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Abstract: We investigate the interactions of large composite dark matter (DM) states

with the Standard Model (SM) sector. Elastic scattering with SM nuclei can be coherently

enhanced by factors as large as A2, where A is the number of constituents in the composite

state (there exist models in which DM states of very large A ! 108 may be realised).

This enhancement, for a given direct detection event rate, weakens the expected signals

at colliders by up to 1/A. Moreover, the spatially extended nature of the DM states

leads to an additional, characteristic, form factor modifying the momentum dependence

of scattering processes, altering the recoil energy spectra in direct detection experiments.

In particular, energy recoil spectra with peaks and troughs are possible, and such features

could be confirmed with only O(50) events, independently of the assumed halo velocity

distribution. Large composite states also generically give rise to low-energy collective

excitations potentially relevant to direct detection and indirect detection phenomenology.

We compute the form factor for a generic class of such excitations — quantised surface

modes — finding that they can lead to coherently-enhanced, but generally sub-dominant,

inelastic scattering in direct detection experiments. Finally, we study the modifications

to capture rates in astrophysical objects that follow from the elastic form factor, as well

as the effects of inelastic interactions between DM states once captured. We argue that

inelastic interactions may lead to the DM collapsing to a dense configuration at the centre

of the object.
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1 Introduction

Most models of dark matter (DM) assume that it can, for practical purposes, be treated

as a collection of point-like particles. However, this is not necessarily the case, and a

variety of models in which DM is a composite state have been proposed (for example,

WIMPonium [1–3], and dark atoms [4–7]). Given the centrality of DM to our present

thoughts about beyond-the-Standard-Model physics, and our present lack of knowledge

concerning many of its fundamental characteristics, and thus how DM may reveal itself in
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experiments or observations, it is important to consider possible variations away from the

standard picture. This is especially the case if there are qualitatively new features compared

to traditional DM models that may affect direct and/or indirect detection phenomenology.

In this paper, we consider the consequences for present-day scattering processes of a

simple kind of compositeness, in which the DM states are composed of a large number, A,

of constituents, forming an extended semi-uniform object, analogous to Standard Model

(SM) nuclei formed out of constituent nucleons.1 Models that realise such a scenario include

Q-balls (non-topological solitons carrying a conserved charge) [9, 10], and Nuclear Dark

Matter models, in which DM is made up of bound states of strongly-interacting constituents

with short-range interactions [11–13]. The early-universe cosmology of these models has

interesting features, as investigated in [10–13]; here, we simply assume that a late-time

population of such states exists.

This large and extended compositeness affects elastic scattering and the associated

direct detection phenomenology, as we discuss in section 2. Large composite states con-

taining A constituents can have low-momentum-transfer elastic scattering cross sections

coherently enhanced by a factor as large as A2 [11, 13, 14]. This case is realised if the

size of the state is not too large compared to the inverse momentum exchange relevant in

direct detection scatterings. In this situation, and assuming that the mass of the compos-

ite state is ∝ A, so the DM number density is ∝ 1/A, the event rate at direct detection

experiments will effectively be enhanced ∝ A for a given interaction strength between SM

and DM constituents. Previous studies of the build-up of composite DM states in the early

universe show that large values of A (! 108) could plausibly be realised [13], so the effective

enhancement can be significant.

In addition, if a high enough proportion of the DM states have radii larger than SM

nuclei, but not so large as to significantly suppress coherent scattering, the spatial extension

of the DM states leads to a dark form factor modifying the momentum dependence of

DM-SM scattering (as previously considered in [14]). In the simplest case of a scalar

interaction depending only on the density, this form factor has a characteristic series of

peaks and troughs, analogous to SM nuclear form factors. In direct detection experiments

with sufficiently good energy resolution, these could lead to the striking signature of rises

in the energy recoil spectrum. We find that significant features of this kind could be

distinguished from point-like elastic scattering after the observation of only O(50) events,

independently of assumptions about the DM halo velocity distribution. A distribution

over DM sizes may average out these peaks into a smoothly-falling effective form factor,

in many cases resembling that from e.g. the exchange of an intermediate-mass mediator,

but multiple direct detection experiments using different SM nuclear targets would still be

able to separate out the momentum dependence from halo velocity distribution effects, as

with other models of dark form factors [14–18].

As we discuss in section 3, large composite states also generically give rise to long-

wavelength and low-energy collective excitations. There will also be higher-energy excita-

tions, and fission processes, but making the binding energy scale low enough for these to be

1The generic scattering phenomenology of small-number composite DM states has been considered in [8].
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relevant in direct detection experiments generally complicates the cosmology of such mod-

els [13]. We focus on the most model-independent possibility of collective density excita-

tions. We find that they can be of sufficiently low energy to be excited in collisions with SM

nuclei, leading to coherently-enhanced inelastic scattering. Although this is sub-dominant

to elastic scattering in the scenarios we consider, a non-negligible fraction of events may

be inelastic, and we calculate the associated form factor in leading approximation.2

As is well known, couplings to SM nuclei may also lead to the capture of DM by

astrophysical objects. As discussed in section 4 we find that the composite nature of the

DM changes the overall capture rate. In addition, perhaps the most interesting qualitative

effect is that the large local DM density inside the star, and the natural possibility of

inelastic DM self-interactions, could lead to a DM distribution that is significantly modified

compared to the naive expectation. In particular, for either dissipative collisions or fusions,

there is the possibility that this process runs away to a state in which most of the captured

DM lies in a single very dense configuration.3 There may be model-dependent consequences

of the energy released by inelastic DM self-interactions, which in the case of fusions could

release large amounts of energy into small volumes over short timescales.

2 Modifications to elastic scattering and direct detection

2.1 Dark sector form factors

For elastic scattering between a point-like state and a spatially extended state, interacting

via short-range interactions sourced by some density ρ on the extended side, the dependence

on the spatial properties is summarised by the form factor

F (q) =

∫
dr eiq·rρ(r), (2.1)

i.e. by the Fourier transform of the density. For scattering of DM states off SM nuclei,

effective field theory arguments show that the scattering operator on the SM side should

take on one of a restricted number of forms (see e.g. [19] for a recent comprehensive anal-

ysis). The dark sector density must have a complementary tensorial structure, but could

in general be determined by any properties of the state, e.g. density, spin, etc.

In the case of two spatially extended states scattering off each other, the effective

density is the convolution of the separate spatial profiles, so the matrix element is found by

multiplying the form factors together. Thus, the overall form factor for DM-SM scattering

will be FN (q)FX(q), where FN and FX are, respectively, the SM nuclear form factor and the

dark sector form factor (as we will discuss below, in many experimental circumstances the

2Taking the possibility of inelastic DM self-interactions further, we may also expect, in the context of

galactic halos, exothermic DM-DM interactions, e.g, from fusions. This can lead to an increase in the

average kinetic energy of DM in the galactic halo, which might in turn result in a clearing out of the central

high-density region. This possibility was outlined in [13], and requires a dedicated study of halo dynamics.

In this work, we focus on the interactions of composite DM states with the SM, and leave the topic of

modified halo dynamics to a future paper.
3Since the large composite states with saturated densities we consider in this paper require a short-range

repulsive interaction between constituents, forming a black hole at the centre of the star would generally

require accumulating a very large DM mass.

– 3 –



J
H
E
P
0
7
(
2
0
1
5
)
1
3
3

0.5 1.0 1.5 2.0 2.5 3.0 3.5

q

fm
!1

10
!8

10
!6

10
!4

0.01

1

!F "q#$2

Figure 1. Form factor for nuclear charge density (black) of 70Ge nucleus, as derived from electron
scattering data [20]. Blue (dashed) curve is standard Helm parameterisation, red (dot-dashed)
curve is constant-density approximation.

SM nuclear form factor is of limited importance). The specific density determining the form

factor will depend on the nature of the DM-SM interaction. For simplicity, in this paper

we will restrict ourselves to considering the case of a scalar form factor depending only on

the number density of the state, e.g. arising from the exchange of a heavy scalar mediator

coupling uniformly to all of the constituents. Taking, as discussed in the Introduction, the

the composite DM states to consist of an approximately uniform density of constituent

matter, a first approximation for the density is a spherical top hat function, leading to a

spherical Bessel function form factor,

F (q) =
3Aj1(qR)

qR
=

3A(sin(qR)− qR cos(qR))

(qR)3
, (2.2)

where R is the radius of the top hat density, and A is the total volume integral of the

source across the distribution, so F (0) = A.

SM nuclei provide an example of this kind of roughly-constant-density state, and illus-

trate the kind of deviations from the top-hat form factor that might occur. Figure 1 shows

an example of the form factor corresponding to the nuclear charge density for the particular

isotope 70Ge [20], as inferred from electron scattering data. Generally, and in this specific

case, the first few peaks and troughs of SM nuclear form factors are well-approximated by

the ‘Helm’ functional form

F (q) =
3Aj1(qR)

qR
e−q2s2/2, (2.3)

which is simply the top hat form factor modified to have a finite-width fall-off, over the

‘skin depth’ s ≃ 0.9 fm (comparable to the scale of the individual nucleons).

Importantly, in the case of interest to us where both a dark-sector and SM form-factor

are present, if the dark states have larger radii than SM nuclei, then the first zeros, or more

generally troughs, of FX(q) will occur at smaller q than for FN (q). This means that, while

the SM nuclear form factor is of limited importance in most direct detection experiments,

the dark form factor may have interesting structure in precisely the momentum, and thus

recoil energy, ranges being probed.
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2.2 Direct detection recap

In this section, we briefly review the standard direct detection formalism leading to the dif-

ferential event rate (equation (2.7)), mainly to establish notation for what follows. Readers

familiar with this material may safely proceed to section 2.3.

The differential scattering rate (event rate per unit target mass) at which incident DM

particles scatter off an initially-stationary target SM nucleus, giving it recoil energy ER, is

given by

dR

dER
=

1

mN

∫

v>vmin

d3v nXf(v)v
dσXN

dER

∣∣∣∣
v

, (2.4)

where v ≡ |v|, mN is the mass of the SM nucleus, nXf(v)d3v is the differential number

density of incident DM particles, vmin is the minimum velocity required to obtain recoil

energy ER, and σXN is the DM-nucleus scattering cross section.4 For non-relativistic elastic

scattering, vmin =
√

ERmN
2µ2

XN
, where µXN = mXmN

mX+mN
is the DM-nucleus reduced mass.

The momentum transfer in an elastic collision is q = µXNv
√
2(1− cos θ∗), where θ∗

is the scattering angle the CoM frame. Since ER = q2

2mN
, we have dER =

2µ2
XNv2

mN

dΩ∗

4π ,

where dΩ∗ is differential solid angle in the CoM frame. Referring back to the discussion of

section 2.1, the matrix element for scattering at angle θ∗ will depend on the momentum

transfer q, and possibly also on the velocity v. Treating isotropic, velocity-independent

scattering to start with, and writing 1
4πσXN (q) ≡ dσ

dΩ∗ , we have

dσXN

dER

∣∣∣∣
v

=
mN

2µ2
XNv2

σXN (q). (2.5)

So, under the assumption of velocity-independent scattering, we can factor the differential

scattering rate as

dR

dER
=

(∫

v>vmin

d3v
f(v)

v

)
nX

2µ2
XN

σXN (q) ≡ g(vmin)
nX

2µ2
XN

σXN (q). (2.6)

Altering notation somewhat from section 2.1, we can write σXN (q) = σXNFN (q)2FX(q)2,

where σXN is the zero-momentum-transfer cross section (including any coherence enhance-

ment), so that |FN (0)| = |FX(0)| = 1.

The scattering rate is usually expressed in terms of the DM scattering cross section

with nucleons, instead of with full nuclei. For dimension-6 interactions between the DM

constituents and SM quarks, the zero-momentum-transfer scattering cross section goes

as |C|2 µ2

Λ4 , where Λ is the suppression scale associated with the interaction, and C is the

coherence enhancement factor. Here, this is given by the product of the integrated densities

relevant to the microscopic interaction for the SM nucleus and the DM state, which we

take to be simply the respective nucleon numbers. Thus σXN = |CN |2
|Cn|2

µ2
XN

µ2
Xn
σXn, where µXn

4Throughout we will consider parameter ranges where the DM-SM interactions are sufficiently weak that

the Earth is optically thin to DM, so that nXf(v) is the DM halo distribution at the location of the Earth.
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Figure 2. Recoil energy spectrum (black, solid curves) for Bessel-function form factor, radius 50 fm,
with DM velocity distribution as given by Standard Halo Model [21], assuming Left: Germanium
detector target, with Gaussian energy response (σ(E) =

√
0.32 + 0.062E/ keV keV), and Right:

Xenon detector target, with Gaussian energy response (σ(E) = 0.6 keV
√
E/ keV), assuming 5 keV

energy threshold for both. The DM state is taken to be composed of 3 × 106 constituents, each
of mass 20GeV, with constituent-SM nucleon cross section of 2 × 10−13 pb. For comparison, blue
(dashed) curves show energy recoil spectrum for a 20GeV WIMP, red (dot-dashed) for a 1TeV
WIMP, both with σXn = 10−9 pb. Energy response functions are taken from projections for future
experiments in [18].

is the DM-nucleon reduced mass, and so5

dR

dER
= g(vmin)

nX

2µ2
Xn

|CN |2

|Cn|2
σXnFN (q)2FX(q)2. (2.7)

2.3 Coherent enhancement of scattering rates

With the assumptions made in the previous section, the zero-momentum transfer cross

section between a DM state with A constituents and a SM nucleus with N constituents

is σ0 ∼ A2N2 µ
2
XN
Λ4 . Taking the mass of the DM state to be ∝ A, the DM number density

is ∝ 1
mX

∝ 1
A , assuming temporarily that all of the DM is of the same size. So, the

overall scattering rate in direct detection experiments will, for mX ≫ mN , be ∝ A for fixed

SM-constituent interactions. This is true if the DM radius R is small enough that typical

momentum transfers do not probe qR ! 1 — otherwise, the scattering rate is suppressed

by the DM form factor, as discussed in section 2.1. While, as discussed in section 2.4,

there might be some number distribution over DM states with different radii, if the mass

distribution and scattering-rate distributions are confined to a small range in logarithmic

size, then the ∝ A enhancement will hold approximately.

Figure 2 shows an example of the direct detection recoil energy spectra resulting from a

scenario of this kind, corresponding to DM particles with a Bessel-function form factor of ra-

dius 50 fm. These are compared to the recoil spectra for standard momentum-independent

(i.e. FX = 1) WIMP scattering. Note that the constituent-SM nucleon cross section re-

quired in the composite model is much smaller than that required in WIMP models giving
5This equation describes what a detector with perfect energy resolution would see. If a detector has

some response function κ such that the differential rate to detect events with true energy ER, occurring

at rate R, at measured energy E′
R, is Rκ(ER, E

′
R)dE

′
R, then the differential rate for measured events is

Rd(ER) =
∫
dE′

R κ(ER, E
′
R)

dR
dE′

R
.

– 6 –
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approximately the same event rates. An additional point is that the much better energy

resolution expected in solid-state experiments would enable them to resolve the peaks and

troughs of a dark form factor corresponding to much larger radii than for liquid-phase (e.g.

Xenon) experiments.

The possible ∝ A enhancement means that, for a given direct detection event rate, the

expected production of lighter single constituents in SM processes in colliders is reduced.

For the example of DM coupling through the Higgs portal, the strongest collider constraint

for DM states with mX < mh/2 comes from the Higgs invisible width. As described in [22],

a bound of < 10% on the invisible branching ratio of the Higgs puts constraints on the

DM-Higgs coupling a factor of a few better than current direct detection experiments for

DM masses a small factor lower than mh/2. Thus, only a modest relative suppression of

collider rates vs direct detection rates is needed to render the direct detection bounds more

constraining. Taking the example in figure 2, with DM constituents of mass 20GeV each

having a nucleon scattering cross section σn = 2×10−13 pb, we would require Higgs invisible

width bounds of ∼ 10−5 to be competitive with current direct detection experiments.

2.4 Recoil spectrum from size distribution

The previous sections considered a dark form factor arising from DM particles having a

single, common size. However, in many models of large composite states (e.g. [13], Q-balls),

the cosmological process through which a population of these states arises generates a

distribution over multiple sizes, which would lead to a smeared-out signature in energy

recoil spectra.

For DM consisting of a set of states Xi, the recoil spectrum for elastic scattering will be

dR

dER
= FN (q)2

∑

i

gi(vmin(µi,N ))
ni

2µ2
i,n

|Ci|2

|Cn|2
σi,nFX,i(q)

2, (2.8)

where the subscripted quantities are those of equation (2.7) for each species Xi. In the

specific case of a spectrum of related states, this may simplify somewhat. Absent astro-

physical self-interactions (see section 4.2), all of the states may be expected to have the

same velocity distribution, i.e. gi = g. From σn ∼ |C|2 µ
2
Xn
Λ4 , we expect the µi,n dependence

to cancel, and additionally, if all of the states are heavy (mi ≫ mN ), then µi,N ≃ mN , so

we can factor out the g dependent term fully. Overall,

dR

dER
≃ nX

2m2
n
FN (q)2g(vmin)

|C|2

|Cn|2
σn
∑

i

ni

nX

|Ci|2

|C|2 FX,i(q)
2 (2.9)

≡ nX

2m2
n
FN (q)2g(vmin)

|C|2

|Cn|2
σnFX(q)2, (2.10)

where nX ≡
∑

i ni, and we have replaced the sum over individual states with a single

effective form factor, choosing C appropriately so that FX(0) = 1.

Figure 3 shows the effect of a distribution over DM states of the kind considered in [13].

The sum over different sizes corresponds to adding together differently scaled form factors,

which smooths out the troughs of the Bessel-function form factor. In this case, we end up

with a form factor which is similar to that obtained from the exchange of a light mediator

particle, F (q) ∝ 1
q2+m2

φ
, but arising entirely from contact interactions, without the need

– 7 –
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Figure 3. Left: example (non-dimensionalised) number distribution of DM states arising from
nucleosynthesis-type process (from [13]). Right: form factors for DM sizes corresponding to points
on left-hand plots (upper curve to blue circle, lower curve to red square), and (black) effective form
factor for whole number distribution. Dashed line shows form factor for light mediator particle,
F (q) ∝ 1/(q2 +m2), with m = 16MeV.

for a light state.6 For a given DM velocity distribution, these kinds of dark form factor

gives an energy recoil spectrum with a shape different from that of standard momentum-

independent scattering, falling off more slowly at high energies than a low-mass WIMP,

and more quickly at low energies than a higher-mass one. In the next section, we discuss

how such form factors could be distinguished from momentum-independent scattering.

2.5 Dependence on DM velocity distribution

From the definition in equation (2.6) of g(vmin) =
∫
v>vmin

d3v f(v)
v , it is clear that, by

choosing f(v) appropriately, we can make g any non-increasing function of vmin (with the

physical constraint that it must fall off very fast past ve + vesc, where ve is the velocity

of Earth relative to the Galactic rest frame, and vesc is the Galactic escape velocity at

the position of the Earth). Although the Standard Halo Model, which posits a Maxwell-

Boltzmann DM velocity distribution, is commonly assumed, it is highly plausible that the

DM velocity distribution at Earth differs from this, perhaps significantly.7

6While it is possible that a model with an intermediate-mass mediator would have additional phe-

nomenology distinguishing it from the case of large composite DM, this would not have to be the case.

Though a light mediator will give rise to self-interactions between galactic DM particles, for heavy (and

thus dilute) DM these will not be frequent enough to have detectable effects on halo shapes. The direct

detection event rate is set by the products of the squared couplings for the SM and the dark sector, so by

making the dark sector coupling large, we could make the required SM coupling very small. Current direct

detection experiments are sensitive enough that any future signals would imply a minimum value of the

SM coupling small enough to be significantly below any direct production constraints. Of course, the SM

coupling may be above this minimum if the dark sector coupling is also small, so direct production signals

are not ruled out. Also, as discussed in [13], direct bounds on the SM couplings of light (m ≪ 100MeV)

states generally imply that they cannot lose any initial cosmological energy density they have to the SM

sufficiently fast (except possibly to neutrinos), requiring the introduction of additional light hidden sector

states that persist to the present day.
7Simulations of dark halo formation indicate that non-Maxwell-Boltzmann velocity distributions may

generically arise [23], and also suggest the possibility of a co-rotating DM disc [24], along with sub-structure

including cold streams [25].

– 8 –
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This has the consequence that, for elastic scattering, the energy recoil spectrum can

be anything of the form FN (q)2FX(q)2 multiplied by a non-increasing distribution, as

discussed in [26]. So, even though the energy recoil spectrum for the dark form factor

looked different from that for a WIMP assuming the same DM velocity distribution, by

changing the velocity distribution we could make a WIMP mimic the (averaged) form

factor spectrum, since this is decreasing with ER.

However, if we have data from multiple experiments, each of which uses a different

type of SM target nucleus, this degeneracy can be lifted. On the assumption that there is

no dark form factor, the event distributions (once we have compensated for the different

target nuclei) with respect to vmin should be the same for each of the experiments [26–31]

— any disagreement indicates the presence of some extra effect. For a dark form factor,

since q(vmin) = 2µXNvmin, changing µXN by changing mN will change the range of FX(q)

that we sample (significantly so if the DM mass is larger than those of the SM target

nuclei). Ref. [18] performs a multi-target analysis along these lines for various DM models,

and a forthcoming paper [32] applies this method to the case of heavy DM coupling via an

intermediate-mass mediator, which as noted above gives form factors that are very similar

to those which may be obtained via averaging over Bessel-function form factors. It is

found8 that such a form factor can be distinguished from contact-like scattering with only

a handful of events in multiple detectors, while effective exposures of only around 1.0 ton

years in multiple detectors could, assuming DM-SM cross sections close to current upper

bounds, allow the determination of the mediator mass (which, in the composite case, would

correspond to the average size of the DM) to around 25% accuracy.

2.6 Detectability of a rising energy recoil spectrum

While sections 2.4 and 2.5 have considered the situation of a distribution over DM sizes, the

more striking scenario of DM states being concentrated around a single size, giving rise to

peaks and troughs in the energy recoil spectrum as per figure 2, has qualitatively different

detectability in direct detection experiments. As described in the previous section, the

energy recoil spectrum for elastic scattering can be anything of the form F (q)2 multiplied by

a non-increasing distribution. While this allows non-increasing sections of an energy recoil

spectrum to be explained by a combination of form factor and DM velocity distribution,

any rises in the spectrum must come from the form factor (or from the presence of inelastic

scattering). Though summing over multiple Bessel-function widths will generally smooth

out the individual peaks into a falling distribution, if the particle sizes were clustered mostly

around a particular value,9 then the troughs/peaks of such an effective form factor could

give a rising recoil spectrum. Assuming a detector has sufficiently good energy resolution

so as not to smooth out the troughs in the underlying recoil spectrum, it will be possible,

with sufficiently many events, to rule out point-like elastic scattering. Furthermore, if

both the falling and rising parts of a trough were visible, this would be a clear sign of a

8We thank John Cherry for providing plots of the exposure time needed to distinguish our effective

form factor.
9For example, due to the binding energy per constituent reaching a maximum value at some size, and

decreasing after that (as for iron in the SM), rendering larger states unstable to fission.

– 9 –



J
H
E
P
0
7
(
2
0
1
5
)
1
3
3

6 8 10 12 14 16 18

ER

keV

2

4

6

8

nbin

Figure 4. Left: energy recoil spectrum (black) for a Bessel-function form factor corresponding to
radius 50 fm, with other parameters as per left-hand plot of figure 2. Blue points (solid lines) are a
particular sample of 50 events from this distribution, binned with an energy width of 0.3 keV. Red
points (dashed lines) show the interval of points that is worst fit by a non-increasing distribution
(see text). The p-value for the test described in appendix C is 0.005. Right: cumulative distribution
functions (CDFs) for p-value from test described in appendix C, for 30 samples (blue), 50 samples
(red), and 100 samples (yellow). Grey (dashed) curve shows the CDF for a uniform underlying
distribution. The upper and lower dashed lines shows the p values corresponding to 2σ and 3σ
significance for rejecting the hypothesis of a non-increasing distribution.

more complicated momentum-dependent form factor, or of some combination of inelastic

scattering modes.

We can test whether a given set of events came from a non-increasing distribution

by locating the energy interval with the ‘worst’ bias towards its high-energy end — here

measured simply by the average energy of the events — and asking what the probability

is that a given sample from a candidate non-increasing distribution would have an interval

that extreme (explained in more detail in appendix C). Figure 4 displays the results of

applying this test to simulated data from a model with a Bessel-function dark form factor,

scaled so that a number of the peaks/troughs are visible in the energy recoil spectrum. As

illustrated, around 12 expected events in the most significant rising section, corresponding

here to ∼ 50 events overall, are sufficient to obtain a two-sigma exclusion of the non-

increasing hypothesis in the majority of cases. While a realistic analysis would need to

take into account the distribution of background events and other issues, this illustrates

that relatively few events from only a single detector may suffice to give very interesting

physical information about DM properties.

3 Low-energy excitations & inelastic scattering

3.1 Properties of low-energy excitations

Another feature generic to large composite states is the presence of low-lying modes, leading

to the possibility of inelastic scattering in which these modes are excited. Such modes can

be broadly characterised as either of “single-particle” or “collective” type. We are most

interested in the collective modes since, as we will discuss, their excitation amplitudes can

– 10 –



J
H
E
P
0
7
(
2
0
1
5
)
1
3
3

be coherently enhanced compared to the single-particle excitations, and thus can dominate

the inelastic scattering rate if they are of low enough energy to be excited.

There are a number of forms such collective excitations could take. The simplest and

most generic type of collective excitations are simply vibrational modes of either the bulk

or of the surface of the large composite state. Alternatively, if the constituents have spins,

moments, or other intrinsic properties, then collective oscillations of these properties, such

as spin waves, can occur. In addition, if the ground state is not spherically symmetric, so the

composite state is deformed in shape as happens for large SM nuclei, then there will be low-

lying rotational modes as well. For definiteness, in this paper we will focus on the inelastic

scattering involving the most universal and model-independent of these collective modes,

namely, the surface and bulk vibrational modes that are of long wavelength compared to

the scale of the individual constituents.

For large composite states consisting of roughly uniform ‘nuclear matter’, the lowest-

energy density waves will generally be surface waves, i.e. volume-preserving oscillations

of the ‘nuclear surface’ [33]. The reason for this is that the energy of the lowest bulk

compressional excitations is set by the speed of sound for such waves, cc ∼
√

K
ρ , where

K parameterises the compressibility of the nuclear material, and ρ is the density. Taking

into account that the lowest possible wavenumber is k ∼ 1/R, the energy of the low-lying

compressional excitations is given by

δEc ∼

√
K

ρ

1

R
. (3.1)

On the other hand, the speed of volume-preserving surface capillary waves is set by cs ∼√
σk
ρ , where σ is the surface tension (this also holds in relativistic hydrodynamics [34]), so

the energy of the low-lying surface excitations is given by

δEs ∼
√
σ

ρ

1

R3/2
. (3.2)

Using the facts that R ∼ A1/3R1, where R1 is the length scale of a single constituent,

and that both the surface tension and bulk compressibility are set by the same underlying

interaction strength between the basic constituents so we have σ ∼ R1K, leads to

δEs

δEc
∼ A−1/6 . (3.3)

Thus for large enough A the energy of the bulk compressional modes is well separated from

the lower-lying surface modes.

We now summarise the dynamics of the surface modes more quantitatively. Classically,

for small-amplitude surface waves of a homogeneous, incompressible, sharp-edged fluid

droplet, we have ρ(r, θ,φ) constant inside R′(θ,φ, t) and zero outside, with

R′(θ,φ, t) = R

⎡

⎣1 +
∑

l≥2

l∑

m=−l

αlm(t)Ylm(θ,φ)

⎤

⎦ , (3.4)
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for amplitude coefficients αlm(t). The l = 1 modes are removed as they correspond to

oscillations of the CoM position, while the l = 0 mode is removed as it is just the monopole

compression oscillation.10 The total Hamiltonian of the surface excitations is

H =
1

2

∑

l≥2,
m=−l,...,+l

(
Bl |α̇lm(t)|2 + Cl |αlm(t)|2

)
, (3.5)

where Bl = ρR5/l and Cl = (l− 1)(l+2)R2σ are the “mass” and “stiffness” parameters of

each mode.

Quantising this system leads to each mode being an independent quantum harmonic

oscillator. The mode frequencies, ωlm, of the oscillations are independent of the azimuthal

spherical harmonic parameter m and are given by [34]

ωl =

√
Cl

Bl
=

(
l(l + 2)(l − 1)σ

R3ρ

)1/2

. (3.6)

The overall excitation energy spectrum ∆E{nl} =
∑

l≥2 nlωl is thus set by the occupation

numbers nl of the (2l+1)-fold-degenerate l-modes. It will be important for our discussion

of the coherent excitation probability of these modes that the simple harmonic oscillator-

like wavefunctions associated to each mode are characterised by a length scale, Rϵl, where

the dimensionless parameter ϵl is given by

ϵl =
1√

2Blωl
. (3.7)

(For an individual mode with occupation number nl ≫ 1 the corresponding classical am-

plitude of oscillation simply scales as |αl| ∼ ϵl
√
nl.) In terms of the underlying parameters

of the composite state

ϵl ∝ A−7/12

(
1

M1R2
1β

)1/4

, (3.8)

where β ∼ σR2
1 is the energy associated to surface tension, and M1 is the mass of individual

constituents. As discussed in [35], the hydrodynamic values of Bl and Cl can differ by

factors of O(10) from those obtained experimentally for SM nuclei, due to the effects of shell

structure etc. However, the hydrodynamic approximation should give a good qualitative

guide to the properties of the low-lying modes of large composite states.

Finally, as mentioned above, as well as collective modes there may also be modes

corresponding to the excitation of ‘single constituents’. If the interior of the state consists of

degenerate fermionic matter, then excitations which move a state from just below the Fermi

surface, through a small change in momentum q approximately tangential to the surface,

will look like quasi-particles of energy q2/(2m∗), where the quasi-particle massm∗ will often

be of order the constituent mass [36]. Since the smallest allowed momentum change is q ∼
1/R, the lowest-energy quasi-particle excitation will have energy ω ∼ 1

2R2m⋆
∼ A−1/3/R, so

10If the amplitude of the surface waves were not small then volume-preserving oscillations require α00 =

−
∑

l≥2,m |αlm|2, but this constraint can be ignored at leading order.
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for large A will be of lower energy than the collective surface modes. However, as discussed

in the next section, in the regimes of interest in this paper, the cross sections for exciting

them are much lower. Additionally, the properties of these modes are model-dependent —

for example, pairing interactions between constituents could lead to superfluidity, as arises

in forms of SM nuclear matter.

3.2 Inelastic scattering form factors

The presence of these low-lying modes means that even low-velocity scattering processes

may have sufficient energy to be inelastic. In particular, scattering off the long-wavelength

collective modes, since these involve all of the constituents, will be coherently enhanced as

for elastic scattering, and have their own momentum-dependent form factors.

Generally, this form factor can be calculated from the overlap of initial and final

state wavefunctions. As derived in appendix A, if the scattering occurs through a scalar

contact interaction with the constituents of the DM state, then (returning to the notation

of section 2.1) the form factor for inelastic scattering into a one-phonon surface mode of

angular momentum number l is, as given in equation (A.8),

F (q) =
3A√
4π

il(2l + 1)1/2ϵljl(qR) (3.9)

(as compared to equation (2.2) for elastic scattering), where ϵl is the natural amplitude

associated with oscillations in that mode. This result is correct to first order in ϵl, and

valid for qR " 1/ϵl (beyond that, the wavefunction overlap can be computed numerically).

Excitations of multiple phonons are associated with further factors of ϵl. Comparing elastic

to inelastic scattering, we see that the latter has form factors corresponding to higher

spherical Bessel functions, and is suppressed by powers of the natural amplitude of the

surface modes; as per equation (3.8), this is parametrically small for large A.

The cross sections for scattering off single-particle excitations add incoherently, giving

σ ∝ A. There may also be further suppression factors. The case of degenerate fermionic

matter may be well-approximated by scattering off a Fermi gas of non-interacting quasi-

particles — as discussed in appendix B, this is, for low momentum transfers, strongly

suppressed by degeneracy factors. Generally, incoherent scattering should only be signif-

icant for momentum transfers comparable to the Fermi momentum (and energy transfers

comparable to the Fermi energy), or for very large composite states where scattering from

collective modes is highly suppressed (appendix B).

3.3 Inelastic recoil spectra

If collisions are inelastic — say, the DM state is excited from mX to mX + δ — then the

minimum velocity [37] for which we can obtain a given recoil energy is11

vmin =
1√

2mNER

(
mNER

µXN
+ δ

)
. (3.10)

11Equation (3.10) is accurate up to multiplicative correction of size at most ∼
√

δ/M — this always gives

a good approximation, since δ < 1
2µXNv2max is required for any excitations to occur, and galactic escape

velocity is deeply non-relativistic.
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We have dER = 2pp′

mN

dΩ∗

4π , where p and p′ are the initial and final momentum in the CoM

frame. The final state phase space available is also proportional to p′, so the differential

rates for elastic and inelastic scattering are related by

dσi
dER

=
dσe
dER

|Mi|2

|Me|2
, (3.11)

where theM are the matrix elements. Aside from differences in the momentum-dependence

of the matrix elements, giving different form factors, the main qualitative difference from

elastic scattering is that vmin is no longer monotonically increasing with ER, instead having

a minimum at ER = δµXN/mN . This is in contrast to elastic scattering, where the fact

that that vmin is monotonically increasing had important consequences (see sections 2.5

and 2.6) for data analysis.

As per above, we generically expect large composite states to have low-energy exci-

tations, which may be excited by scattering with SM nuclei. The energy recoil spectrum

will then be a sum over the spectra for scattering into each of these states (including the

ground state, which gives elastic scattering). Labelling the states by λ,

dR

dER
=

nX

2µ2
Xn

σXnFN (q)2
∑

λ

g(vmin,λ(ER))
|Cλ|2

|Cn|2
FX,λ(q)

2, (3.12)

where Cλ
Cn

gives the ratio of matrix elements (cf. equation (2.7)), and the FX,λ have a

common normalisation such that elastic scattering has F (0) = 1.

Figure 5 shows an example of the energy recoil spectrum arising from a uniform-density

composite state of the kind discussed in section 3.1, in the regime where elastic scattering,

and inelastic scattering into the first few surface modes, are the dominant effects. Due

to the relative suppression of inelastic modes, from both form factor effects and the small

amplitude of surface oscillations, elastic scattering generally dominates in such scenarios.

Finally we comment that the above analysis assumed that the DM particles are dom-

inantly in the ground state. If de-excitation times are long enough, there is a possibility

that there may be a significant cosmological population of excited DM states, altering the

inelastic scattering phenomenology with exothermic interactions being possible. We leave

discussion of this highly model-dependent possibility for future work.

4 Astrophysical capture

In addition to potentially being visible in direct detection experiments, interactions between

DM and SM matter may also lead to the capture of DM by astrophysical objects, the most

interesting generally being various kinds of stars. Once enough DM has accumulated inside

the star, then either self-interactions among the DM (annihilations, self-scattering, etc.), or

more complicated DM-SM interactions, may in some models lead to observable alterations

of stellar properties. For definiteness, we consider the case of asymmetric DM, in which

DM may build up in the star without being destroyed through annihilations.

For spatially-extended DM states, the possibility of large cross sections for inelastic

DM-DM interactions may give rise to modifications of the distribution of captured DM
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Figure 5. Energy recoil spectrum (Germanium target) for spherical DM state with parameters
as per figure 2, incorporating elastic scattering and inelastic excitations of surface modes (black).
Blue (dashed) and red (dot-dashed) curves show contributions from elastic and inelastic scattering
respectively. The energy of the first surface mode is taken to be 28 keV, so a number of modes
contribute at higher recoil energies, flattening out the inelastic recoil spectrum. The amplitude
of the inelastic modes is set a factor ∼ 10 above the hydrodynamic estimate from section 3.1, for
illustrative purposes. Note that the form factor for the first excited mode is 90 degrees out of
phase from that for elastic scattering — this effect can be seen in inelastic SM-SM scattering, e.g.
figure 1 of [35].

inside the star, analogously to the possibility of effects on astrophysical halo shapes men-

tioned in [13]. In models with large velocity kicks after exothermic collisions, these could

take the form of ejecting captured DM from the star, as discussed in e.g. [12]. Alternatively,

other models could lead to the contraction of the captured DM distribution, potentially

all of the way down to a very dense configuration at the centre of the star. Since we have

been considering composite states composed of similar constituents, some kind of repulsive

self-interaction countering the attractive binding forces is already required in such models,

and will generally remove the danger of such a DM configuration collapsing into a black

hole.12 In the absence of any further dynamics, there are no obvious externally observable

consequences of a high-DM-density central region. In particular, the release of binding en-

ergy from fusions will have no significant effect on the star — for symmetric DM, almost all

of the DM captured by the star can generally annihilate with no observable heating, and we

are only injecting a small fraction of this energy. However, in the case of run-away fusions,

there may be inelastic collisions between extremely large composite states, which could

result in the release of large amounts of energy, in small volumes and on rapid timescales.

If some of these de-excitation products couple to the SM strongly enough, the SM energy

injection resulting from these processes may have consequences — for example, [40] points

out that sufficiently fast and localised energy injection inside a white dwarf may ignite a

Type 1a supernova, even in a sub-Chandrasekhar mass dwarf.

12As may occur in models of very heavy fundamental asymmetric DM [38, 39]
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4.1 Effect of dark form factors on capture rate

The composite nature of the DM may also affect the initial capture rate, through the

momentum-dependence of scattering cross sections. From [41], the capture rate per unit

volume is given by
dC

dV
=

∫ ∞

0
du

f(u)

u
wΩ(w) , (4.1)

where u is the velocity at infinity of the DM particle relative to the Sun, f(u) is the DM

speed distribution at infinity, w is the velocity of the DM particle at the scattering location,

and Ω(w) is the scattering rate to less than escape velocity off the material at that location.

The scattering rate is

Ω(w) =
∑

i

niwΘ (Emax,i − Emin)

∫ Emax,i

Emin

dE
dσi
dE

, (4.2)

where ni is the number density of SM nuclear species i, Emin = 1
2mXu2 is the minimum

energy loss required for capture, and Emax,i =
2µ2

i
mi

w2 with µi ≡ mimX/(mi +mX) is the

maximum kinematically-allowed energy loss (taking the ‘cold sun’ approximation where

the scattering nuclei are at rest). In the case where the scattering involves momentum

dependent form factors, then using the notation of section 2.2,

Ω(w) =
∑

i

ni
σXi

2µ2
iw

Θ (qmax,i − qmin,i)

∫ qmax,i

qmin,i

qdq Fi(q)
2FX(q)2 , (4.3)

where qmin,i =
√
mimXu, and qmax,i = 2µiw.

Combining into a single form factor F (q) ≡ Fi(q)FX(q), if F (q) ≃ 1 for q < 1/R, then

for qmax,iR = 2µiwR " 1 the form factor will have no significant effect. If qmax,iR ≫ 1,

but qmin,iR " 1, then assuming that F (q)2 falls off faster than 1/q2,13 the dominant

contribution to the integral will be from momenta ∼ 1/R, giving
∫ qmax,i

qmin,i

qdq F (q)2 ∼ 1

R2
. (4.4)

If qmin,iR ≫ 1 as well, then the integral is
∫ qmax,i

qmin,i

qdq F (q)2 ∼ q2min,iF (qmin,i)
2Λ(qmin,i, qmax,i) (4.5)

where Λ will be ∼ 1, if qmin,i ≪ qmax,i and F (q)2 does not fall off significantly faster

than a power law in q (if qmin,i ≥ qmax,i, then Λ = 0). Turning to the integral over DM

halo velocities, if the velocity distribution is steeply falling past some typical velocity u and

approximately constant (in d3u space) below that, as for a Maxwell-Boltzmann distribution,

then f(u) ≃ nXu2/u3, and we can approximate the integral as

dC

dV
≃ nX

u3

∫ u

0
u duwΩ(w) . (4.6)

13In particular, the Fourier transform of a spherically symmetric distribution with at worst step function

discontinuities eventually falls off at least as fast as 1/q2.
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If qmax,i(u)R = 2µiw(u)R " 1, then no part of this integral has any significant momentum

dependence (for capture off species i). If qmax,iR ≫ 1 throughout (i.e. 2µivescR ≫ 1, where

vesc is the escape velocity), but qmin,i(u)R =
√
mimX uR " 1, then the integral becomes

∫ u

0
u duwΩ(w) ≃ ni

σXi

2µ2
i

1

R2

u2

2
. (4.7)

For momentum-independent scattering with qmax,i ≫ qmin,i(u),

∫ u

0
u duwΩ(w) ≃ ni

σXi

2µ2
i

4µ2
i v

2
esc

u2

2
, (4.8)

(where we assume that vesc ≫ u, so that terms of the form u4 can be ignored), so the

suppression relative to this case is 1
4µ2

i v
2
escR

2 ≡ 1
(kR)2 , where k/2 = µivesc is approximately

the initial momentum in the CoM frame.

If qmin,i(u)R ≫ 1, then

∫ u

0
u duwΩ(w) ≃ ni

σXi

2µ2
i

(∫ 1/(
√
mimXR)

0
u du

1

R2
+

∫ u

1/(
√
mimXR)

u dumimXu2F (
√
mimXu)2Λ(

√
mimXu, 2µiw)

)
. (4.9)

If F (q)2 drops off faster than 1/q4, then this integral is dominated by u ∼ 1/(
√
mimXR),

giving

∼ ni
σXi

2µ2
i

1

2mimXR4
= ni

σXi

2µ2
i

1

R2

u2

2

(
1

mimXR2u2

)
, (4.10)

which has an extra suppression factor. If, as in the Bessel-function case, F (q)2 ∝ 1/q4 for

large q, then the second integral in equation (4.9) contributes some logarithmic multiple

of 1/(mimXR4).

To summarise, for heavy DM (mX ≫ mi) with a radius of R large enough to be

probed in collisions, kR ≫ 1, the elastic capture rate off species i will be suppressed

relative to momentum-independent scattering by ∼ (kR)−2min
(
1, ζ

mimXR2u2

)
, replacing

the usual kinematic suppression14 min
(
1, miv2esc

mXu2

)
(here, ζ is some logarithmic integral).

As an example, if we suppose that the Sun (escape velocity 0.002c) has kR ≃ 1, then

capture in white dwarfs (vesc ∼ 0.02c) is suppressed by a factor of ∼ 10−3, and in neutron

stars (vesc ∼ 0.7c) by ∼ 10−5, compared to standard elastic scattering (for white dwarfs,

the SM nuclear form factor is also important). These suppressions mean that inelastic

scattering may be the dominant capture process, though we leave the investigation of this

to future work.

14For momentum-independent scattering, if qmin,i(u) > qmax,i, then the integral in equation (4.8) is cut

off above when qmin,i(u) ≃ qmax,i, i.e. when u ∼
√

mi/mXvesc ≡ uc (taking µi ≃ mi). This reduces the

value of the integral by a factor of ∼ u2
c/u

2 = miv
2
esc/(mXu2).
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4.2 Self-interactions of captured dark matter

One possible effect of large DM self-interaction cross sections is to increase the capture

rate, in that incoming DM can scatter off already-captured DM as well as off SM nuclei in

the star. However, for heavy DM, and in locations of reasonable astrophysical DM density,

it is generally hard to accumulate enough captured DM to have any significant effect on the

overall capture rate. Supposing that the star has effective capture cross section As for DM

particles streaming through it, the total number of DM particles it captures in its lifetime

is NX ∼ AstsvnX , where nX is the local DM number density and v is the characteristic

relative velocity (of order galactic orbital velocities, ∼ 220 km sec−1). Writing the DM

self-scattering cross-section as σXX , the total cross sectional area for DM-DM scattering

is at most

AX = σXXNX ∼ (σXX/mX)tsvρXAs (4.11)

≃ As

(
σXX/mX

barn/GeV

)
v

220 km sec−1

ts
5Gyr

ρX
0.3GeV cm−3

. (4.12)

For elastically-scattering DM with velocity-independent self-scattering cross section, the

observational limit on the self-scattering cross section is σXX/mX " 1 barn/GeV (see

e.g. [42]). That AX can be of order As for this value means that there are possible DM

models in which self-capture is significant (e.g. [43, 44]). However, for large composite

DM states, the fact that σXX/mX ∝ m−1/3
X for uniform matter means that large states

generally stand little chance of having significant self-capture. Evaluating σXX/mX for a

composite state of interior density ρb, and constituent number A,

σAA

mA
≃ 0.05 barn

GeV
A−1/3

(
1GeV

m1

)1/3(1GeV fm−3

ρb

)2/3

, (4.13)

we see that for SM-like or heavier constituents, large composite states are well below elastic

self-interaction bounds, so do not give interesting self-capture effects.

However, interactions between already-captured DM states could potentially have in-

teresting effects. Particularly interesting are interactions which may lead to ‘run-away’

effects, in which the DM distribution inside the star contracts to a very dense state. This

could arise either from inelastic collisions which are dissipative (i.e. some of the initial KE

is lost into de-excitation products), or from fusions, which result in heavier DM states

that have a correspondingly smaller equilibrium radius inside the star. In sections 4.2.1

and 4.2.2, we will perform some approximate calculations to demonstrate the feasibility of

these scenarios.

4.2.1 Dissipative collisions

For dissipative collisions, the dynamics are governed by the rate at which DM-DM collisions

dissipate energy, versus the rate at which DM-SM collisions add it, re-thermalising the DM.

As an estimate, if some fraction α of integrated phase space density for DM lies within a

spatial radius r, then the rate of self-interactions is set by

ΓXX ∼ σXXnXvX ∼ σXX

r2
αNX

3

4π

√
GM⋆

R3
⋆

∼ 10 day−1α
AX

r2
, (4.14)
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where we have taken v2X ∼ GM(r)
r , and AX is as per equation (4.12). In thermal equilibrium

with the SM matter in the star, the DM states would have an isothermal distribution,

ρX ∼ e−r2/(2r2∗) , r∗ =

(
3T⋆

4πGmXρ⋆

)1/2

, (4.15)

where T⋆ and ρ⋆ are the temperature and density of the stellar core. Evaluating ΓXX for

r = r∗, and putting in values appropriate to the Sun,

ΓXX ∼ 6 yr−1α

(
σXn/mX

10−8 pb/TeV

)( mX

TeV

)2/3(1GeV fm−3

ρb

)2/3

, (4.16)

where we have used equation (D.1) for the solar capture rate, and we have replaced σXX

by the geometrical cross section between two spheres of mass mX and internal density

ρb.15 This interaction timescale is much less than the lifetime of the Sun. So, as long

as scattering with SM particles does not counteract the increase in the local DM number

density that comes about from losing energy in inelastic scatterings, it is inconsistent for

a large fraction of the captured DM to have a basically isotropic steady state phase space

distribution with most of the density within a sphere of isothermal or smaller radius. Thus,

if the DM-SM cross section is large enough, the DM distribution may contract down to a

very dense configuration at the centre of the star.

It remains to check that SM scatterings do not re-thermalise DM fast enough to

avoid this contraction. The viscous drag force on a DM state is approximately fdrag ∼
−mNnNvNσXNvX ≡ −γmXvX , where mN , nN and vN are the mass, number density and

average speed of the SM scatterers, σXN is the momentum transfer cross section between X

and the scatterers, and vX is the velocity of X in the thermal rest frame of the scatterers.

Thus, γ gives the damping rate at which scatterings return vX to the thermal distribution.

For parameters relevant to the Solar core,

γ ≃ mNnNvNσXN

mX
≃ 3× 10−4 yr−1

(
σXn/mX

10−8 pb/TeV

)
. (4.17)

Thus, as long as each inelastic collision does not dissipate too small a fraction of the initial

KE (∼ 10−4 for the parameters in equations. (4.16) and (4.17)), SM-DM thermalisation

will be too slow to prevent contraction. Also, since the thermalisation timescale is much

less than the lifetime of the star, we do expect to contract down to isothermal densities

in the first place (in particular, this means that we will lose almost all of any net angular

momentum the captured DM distribution might have had initially, meaning that rotational

support of the collapsing distribution will not be a worry). The same separation between

self-interaction rates and thermalisation times may, for suitable parameter ranges, apply

in the case of white dwarfs and neutron stars as well (however, for neutron stars there is

an issue of whether thermalisation timescales are less than the lifetime of the star [45]).

15A 1TeV mass sphere of this density has radius ≃ 6 fm, which is of the order of the inverse momentum

transfer in the initial DM-nucleus collisions (for solar capture), so there will not be significant momentum

suppression of the capture rate.
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4.2.2 Fusions

An alternative way to realise run-away contraction is for the DM states to progressively

increase in mass through fusions, and correspondingly for their isothermal radius within the

star to decrease. In contrast to the previous section, this scenario relies on thermalisation

through SM-DM scattering being fast enough. It also relies on fusion cross sections being

large enough, and on fusions remaining energetically favourable up to very large sizes

— these features may naturally be realised in models of composite DM such as those

discussed in [13].

As discussed in appendix B, we expect the coherent momentum transfer cross section

between DM and SM states to scale as σAN ∝ A2/3 for states A with pRA ≫ 1, where p is

the characteristic momentum of the SM scatterers. Thus, γA ≃ (Ap/A)1/3γAp for A ≫ Ap,

where Ap is the size for which the DM states are of radius ∼ 1/p, i.e. pRAp ∼ 1, with γ

given by equation (4.17). In terms of the size Ai of states which have radius ∼ 1/pi, where

pi is the characteristic momentum of SM scatterers in the initial collision (which occurs

at around the escape velocity), thermalisation is naively effective (assuming small enough

injections of kinetic energy on the DM side) for A " 1026Ai

(
σAin

/mAi
10−8 pb/TeV

)3
≡ Ath. The

isothermal distribution for such heavy states may already have volume comparable to their

saturated volume. If not, then further fusions will generally be fast enough to combine

most of the DM into a few very large composites — the initial number density, and so rate

of fusions, will be very high, with build-up continuing as ΓAA ∝ A−1A2/3 ∼ A−1/3 from

number density and cross section factors respectively.

For white dwarfs and neutron stars, we have a similar conclusion that fusions are

potentially fast enough to form a very dense configuration. In these cases, the star is

compact enough that even a DM distribution of radius comparable to the entire star can

still have a high enough self-interaction rate for fusions to combine the majority of the

DM into a dense state (though we would still need to worry about dissipating energy and

angular momentum, especially in the neutron star case).

We note that the estimates in section 4.2.1 and 4.2.2 should be viewed as rough plausi-

bility estimates — proper investigation of these issues would require realistic modelling of

the DM-DM collisions, and of the phase space distribution of DM at each stage of the pro-

cess. In particular, this section has ignored the possibility that DM collision types other

than fusions are important (e.g. fragmentations etc.), and also assumed that the veloc-

ity kicks imparted by fusion de-excitation products are small enough to be re-thermalised

quickly. However, the point was merely to illustrate that run-away contraction is a plausible

possibility.

5 Conclusions

In this paper, we have investigated some of the consequences that follow if a proportion of

DM is composed of large composite states — specifically, states consisting of a large number

of constituents forming an extended, semi-uniform object with a saturated density.

The spatial extension of these objects introduces a dark form factor into elastic scat-

tering amplitudes as discussed in section 2. This has two effects: first, coherently enhanced
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scattering rates with the result that collider bounds on DM cross sections are effectively

weakened by factors of up to 1/A (section 2.3). Second, the introduction of an additional

characteristic momentum dependence, whose effects on direct detection energy recoil spec-

tra, for DM states with radii large compared to SM nuclei, are considered in sections 2.3

and 2.4. We find that, in the most visible cases, such signals may be distinguishable from

elastic scattering, in a halo-velocity-independent manner, with only O(50) scattering events

(section 2.6).

Large composite states will generically have long-wavelength collective excitations,

which give rise to the possibility of low-energy, coherently enhanced inelastic scattering

processes, as discussed in section 3. Though such processes will generally be sub-dominant

in direct detection experiments (section 3.3), in specific models they may have signatures,

in direct detection or astrophysically.

We considered the capture of DM by stars in section 4. The presence of dark form

factors and inelastic scattering may alter the capture rate. In addition we investigated

the possibility of inelastic interactions between captured DM states having an effect on

the DM distribution inside the star. Strikingly, for plausible types of self-interactions, we

argue that it is possible for almost all of the captured DM to accumulate into a very dense

configuration (sections 4.2.1 and 4.2.2).

Finally, we emphasise that our calculations have focused on what we believe to be the

leading, most model-independent features associated with the interaction of large composite

DM states with the SM sector. In specific realisations of large composite DM there may

well be other even more striking signals. It would clearly be interesting to construct specific

models which realise large composite DM and investigate the resulting phenomenology.
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A Matrix elements for inelastic scattering

Suppose that we have a scattering process in which a state i, with initial momentum k,

scatters off a state I with initial momentum p (all non-relativistic), resulting in final states

f and F with momenta k′ and p′ respectively. The matrix element for this, in the Born

approximation, is

A = ⟨f,k′;F,p′|Hint|i,k; I,p⟩ (A.1)

= ⟨f,k;F,p|eiq·(x̂F−x̂r)Hint|i,k; I,p⟩ (A.2)

≡
∫

dr eiq·rVeff(r,v) , (A.3)
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where k′ − k = p− p′ ≡ q is the momentum transfer, v is the relative velocity of i and I,

and ⟨xf ;xF |Hint|k;p⟩ ≡ (2π)−3Veff(xf − xF ,v)eik·xf eip·xF . That is, the matrix element is

given, as a function of the momentum transfer q, by the Fourier transform of a (possibly

velocity-dependent) effective potential Veff , whose form will depend on the interaction

Hamiltonian. If the initial or final states have directional properties (polarisations), Veff

may also depend on those.

As discussed in section 3.1, the surface modes of an incompressible liquid drop can be

obtained by quantising the classical surface oscillations, in which the surface is displaced

as in equation (3.4). Classically, for a scalar interaction between a plane-wave scatterer

and the nuclear matter, the Fourier transform of the interaction potential is given by

F (αlm) =

∫

r<R′(θ,φ)
d3r eiq·rV0 (A.4)

= V0

∫
dΩ

∫ R′(θ,φ)

0
r2dr

∑

l′

(2l′ + 1)il
′
jl′(qr)Pl′(cos θ) , (A.5)

where we have taken q to be in the z direction. For m ̸= 0, this integral is clearly zero.

Expanding to first order in a given αl0, and eliding V0,

F (αl0) = F (0) +
√
4π

∫
dΩαl0R

3 Yl0(θ)
∑

l′

(2l′ + 1)1/2il
′
jl′(qR)Yl′0(θ) (A.6)

= F (0) + αl0
3A√
4π

(2l + 1)1/2iljl(qR) . (A.7)

Treating each mode as a harmonic oscillator, we have α̂l0 = ϵl(âl + â†l ), where ϵl is the

dimensionless amplitude from equation (3.7), and â†l is the creation operator for the l, 0

mode. So the matrix element between the ground state and the first excited state is, to

first order in ϵl, given by

⟨1l|F (α̂)|0⟩ = 3A√
4π

(2l + 1)1/2ilϵljl(qR) . (A.8)

Higher phonon number states are associated with further factors of ϵl (for the appropriate

l numbers), and more factors of qR in front of the spherical Bessel function. For the

expansion to make sense, we must have that jl(qr) varies slowly over the interval R(1± ϵ),

so we need qR " π/ϵl. Beyond this approximation,

⟨1l|F (α̂)|0⟩ =
∫

dαψ∗
1(α)ψ0(α)F (α) , (A.9)

where the ψn are the oscillator wavefunctions (for a harmonic oscillator, Hermite polynomi-

als multiplied by an exponential), and F (α) is from equation (A.5) (note that the oscillator

properties derived in section 3.1 are also to first order in ϵl). In particular, comparing equa-

tion (A.8) to the elastic scattering form factor 3Aj1(qR)/(qR) from equation (2.2), both are

∼ Aϵ2l at qR ∼ 1/ϵl, but the correct form of the inelastic form factor from equation (A.9)

drops off faster than the elastic form factor beyond this, since the wavefunction for the

surface displacement integrates over multiple, cancelling, Bessel-function periods.
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B High-momentum scattering from large composite states

In this appendix, we consider the scattering behaviour of large composite states when the

momentum p of the incoming scatterer is such that pR ≫ 1, where R is the radius of the

composite state.

B.1 Coherent scattering

The elastic scattering form factor should fall off at least as fast as (qR)−2. For

thermalisation-type processes, we are most interested in the rate at which SM scatterings

exchange energy-momentum with the composite state, which for dominantly soft scattering

will be set parametrically by the momentum transfer cross section σtr =
∫
(1− cos θ) dσdΩdΩ.

Writing dσ
dΩ = σ0

4πf(qR)/(qR)4, and using q2 = 2µ2v2(1− cos θ) in the CoM frame,

σtr =
1

2
σ0

∫
d cos θ(1− cos θ)

f(qR)

(qR)4
=

1

2

σ0
(µvR)4

∫ 2µv

0

dq

q
f(qR) . (B.1)

The dimensionless integral on the r.h.s. provides a logarithmic factor Λ, giving

σtr ∼
Λ

(µvR)4
σ0 =

Λ

(kR)4
σ0 . (B.2)

Since σ0 ∝ A2, we have σtr ∼ A2/3 for A large enough that kR ≫ 1 (with Λ changing only

logarithmically with kR), as used in section 4.2.2.

The above assumed that the form factor was that appropriate for plane-wave scattering.

If both the composite state and the SM scatterer are better-localised than the size of the

composite state, then the wavefunction overlap in the form factor will not probe the full

composite state, giving different results.

For inelastic scattering, taking the composite state to be much heavier and much larger

than the scattering state, we can approximate the scattering as being against an infinite

uniform medium (assuming that p is small enough that it does not resolve structure on

the scale of individual constituents). Since the collective modes are linearly dispersing,

ω = cck, then by the usual pseudo-momentum and energy conservation considerations,

scatterers can only excite these if their velocity relative to the medium is greater than cc
(as per superfluids). Putting in some illustrative numbers, the speed of CNO nuclei inside

the Sun is v ≃ 3 × 10−4c, while the speed of sound for compressional modes of SM-like

nuclear matter is ∼ 0.1c.

For a composite state of finite radius, this corresponds to the fact that the modes of

small enough energy to be excited have k ≪ q, so the wavefunction overlap in the form

factor is very small (the q wave oscillates much faster than the k wave, giving a large

cancellation). With collective surface modes, as explained in appendix A, for ϵlqR ≫ 1

there is again a large cancellation.

The above comments assume that the composite state is in its ground state. If there is

some non-zero occupation number for high-wavenumber modes, then down-scatterings of

these are energetically permitted, and will not suffer from the cancellation suppression de-

scribed. We do not consider the case of scattering against excited states here, assuming that

the de-excitation times are much shorter than the times between composite-SM collisions

(for this to be the case, de-excitation will generally have to be to hidden sector states).
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B.2 Incoherent scattering

As discussed in section 3.1, as well as the collective modes, there may also be low-lying

modes corresponding to the excitation of ‘single constituents’ — in the case of degenerate

fermionic matter, excitations in which particles just below the Fermi surface are scattered

to just above it. By the usual Fermi-liquid theory, ignoring interactions and approximating

the scattering as occurring from a non-interacting Fermi gas should provide a good first

approximation. [45] discusses scattering from a degenerate Fermi gas, finding that the

scattering rate for low-energy scatterers is independent of the Fermi momentum (as can

be seen from geometrical considerations). This can result in large suppression factors

compared to the naive scattering rate given by σnv — for scatterers with momentum k ≪
pF , and also low velocity compared to the Fermi velocity, we have an effective suppression

(for energy transfer rates) of ∼
(

k
pF

)4 m3
n

µ2mX
, where mX is the mass of the scatterer, mn is

the effective mass of the quasi-particle, and µ = mXmn/(mX +mn) is the reduced mass.

Since the cross sections for scattering off single-particle excitations also add incoher-

ently, σ ∝ A, coherent scattering should dominate unless the size of the state is very large,

so that as reviewed in the previous sub-section, the coherent transfer cross section grows

slower than A. Making an estimate for SM-like nuclear matter (individual constituents of

mass m1 = 1GeV, bulk nuclear matter density ρ = 1GeV/ fm3) scattering off solar mate-

rial, we would need, very roughly, A ! 1032 for incoherent scattering to start dominating

the transfer cross section (corresponding to R ! 40µm). This is well above the size be-

yond which thermalisations were found to be ineffective in section 4.2.2. However, it does

illustrate why, for example, scattering of DM in neutron stars is dominated by incoherent

scattering.

C Statistical identification of rising distributions

Suppose that we have some (one-dimensional) data points, which we assume are IID sam-

ples from some probability distribution. We wish to test the hypothesis that this distribu-

tion is non-increasing, with respect to some appropriate function of the parameter.

If we expect plausible alternative distributions to feature only one prominent rising

segment (for example, the recoil spectra considered in section 2 have successive Bessel

function peaks suppressed by both the natural fall-off of the Bessel function, and the

velocity distribution), a sensible approach is to locate the interval with the ‘worst’ bias

towards its right-hand end, and ask what the probability is that a given sample from a

candidate non-increasing distribution would have an interval ‘that extreme’.16

A simple measure of how biased an interval is towards its right-hand end is simply

the average position of the points within it. The non-increasing distribution maximising

the probability of right-biased points is clearly the uniform distribution on the interval. If

observations are binned, we can find the exact distribution for the average of bin mid-point

16This would be a poor approach if we expected the rises in the distribution to be e.g. a small periodic

signal super-imposed on some larger background, or more generally any small but structured deviation from

a larger background.
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positions, for some number n of samples, by performing the convolution of the (binned)

uniform distribution on the interval with itself n times. In particular, if the bins are of

uniform widths, this distribution can be computed analytically. If observations are not

binned, then the distribution for the average of the positions is the (rescaled) Irwin-Hall

distribution for n points. In both the discrete and continuous cases, the null distribution

is approximately normal for large n, with variance 1/
√
12n (on the interval [0, 1]).

So, if we have n samples with a mean position of x (rescaling the interval to be of

width 1), we can use the appropriate distribution to find the probability of a mean position

≥ x arising from a uniform distribution on that interval. The test statistic for the whole

sample is then the minimum such p-value for each sub-interval within the sample (since it

is clear that the worst sub-interval will always terminate either at the left sample end, or at

the location of a point, there are a finite number of sub-intervals to test). To determine the

distribution of this test statistic under a candidate non-increasing distribution, Monte Carlo

simulation can be used. A uniform distribution is clearly the non-increasing distribution

most likely to produce fake rises, and while the data may indicate that the underlying

distribution is far from uniform, for reasonably small numbers of samples the p-values

obtained by adopting a uniform null distribution are only slightly worse than those obtained

by allowing a free null distribution constrained by the fit to data. In particular, we adopt

a uniform null distribution for the calculations in figure 4, and find that the p-values are

generally no more than a factor ∼ 2 worse.

One issue is that, in many physical cases, there will be some resolution associated

with our points. Then, the distribution our samples are drawn from is some (positive)

underlying distribution convolved by a (positive) detector response function, so must be

smooth on scales of order the resolution. This means that rightwards bunching on such

scales must be spurious, so should not be considered in our test. The simplest way to solve

this issue, if we expect rising features in plausible alternative distributions to be on scales

larger than the resolution, is to bin the points on around the resolution scale.

Quantitatively, the variance for the average of n uniform random variables on [0, 1] is
1√
12n

, and the expected average position from a linearly rising distribution is 1
2 +

1
6 , so we

would expect to exclude the uniform distribution at a significance of ∼ 0.6
√
n sigma. In

the example from figure 4, with 100 events overall, we expect around 26 in the first rise, so

we would expect to obtain around a 3σ exclusion, assuming that the worst intervals arising

from the null distribution are of approximately that many events. This is indeed what we

observe, with the p-value CDF in the 100-sample case following very closely this normal

approximation (the yellow curve in figure 4, lying almost entirely underneath the yellow

points). The CDFs for the 30 and 50 sample cases are not so well approximated, since the

‘worst interval’ is more variable with small numbers of events.

D Solar capture of heavy WIMPS

Here, we give a very brief review of the capture of weakly-interacting, massive dark matter

particles by the Sun. For X particles much heavier than any of the relevant SM nuclei

within the Sun (here, this means mX ! 400GeV), the rate of capture by the Sun scales as
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C⊙ ∼ σXnρXm−2
X , where σXn is the scattering cross section with SM nucleons (assumed to

be elastic and spin-independent) [41, 46].17 Summing over capture rates from the various

elements in the Sun (the main contributions are from the CNO elements) using a standard

solar model [47], we obtain

C⊙ ≃ 3× 1019 sec−1

(
σXn

10−8 pb

)(
1TeV

mX

)2

, (D.1)

(taking the couplings to protons and neutrons to be the same). We have assumed that

the DM velocity distribution follows the Standard Halo Model — since, for high-mass

WIMPs, only the low-velocity part of the distribution can be captured by scattering events,

modifications that affect the low-velocity distribution will alter the capture rate. direct

detection experiments imply that σXn " 10−8 pb mX
1TeV [48], and the age of the Sun is

t⊙ ≃ 5Gyr, so the number of X particles captured is " 5× 1036
(
1TeV
mX

)
. As a fraction of

the total flux of X particles hitting the Sun, we capture ∼ 3× 10−7
(

σXn/mX

10−8 pb/TeV

)
.

Here, ‘captured’ means that the X particles are in gravitationally bound orbits passing

through the Sun. Subsequent scatterings with material in the Sun will reduce the size of

these orbits further, and eventually the X particles will (ignoring other interactions) settle

into an isothermal distribution ρX ∼ e−r/(2r2⋆), with [49]

r⋆ =

(
3T⊙

4πGmXρ⊙

)1/2

≃ 2× 10−3R⊙

(
TeV

mX

)1/2( T⊙
107K

)1/2(150 g cm−3

ρ⊙

)1/2

, (D.2)

(where the temperature and density are appropriate to the solar core). If mX ≪ 100TeV,

then the initial orbits will be small enough that planetary perturbations can be mostly

neglected, and then thermalisation occurs in less than the lifetime of the Sun if σXn !
3× 10−13 pb (mX/TeV)3/2 [50]. For larger mX , most of the initial orbits are large enough

that the effect of Jupiter perturbs them so that they no longer pass through the Sun,

resulting in most of them never thermalising [50].

Finally we remark that the above calculations apply to the case of capture by elastic

scattering with SM nuclei. If there are sufficiently low-lying excitations that inelastic

scatterings are possible, in either or both direct detection experiments and solar capture,

this may change the possible parameter space. (See [51, 52] for related investigations of

solar capture of inelastic DM.)

17One factor of m−1
X comes from the number density nX = ρXm−1

X , while another arises from the fact

that heavier particles lose a smaller fraction of their kinetic energy in collisions with SM nuclei, so only

the low-speed part of the WIMP velocity distribution can be captured. This also assumes that σXn is low

enough that the Sun is optically thin to X particles, which is the case for σXn " 10−3 pb.
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