least

(2− θ(6 + 3/ζ))n− n− θn = (1− θ(6 + 3/ζ + 1))n.

Recalling (3) on page 7, the right hand size is at least a

constant fraction of n, i.e., the set of available dominat-

ing vertices D has size > εn while deflate is in progress,

for some ε > 0. Similarly to the proof of Lemma 2, we

can use the concentration bound of [9] to show that a

random walk of v of length O(log n) hits a vertex in D

with high probability. To avoid clashes between nodes in

S, we perform these walks sequentially. Since there are

only O(1) nodes in S, this takes overall O(log n) time

and messages.
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In step t0 + 1, the nodes that simulate the next 1/θ

vertices become active and so forth, until the request

returns to the (current) coordinator after dθne steps.

Phase 2: Discarding the old p-cycle Once the new

(smaller) p-cycle Z(ps) has been fully constructed, the

coordinator sends another request to the nodes in I—

which again become active nodes—that simulate the

d1/θe vertices in S. Every node in I drops all edges

of E(Z(pi)) and stops simulating vertices in V (Z(pi)).

This request is again forwarded to the nodes that sim-

ulate the next θn vertices and finally has reached all

nodes within θn steps. Thus, after T = d2θne steps, the

deflation has been completed at all nodes.

Since the coordinator initiated the deflation because

|Lowt0 | < 3θn, it follows that |Sparet0 | > n−3θn, and

thus |Sparet| > θn, for all steps t ∈ [t0, t0 + T ]. There-

fore, by an argument similar to Procedure inflate, it

follows that type-1 recovery succeeds w.h.p. until the

new virtual graph is in place.

Lemma 9 (Worst Case Bounds Type-2 Recov-

ery) Suppose that the coordinator initiates either

inflate of deflate during recovery in some step t0 and

Gt0−1 is 4ζ-balanced. Then, for all steps t ∈ [t0, t0 + T ]

where T = d2θne the following hold:

(a) Every node simulates at most 8ζ vertices and the

recovery in t requires at most O(log n) rounds and

messages (w.h.p.), while making only O(1) changes

to the topology.

(b) The spectral gap of Gt is at least (1−λ)2
8 where 1−λ

is the spectral gap of the p-cycle expander family.

Proof First consider (a): The bound of 8ζ vertices fol-

lows from the fact that, during inflate and deflate,

any node simulates at most 4ζ vertices from both p-

cycles. This immediately implies a constant node degree.

Recalling the description of Phases 1 and 2 for inflate

and deflate, we observe that either phase causes an

overhead of O(log n) messages and rounds for each of

the O(1) active nodes during recovery in some step

t ∈ [t0, t0 + T ]; the worst case bounds of (a) follow.

We now argue that, at any time during the staggered

inflation, we still guarantee a constant spectral gap. By

the left inequality of Theorem 2 (App. A), a spectral

expansion of λGt0−1
yields an edge expansion (cf. Def. 5

in App. A) h(Gt0−1) > (1 − λGt0−1
)/2, which is O(1).

For both, inflate and deflate, it holds that during

Phase 1, nodes still simulate the full set of vertices and

edges of the old p-cycle and some intermediate edges of

the new p-cycle. In Phase 2, on the other hand, nodes

simulate a full set of vertices and edges of the new p-cycle

and some edges of the old p-cycle. Thus, during either

phase, the edge expansion is bounded from below by the

edge expansion of the p-cycle expander family. That is,

we have h(Gt) > h(Gt0−1), for any step t ∈ [t0, t0 + T ].

It is possible, however, that the additional intermediate

edges decrease the spectral expansion. Nevertheless, we

can apply the right inequality of Theorem 2 to get

1− λGt >
h2(Gt0−1)

2
> (1− λGt0−1)2/8,

as required.

4.4.3 Proof of Theorem 1

Lemmas 3 and 9 imply the sought worst case bounds

of Theorem 1. The constant node degree follows from

Lemma 3.(a) and Lemma 9.(a). Moreover, Lemma 9.(b)

shows a constant spectral gap for (the improved) type-

2 recovery steps and the analogous result for type-1

recovery follows from Lemma 1 and Lemma 3.(a).

4.4.4 Implementing a Distributed Hash Table

(DHT)

We can leverage our expander maintenance algorithm

to implement a DHT as follows: Recall that the current

size s of the p-cycle is global knowledge. Thus every

node uses the same hash function hs, which uniformly

maps keys to the vertex set of the p-cycle.

We first look at the case where no staggered infla-

tion/deflation is in progress: If some node u wants to

store a key value pair (k, val) in the DHT, u computes

the index z := hs(k). Recall that u can locally compute

a shortest path z1, z2, . . . , z (in the p-cycle) starting at

one of its simulated virtual vertices z1 and ending at
vertex z. Even though node u does not know how this en-

tire path is mapped to the actual network, it can locally

route by simply forwarding (k, val) to the neighboring

node v2 that simulates z2; node v1 in turn forwards the

key value pair to the node that simulates z3 and so

forth. The node that simulates vertex z stores the entry

(k, val). If z is transferred to some other node w at some

point, then storing (k, val) becomes the responsibility

of w. Similarly, for finding the value associated with a

given key k′, node u routes a message to the node simu-

lating vertex hs(k
′), who returns the associated value

to u. It is easy to see that insertion and lookup both

take O(log n) time and O(log n) messages and that the

load at each node is balanced.

We now consider the case where a staggered inflation

(cf. Procedure 4.8) has been started and some set of

nodes have already constructed the next larger p-cycle of

size s′. Let PC be the old (but not yet discarded) p-cycle

and let PC ′ denote the new p-cycle that is currently

under construction. For a given vertex zi ∈ PC we use
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1: Assumption: Let w be the coordinator node that maintains local counters of Spare, Low and the network

size (cf. Algorithm 4.7). Moreover, the coordinator has computed the prime number pi+1 of the larger p-cycle

to which we inflate.

Phase 1. Adding a larger p-cycle:

2: The coordinator sends an initiation request to the nodes I that simulate the vertices S = {1, . . . , 1/θ}. This set

I are the active nodes in the recovery of the current step.

(Compute the new set of locally simulated virtual vertices.)

Every node u ∈ I does the following: Let α = pi+1

pi
and define the function c(x) = bα(x+ 1)c − bαxc − 1.

3: For every x ∈ Sim(u) (i.e. x ∈ Zt−1(pi)), node u adds a cloud of virtual vertices y0, . . . , yc(x) where yk =

(bαxc+ k) mod pi+1, for 0 6 k 6 c(x). That is, cloud(y0) = · · · = cloud(yc(x)) = {y0, . . . , yc(x)}.
4: Node u adds all such generated vertices yi to the set NewLoad(u).

5: for every x ∈ Sim(u) and every yk, (0 6 k 6 c(x)) do

(Compute the new set of edges.)

Cycle edges: Add an edge between u and the nodes v and v′ that simulate yk − 1 and yk + 1 by using the

cycle edges of Zt−1(pi) in Gt. In case that v (or v′) have not yet been active in Phase 1, we place an

intermediate edge from u to v, resp. v′.

Inverse edges: Add an edge between u and the node that is going to simulate y−1k . Node u can locally

compute the vertex x′ (simulated at some node v′), for which the corresponding cloud (containing y−1k ) is

going to be added, and hence can add an intermediate edge to the node v′. The communication from u to

v′ can be established along a shortest path (in Zt−1). This shortest path can be computed locally, since
every node knows the complete virtual graph.

6: After all additional vertices have been generated, the nodes in I, start initiating random walks of length O(log n)

to distribute any (new) vertices that exceed the treshold of NewLoad > 4ζ. These walks are performed

sequentially in some arbitrary order. (Note that |I| ∈ O(1).)

7: Once these walks are complete, the coordinator is informed and contacts the nodes I ′ that simulate the next

1/θ vertices of the current virtual graph. When the adversary triggers the next step, these nodes in turn locally
generate their portion of Z(pi+1) and so forth. After θn steps, Phase 1 is complete at all nodes.

Phase 2. Discard the old p-cycle:

8: The coordinator sends another request to the set of nodes I that host the first d1/θe vertices in S.

9: This causes every node in I to drop all edges of Z(pi) and stop simulating the corresponding vertices.

10: In the recovery of the next step, the coordinator forwards this request to the next d1/θe nodes and so forth.

After θn steps, Phase 2 is complete and all nodes now (exclusively) simulate the new virtual graph Z(pi+1).

Algorithm 4.8: Procedure inflate

the notation z′i to identify the unique vertex in PC ′ that

has the same integer label as zi.

Note that all nodes have knowledge of the hash func-

tion hs′ , which maps to the vertices of PC ′. Suppose

that a node u ∈ S becomes active during Phase 1 of

the staggered inflation and starts simulating vertices

z′1, . . . , z
′
` ∈ PC ′. (For clarity of presentation, we as-

sume that ` 6 4ζ, thus u does not need to redistribute

these vertices. The case where ` > 4ζ can be handled

by splitting the operations described below among the

nodes that end up simulating z′1, . . . , z
′
`.) At this point,

some set S of j nodes might still be simulating the corre-

sponding vertices z1, . . . , z` ∈ PC, where j 6 ` ∈ O(1).

Thus node u contacts the nodes in S (by routing a

message to vertices z1, . . . , z` along the edges of PC)

and causes these nodes to transfer all data items associ-

ated with z1, . . . , z` to u. From this point on until the

staggered inflation is complete, the nodes in S forward

all insertion and lookup requests regarding z1, . . . , z` to

node u. Note that the above operations require at most

O(log n) rounds and messages, and thus only increase

the complexity of the staggered inflation by a constant
factor.

The case where a staggered deflation is in progress

is handled similarly, by transferring key value pairs of

vertices that are contracted to a single vertex in the

new (smaller) p-cycle, whenever the simulating node

becomes active.
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1: Assumption: Let w be the coordinator node that maintains local counters of Spare, Low and the network

size (cf. Algorithm 4.7). Moreover, the coordinator has computed the prime number ps of the smaller p-cycle to

which we deflate.

Phase 1. Compute smaller p-cycle:

Every node u ∈ I does the following:

2: (Compute the new set of locally simulated virtual vertices NewSim(u) ⊂ Z(ps).) Let α = pi
ps

. For every

x ∈ Sim(u) (i.e. x ∈ Zt−1(pi)) we compute yx = b xαc.
If there is no x′ < x such that yx′ = yx, we add yx to NewSim(u). This yields the (possibly empty) set

NewSim(u) = {yx1
, . . . , yxk},

where x1, . . . , xk ∈ Zt−1(pi) are a subset of the previously simulated vertices at u. If NewSim(u) = ∅, we mark

u as contending. For every vertex yxj , we set

cloud(yxj ) = {m : (m− 1)bαc 6 yxj < mbαc}.
3: for every yxj ∈ NewSim(u), (1 6 j 6 k), do

(Compute the new set of edges.)

Cycle edges: Add an (intermediate) edge between u and the nodes v and v′ that are going to simulate

yxj − 1 and yxj + 1 by using the cycle edges of Zt−1(pi) in Gt.

Inverse edges: Add an(intermediate) edge between u and the node v that is going to simulate y−1k ; node v

is found by communicating along a shortest path in Z(pi). This shortest path can be computed locally,

since every node knows the complete virtual graph.

4: After all additional vertices have been generated, the contending nodes in I, start initiating random walks

of length O(log n) to find nodes that have NewLoad < 4ζ. Note that, even though only nodes in I have
generated their part of the new p-cycle, every node can locally compute its value of NewLoad upon being hit

by such a random walk and hence can generate such vertices on the fly. These walks are performed sequentially

in some arbitrary order. (Note that |I| ∈ O(1).)

5: Once these walks are complete, the coordinator is informed and contacts the nodes I ′ that simulate the next

1/θ vertices of the current virtual graph. When the adversary triggers the next step, these nodes in turn will

locally generate their portion of Z(ps) and so forth. After θn steps, Phase 1 is complete at all nodes.

Phase 2. Discard the old p-cycle:

6: The coordinator sends another request to the set of nodes I that host the first d1/θe vertices in S.

7: This causes every node in I to drop all edges of Z(pi) and stop simulating the corresponding vertices.

8: In the recovery of the next step, the coordinator forwards this request to the next d1/θe nodes and so forth.

After θn steps, Phase 2 is complete and all nodes now (exclusively) simulate the new virtual graph Z(ps).

Algorithm 4.9: Procedure deflate

5 Extension: Handling Multiple Insertions and

Deletions

Our framework can be extended to a model where the

adversary can insert or delete multiple nodes in each

step, with certain assumptions:

Insertions: The adversary can insert or delete a set N

of up to εn many nodes in each step, for some small

ε > 0. We restrict the adversary to attach only a con-

stant number of nodes in N to any node—dropping this

restriction will allow the adversary to place the whole

set N at the same node u, causing significant conges-

tion due to u’s constant degree and our restriction of

having messages of O(log n) size. Note that this might

cause type-1 recovery to fail more frequently, since the

number of available spare vertices is depleted within

a constant number of insertion steps. Nevertheless we

can still handle such large-scale insertions via type-2

recovery by using Procedure simplifiedInfl.

Deletions: For deletions, we only allow the adversary to

delete nodes that leave the remainder graph connected,

i.e., if the adversary removes nodes N at time t, Gt−1\N
is still connected. Moreover, for each deleted node there

must remain at least one neighbor in the set Gt−1 \N .

As in the case of insertions, such large-scale deletions

might require Procedure simplifiedDefl to be invoked

every constant number of steps.

Corollary 2 (Multiple Insertions/Deletions)

Suppose that the adversary can insert or delete 6 εn

nodes, for some small ε > 0 in every step adhering

to the following conditions: In case of insertions, the
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adversary attaches O(1) nodes to any existing node in

the network. In case of deletions, the remaining graph is

connected and, for each deleted node u, some neighbor

of u is not deleted. There exists a distributed algorithm

that requires O(n log2 n) messages and O(log3 n) rounds

(w.h.p.) for recovery in every step.

6 Conclusion

We have presented a distributed algorithm for maintain-

ing an expander efficiently using only O(log n) messages

and rounds in the worst case. Moreover, our algorithm

DEX guarantees a constant spectral gap and node de-

grees deterministically at all times. There are several

open questions: How can we deal with malicious nodes
in this setting? Is there an Ω(log n) lower bound on the

number of rounds and/or messages that are necessary

per adversarial action on average? It will be interesting

to explore if our approach can be extended to other prob-

lems such as maintaining routing tables in an adversarial

setting.
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Appendix

A Previous Results and Definitions

For completeness, we restate some definitions and results

from literature that we reference in the paper.

We use the notation G = 〈n, d, λG〉 to denote a d-

regular graph G of n nodes where the second largest

eigenvalue of the adjacency matrix is λG.
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Definition 4 (Expanders, spectral gap) Let d be

a constant and let G = (〈n0, d, λ0〉, 〈n1, d, λ1〉, . . . ) be

an infinite sequence of graphs where ni+1 > ni for all

i > 0. We say that G is an expander family of degree

d if there is a constant λ < 1 such that λi 6 λ, for all

i > 0. Moreover, the individual graphs in G are called

expanders with spectral gap 1− λ.

Lemma 10 (cf. Lemma 1.15 in [5]) If H is formed

by vertex contractions from a graph G, then λH 6 λG.

Lemma 11 Consider an expander network and sup-

pose that every node initiates a random walk of length

Θ(log n) and only 1 random walk token can be sent over

an edge in each direction in a round. Then all random

walks have completed with high probability after O(log2 n)

rounds.

Proof The result follows by instantiating Lemma 2.2

of [7], which shows that, if every node initiates η ran-

dom walks of length µ, then all walks complete within

O(ηµ logn
δ ) rounds where δ is the minimum node degree.

Corollary 3 (Corollary 7.7.3 in [28]) In any

bounded degree expander of n nodes, n packets, one

per node, can be routed according to an arbitrary per-

mutation in O
(

logn(log logn)2

log log logn

)
rounds.

Lemma 12 (Mixing Lemma, cf. Lemma 2.5 [14])

Let G be a d-regular graph of n vertices and spectral gap

1− λ. Then, for all set of nodes S, T ⊆ V (G), we have

that
∣∣∣|E(S, T )| − d|S||T |

n

∣∣∣ 6 λd
√
|S||T |.

Definition 5 (Edge Expansion, [14]) Consider a

graph G of n nodes and a set S ⊆ V (G). Let E(S, S̄)
be the set of edges between S and G \ S. The edge

expansion of G is defined as

h(G) := min

{
|E(S, S̄)|
|S|

: S ⊆ V (G) and |S| 6 n/2

}
.

Theorem 2 (Cheeger Inequality, Theorem 2.6 in

[14]) Let G be an expander with spectral gap 1− λ and

edge expansion h(G). Then

1− λ
2

6 h(G) 6
√

2(1− λ).
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