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Abstract

We derive the joint density of a Skew Brownian motion, its last visit to the origin, its

local and occupation times. The result allows to obtain explicit analytical formulas for

pricing European options under both a two valued local volatility model and a displaced

diffusion model with constrained volatility.

Key words: Skew Brownian motion, local volatility model, displaced diffusion, local

time, occupation time, simple random walk, option pricing

1 Introduction

A Skew Brownian motion (SBM) with parameter p is a Markov process that evolves as a stand-

ard Brownian motion reflected at the origin so that the next excursion is chosen to be positive

with probability p. SBM was introduced in Ito and McKean (1963) and has been studied ex-

tensively in probability since then. The process naturally appears in diverse applications, e.g.

Appuhamillage et al. (2011) and Lejay (2006), and, in particular, in finance applications, e.g.

Decamps, De Schepper and Goovaerts (2004), Decamps, Goovaerts and Schoutens (2006a,b)

and Rossello (2012). In this paper, we derive the joint distribution of SBM and some of its

functionals and apply this distribution to derivative pricing under both a local volatility model

with discontinuity and a displaced diffusion model with constrained volatility.

Let (Ω,F ,P) be a probability space and let {Wt,Ft, t ≥ 0} be a standard Brownian motion

(BM) with its natural filtration. As usual, denote by R and R+ sets of all real and all non-

negative real numbers respectively. A local volatility model (LVM) for the underlying price St

is given by the following equation

dSt = µ(t)Stdt+ σ(t, St)StdWt, (1)
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where µ(t) ∈ R and σ(t, St) ∈ R+. LVM is a natural extension of the famous Black-Scholes

model. The latter is a particular case of (1) where both drift µ and volatility σ are constant.

LVM is actively used in practice because it can be easily calibrated to the market. Furthermore,

by Gyongy’s lemma (Gyongy (1986)) a wider class of stochastic volatility models can be reduced

to LVM.

A number of approximations to LVM have been developed for both calibration purposes

and qualitative analysis (Guyon (2011)). We apply our probabilistic results primarily to a

particular case of LVM that can be used as a benchmark model for analyzing the quality of

such approximations. Namely, we consider a driftless LVM with a two-valued volatility (two-

valued LVM)

σ(t, S) = σ11{S≥S∗} + σ21{S<S∗}, (2)

where σi > 0, i = 1, 2, S∗ > 0, and 1A is used to denote the indicator function of set A. Without

loss of generality we assume that S∗ = 1 in what follows.

In Section 3.1, we show that if St follows the two-valued LVM then processXt = log(St)/σ(St)

is a solution of a stochastic differential equation (SDE) of the following type

Xt = X0 +

t∫
0

m(Xs)ds+ (2p− 1)L
(0)
t (X) +Wt, (3)

where L
(0)
t (X) is the local time of process Xt at zero, p ∈ (0, 1),

m(x) = m11{x≥0} +m21{x<0}, m1,m2 ∈ R, (4)

and both p and pair (m1,m2) are uniquely determined by σ1 and σ2 (Lemma 3.1). Notice that

SDE (3) belongs to the following class of SDE with local time

dXt = b(Xt)dt+ σ(Xt)dWt +

∫
R

ν(dx)dL
(x)
t (X), (5)

where ν is a finite signed measure with atoms at the points, where both b and σ can be

discontinuous, and L
(x)
t (X) is the local time of process X at x. It is known that SDE (5)

has a unique strong solution under certain general conditions which are satisfied in the case of

equation (3) (e.g. Le Gall (1985), Lejay (2006) and references therein). In particular, if m ≡ 0

then a unique strong solution of equation (3) is a SBM with parameter p which we are going

to denote by W
(p)
t from now on. If m1 = m2 = m, then equation (3) takes the following form

Xt = X0 +mt+ (2p− 1)L
(0)
t +Wt. (6)

A diffusion process defined by equation (6) appears, for instance, in a study of dispersion across

an interface in Appuhamillage et al. (2011) and is named there as a SBM with parameter p

and drift m. By analogy, we refer to the solution of equation (3) with two-valued drift (4) as a

SBM with a two-valued drift. A SBM with two-valued drift (4) is reflected at the origin in the
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same way as a driftless W
(p)
t and evolves as a BM with drift m1 when it is above zero and with

drift m2 when it is below zero.

We derive explicit formulas for the joint density of W
(p)
t , its last visit to the origin, local

and occupation times in both the driftless and the two-valued drift cases. The joint density

is then applied to option pricing under both LVM with volatility (2) and a displaced diffusion

model with constrained volatility (defined in Section 6).

It turns out that in both cases European option prices can be expressed analytically in

terms of both the univariate standard normal distribution and a bivariate normal distribution

only. It should be noted that these models belong to a more general class of diffusion processes

with discontinuity which has been used in financial applications. For example, semi-analytical

results have been obtained in Decamps, Goovaerts and Schoutens (2006a) for LVM where

σ(t, S) = σ(S) is continuous at all but one point. In particular, they have shown how SBM

naturally appears in LVM with such type of discontinuity. A similar model has been considered

in Lipton and Sepp (2011), where semi-analytical results have been obtained for LVM with a

so-called tiled local volatility. Another example is provided by Akahori and Imamuri (2014),

where a model with discontinuity at a single point appeared in relation to pricing of barrier

options.

Joint distributions of SBM and its functionals are of interest in their own right. For example,

the joint density of SBM with a constant drift, its local and occupation times was obtained

in Appuhamillage et al. (2011). The result of Appuhamillage et al. (2011) generalizes the

classic result of Karatzas and Shreve (1984), where the same trivariate density was obtained

for the standard BM. In Appuhamillage et al. (2011) the technique of Ito and McKean (1963)

was modified to obtain a Feynman–Kac formula for SBM and this allowed them to adopt the

method of Karatzas and Shreve (1984). In turn, the method of Karatzas and Shreve (1984) is

based on the computation of the Laplace transform of the joint density. In contrast, we use

a discrete approximation of SBM by a random walk and a key step of our approach consists

in combining an intuitively clear path decomposition for the discrete process with some well

known properties of the symmetric simple random walk. This allows us to derive analytically

tractable expressions for the joint density of discrete analogues of quantities of interest and to

compute the limit density.

A discrete approximation is a well known method for obtaining joint distribution of both

BM and SBM and their functionals (e.g. Lulko (2012) or Takacs (1995)). We were inspired by

the use of this method in Billingsley (1968) for the computation of the joint distribution of the

standard BM, its occupation time and its last visit to the origin.

The paper is organized as follows. We formulate the results on the joint distribution of

SBM and its functionals in Section 2. Section 3 describes the relationship between LVM with

the two-valued volatility and SBM with the two-valued drift. Theorem 3.1 in Section 3.2 is an

example of an option pricing theorem under the two-valued LVM. Proofs are given in Section 4.

In Section 5, we also derive in a special case a simple closed form approximation for option

prices based on the Black-Scholes formula. Effectiveness of the approximate result is tested in

comparison with the exact result in Theorem 3.1 and another approximation derived in Lipton

and Sepp (2011). Finally, we discuss in Section 6 how our results can be applied to derivative

3



pricing under the displaced diffusion model with constrained volatility.

2 Density of Skew Brownian motion, its last visit to the

origin, occupation and local times

Given a continuous semimartingale Xt, t ∈ [0, T ], define the following quantities

τ = max{t ∈ (0, T ] : Xt = 0}, V =

τ∫
τ0

1{Xt≥0}dt (7)

and τ0 = min {t : Xt = 0}. Let L
(x)
t (X) be the symmetric local time of Xt at point x. For

example, if Xt is a SBM with a two-valued drift, then L
(x)
t (X) = lim

ε→0

1
2ε

t∫
0

1{x−ε≤Xu≤x+ε}du. In

what follows we consider only symmetric local times.

Our principal result about joint density of SBM and its functionals is the following theorem.

Theorem 2.1. Let Xt = W
(p)
t and let (τ, V ) be the quantities defined in (7). Given X0 = 0

the joint density of
(
τ, V,XT , L

(0)
T (X)

)
is

ψp,T (t, v, x, l) = 2a(x)h(v, lp)h(t− v, lq)h(T − t, x), 0 ≤ v ≤ t ≤ T, l ≥ 0, (8)

where q = 1 − p, a(x) = p1{x≥0} + q1{x<0} and h(s, y) = |y|√
2πs3

e−
y2

2s , y ∈ R, s ∈ R+, is the

probability density function of the first passage time to zero of the standard BM starting at y.

Theorem 2.2. Let Xt be a SBM with two-valued drift (4). Let
(
τ, V, L

(0)
T (X)

)
be as defined

in (7). Given X0 = 0, the joint density of
(
τ, V,XT , L

(0)
T (X)

)
is given by the following function

ϕT (t, v, x, l) = ψp,T (t, v, x, l)e
−m2

1v+m2
2(T−v)

2
−l(m1p−qm2)+xm(x), 0 ≤ v ≤ t ≤ T, l ≥ 0, (9)

where ψp,T (t, v, z, l) is defined in (8).

Let us briefly comment on the relationship between Theorems 2.1 and 2.2 and some known

results. First, we rewrite the joint density (9) in terms of the total occupation time. Given

T > 0, define U =
∫ T

0
1{Xt≥0}dt the total occupation time of the non-negative half-line during

time period [0, T ] and notice that if X0 = 0 then U = (V + T − τ)1{XT≥0} + V 1{XT<0}. If X

is SBM with parameter p and drift m(x), then this equation and Theorem 2.1 yield that the
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joint density of (τ, U,XT , L
(0)
T (X)) is given by the following equation

φT (t, u, x, l) =


2ph(u+ t− T, lp)h(T − u, lq)h(T − t, x)e−

m2
1u+m2

2(T−u)

2
+xm1−l(pm1−qm2),

if x ≥ 0, l > 0, and t ≤ T, T − t ≤ u ≤ T,

2qh(u, lp)h(t− u, lq)h(T − t, x)e−
m2

1u+m2
2(T−u)

2
+xm2−l(pm1−qm2),

if x < 0, l > 0, and 0 ≤ u ≤ t ≤ T.

(10)

If m1 = m2 = m = const, then we obtain the density of the quartet in the case of constant

drift

φT,m(t, u, x, l) =


2ph(u+ t− T, lp)h(T − u, lq)h(T − t, x)e−

m2T
2

+xm−lm(p−q),

if x ≥ 0, l > 0, and t ≤ T, T − t ≤ u ≤ T,

2qh(u, lp)h(t− u, lq)h(T − t, x)e−
m2T

2
+xm−lm(p−q),

if x < 0, l > 0, and 0 ≤ u ≤ t ≤ T.

Further, setting m = 0 in the preceding display and integrating out variable t we get the

joint density of SBM with parameter p, its (total) occupation and local time (Theorem 1.2 in

Appuhamillage et al. (2011))

ρ(u, z, b) =


T∫
0

2ph(u+ t− T, lp)h(T − u, lq)h(T − t, x)dt, x ≥ 0,

T∫
u

2qh(u, lp)h(T − u, lq)h(T − t, x)dt, x < 0,

=

{
2ph(T − u, bq)h(u, lp+ x), x ≥ 0,

2qh(u, lp)h(T − u, lq − x), x < 0.
(11)

In a particular case p = 1/2 density (11) is the trivariate density obtained in Karatzas and

Shreve (1984) for the standard BM. It should be noticed that the local time in Karatzas and

Shreve (1984) equals a half of the local time we consider in this paper.

3 Application in finance

3.1 Relationship between LVM with discontinuity and SBM

Fix σ1 > 0 and σ2 > 0 and consider the following LVM

dSt = σ(St)StdWt, (12)

where σ(S) = σ11{S≥1} + σ21{S<1}. Lemma 3.1 below explains the relationship between SBM

and LVM defined by (12). This lemma can be regarded as a particular case of Theorem 1 in

Decamps, Goovaerts and Schoutens (2006a)) (see also an argument on p.687 in Decamps, De
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Schepper and Goovaerts (2004)) and is based on application of the symmetric Tanaka-Meyer

formula (e.g. see either formula (7.4) in Karatzas and Shreve (1991), or Exercise 1.25, Chapter

VI in Revuz and Yor (1998), or formula (32) in Lejay (2006)). We provide the proof here for

the sake of completeness and for the reader’s convenience.

Lemma 3.1. If St is a solution of equation (12), then a random process Xt = log(St)/σ(St) is

a solution of the following SDE with local time

dXt = µ(Xt)dt+ dWt + (p− q)dL
(0)
t (X), (13)

where

µ(x) = −σ (e
x)

2
=

{
µ1 = −σ1/ 2, x ≥ 0,

µ2 = −σ2/ 2, x < 0,
(14)

and p = σ2

σ1+σ2
, q = 1 − p = σ1

σ1+σ2
. In other words, Xt is SBM with parameter p = σ2

σ1+σ2
and

discontinuous drift µ(x).

Proof. First, define Yt = log(St) and notice that by Ito’s formula

dYt = −σ
2(St)

2
dt+ σ(St)dWt = −

σ2
(
eYt
)

2
dt+ σ

(
eYt
)
dWt.

In terms of process Yt, we have that Xt = f(Yt), where f(y) =
y
σ1
1{y≥0}+

y
σ2
1{y<0}. It is easy to

see that f is a difference of two convex functions and, hence, Xt = f(Yt) is a semimartingale.

Define f ′(y) = 1
2

(
f ′
l (y) + f

′
r(y)

)
, where f ′

l (y) and f
′
r(y) are the left and right derivatives of f .

It is easy to see that f
′
(y) = 1

σ(y)
1{y ̸=0} +

σ1+σ2

2σ1σ2
1{y=0} and f

′′
(y) = δ(y)

(
1
σ1

− 1
σ2

)
, where δ(x)

is the delta function. Applying the symmetric Tanaka-Meyer formula to semimartingale f(Yt),

we get that

Xt = f(Yt) = f(Y0) +

t∫
0

f ′(Yu)dYu +

∫
R

f
′′
(y)L

(y)
t (Y )dy,

= f(Y0) +

t∫
0

(
1

σ(y)
1{y ̸=0} +

σ1 + σ2
2σ1σ2

1{y=0}

)
dYu +

1

2

(
1

σ1
− 1

σ2

)
L

(0)
t (Y ) (15)

= X0 −
t∫

0

σ
(
eXu
)

2
du+Wt +

1

2

(
1

σ1
− 1

σ2

)
L

(0)
t (Y ), (16)

where L
(0)
t (Y ) is the local time of Yt at zero and where we also used that

t∫
0

1{Yu=0}dYu = 0 and

σ
(
eYt
)
= σ

(
eXt
)
, in order to get (16) from (15).

It is left to express L
(0)
t (Y ) in terms of L

(0)
t (X). Firstly, we apply symmetric Tanaka-Meyer
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formula to semimartingale Xt with convex function |x| and get that

|Xt| = |X0|+
t∫

0

sgn(Xu)dXu + L
(0)
t (X), (17)

where sgn(x) = 1 if x > 0, sgn(x) = −1, if x < 0, and sgn(0) = 0. Secondly, consider |Xt| as
a result of applying convex function g(y) = |f(y)| = y

σ1
1{y≥0} − y

σ2
1{y<0} to semimartingale Yt.

Let g′ be the arithmetic mean of the right and the left derivatives of g. It is easy to see that

g′(y) =
1

2
(g′l(y) + g′r(y)) = sgn(y)

1

σ(y)
+

1

2

(
1

σ1
− 1

σ2

)
1{y=0}.

The second generalised derivative g′′ of g is
(

1
σ1

+ 1
σ2

)
δ(y). Applying symmetric Tanaka-Meyer

formula to g(Yt), we obtain that

|Xt| = |f(Yt)| = |X0|+
t∫

0

g′(Yu)dYu +
1

2

(
1

σ1
+

1

σ2

)
L

(0)
t (Y ). (18)

Noticing that

t∫
0

sgn(Xu)dXu =

t∫
0

sgn(Yu)
1

σ(Yu)

(
−
σ2
(
eYu
)

2
du+ σ

(
eYu
)
dWu

)

=

t∫
0

g′(Yu)dYu − g′(0)

t∫
0

1{Yu=0}dYu =

t∫
0

g′(Yu)dYu

and comparing the right sides of (17) and (18) yields that L
(0)
t (X) = σ1+σ2

2σ1σ2
L

(0)
t (Y ), and, hence,

we get equation dXt = µ(Xt)dt+ dWt + (p− q)dL
(0)
t (X) as claimed. Lemma 3.1 is proved.

Remark 3.1. Denote by QT the probability distribution of SBM with parameter p and drift (4)

on the time interval [0, T ] and by PT the probability distribution of W
(p)
t , t ∈ [0, T ]. By the

Girsanov’s theorem, we have that

dQT

dPT

(X·) = e
∫XT
X0

m(u) du− 1
2

∫ T
0 m2(Xt)dt−(pm1−qm2)L

(0)
T (X)

= e
∫XT
X0

m(u) du− 1
2

∫ T
0 m2(Xt)dt−(pm1−qm2)L

(0)
T (X)

= e
∫ x
x0

m(u) du− 1
2
(m2

1w−m2
2(T−w))−(pm1−qm2)l (19)

for any trajectory X· such that X0 = x0, XT = x,
∫ T

0
1{Xt≥0}dt = w, L

(0)
T (X) = l.
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3.2 Option pricing under the two-valued local volatility model

In this section we show how the results of Section 2 can be applied to option pricing under

the two-valued LVM. We do it by example in the case of a European call option. Recall

first some terminology and facts from option pricing theory. A European call option (call

option) with strike price (strike) K and expiration date T is a derivative whose payoff is

(ST −K)+ = max(ST −K, 0), where ST is the price of the underlying asset at expiration. A

knock-in call option with barrier H is a regular call option that comes into existence only when

the underlying reaches the barrier. A knock-out call option with barrier H is a regular call

option that ceases to exist as soon as the underlying reaches the barrier.

Consider the two valued LVM defined by equations (12) with σ(S) = σ11{S≥1} + σ21{S<1}.

Given value S0 of the underlying at t = 0, strike K and expiry date T , denote by C(S0, K, T )

and Cin(S0, K, T ) the price of a corresponding call option and the price of a corresponding

knock-in call option with the barrier level of 1 respectively, where both prices are computed

under the two-valued LVM. Also, given the same parameters denote by Cout (S0, K, T, σ1, 1)

the price of a knock-out call option with the barrier level of 1 computed under the log-normal

model with volatility σ1.

It is easy to see that if K > 1 then

C(S0, K, T ) =

{
Cin(S0, K, T ) + Cout (S0, K, T, σ1, 1) , S0 ≥ 1,

Cin(S0, K, T ), S0 < 1.

Prices of barrier options under the log-normal model are known (e.g., see ch.22 in Hull (2009)).

Therefore, if K > 1, it is only left to find Cin(S0, K, T ) under the two-valued LVM in order

to price a call option. A formula for the knock-in call option price Cin(S0, K, T ) is given by

Theorem 3.1 below.

The price of a call option with strike K < 1 and prices of put options can be obtained in a

similar way. Notice that in the case of a call (put) option with strike K < 1 (K > 1) it seems

technically more convenient to start with computing the price of a put (call) option with the

same parameters and then to use the put-call parity equation.

Let us introduce some functions that will appear in Theorem 3.1 and its proof. Let

n(x) =
e−

x2

2

√
2π
, x ∈ R, and Φ(z) =

∫ z

−∞
n(y)dy, z ∈ R, (20)

be the probability density function and the cumulative distribution function respectively of the

standard normal distribution. Let

N (x, y, ρ) =

x∫
−∞

y∫
−∞

e
1

1−ρ2

(
− z21

2
−ρz1z2+

z22
2

)

2π
√

1− ρ2
dz1dz2, x, y ∈ R, (21)

be the joint cumulative distribution function of the bivariate normal distribution with zero
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means, unit variances and correlation ρ. Also, denote

ϕ(S) =
log(S)

σ(S)
=

log(S)

σ1
1{S≥1} +

log(S)

σ2
1{S<1},

and

h(t, x, b) =
x√
2πt3

e−
(x+bt)2

2t , t ∈ R+, x, b ∈ R, (22)

Finally, to simplify notation, we assume in Theorem 3.1 that the risk-free interest rate is zero.

Theorem 3.1. Let St be the random process that follows (12) with σ(S) = σ11{S≥1}+σ21{S<1}.

Given K > 0 and S0 > 0 denote k = ϕ(K) and x0 = ϕ(S0). Let Cin = Cin(S0, K, T ) be the price

of a knock-in European call option with strike K and expiration date T given the initial price

S0.

1) If S0 ≥ 1, K > 1, then

Cin = pe−
σ1x0

2

(
Fcall

(σ1
2
, x0

)
− eσ1kFcall

(
−σ1

2
, x0

))
,

where

Fcall(a, x0) =

T∫
0

F1(T − t)F2(a, t, x0, 1)e
− tσ2

1
8 dt, (23)

and where, in turn,

F1(s) =

√
2

(
σ1e

−σ2
2s

8 − σ2e
−σ2

1s

8

)
+
√
πsσ1σ2

(
Φ
(√

sσ2

2

)
− Φ

(√
sσ1

2

))
√
πs(σ1 − σ2)

, (24)

F2(a, t, x0) =
1√
2π

√
t
eka−

(|x0|+|k|)2
2t + aea|x0|+ ta2

2

(
1− Φ

(
|x0|+ |k|√

t
− a

√
t

))
. (25)

2) If S0 < 1, K > 1, then

Cin = 2pe
σ2x0

2

(
G
(
−σ1

2
, x0

)
− ekσ1G

(σ1
2
, x0

))

G (a, x0) =

T∫
0

e−
σ2
1v

8
−σ2

2(T−v)

8 e
σ2
1
8

(
u( p

q )
2
+v

)
−|x0| paq G1

(
(a, v, |x0|,−

p

q
a

)
dv

where

G1(a, v, y, w) =

∞∫
k

∞∫
0

h(v, lp+ x, a)h(T − v, lq + y, w)dldx.

In turn, G1 can be expressed in terms of the univariate standard normal distribution (20)
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and a bivariate normal cdf (21) as follows

G1(a, y, v, w)q
√
v(T − v)

=
n (γX + Y ) n(X)

1 + γ2
− γY

(1 + γ2)3/2
n

(
Y√
1 + γ2

)
Φ

(
−(1 + γ2)X + γY√

1 + γ2

)

− α√
1 + γ2

n

(
Y√
1 + γ2

)
Φ

(
−(1 + γ2)X + γY√

1 + γ2

)

− βn(X)Φ(−γX − Y )− γ√
2π(1 + γ2)

n

(
Y√
1 + γ2

)
Φ

(
−(1 + γ2)X + γY√

1 + γ2

)

+ αβN

(
−X,− Y√

1 + γ2
,− γ√

1 + γ2

)

where α = w
√
T − v, β = a

√
v, γ = p

q

√
T−v√
v
, X = y+(T−v)w√

T−v
and Y = qk−py−pw(T−v)+qva

q
√
v

.

Theorem 3.1 is proved in Section 4.3.

4 Proofs

4.1 Proofs of Theorem 2.1 and Theorem 2.2

We prove Theorem 2.1 only. Theorem 2.2 can be proved in a similar way with straightforward

modifications (see Remark 4.1).

Given n ∈ N consider a discrete time Markov chain S
(n)
k ∈ Z, k ∈ Z+, which evolves like a

simple symmetric random walk with unit jumps except at 0. If S
(n)
k = 0, then the chain jumps

up by one with probability p and down by one with probability q = 1− p. Define the following

stochastic process

X
(n)
t =

1√
n
S
(n)
[nt] +

nt− [nt]√
n

(
S
(n)
1+[nt] − S

(n)
[nt]

)
, t ≥ 0. (26)

Let us define the following quantities

τn = max
{
k : S

(n)
k = 0

}
, Vn =

τn∑
i=0

1{
S
(n)
i ≥0,S

(n)
i+1≥0

}, Ln =

[Tn]∑
i=0

1{
S
(n)
i =0

}. (27)

Theorem 2.1 is implied by Lemmas 4.1 and 4.2 below.

Lemma 4.1. Let X
(n)
t be the process defined by (26) and let τn, Vn, Ln be quantities defined by

(27). Then (
τn
n
,
Vn
n
,
Ln√
n
,X

(n)
T

)
→
(
τ, V, L

(0)
T (W (p)),W

(p)
T

)
,

in distribution, as n→ ∞.
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Proof. It has been proved in Harrison and Shepp (1981) that X
(n)
t converges in the space of

continuous functions, as n→ ∞, to SBM W
(p)
t . This implies the claim of the lemma.

Lemma 4.2. Let X
(n)
t be the process defined by (26) and let τn, Vn and Ln be quantities defined

by (27). Suppose that sequences of numbers rn, r1,n and kn are such that

2r1,n
n

→ x ∈ [0, T ],
2(rn − r1,n)

n
→ y ∈ [0, T ],

kn√
n
→ l ∈ R+, as n→ ∞,

where x+ y = t ≤ T .

1) If, in addition, jn√
n
→ z ≥ 0, as n→ ∞, then

lim
n→∞

n3

8
P
(
Vn = 2r1,n, τn = 2rn, Ln = kn, X

(n)
1 = jn|X(n)

0 = 0
)

=
2p2ql2z

[2πx(t− x)(T − t)]3/2
e
− z2

2(T−t)
− l2

2

(
p2

x
+ q2

t−x

)
.

2) If, in addition, jn√
n
→ z < 0, as n→ ∞, then

lim
n→∞

n3

8
P
(
Vn = 2r1,n, τn = 2rn, L

(n)
n = kn, X

(n)
1 = jn|X(n)

0 = 0
)

=
2p2ql2|z|

[2πx(t− x)(T − t)]3/2
e
− z2

2(T−t)
− l2

2

(
p2

x
+ q2

t−x

)
.

Proof. Recall that X
(n)
t is the process defined by (26).

Definition 4.1. Given n define ti =
i
n
, i = 0, 1, . . . , [Tn], and consider a sequence of states

X
(n)
ti , i = 0, 1, . . . , n.

• A subsequence
(
X

(n)
tk
, X

(n)
tk+1

, . . . , X
(n)
tk+2d

)
such that X

(n)
tk

= 0, X
(n)
tk+1

> 0, . . . , X
(n)
tk+2d−1

> 0,

X
(n)
tk+2d

= 0, is called a positive cycle of length 2d.

A subsequence
(
X

(n)
tk
, X

(n)
tk+1

, . . . , X
(n)
tk+2d

)
such that X

(n)
tk

= 0, X
(n)
tk+1

< 0, . . . , X
(n)
tk+2d−1

< 0,

X
(n)
tk+2d

= 0, is called a negative cycle of length 2d.

• Denote by Rn the number of positive cycles in a sequence X
(n)
tk
, k = 0, . . . , [Tn]. Given

r, r1, k, i ∈ Z+, where r1 ≤ r and i ≤ k, let Ar,r1,k,i be a set of sequences X
(n)
tk
, k =

0, . . . , [Tn], for which τn = 2r, Ln = k, Rn = i, Vn = 2r1.

Notice that the total number of both positive and negative cycles equals Ln. We prove the

lemma only if z ≥ 0 (the case z < 0 can be considered similar).
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Given j ≥ 0 denote Bn,r,j =
{
X

(n)
t2r+1

> 0, . . . , X
(n)
t[Tn]−1

> 0, X
(n)
T = j

}
. It is easy to see that

P (Vn = 2r1,n, τn = 2rn, Ln = kn, X
(n)
T = jn|X(n)

0 = 0
)

=

(
kn∑
i=0

P(Arn,r1,n,kn,i)

)
P
(
Bn,rn,jn |X

(n)
t2rn

= 0
)

and the statement of the lemma is implied by two following propositions.

Proposition 4.1. Under assumptions of Lemma 4.2

lim
n→∞

n2

(
kn∑
i=0

P(Arn,r1,n,kn,i)

)
=

2pql2

π(x(t− x))3/2
e
− l2

2

(
p2

x
+ q2

t−x

)
= 4h(x, pl)h(t− x, lq).

Proposition 4.2. 1) Under assumptions of Part 1) of Lemma 4.2,

lim
n→∞

nP
(
X

(n)
t2rn+1

> 0, . . . , X
(n)
t[Tn]−1

> 0, X
(n)
T = jn|X(n)

t2rn
= 0
)

=

√
2

π

2pz

(T − t)3/2
e−

z2

2(T−t) = 4ph(T − t, z).

2) Under assumptions of Part 2) of Lemma 4.2,

lim
n→∞

nP
(
X

(n)
t2rn+1

< 0, . . . , X
(n)
t[Tn]−1

< 0, X
(n)
T = jn|X(n)

t2rn
= 0
)

=

√
2

π

2q|z|
(T − t)3/2

e−
z2

2(T−t) = 4qh(T − t, z).

These propositions are proved in Section 4.2.

Remark 4.1. Theorem 2.2 can be proved by modifying appropriately the proof of Theorem

2.1. First of all, one should consider Markov chain S
(n)
k ∈ Z, k ∈ Z+, which jumps up/down by

one with probabilities 1
2

(
1± m1√

n

)
in the positive half-space; with probabilities 1

2

(
1± m2√

n

)
in

the negative half-space and with probabilities p and q = 1−p respectively starting at the origin.

Continuous time random process X
(n)
t is defined by equation (26) as before. Convergence of

X
(n)
t to a SBM with two-valued drift (4) can be proved by a straightforward modification of the

proof in Harrison and Shepp (1981) (see also Lejay (2006)) in the driftless case. Convergence

implies an analogue of Lemma 4.1. It is also rather straightforward to make appropriate changes

in both the statement and proof of Lemma 4.2 in the case of non-zero drift. We skip details.

Alternatively, one can combine Theorem 2.1 and the Girsanov’s theorem (see Remark 3.1)

to obtain Theorem 2.2.

4.2 Proofs of Proposition 4.1 and Proposition 4.2

We write r = rn, r1 = r1,n, k = kn and j = jn throughout proofs.

12



Proof of Proposition 4.1. It is easy to see that probabilities of a positive cycle of length 2d

and of a negative cycle of length 2d, where d ≥ 1, are equal to 2p/4d and 2q/4d, respectively.

Therefore a probability of a single path from Ar,r1,k,i is equal to
2kpiqk−i

22r
. Denote by N2d,i the

number of paths of length 2d, starting and ending at the origin and formed by i cycles regardless

of their signs. It is easy to see that the number of paths of length 2d, starting and ending at

the origin and formed by i cycles of the same sign is equal to N2d,i/2
i. Therefore, the number

of trajectories forming set Ar,r1,k,i is equal to
(
k
i

)N2r1,i

2i
N2(r−r1),k−i

2k−i . Also, notice that
N2d,i

22d
= f

(i)
2d ,

where f
(i)
2d is the probability that the i−th return of SSRW to the origin occurs at time 2d.

Summarizing all these facts, we obtain that

P(Ar,r1,k,i) =

(
k

i

)
piqk−if

(i)
2r1
f
(k−i)
2(r−r1)

.

It is known (Section 7, ch.3, Feller (1968)) that f
(i)
2d = i

2d−i
1

22d−i

(
2d−i
d

)
. If d is large and i2/(2d)

is not very large or close to zero, then the following approximations can be used (equation (7.6)

in Section 7, ch.3, Feller (1968))

f
(i)
2d ≈

√
2

π

i

(2d− i)3/2
e−

i2

2(2d−i) .

Using this approximation, it can be shown that∣∣∣∣∣∣
k∑

i=0

P(Ar,r1,k,i)−
2

π

k∑
i=0

(
k
i

)
piqk−ii(k − i)e

− i2

2(2r1−i)
− (k−i)2

2(2(r−r1)−k+i)

(2r1 − i)3/2(2(r − r1)− k + i)3/2

∣∣∣∣∣∣→ 0, (28)

as n→ ∞. Under assumptions of Lemma 4.2, the second sum in the preceding display can be

replaced by the following one

1

n2

2l2

π(xy)3/2

k∑
i=0

(
k
i

)
piqk−ii(k − i)

k2
e
− l2

2

(
i2

k2x
+ 1

y (1−
i
k)

2
)
, (29)

which, in turn, is equal to the expectation E
(
F
(
ξn
k

))
, where ξn is a Binomial random variable

with parameters kn and p, and F (z) = z(1− z)e
− l2

2

(
z2

x
+

(1−z)2

y

)
. By the Law of Large Numbers

E

(
F

(
ξn
k

))
→ F (p) = pqe

− l2

2

(
p2

x
+ q2

y

)
, as n→ ∞, (30)

Combining equations (28), (29) and (30), we get that

n2

k∑
i=0

P(Ar,r1,k,i) = n2

k∑
i=0

(
k

i

)
piqk−if

(i)
2r1
f
(k−i)
2(r−r1)

→ 2pql2

π(x(t− x))3/2
e
− l2

2

(
p2

x
+ q2

t−x

)
,

as n→ ∞.
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Proposition 4.2 is proved in Billingsley (1968), chapter 9, as a part of the derivation of the

joint distribution of the standard BM, its last visit to the origin and the occupation time. We

give the proof here for the sake of completeness and for reader’s convenience.

Proof of Proposition 4.2. For simplicity of notation and without loss of generality, we

assume that [Tn] is an integer, so that t[Tn] = T . It is easy to see that the probability of a

single trajectory such that

X
(n)
t2r = 0, X

(n)
t2r+1

> 0, . . . , X
(n)
t[Tn]−1

> 0, X
(n)
t[Tn]

= X
(n)
T = j > 0,

is equal to p/2n−2r−1. Therefore,

P
(
X

(n)
t2r+1

> 0, . . . , X
(n)
tTn−1

> 0, X
(n)
T = j|X(n)

t2r = 0
)

= 2pP (S2r+1 > 0, . . . , STn−1 > 0, STn = j|S2r = 0) ,

where Sk is the simple symmetric random walk (SSRW). If Tn−2r and j have the same parity,

then

P (S2r+1 > 0, . . . , Sn−1 > 0, STn = j|S2r = 0) =
j

Tn− 2r
P(STn−2r = j|S0 = 0).

It is easy to see that under assumptions of the lemma j√
Tn−2r

→ z√
T−t

, hence, by the Local

Limit Theorem √
Tn− 2r

2
P(STn−2r = j|S0 = 0) → 1√

2π
e−

z2

2(T−t) .

We conclude the proof by noticing that limn→∞ n 2j
(Tn−2r)3/2

= 2z
(T−t)3/2

.

4.3 Proof of Theorem 3.1

Proof of Part 1) of Theorem 3.1. It is easy to see that if S0 > 1 and K > 1, then we get the

following equation for the option price

Cin =

∞∫
k

∞∫
0

∫
ΓT,1

(
eσ1x − eσ1k

)
e−(t0+v+s)λ1−uλ2+(x−x0)µ1h (t0, x0)ψp,T−t0(u+ v, v, x, l)dt0dxdldvds

where λi =
σ2
i

8
, i = 1, 2, t0 is the hitting time to zero, v and u are occupation times of the positive

half-line and of the negative half-line respectively which are observed between t0 and the last

visit to the origin (i.e. t0+ v+u), s = T − (t0+ v+u), ΓT,1 = {(t0, v, u, s) : t0+ v+u+ s = T}
and where ψp,T−t0 is given by (8), i.e. ψp,T−t0(u+ v, v, x, l) = 2ph(v, lp)h(u, lq)h(s, x), because

x > 0. Using the convolution property of hitting times, we get that

∫
t0+s=t

h (t0, x0)h(s, x)dt0ds =

t∫
0

h (t− s, x0)h(s, x)dtds = h (t, |x0|+ |x|) .

14



Notice that 2ph(v, lp)h(u, lq)h (t, |x0|+ |x|) = ψp,T (v+u, v, |x0|+ |x|, l) and rewrite the expres-

sion for Cin as follows

Cin =

∞∫
k

∞∫
0

∫
ΓT,2

(
eσ1x − eσ1k

)
ψp,T (v + u, v, |x0|+ |x|, l)e−(t+v)λ1−uλ2eµ1(x−x0)dldtdvdx,

where ΓT,2 = {(t, v, u) : t+ v + u = T}. Denoting

g(u, v) = 2

∞∫
0

h(v, lp)h(u, lq)dl =
pq

√
2π (p2u+ q2v)3/2

we can rewrite

Cin = p

∞∫
k

∫
ΓT,2

(
eσ1x − eσ1k

)
g(u, v)h(t, |x0|+ |x|)e−(t+v)λ1−uλ2eµ1(x−x0)dtdvdx. (31)

Further, recalling that σ1 = −2µ1 we arrive to the following expression for the price

Cin = pe−
σ1x0

2

(
Fcall

(σ1
2
, x0

)
− eσ1kFcall

(
−σ1

2
, x0

))
,

where

Fcall(α, x0) =

∫ ∞

k

∫
t+v+u=T

g(u, v)e−vλ1−uλ2h (t, |x0|+ |x|) eαxe−tλ1dtdvdx.

Integrating with respect to variables u, v, provided that u + v = T − t = s is fixed, we obtain

the function

F1(s) =

∫
v+u=s

g(u, v)e−vλ1−uλ2dv

=
σ1σ2
σ1 − σ2

[
2√
2πs

(
e−

1
8
sσ2

2

σ2
− e−

1
8
sσ2

1

σ1

)
+

(
Φ

(√
sσ2
2

)
− Φ

(√
sσ1
2

))]
,

defined earlier by equation (24). Integrating out variable x, we get∫ ∞

k

h (t, |x0|+ |x|) eαxdx =
1√
2π

√
t
ekα−

(|x0|+|k|)2
2t

+ αe
tα2

2
−α|x0|

(
1− Φ

(
|x0|+ |k| − tα√

t

))
= F2(α, t, x0),
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where function F2(α, t, x0) is defined by (25). Finally, we rewrite Fcall in terms of F1 and F2

Fcall(α, x0) =

T∫
0

F1(T − t)F2(α, t, x0)e
− tσ2

1
8 dt,

as claimed in (23).

Proof of Part 2) of Theorem 3.1. If S0 < 1 and K > 1, then x0 = ϕ(S0) = log(S0)
σ2

< 0,

k = ϕ(K) = log(K)
σ1

> 0, and we get, using notation introduced in the proof of Part 1), that

Cin =

∞∫
k

∞∫
0

∫
ΓT,1

(
eσ1x − eσ1k

)
h (t0, x0)ψp,T−t0(v+u, v, x, l)e

−λ1(v+s)−λ2(t0+u)+µ1x−µ2x0dt0dxdldvds,

where, as before, h(t0, x0)ψp,T−t0(u+ v, v, x, l) = 2ph(t0, x0)h(v, lp)h(u, lq)h(s, x). We use again

the convolution property of hitting times as in Part 1) but now integrate products h(v, lp)h(s, x)

and h(t0, x0)h(u, lq) given constraints v + s = const and t0 + u = const, respectively. It leads

to the following expression for the price

Cin = 2p

T∫
0

∞∫
k

∞∫
0

(
eσ1x − eσ1k

)
h(v, lp+ x)h(u, lq + |x0|)e−λ1v−λ2u+µ1x−µ2x0dldxdv

= 2pe
σ2x0

2

T∫
0

e−
σ2
1v

8
−σ2

2u

8

∞∫
k

∞∫
0

(
eσ1x − eσ1k

)
h(v, lp+ x)h(u, lq + |x0|)e−

σ1x
2 dldxdv

= 2pe
σ2x0

2

T∫
0

e−
σ2
1v

8
−σ2

2u

8

∞∫
k

∞∫
0

h(v, lp+ x)h(u, lq + |x0|)e
σ1x
2 dldxdv

− 2pe
σ2x0

2
+σ1k

T∫
0

e−
σ2
1v

8
−σ2

2u

8

∞∫
k

∞∫
0

h(v, lp+ x)h(u, lq + |x0|)e−
σ1x
2 dldxdv

where u = T − v and µi = −σi/2 and λi = σ2
i /8. Rewrite

Cin = 2pe
σ2x0

2

T∫
0

e−
σ2
1v

8
−σ2

2(T−v)

8

(
I
(
−σ1

2
, |x0|, v

)
− eσ1kI

(σ1
2
, |x0|, v

))
dv, (32)

where

I(a, y, v) =

∞∫
k

∞∫
0

h(v, lp+ x)h(u, lq + y)e−axdldx, y ≥ 0. (33)
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Notice that

h(v, lp+ x)h(u, lq + y)e−ax = h(v, lp+ x, a)e
va2

2
+alph(u, lq + y)

= e
va2

2
+u

2 (
ap
q )

2
−ay p

qh(v, lp+ x, a)h
(
u, lq + y,−apq−1

)
where h(t, x, b) is defined by (22), so we can rewrite

I(a, y, v) = e
va2

2
+T−v

2 (ap
q )

2
−ay p

qG1

(
a, v, y,−apq−1

)
,

where

G1(a, v, y, w) =

∞∫
k

∞∫
0

h(v, lp+ x, a)h(u, lq + y, w)dldx. (34)

Further, noticing that

h(v, lp+ x, a)h(u, lq + y, w) =
(lp+ x)(lq + y)

2π(uv)3/2
e−

(lp+x+va)2

2v
− (lq+y+uw)2

2u

and changing variables z1 =
lp+x+av√

v
and z2 =

lq+y+uw√
u

, we can rewrite the expression for G1 as

follows

G1(a, y, v, w) =

∫
D

e−
w2
1
2
−w2

2
2

2π

(z1 − a
√
v)(z2 − w

√
u)

q
√
uv

dz1dz2

where D = {(z1, z2) ∈ R2 : z2
√
u > y+ uw, −z2p

√
u+ q

√
vw2 > qk− py+ qva− puw}. Denote

α = w
√
u, β = a

√
v, X =

y + uw√
u

, Y =
qk − py − puw + qva

q
√
v

, γ =
p

q

√
u

v
,

and Γ = {(z1, z2) : z1 > Y + γz2, z2 > X}. In these notations

G1(a, y, v, w) =

∫
Γ

e−
z21
2
− z22

2

2π

(z1 − β)(z2 − α)

q
√
uv

dz1dz2 =
1

q
√
uv

J(a, y, v, w),

where J(a, y, v, w) =
∫
Γ
n(z1)n(z2)(z1 − β)(z2 − α)dz1dz2, and function n is defined by (20).

Notice that

J(a, y, v, w) =

∫
Γ

z1z2n(z1)n(z2)dz1dz2 − α

∫
Γ

z1n(z1)n(z2)dz1dz2

− β

∫
Γ

z2n(z1)n(z2)dz1dz2 + αβ

∫
Γ

n(z1)n(z2)dz1dz2

:= J1 + J2 + J3 + J4.
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It can be shown (we skip intermediate computational details) that

J1 =
n (γX + Y ) n(X)

1 + γ2
− γY

(1 + γ2)3/2
n

(
Y√
1 + γ2

)
Φ

(
−(1 + γ2)X + γY√

1 + γ2

)

J2 = − α√
1 + γ2

n

(
Y√
1 + γ2

)
Φ

(
−X(1 + γ2) + γY√

1 + γ2

)

J3 = −βn(X)Φ(−γX − Y )− γ√
2π(1 + γ2)

n

(
Y√
1 + γ2

)
Φ

(
−(1 + γ2)X + γY√

1 + γ2

)

J4 = αβN

(
−X,− Y√

1 + γ2
,− γ√

1 + γ2

)

This finishes the proof of the second part of the theorem.

5 A Black-Scholes approximation

In this section, we derive in the special case where S0 = 1 a surprisingly simple and accurate

approximation for the option price which is based on the Black-Scholes (BS) formula. We use

the same notation as in Sections 3.2 and 4.3.

If S0 = 1 (x0 = 0) and K > 1 (k > 0) then C = Cin and equation (31) becomes

C = p

∞∫
k

∫
t+u+v=T

(
eσ1x − eσ1k

)
g(u, v)h(t, x)e−(t+v)λ1−uλ2eµ1xdtdvdx. (35)

The approximation of the call price is motivated by the following idea. As k > 0 we ”should

be mostly interested” in those trajectories of Xt that spend ”most of their lifetime” in region

Xt > 0, where σ = σ1. Therefore, let us first replace function e−(t+v)λ1−uλ2 in (35) by e−λ1T .

Secondly, integrating out variables v and u = T − t− v gives

T−t∫
0

g(u, v)dv =

T−t∫
0

pq√
2π(p2(T − t− v) + q2v)3/2

dv =
2√

2π(T − t)
= 2p(0, T − t),

where p(0, T − t) is the value at 0 of p(y, T − t), the transition density of the standard BM at

time T − t, so that the result of integration does not depend on p and q. Thus, we arrive, after
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expressing both λ1 and µ1 in terms of σ1, to the following approximation for the option price

C ≈ 2p

∞∫
k

(
eσ1x − eσ1k

)
e−

σ2
1T

8 e−
σ1x
2

 T∫
0

h(t, x)p(0, T − t)dt

 dx

= 2p

∞∫
k

(
eσ1x − eσ1k

)
e−

σ2
1T

8
−σ1x

2 p(x, T )dx =
2σ2

σ1 + σ2
BSC(σ1)

where BSC(σ1) is the BS price of the option under the log-normal model with volatility σ1. It

is obvious that if we set σ1 = σ2 on both sides of the preceding display, then the approximation

becomes the BS formula for the call option price with volatility σ1.

Using the same argument, we obtain a similar approximation for the put option price.

Namely, if K < 1 and S0 = 1, then Put ≈ 2qBSP(σ2) =
2σ1

σ1+σ2
BSP(σ2), where BSP(σ2) is the BS

price of the put option with volatility σ2. Similar to the call option case, the BS approximation

provides either an upper bound (if σ1 > σ2) or a lower bound (if σ1 < σ2).

The discontinuous (at K = 1) curve shown on the left-hand side of Figure 1 is the implied

volatility curve calculated by using the approximation. In this calculation call prices have been

used, if K > 1, and put prices have been used, if K < 1. The solid curve in the middle of the

left side Figure 1 is the implied volatility curve calculated by using the exact formula provided

by Theorem 2.2. It is easy to see that if σ1 < σ2, then the BS approximation provides an

upper (lower) bound of the price in the case of call (put) options, and, vice versa, if σ1 > σ2,

then the approximation provides a lower (upper) bound for call (put) prices. In this example

σ1 = 0.5 < σ2 = 0.9, therefore the approximate curve is below the exact curve, if K < 1,

and above it, if K > 1, as expected. The upper dashed curve is the implied volatility curve

calculated by using an approximation proposed in Lipton and Sepp (2011) for calibration of

a LVM with a piecewise volatility (tiled LVM). The latter includes the two-valued LVM as a

particular case.

0.8 1.0 1.2 1.4

0.60

0.65

0.70

0.75

Exact

LiptonSepp

Simple

0.8 1.0 1.2 1.4

0.60

0.65

0.70

0.75

Exact

LiptonSepp

Simple Adjusted

Figure 1: Implied volatility curves, σ1 = 0.5, σ2 = 0.9, T = 2, S0 = 1. In both figures: the solid line

corresponds to the two-valued LVM and the dashed upper curve corresponds to Lipton-Sepp’s approximation.

Implied volatility calculated by using BS approximation: without adjustment on the left and with adjustment

on the right.
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The BS approximation can be improved. Indeed, recall that we must have the put-call

parity C − Put = K − S0, which becomes C = Put, if K = S0. The put-call parity does not

hold for the approximate prices and we adjust them to restore it in the case where K = S0 = 1.

Namely, let us define the following adjustment factors

Acl =
pBSC(σ1) + qBSP(σ2)

2pBSC(σ1)
and Apt =

pBSC(σ1) + qBSP(σ2)

2qBSP(σ2)
,

and consider adjusted approximate prices ˜BSC(σ1) = AclBSC(σ1) and ˜BSP(σ2) = AptBSP(σ2).

By construction, the put-call parity holds for adjusted approximate prices in the case where

K = S0 = 1. This adjustment smooths the approximate implied volatility curve which becomes

continuous everywhere. The adjustment result is shown on the right-hand side of Figure 1,

where both the solid line and the upper dashed line are as before, and the new dashed curve

is calculated by using adjusted prices. It is quite visible that the adjustment improves the

approximation.

Finally, numerical tests showed that accuracy of the approximation improves as the time to

expiration becomes smaller, which agrees with intuition.

6 A note on a displaced diffusion model with discontinu-

ity

Our results on the joint distribution of SBM and its functionals can be also applied to derivative

pricing in the following displaced model

dSt =
(
σ1 (St − α1) 1{St≥S∗} + σ2 (St − α2) 1{St<S∗}

)
dWt, (36)

where σ1 ̸= σ2, αi ∈ R, i = 1, 2 and S∗ > 0. Model (36) is a particular case of the following

model considered in Decamps, Goovaerts and Schoutens (2006a)

dSt =
(
σ1 (St − α1)

β1 1{St≥S∗} + σ2 (St − α2)
β2 1{St<S∗}

)
dWt.

where, in addition, βi ≥ 0, i = 1, 2. In Decamps, Goovaerts and Schoutens (2006a) they derived

certain semi-analytical expressions for the transition density of the underlying process. The

technique of Decamps, Goovaerts and Schoutens (2006a) is an adaptation of a technique that

was used in Gorovoi and Linetsky (2004). In turn, the technique of Gorovoi and Linetsky

(2004) is based on a well known observation (e.g. Gikhman and Skorohod (1968)) that the

transition density satisfies a partial differential equation and can be constructed by means of

an eigenfunction expansion in the corresponding Sturm-Liouville problem. In general, these

eigenfunction expansions for the transition densities are difficult to handle analytically and an

approximation is required. It should be noticed that in Decamps, Goovaerts and Schoutens

(2006a) an analytical expression for the transition density was obtained in a particular case

where σ1 = σ2, α1 ̸= α2, so that dependence of the joint density on the occupation time becomes
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trivial (e.g., see equation (9) or (19), where m1 = m2).

Notice also that if σ1 = σ2 = σ, β1 = β2 = 1 and α1 = α2 = a, then it is a classical case

of a displaced log-normal model. The latter is just St = Zt − a, where Zt is the log-normal

process, and it can be written in the local volatility form, namely, dSt = σ(1 − a/St)StdWt.

The displaced diffusion is a very useful tool for approximating more complicated stochastic

processes in finance. The main reason is that this model is a first-order approximation of any

LVM (see Remark 7.2.14 in Andersen and Piterbarg (2010) and other examples therein). A

known problem with a displaced model of any sort is that, theoretically, the underlying process

can take negative values (e.g. when αi > 0). This problem can be dealt with by imposing some

constraints. For instance, instead of the classic displaced log-normal model one can consider

model (36) with α2 = 0. This means that the volatility is a hyperbolic function above level S∗

and a constant one below level S∗ and, hence, is prevented to take large values as the process

approaches 0. It is rather straightforward to apply our results to the displaced log-normal

model with such constraints. Let us take, for example, model (36), where S∗ = 1, α1 < 1 and

α2 = 0, and consider briefly the case when the process starts at S0 < 1. Given σ1, σ2, α1 and

strike K > 1 define

p =
σ2

σ2 + σ1 (1− α1)
, q = 1− p, k =

1

σ1
log

(
K − α1

1− α1

)
, x0 =

log (S0)

σ2
, b =

qσ2 − pσ1
2

.

Then the price of a knock-in European call option with strike K and expiration date T is given

by the following integral

Cin = 2p (1− α1)

∞∫
k

∞∫
0

∫
ΓT,1

(
eσ1x − eσ1k

)
e−lβ−λ1(s+v)−x0µ2−λ2(t0+u)+µ1xR(u, v, x, l, t0)dxdldvdt0

where R(u, v, x, l, t0) = h (t0, x0)ψp,T−t0(u + v, v, x, l) and we used notation introduced in the

proof of Part 1) of Theorem 2.2. Using the same argument as in the proof of the theorem

one can show that computation of the above integral can be reduced to computation of the

following integral

Ĩ(b, a, v, y) =

∞∫
k

∞∫
0

e−ax−blh(v, lp+ x)h(u, lq + y)dldx.

In turn, one can express, by modifying appropriately the argument applied to integral (33),

the integral in the preceding display in terms of both a univariate and a bivariate normal
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distribution as follows

Ĩ(b, a, v, y) =
e

ν2u
2

+a2v
2

+νy

q
√
uv

(
e−

X2+(Y +γX)2

2

2π (1 + γ2)
− Be−

X2

2 Φ(−Y − γX)√
2π

+
1√

2π(1 + γ2)

(
−A+Bγ − γY

1 + γ2

)
e
− Y 2

2(1+γ2)Φ

(
−(1 + γ2)X + γY )√

1 + γ2

)

+ABN

(
−X,− Y√

1 + γ2
,− γ√

1 + γ2

))

where ν = −ap−b
q

, A = ν
√
u, B = a

√
v , Y = q(k+av)−p(νu+y)

q
√
v

, X = νu+y√
u

and γ = p
q

√
u
v
.
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