
Specialist Experts for Prediction with Side Information

Yuri Kalnishkan∗†, Dmitry Adamskiy∗†, Alexey Chernov‡†, and Tim Scarfe∗†
∗Department of Computer Science,

Royal Holloway, University of London, Egham, TW20 0EX, United Kingdom
‡School of Computing, Engineering and Mathematics,

University of Brighton, Brighton, BN2 4GJ, United Kingdom
† Computer Learning Research Centre,

Royal Holloway, University of London, Egham, TW20 0EX, United Kingdom
Email: yura@cs.rhul.ac.uk, Dmitry.Adamskiy@rhul.ac.uk, chernov@cs.rhul.ac.uk, tim@developer-x.com

Abstract—The paper proposes the vicinities merging algo-
rithm for prediction with side information. The algorithm is
based on specialist experts techniques. We use vicinities in the
side information domain to identify relevant past examples,
apply standard learning techniques to them, and then use
prediction with expert advice tools to merge those predictions.
Guarantees from the theory of prediction with expert advice
ensure that helpful vicinities are selected dynamically. The
algorithm automatically converges on the right vicinities from
an initial broad selection. We apply the resulting algorithms to
two problems, prediction of implied volatility of options and
prediction of students’ performance at tests. On the problem
of predicting implied volatility, the algorithm consistently
outperforms naive competitors and a highly-tuned proprietary
method used in the industry. When applied to the students’
performance, the algorithm never falls behind the baseline and
outperforms it when the side information is beneficial.

I. INTRODUCTION

We consider the on-line protocol where at each trial t =
1, 2, . . . a learner observes a side information vector (signal)
xt and attempts to predict an outcome yt, which is shown to
the learner later. The performance of the learner is measured
by means of the cumulative loss. For related research on this
framework see [1], [2], and Section 11 of the monograph [3].

The on-line learning protocol is different from the more
traditional batch learning framework where a whole training
set of examples (xi, yi) is given to the learner at once.
The on-line learning protocol applies in the situations when
the information is revealed to us gradually and we need to
take actions on the basis of what we have seen so far. As
time passes, the structure of the data may evolve. On-line
learning requires approaches and algorithms often distinctly
different from those in batch learning. However, on-line
learning is often neglected by machine learning practitioners
who interpret on-line data analysis tasks in a batch paradigm
thus overlooking important temporal features of the data.

The on-line learning protocol is somewhat akin to the time
series framework. What makes on-line learning different
is that it does not necessarily assume a statistical model
governing the behaviour of outcomes as the theory of time
series does. The relation between on-line learning and time

series is similar to the relation between machine learning
and statistics in general – while learning may use statistical
models, it is not restricted to them.

In the on-line learning framework the learner is faced with
the problem of identifying relevant past examples. Suppose
that at trial T a signal xT has been received. What are the
relevant past examples (xt, yt)? Which examples should the
learner use for training? One natural answer is to look at
most recent examples. However, the signals xt in the recent
examples may be quite different from the current xT . Should
the learner go back further to fetch examples that are older
but have signals xt closer to the current xT ? Doing so would
run the risk of relying on obsolete information.

In this paper we develop a method based on prediction
with expert advice with specialist experts and carry out its
empirical study. The theory of prediction with expert advice
(see monograph [3] for an overview) is concerned with an
optimal merging of predictions of strategies called experts.
A specialist expert (the concept was introduced in [4]) is a
prediction strategy that may refrain from making a prediction
(sleep) at certain trials. We define specialist experts that
monitor vicinities of signals xt and become activated when
signals from their respective vicinities occur. They make
predictions based on the history of examples with signals
from their vicinities. We then use methods of prediction
with expert advice to merge the predictions of the specialist
experts. Theoretical guarantees ensure that the cumulative
loss of the resulting strategy is not much worse than the
loss of every specialist expert at the trials when it is awake.
Methods of prediction with expert advice effectively allow
us to achieve a trade-off between going back in time and
further away in space.

We apply this idea to two particular problems, predicting
implied volatility of options and predicting students’ perfor-
mance in tests. The results are then analysed.

Although the problem of prediction with expert advice has
been extensively studied for the past twenty years, practical
applications of the theory are few and far between. In [5]
the methods of prediction with expert advice are applied to
aggregate predictions of sports results calculated from the



odds quoted by bookmakers. The numbers of bookmakers
were very small, four in one empirical study and eight in
another. In this paper we deal with hundreds of experts.
In [6], which is most similar in approach to our paper,
specialist experts are used to predict electricity consumption.
However, the methods of aggregation in [6] are based on the
exponential weighted average algorithm, which is known to
be theoretically suboptimal (see Section 3.3 in [3]) for many
loss functions including the square loss used in [6].

In this paper we use methods from [7], [8] based on the
aggregating algorithm introduced in [9], [10]. We hope the
empirical studies of this paper will provide useful intuitions
for the theory of prediction with expert advice.

The structure of this paper is as follows. Section II
describes the methods of prediction with expert advice for
specialist experts. Section III describes the main algorithm
proposed by this paper – vicinities merging – in a generalised
setting. Section IV describes its application to predicting
implied volatility of options and Section V its application to
predicting students’ results at tests.

II. PRELIMINARIES

A. Prediction Framework

This paper is concerned with prediction in the following
framework. Let outcomes ω1, ω2, . . . from an outcome space
Ω occur successively in discrete time. A learner or predic-
tion algorithm tries to predict each outcome and outputs
a prediction γt from a prediction space Γ on the basis of
a signal xt from a domain X each time before it sees the
outcome ωt. The quality of predictions is assessed by means
of a loss function λ : Γ× Ω→ [0,+∞]. The framework is
summarised in Protocol 1.

Protocol 1.

FOR t = 1, 2, . . .
nature announces xt ∈ X
learner outputs γt ∈ Γ
nature announces ωt ∈ Ω
learner suffers loss λ(γt, ωt)

ENDFOR

Over T trials the learner suffers the cumulative loss
LossT =

∑T
t=1 λ(γt, ωt). We denote the loss of the learner

by LossT or by LossT (Algorithm) with Algorithm being
the notation for the learner or the algorithm the learner uses.

In this paper we are interested in two cases. In the first
case the prediction and outcome spaces are a real interval
Ω = Γ = [A,B] and the square loss function λsq(γ, ω) =
(γ − ω)2 is used. In the second case the outcomes are bits
from Ω = {0, 1}, the predictions are taken from the interval
Γ = [0, 1] and the logarithmic loss given by λlog(γ, 0) =
− log(1− γ) and λlog(γ, 1) = − log γ is used.

B. Prediction with Expert Advice

The problem of prediction with expert advice can be
summarised as follows. Suppose that there is a pool Θ of
experts. Throughout this paper we assume that Θ is finite.
The experts try to predict the outcomes from the same
sequence, and their predictions γt(θ) are made available to
the learner before it outputs its own according to Protocol 2.
The goal of the learner is to suffer total loss not much greater
than the loss of the best expert in the pool.

Protocol 2.

FOR t = 1, 2, . . .
experts θ ∈ Θ announce predictions γt(θ) ∈ Γ
learner outputs γt ∈ Γ
nature announces ωt ∈ Ω
each expert θ ∈ Θ suffers loss λ(γt(θ), ωt)
learner suffers loss λ(γt, ωt)

ENDFOR

Over T trials each expert θ suffers the cumulative loss
LossT (θ) =

∑T
t=1 λ(γt(θ), ωt) and the learner suffers the

cumulative loss LossT =
∑T
t=1 λ(γt, ωt). The aspiration is

that an inequality of the form LossT . LossT (θ) holds for
all T = 1, 2, . . . and θ ∈ Θ.

The theory of prediction with expert advice does not
impose any restrictions on the law generating outcomes ωt
or on the internal working of experts. Guarantees provided
by the theory usually hold for all sequences of outcomes ωt
and all experts’ predictions. One may think of ‘nature’ and
‘experts’ as mere names for the slots in the protocol rather
than computational agents with particular properties.

C. Aggregating Algorithm

The aggregating algorithm (see [1], [10] for a detailed
overview) generalises Bayesian mixtures of probabilistic
hypotheses (see, e.g., Section 2 of [11]); it is identical to
the Bayesian mixture for the logarithmic loss. However, it
is more general in that it admits many other loss functions
such as the square loss function.

AA takes the following parameters: a learning rate η ∈
(0,+∞) and an initial distribution over the set of experts
Θ; a distribution can be represented by an array of initial
weights p0(θ), where θ ∈ Θ.

The algorithm maintains an array of weights wt(θ), θ ∈
Θ. Their initial values are w0(θ) = p0(θ), θ ∈ Θ, and they
are updated according to the rule

wt(θ) = wt−1(θ)e−ηλ(γt(θ),ωt) = p0(θ)e−η Losst(θ) .

At trial t upon observing the experts’ predictions γt(θ) the
learner outputs a prediction γt that for every possible ω ∈ Ω
satisfies the condition

λ(γt, ω) ≤ c(η)gt(ω) , (1)

2



where

gt(ω) = −1

η
ln

1∑
θ∈Θ wt−1(θ)

∑
θ∈Θ

wt−1(θ)e−ηλ(γt(θ),ω)

(2)
and c(η) is a constant determined by the loss function λ.
The constant is defined in such a way that γt can always be
found. One can show (see Lemma 1 from [1]) that

LossT (AA) =

T∑
t=1

λ(γt, ωt) ≤

c(η) LossT (θ) +
c(η)

η
ln 1/p0(θ) . (3)

The aggregating algorithm thus performs nearly as well as
the best expert loss-wise. It was proven in [10] that the upper
bounds on the loss of the aggregating algorithm are optimal.

If the prediction and outcome spaces are an interval Ω =
Γ = [A,B] and the square loss function is λsq(γ, ω) =
(γ − ω)2, then for η satisfying 0 < η ≤ 2

(B−A)2 we have
c(η) = 1 (see [1], [12]) and therefore the optimal value is
η = 2

(B−A)2 . For these values of η we can use a simple
substitution function

γt =
A+B

2
− gt(B)− gt(A)

2(B −A)

mapping gt to a γt satisfying (1).
If the outcome space is {0, 1}, prediction space is Γ =

[0, 1], and the loss function is logarithmic, then c(η) = 1 for
η ∈ (0, 1] and for the optimal η = 1 we can take

γt =
1∑

θ∈Θ wt−1(θ)

∑
θ∈Θ

wt−1(θ)γt(θ) ;

this is precisely the Bayesian prediction.

D. Specialist Experts

Suppose that an expert in the prediction with expert advice
framework can abstain from making a prediction at trial t.
If it does so, we say that it sleeps at trial t. One may want to
obtain an equivalent of bound (3) ensuring that the learner
competes well with every expert θ at the trials where θ is
awake.

The concept of a specialist expert was proposed in [4].
In this paper we will be discussing specialist experts as a
special case of the theory of expert evaluators after [7], [8].
A simple extension of the AA may be used for specialist
experts.

If an expert θ sleeps at trial t, let us assume that it suffers
notional loss λ(γt, ωt)/c(η) (if c(η) = 1 we can simply say
that it ‘goes with the crowd’ and subscribes to yet unknown
γt whatever it may be) and apply the AA. The weight of
a sleeping expert is updated according to this notional loss.
If Θsleep is the set of experts sleeping at trial t and Θawake

is the set of experts that are awake (not sleeping) at trial t,
then (1) becomes

e−ηλ(γt,ω)/c(η)
∑
θ∈Θ

wt−1(θ) ≥∑
θ∈Θawake

wt−1(θ)e−ηλ(γt(θ),ω)+∑
θ∈Θsleep

wt−1(θ)e−ηλ(γt,ω)/c(η) .

Clearly, all terms corresponding to sleeping experts cancel
out and we get

λ(γt, ω) ≤ c(η)

η
ln

∑
θ∈Θawake

wt−1(θ)e−ηλ(γt(θ),ω)∑
θ∈Θawake

wt−1(θ)
,

i.e., the formula is identical to that from the aggregating
algorithm except that the sum is taken over the experts
that are awake. Note that we still need to update the
weights of sleeping experts so that they are assigned the
correct weights upon waking. We will call this algorithm
aggregating algorithm with sleeping experts (AAS).

Arguing in the same way as for the AA, we get a bound
similar to (3). By dropping equal terms in the losses on the
left- and right-hand sides we obtain

Loss
(θ)
T (AAS) ≤ c(η) Loss

(θ)
T (θ) +

c(η)

η
ln 1/p0(θ) , (4)

where the sum in Loss(θ) is taken only over trials when
expert θ was awake.

III. ALGORITHMS

In this section we describe an algorithm for a predictor
working in the environment of Protocol 1.

Consider a finite subset {U1, U2, . . . , UK} ⊆ 2X such
that ∪Kk=1Uk = X . We will call sets Uk vicinities because
it is natural to choose them in such a way that elements of
Ui are in some respect akin to each other. Each vicinity
Ui generates a specialist expert that predicts as follows.
The expert is awake only at trials t where xt ∈ Ui. It
maintains the sequence (xt1 , yt1), (xt2 , yt2), . . . of outcomes
for such trials and uses the series to make predictions for
trials t where xt ∈ Ui. For t such that xt /∈ Ui the expert
makes no predictions. The experts are then merged using the
aggregating algorithm for specialist experts. We will call this
the vicinities merging method.

We assume that predicting outcomes in the sequence of
examples (xt1 , yt1), (xt2 , yt2), . . . is straightforward, at least
for some convenient vicinities Uk. In the simplest case,
the elements yt1 , yt2 , . . . form a predictable time series and
the signals xtk can be ignored. This happens in our first
application of predicting implied volatility. In more difficult
cases signals xtk are necessary, but the dependency of ys on
xs is more straightforward on Uk and can be learned with
better precision. The aggregating algorithm with sleeping

3



Table I
DATASETS SUMMARY

Dataset Underlying Maturity Number of
name asset transactions
eeru1206 EERU shares Dec 2006 13,152
gzp307 Gazprom shares Mar 2007 10,985
rtsse307 RTSSE index Mar 2007 8,410

experts effectively identifies “useful” vicinities or, in other
terms, it automatically finds sets of relevant past examples.

The general sleeping experts bound (4) provides useful
insights into the performance of the merging method. The
regret term in (4) is proportional to ln(1/p0(θ)) and if
we use uniform initial weights it grows logarithmically
with the number of vicinities. Thus the user need not
be too concerned about the choice of vicinities and can
use a generously representative selection. The method will
automatically converge on the right ones.

The computational complexity of the merging method
depends on the underlying prediction algorithms working
on the vicinities and the number of vicinities. The overhead
brought about by merging depends on which loss function
is employed. However, for most natural loss functions (in-
cluding the square and logarithmic loss) the time taken by
merging is linear in the number of vicinities.

IV. RTSSE IMPLIED VOLATILITY PREDICTION

A. Problem Setup

The datasets provided to us by the Russian Trading Sys-
tem Stock Exchange (RTSSE) contain logs of consecutive
option transactions. Each dataset includes transactions with
an option maturing at a particular date on a particular
underlying asset; see Table I for details. The datasets date
back to mid-2000s, when the market at RTSSE was expe-
riencing steady unperturbed growth. The underlying assets
we consider are the shares of EERU (a utility company), the
shares of Gazprom (a major gas exporter), and the RTSSE
index. These datasets were previously studied in [13].

We consider each transaction as a signal xt and an
outcome yt. The signal xt consists of the strike price X of
the option used in the transaction, the price of the underlying
asset S, time left to the maturity of the option T , and a bit
showing whether the option is a put or a call; the outcome yt
is the implied volatility calculated for the transaction using
the Black-Scholes formulas. (Note that the option price is
not one of our attributes; otherwise the problem reduces to
the trivial task of learning the Black-Scholes formula.)

Definitions and further details on options and implied
volatility are available from finance textbooks such as [14],
[15]. There is no unique and generally accepted theory
explaining the evolution of implied volatility. However, it is
a meaningful financial parameter. It is effectively equivalent
to the option price and often used instead of the price in
quotes.

In this paper we approach the problem of finding the im-
plied volatility from a purely machine learning perspective.
The quality of the prediction is measured by the squared
deviation of the predicted implied volatility from the true
implied volatility.

In this paper we analyse three datasets each containing a
log of transactions with options having a particular maturity
date on a particular underlying asset. The properties of the
datasets are summarised in Table I.

B. Preliminary Analysis

The behaviour of volatility is illustrated in Figures 1
and 2, which show dependencies of volatility on the strike
near the beginning and near the end of eeru1206. Initially
volatility is relatively flat. Towards the end of the dataset
it becomes much more variable and the dependency of
volatility on strike takes on a characteristic shape often
called the volatility smile. The range of the plots was capped
at 1, so occasional outliers exceeding 1 are not shown.

Figure 1. Volatility vs strike, transactions 1000-2000

Figure 2. Volatility vs strike, transactions 10000-11000

The number of possible strikes is limited. While theoret-
ically the strike can have any real value, stock exchanges
usually restrict strikes to some round numbers in order to
improve liquidity. Thus one can consider splitting the time
series into separate time series, one for each strike. However,
it is apparent from the pictures that some strikes are much

4



more common than others. While for popular strikes the
most recent transaction is normally quite near in time, for
rare strikes it may be far away.

One thus is naturally drawn to the idea of grouping strikes
together and forming combined time series for groups of
strikes. However, the pictures do not seem to suggest a
natural grouping. It is known that most transactions happen
for strikes near the current underlying price and the strikes
on the sides are less frequently used. While the pictures seem
to be generally congruent with this observation, there is no
regular pattern in the distribution of strikes.

Here the ideas of the paper come naturally. Let us create
multiple vicinities of strikes, introduce associated specialist
experts, and let the AAS converge on the relevant ones.

C. Applying the Algorithm

Let S consisting of s1 < s2 < . . . < sL be the set of all
strikes for a dataset. Let a vicinity of diameter d of strikes
be a set of d consecutive strikes; there are L−d+1 vicinities
of diameter d. A simple vicinity of signals corresponding to
a vicinity of strikes is the set of all signals with strikes in
that vicinity.

A compound vicinity of signals is specified by a vicinity
of diameter d of strikes and a bit in {0, 1}. The bit specifies
whether the option in the transaction is a put or a call. There
are 2(L−d+1) compound vicinities of diameter d. Note that
some of them may give rise to empty time series if, say, there
were no transactions on put options with particular strikes.

A specialist expert monitors a vicinity of signals, be it
simple or compound, and applies a time series method to
predict the volatility for the next signal falling inside the
vicinity.

An elementary method for predicting time series, the
exponentially weighted mowing average1 (EWMA) demon-
strated robust performance on the dataset. Given a series
y1, y2, . . . , yT , the value ŷT+1 = µyT + (1 − µ)ŷT is
predicted, where ŷT is the prediction output at the previous
step and µ is a parameter called the smoothing factor. The
values µ = 0.2, 0.25, . . . , 0.95, 1 were considered (the value
µ = 1 corresponds to predicting the last element). At the
beginning where no previous element is available, we used
the default value of 0.3.

A sleeping expert is thus specified by a vicinity, simple
or compound, and a value µ. We evaluated the performance
using the cumulative squared loss so we applied the AAS
for square loss. In order to apply AAS, predictions of time
series methods were capped at 1 and thus for the purpose of
merging we assumed that the prediction and outcome space
were [0, 1].

Let LD,µ be the prediction algorithm obtained by ag-
gregating all specialist experts with simple and compound

1Experiments with more advanced methods such as ARIMA and GARCH
returned inferior results so they are not discussed in the paper.

Table II
PERFORMANCE OF L ON THE WHOLE DATASET

Dataset Naive L Gain KRR RTSSE
name µ loss loss loss loss
eeru1206 0.6 166.12 158.60 4.5% 151.97 185.05
rtsse307 0.9 155.56 150.53 3.2% 48.80 156.32
gzp307 0.55 40.80 39.3 3.7% 42.58 48.55

Table III
PERFORMANCE OF L ON THE TRUNCATED DATASET

Dataset Naive L Gain KRR RTSSE
name µ loss loss loss loss
eeru1206 0.45 129.00 123.74 4.1% 129.48 137.9
rtsse307 0.4 9.78 8.81 9.9% 9.45 8.04
gzp307 0.35 13.96 12.82 8.2% 14.19 14

vicinities of diameter 1, 2, . . . , D and the smoothing factor
µ. The number of specialist experts covered by LD,µ is∑D
d=1 3(L−d+1) = 3D(L+1−(D+1)/2), where L is the

number of strikes. For eeru1206, rtsse307, and gzp307
the numbers of strikes are 24, 15, and 17, respectively, so
the numbers of sleeping experts covered by LL,µ are 900,
360, and 459, respectively. We use a uniform prior on the
experts.

D. Experimental Results

In this section we compare the results of vicinities merg-
ing against various competitors.

The parameters µ and D can be tuned to improve per-
formance. However, we do not do this to ensure fairness of
the comparison. Let L be the prediction algorithm obtained
by applying the aggregating algorithm to LD,µ with all
D = 1, 2, . . . , L and µ = 0.2, 0.25, . . . , 0.95, 1 with equal
initial weights.

As the main competitor we take the naive algorithm
Nµ defined as follows. It works on compound vicinities
(compound vicinities yield better results) of size 1 and
performs no aggregation. For each strike it maintains two
time series of values of volatility, for put and for call options,
and uses EWMA with the smoothing factor µ to predict
the next element. The algorithm Nµ thus takes the same
advantage as LD,µ of exponential smoothing but does not
exploit recent transactions on neighbouring strikes.

Table II shows the cumulative losses over the whole
dataset. We quote the loss of L and of the retrospectively
best naive competitor Nµ. We see that on all three datasets
L achieves an improvement. As L and Nµ use the same
smoothing methods, the improvement should be attributed
to the use of neighbouring strikes by LD,µ.

Figures 3, 4 and 5 display the graphs of regrets Losst(L)−
Losst(Nµ) with the retrospectively best µ for the three
datasets.

For comparison purposes we also include the cumulative
loss of kernel ridge regression (KRR) and the proprietary

5



Figure 3. Regret Losst(L)−Losst(Nµ) with
the retrospectively best µ = 0.6 for eeru1206

Figure 4. Regret Losst(L)−Losst(Nµ) with
the retrospectively best µ = 0.9 for rtsse307

Figure 5. Regret Losst(L)−Losst(Nµ) with
the retrospectively best µ = 0.55 for gzp307

algorithm used by RTSSE. We have chosen KRR as a
benchmark because KRR with the polynomial kernel can
be seen as an extension of polynomial modelling often used
to study volatility surfaces (see, e.g., [16]). The KRR results
we quote are those using Vapnik’s polynomial kernel with
the retrospectively selected best degree, ridge parameter, and
the size of the sliding window. While the losses of L and
N are better than those of the proprietary algorithm, the
ridge regression performs better and in the case of rtsse307
dramatically better. This calls for an explanation.

The analysis of loss graphs reveals that L and N suffer
most of their loss over a small tail of the dataset. This
is a known effect in finance: right before the maturity of
the option, the implied volatility behaves erratically. Some
papers (e.g., [17]) even use the parameter σ

√
τ , where τ is

time left to maturity and goes to zero, so that fluctuations
of implied volatility near maturity become irrelevant.

Table III shows the cumulative losses on the datasets
apart from some (relatively small) tail. The size of the
tail was chosen individually – this is where loss starts to
grow out of proportion. The tail of 2000 examples was
dropped from eeru1206 and tails of 1000 from rtsse307
and gzp307. One can see that the losses on truncated
datasets are dramatically reduced. The prediction algorithm
L still outperforms the retrospectively best naive competitor
and even outperforms ridge regression.

V. STUDENTS’ PERFORMANCE AT TESTS

A. Problem Setup

The “What do you know” dataset consists of 4,851,475
training examples. Each example is an instance of a student
answering a question on the Grockit system while preparing
for either ACT, GMAT or SAT exams. Each example con-
tains information such as the ID of the student, question
number, track and subtrack, tag string for the question,
as well as the outcome. The outcome tells us whether
the question was answered correctly or not (there are also
skipped questions and timed-out questions, but we interpret
these outcomes as incorrect answers). We are allowed to give
predictions from the interval [0, 1]. Intuitively a prediction

can be interpreted as the probability of the question being
answered correctly. The performance of the algorithm is
evaluated by the capped logarithmic loss function. This is
equivalent to capping predictions close to 0 or 1 at 0.01 and
0.99 respectively.

1) Batch vs On-line: The original competition was staged
as a batch learning problem. The test set was built in the
following manner. Of the students who attempted at least
six questions, some were selected at random. Then one
of the questions they attempted was selected at random
(excluding the first six) and inserted into the test set. The
selected question and all questions answered by this student
later were removed from the dataset. What remained of the
dataset after this procedure, formed the training set.

We believe that the on-line setting is more naturally suited
to approach this task. Indeed, students answer questions on
Grockit sequentially with results being available immedi-
ately after each trial. New students appear and students tend
to learn over time. However, choosing the on-line mode
makes it difficult to compare the results against any off-line
benchmark.

2) The benchmark: The competition invited participants
to improve on the state-of-the-art algorithm. The benchmark
provided was a Rasch-type model predicting the probability
of student i, i = 1, 2, . . . , N answering question j, j =
1, 2, . . . ,M as

P (correct answer|i, j) =
eαi−βj

1 + eαi−βj
,

where αi is a parameter that can be interpreted as the
strength of student i and βj is a parameter that can be
interpreted as the difficulty of question j. In the batch mode
the parameters are fitted on the training set.

One natural way to estimate these parameters is to treat
the problem as logistic regression where each example is
represented by a sparse feature vector containing indicators
of the student and the question from the example.

We used the implementation of logistic regression from
the Vowpal Wabbit [18] package. This implementation is
flexible, very fast, and can be run in the on-line mode. By

6



running it on the whole dataset in the on-line mode we
obtained loss per element LossT (Baseline)/T = 0.5572 (or
0.2420 if logarithm to the base 10 is used to measure loss).

B. Tag-based Experts

Each question in the dataset has a tag string. The tags
are quite diverse ranging from very informative (such as
“maths” or “trigonometric functions” describing the domain
of the question) to technical and less helpful for predicting
the outcome (such as “multiple choice”). There are 281
tags in total. We would like to use this side information in
the on-line mode to get a performance improvement if the
information is useful while making sure that the performance
does not deteriorate if the information is irrelevant.

A naive approach is to include tags as additional features
in logistic regression. The feature vector can be expanded
to include indicators of tags.

We also propose an algorithm implementing the vicinity
merging idea. Let each tag specify a vicinity. A signal falls
in the vicinity if it has the tag in the tag string. For each
tag we create a specialist expert Etag which is an on-line
logistic regression trained on the subset of examples where
the tag is present in the tag string. Each expert is awake at
trials where its tag is present in the tag string.

The Learner’s prediction is then obtained by aggregating
the experts’ predictions using the aggregating algorithm for
specialist experts (AAS). To guarantee that our performance
is never worse than that of the baseline algorithm (plus a
small constant), we add the always-awake baseline to the
mix (in other words, we include the vicinity containing all
signals). We call the resulting prediction algorithm the tag-
based mixture.

C. Results and Discussion

Figure 6 shows the performance of the tag-based mixture
on the Grockit dataset. The curves plotted on the graph are
the regrets w.r.t. the baseline algorithm, i.e., the differences
Losst−Losst(Baseline) for three algorithms: naive algo-
rithm using tags as features, tag-based mixture and tag-based
mixture with baseline omitted.

We observe that tag-based mixture achieves some im-
provement with respect to the baseline algorithm. The no-
baseline mixture is shown to highlight the fact that while
the tag-based mixture is never worse than the baseline,
it improves on it exactly on the sections where tag-based
predictors perform well.

A possible explanation why the tag-based mixture can
improve on the baseline algorithm is that the mixture learns
the specialisation of a student. The coefficients αi restricted
to a particular tag reflect the student’s strength on questions
falling under this tag. For meaningful tags these coefficients
are more useful than those of the baseline algorithm and
useless tags are downplayed by the aggregating algorithm
automatically.

Figure 6. Tag-based AA on Grockit data. Regret w.r.t. baseline algorithm

By contrast, the naive algorithm is not good at this.
Adding tag information to feature vectors amounts to adding
coefficients γtag to the Rasch model:

P (correct answer|i, j, tags) =
eαi−βj+

∑
tags γtag

1 + eαi−βj+
∑

tags γtag
.

These coefficients are hard to interpret. They are not repre-
senting students’ strength and the difficulty of the questions
is best represented by βj themselves.

While Figure 6 demonstrates that vicinity merging is ca-
pable of making an improvement in performance compared
to the baseline, the performance of our algorithm is very
inconsistent. The regret often goes up as well as down.

One may speculate that the algorithm needs the student
to answer a significant number of questions. To verify this
hypothesis we tested the tag-based mixture on the subset
of the training set restricted to the students answering more
than 1000 questions. Indeed on this dataset the tag-based
mixture consistently outperformed the baseline predictor
(see Figure 7). The naive algorithm using tags as features
still performs badly in this situation.

This observation leads to the following idea on how to
improve the performance of the tag-based mixture on the
whole dataset. Let all tag experts sleep while the student is
answering his or her first N questions and only the baseline
predict. The motivation is as follows. As tags are often
sparse, tag experts need more time to accumulate sufficiently
many examples to train on. While they train, the weights
assigned to them by the AAS drop and later they will need
time to recover. Even after their predictions have become
good, there will be some time before they start contributing
to the mixture. Note that we stay within the sleeping experts
conceptual framework and simply adjust the time when the
experts sleep.

7



0 200000 400000 600000 800000 10000006000

5000

4000

3000

2000

1000

0

1000

2000
Tag-based mixture
Logistic regression with tags as features
Guarantee

Figure 7. Tag-based AAS on the most active students. Regret w.r.t. baseline
algorithm

0 500000 1000000 1500000 2000000 2500000 3000000 3500000 4000000 4500000

8000

6000

4000

2000

0

2000

Tag-based mixture
Tag-based mixture, delay = 100
Guarantee

Figure 8. Tag-based AAS with delay N = 100

The choice of the delay N is an interesting question. From
what has been said, it follows that N is linked to the sparsity
of tags. We have 281 tags with a few tags per questions. The
delay of N = 100 appears to be a natural choice. (Delays
of 10 and 1000 were shown to give inferior performance.)

Figure 8 shows the regrets w.r.t. the baseline algorithm of
the tag-based mixture (same as in Figure 6) and the regret of
the mixture of tag experts with the delay of 100. The mixture
of experts with the delay exhibits a consistent improvement
in performance.

ACKNOWLEDGMENT

Yuri Kalnishkan and Dmitry Adamskiy have been sup-
ported by the Leverhulme Trust grant RPG-2013-047 ‘On-
line self-tuning learning algorithms for handling historical
information’.

The authors would like to thank Russian Trading Sys-
tem Stock Exchange (now defunct through merging) and

Dr. Michael Vyugin in particular for providing the data.

REFERENCES

[1] V. Vovk, “Competitive on-line statistics,” International Sta-
tistical Review, vol. 69, no. 2, pp. 213–248, 2001.

[2] K. S. Azoury and M. K. Warmuth, “Relative loss bounds
for on-line density estimation with the exponential family of
distributions,” Machine Learning, vol. 43, pp. 211–246, 2001.

[3] N. Cesa-Bianchi and G. Lugosi, Prediction, Learning, and
Games. Cambridge University Press, 2006.

[4] Y. Freund, R. E. Schapire, Y. Singer, and M. K. Warmuth,
“Using and combining predictors that specialize,” in Proceed-
ings of STOC’97. ACM, 1997, pp. 334–343.

[5] V. Vovk and F. Zhdanov, “Prediction with expert advice for
the Brier game,” Journal of Machine Learning Research,
vol. 10, pp. 2445–2471, 2009.

[6] M. Devaine, P. Gaillard, Y. Goude, and G. Stoltz, “Forecasting
electricity consumption by aggregating specialized experts,”
Machine Learning, vol. 90, no. 2, pp. 231–260, 2013.

[7] A. Chernov, Y. Kalnishkan, F. Zhdanov, and V. Vovk, “Su-
permartingales in prediction with expert advice,” Theoretical
Computer Science, vol. 411, no. 29-30, pp. 2647–2669, 2010.

[8] A. Chernov and V. Vovk, “Prediction with expert evaluators’
advice,” in Algorithmic Learning Theory, ALT 2009, Proceed-
ings, ser. LNCS, vol. 5809. Springer, 2009, pp. 8–22.

[9] V. Vovk, “Aggregating strategies,” in Proceedings of the 3rd
Annual Workshop on Computational Learning Theory. San
Mateo, CA: Morgan Kaufmann, 1990, pp. 371–383.

[10] ——, “A game of prediction with expert advice,” Journal of
Computer and System Sciences, vol. 56, pp. 153–173, 1998.

[11] C. M. Bishop, Pattern Recognition and Machine Learning.
Springer, 2006.

[12] A. Chernov and F. Zhdanov, “Prediction with expert ad-
vice under discounted loss,” in Proccedings of ALT 2010,
vol. LNAI 6331. Springer, 2010, pp. 255–269, see also
arXiv:1005.1918 [cs.LG].

[13] S. Busuttil and Y. Kalnishkan, “Weighted kernel regression
for predicting changing dependencies,” in Machine Learning:
ECML 2007. Springer, 2007, pp. 535–542.

[14] J. C. Hull, Options, Futures, and Other Derivatives, 6th ed.
Prentice Hall, 2006.

[15] P. Wilmott, Paul Wilmott introduces quantitative finance,
2nd ed. Wiley, 2007.

[16] S. Goncalves and M. Guidolin, “Predictable dynamics in
the S&P 500 index options implied volatility surface,” The
Journal of Business, vol. 79, no. 3, pp. 1591–1635, 2006.

[17] K. Demeterfi, E. Derman, M. Kamal, and J. Zou, “A guide
to volatility and variance swaps,” The Journal of Derivatives,
vol. 6, no. 4, pp. 9–32, 1999.

[18] J. Langford, L. Li, and A. Strehl, “Vowpal Wabbit online
learning project,” 2007.

8


