
Dynamic Performance Profiling of Cloud Caches

Trausti Saemundsson
School of Computer Science

Reykjavik University
trausti12@ru.is

Hjortur Bjornsson
Dept. of Mathematics
University of Iceland

hjb6@hi.is

Gregory Chockler
Dept. of Computer Science

Royal Holloway,
University of London

Gregory.Chockler@rhul.ac.uk

Ymir Vigfusson
School of Computer Science

Reykjavik University
ymir@ru.is

Abstract
Large-scale in-memory object caches such as memcached
are widely used to accelerate popular web sites and to reduce
burden on backend databases. Yet current cache systems give
cache operators limited information on what resources are
required to optimally accommodate the present workload.
This paper focuses on a key question for cache operators:
how much total memory should be allocated to the in-
memory cache tier to achieve desired performance?

We present our MIMIR system: a lightweight online
profiler that hooks into the replacement policy of each cache
server and produces graphs of the overall cache hit rate
as a function of memory size. The profiler enables cache
operators to dynamically project the cost and performance
impact from adding or removing memory resources within a
distributed in-memory cache, allowing “what-if” questions
about cache performance to be answered without laborious
offline tuning. Internally, MIMIR uses a novel lock-free
algorithm and lookup filters for quickly and dynamically
estimating hit rate of LRU caches.

Running MIMIR as a profiler requires minimal changes to
the cache server, thanks to a lean API. Our experiments show
that MIMIR produces dynamic hit rate curves with over 98%
accuracy and < XXX% drop in request throughput when
MIMIR is run in tandem with memcached, suggesting
online cache profiling can be a practical tool for improving
provisioning of large caches.

1. Introduction
Distributed in-memory look-aside caches, such as memcached
[19] and Redis [1], are pivotal for reducing request latency

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Submission to SoCC ’14, October, 2014, Seattle, WA, USA.

and database lookup overhead on large websites [18, 33]. In
a typical installation, instead of directly querying a database
server, web servers will first consult the appropriate memory
cache server in a caching tier to check if the response to the
database query has already been computed. On a cache hit,
the cache server retrieves the query response directly from
DRAM and relays the answer back to the web server without
involving the database servers. On a cache miss, the query
must be sent to a backend database server, typically touching
disk or flash, and the response is then written to the DRAM
of the relevant cache server to accelerate future lookups.

As an instrumental component to the scalability of these
large websites, many distributed memory caches handle
massive loads: the caching tier of Facebook’s social network
serves more than 1 billion read requests per second [40].
Challenges related to the scalability of memory caches have
been the topic of recent research, including measurement
studies [3, 20, 23], optimizations [33, 35, 40] and addressing
of issues such as concurrency [18], load imbalance across
cache servers [17, 22, 24] and inefficiencies in the underly-
ing software stack [15, 29].

Thus far, however, few inquiries have been made into the
provisioning of cache servers [17]. In particular, we lack
effective procedures for navigating the trade-off between
costs and performance of the caching tier, leaving operators
grappling with questions such as:

“Given the budget and latency service-level-agreements
(SLAs) for our website, how many cache servers will
we need to operate?”

For operators hosting sites on elastic cloud services, the
problem has a dynamic nature:

“With the current workload, how many cache servers
should we lease from our cloud provider to maintain
adequate response time for our customers but still
remain cost-effective?”

Yet understanding this trade-off is crucial for efficient oper-
ations. Recently, Zhu et al. [47] showed that in typical cloud
settings, the ability to scale down both the web server and
cache tiers when the incoming request rate subside can save

1

up to 65% of the peak operational cost, compared to just
45% if we only consider scaling down the web server tier. In
this paper, we propose MIMIR1 a new tool for monitoring the
cost-performance trade-off for the caching tier. Following
Zhu et al., we adopt hit rate – the percentage of cache
lookups that return a value and thus bypass a slow database
lookup – as our primary performance measure. In terms of
cost, the main resource influencing hit rate is the memory
capacity of the caching tier, which we will view as the
representative dial for controlling cost throughout the paper.

At the core of MIMIR is a profiling algorithm for gener-
ating and exposing hit rate curves (HRC), which represent
the aggregate cache hit rate as a function of total memory
capacity. Hit rate curves allow operators to ask what-if ques-
tions about their cache tiers using current information, such
as to estimate the performance impact of resizing the cache
by allocating more servers to the tier, or decommissioning
servers. MIMIR hooks into the standard cache replacement
API calls of each cache server, and provides the operator
with up-to-date HRCs from that server, even for larger
memory sizes than currently allocated. The HRCs from
different cache servers can then be combined to produce a
tier-wide HRC estimate.

Our approach to MIMIR is guided by three main ideas.
First, we specifically target the Least-Recently-Used (LRU)
replacement policy which allows us to exploit mathematical
structure of LRU to generate granular HRCs for the entire
cache without tracking each cache size increment separately.

Second, whereas traditional mechanisms attempt to gen-
erate HRCs with full fidelity at the cost of performance, we
devise a novel bucketing scheme for generating near-exact
HRCs that concede between 1-2% of accuracy. Our method
gives a knob that controls the accuracy versus overhead of
our algorithm.

Third, MIMIR piggybacks bookkeeping statistics on the
items already stored in memory when predicting HRC for
cache sizes smaller than the current allocation. To estimate
performance for larger memory sizes, we track dataless
keys for recently evicted items, so-called ghosts. As an
optimization when key sizes are large relative to the value,
we represent the ghost list as an array of lossy counting
filters – Bloom-filters that support removal – containing the
ghost entries. Together, these techniques allow MIMIR to
track HRC with high prediction accuracy and low overhead.

In summary, our paper makes the following contributions.

• We design and implement an architecture for MIMIR that
monitors hit rate statistics to help cache operators answer
“what-if” questions. At the core of MIMIR is a novel
algorithm for dynamically and efficiently estimating the
HRC of LRU caches, even in multi-threaded cache
servers.

1 In Nordic mythology, Mimir was renowned for his knowledge and wis-
dom, and was a consul to the god ruler of Asgard, Odin.

• Through extensive simulations on a variety of cache
traces and benchmarks, we evaluate the accuracy of the
MIMIR hit rate profiles, demonstrating that our approach
retains high accuracy (> 98%) despite low time and
memory complexity. Further, we prove analytically that
our algorithm delivers high accuracy on well-behaved
workloads.

• As a case study, we modified memcached to use our op-
timized MIMIR implementation for HRC profiling. Our
experimental evaluation shows strong fidelity between
the HRC and the true cache hit rate at larger or smaller
cache sizes with minor throughput degradation (XXX%)
.

2. MIMIR in a Nutshell
2.1 Architecture
MIMIR is a dynamic profiling framework that interoperates
with the replacement policy of a cache service such as
memcached. We begin by describing the functionality on
a single server; the distributed case is discussed in §2.5.
For input, MIMIR provides an API that is called by the
replacement policy, as shown in Figure 1. Specifically, a
call is made on a HIT, and through the INSERT and DELETE
functions when new elements are added or old ones evicted
from the cache memory. Each call passes on the identity of
the current element that is being manipulated by the cache
server. When requested by an operator, MIMIR can generate
an up-to-date hit rate curve showing the current estimate
of cache hit rate vs. memory size as output. The resulting
curves can inform decisions on cache provisioning, either
by operators manually or automatically adjusting or parti-
tioning resources [9, 10, 36–38], raise alerts for developers
about unexpected cache behavior, and so forth.

2.2 Hit rate curves
At the heart of MIMIR is the HRC estimator. To be precise,
we define HRC as the function H(n) for 0≤ n≤ rN denoting
the number of hits obtained by a cache replacement algo-
rithm on a cache of size n on a sequence of cache accesses
[34]. The function can then be normalized by dividing by the
total number of requests in the sequence. If N is the current
cache size then, assuming the past predicts the future, H(n)
anticipates the hit rate if the cache were resized to a smaller
size n ≤ N, or a larger one N ≤ n ≤ rN for some multiplier
r ≥ 1.

Dynamically estimating HRC is fraught with challenges.
First, normally cache servers only track the hit rate for the
currently allocated memory capacity, for instance: “the 4GB
memcached instance currently has hit rate of 73%”. They
have no mechanism for estimating cache performance for
different capacities or configurations. Second, to generate
a HRC, the hit rates for different memory sizes must thus
be either calculated or simulated. However, calculations
depend on the specifics of the cache replacement algorithm,

2

Hit rate curve (HRC) MIMIR Cache server

HRC estimator

Ghost list/ghost filter
0

0,5

1

0 5000 10000C
u

m
u

lu
at

e
 h

it
 r

at
e

Cache size (items)

Hit(e)

Miss(e)

Set(e)

Evict(e)

Export-HRC()

Replacement
algorithm

𝒆𝟏 𝒆𝟐 ⋯ 𝒆𝑵

Get/Set(e)
Aging policy

Item-to-bucket
mapping

Figure 1: The MIMIR system. The diagram shows MIMIR architecture on a single node. On the left, a multi-threaded cache server such as memcached
processes GET(e) or SET(e) cache request for item e. The cache algorithm in the server looks to see if e is among the e1, . . . ,eN items stored by the cache (a
cache hit) or not (a cache miss). In each case, MIMIR is given a HIT(e), MISS(e) or SET(e) upcall. An upcall is also made when the replacement policy evicts
an item. MIMIR tracks statistics on the elements in the cache, specifically a mapping between buckets and items (see §3). For efficiency, the per-item statistics
may be maintained within the cache server as indicated by the dotted line. The keys of elements that have been evicted from the cache may be tracked in a
ghost list or ghost filter to estimate hit rate for larger cache sizes (§2.4). The HRC estimator periodically calls an aging routine to keep the estimate current
(§3.3). Finally, as illustrated on the right, MIMIR can generate an up-to-date hit rate curve through the export-HRC function when desired by an operator or
by a framework using MIMIR as input into a resource profiler or cache partitioning framework [10, 36–38].

whereas simulations incur significant memory and computa-
tion overheads if done naı̈vely. Third, since caches are on the
critical path for client requests, the estimator must incur low
time and space overhead, even if operators wish to assess
H(n) for potential cache sizes n exceeding the current cache
allocation of N.

To make the problem tractable, we focus on estimating
HRCs for the LRU cache replacement policy: the default
algorithm used in memcached and arguably the most
common cache eviction scheme used in practice. examples?
Incidentally, LRU has mathematical properties that can be
manipulated to efficiently generate HRCs for which we need
to define a few additional concepts.

Inclusion property. The principle behind LRU and its
descendents (such as CLOCK [12]) is to exploit the locality
of memory references. LRU satisfies an inclusion property
which states that elements in a cache of size N are also
contained in a cache of size N + 1 given the same input se-
quence and replacement policy [31]. Algorithms that satisfy
this condition are called stack algorithms, and include LRU,
LFU (evict Least-Frequently-Used item) and Belady’s OPT
(evict the item used farthest in the future) optimal cache
replacement policy [6].

Stack distance. One can visualize the contents of an
LRU cache over time as a stack, where the item at the
bottom of the stack will be replaced on a cache miss. The
stack distance of an item e is its rank in the cache, counted
from the top element. We define elements outside the cache
to have an infinite stack distance. The inclusion property
induces an abstract total ordering on memory references
which stack algorithms use to make replacement decisions.
In the case of LRU, elements are ordered by their recency.
Therefore, in a linked-list implementation of LRU, the stack
distance corresponds to the number of items between the

requested element and the head of the list. We will exploit
the following corollary of the inclusion property and the
stack distance definition:

Lemma 1 (from [31]). A request for item e results in a cache
hit in an LRU cache of size n if and only if the stack distance
of e is at most the cache size, n.

2.3 Estimating hit rate curves
Efficiency is a critical design goal for MIMIR: hit rate
profiling should have minimal impact on the performance
and throughput of cache lookups. After all, minimizing
overheads aligns with the performance concerns evidenced
by the recent flurry of work on optimizing the memcached
service [18, 33, 35].

By Lemma 1, computing the value of hit rate curve H(n)
for LRU can be simplified to tracking the number of items
with stack distance at most n. Specifically, we can compute
H(n) = ∑

n
d=0 h(d) where h(d) is the number of hits received

by items of stack distance d. The next question is then how
we can efficiently compute and maintain stack distances of
cache items.

MATTSON. Mattson et al. [31] proposed a basic approach
for computing the stack distance of an item e on a hit: simply
traverse the linked LRU list from the head and count the
number of elements ahead of e on the list. Unfortunately,
the complexity of this basic traversal approach is too high in
practice. For instance, Zhao et al. found that on the SPEC
CPU2006 benchmark, the Θ(N) operations for accumulat-
ing statistics in MATTSON increased the LRU’s execution
time by a factor of 1.73 [45].

Tree-based schemes. The linear look-up time of MATT-
SON was recognized as problematic early on. Work towards
tree-based alternatives for profiling LRU started with prefix-
sum hierarchies proposed by Bennett and Kruskal [7] and

3

g,h,u e,r,tf b,c,d,a

Bucket #0 1 2 3

HRC

(i) LRU list before

hit on item e

(iii) After request

(ii) HRC update

4 buckets (B=4)

(iv) After aging

e,g,h,u r,tf b,c,d,a

g,h,u f r,t,b,c,d,ae

Stack distance

E
st

im
a

te
d

 #
 o

f
h

it
s

Figure 2: MIMIR’s HRC profiling algorithm. XXX updates to the hit rate
curve and the bucket lists of the LRU stack when element e is hit in the
cache.

culminated in a more efficient approach by embedding the
LRU stack in an AVL-tree [2, 43, 45]. Although faster, Zhao
et al. show that AVL-trees still pose substantial overhead
(over 16%) on every cache access [45].

We implemented MATTSON and an optimized AVL-
tree LRU profilers on a single-threaded C++ LRU cache
server. We compared the performance with and without
each profiler on the P-XXX trace [32] with a memory
capacity for 5000 items. Figure 3 shows that the throughput
for MATTSON is only XXX% of LRU without a profiler,
and the AVL-tree comes in at XXX% of the basic LRU
performance.

Concurrency. In the context of large memory caches
in the cloud, performance issues run deeper than per-item
latency overheads. In contrast to the single process envi-
ronment for which canonical cache algorithms and profiling
schemes were developed, modern in-memory cache servers
are multi-threaded [18, 19]. Trees and similar data structures
facilitate fast reuse distance lookup by maintaining mutable
lists that need regular rebalancing, and can therefore suffer
from lock contention that limits multi-threaded throughput
[8]. Recent work on making concurrent search trees practical
is promising, but the implementations still too complicated
for deployment within an LRU profiler [8]. The performance
results in Figure 3 coupled with the concurrency concerns
prompted us to consider alternative approaches to stack
distance profiling.

MIMIR’s profiling algorithm. The above approaches
are based on the premise that all stack distances must be
calculated accurately. In practice, however, decisions based
on HRCs are made at coarser granularity, such as for cache
partitioning [37, 38] or server provisioning. If we concede to
producing approximate HRCs, how accurate can they be if
our methods need to be fast and concurrent?

We devised a novel estimation algorithm for HRC that
tracks approximate LRU stack distances. We imagine that
the LRU stack has been divided into B variable-sized buck-
ets, where B is a parameter, and that every element tracks the

0

200000

400000

600000

800000

1000000

1200000

1400000

T
h
ro
u
g
h
p
u
t
[O
P
S
/s
]

Statistics algorithms

Mattson
AVL-tree
MIMIR
LRU without profiler

Figure 3: Overhead of profiling algorithms. The number of requests
processed per second a single-threaded LRU C++ cache server with
capacity for 5000 items The error bars show sample standard deviations
over XXX runs.

identity of the bucket to which it belongs. The elements can
be in any order within a bucket.

Our method exploits a characteristic that enables us to
hone in on the true LRU stack distance of an item. Sup-
pose the buckets are labeled B0,B1, . . . ,BB−1 where B0 is
closest to the LRU head, and define n0,n1, . . . ,nB−1 as the
corresponding sizes of the buckets such that ∑

B−1
i=0 ni = N,

where N is the cache size. The invariant we maintain is that
an element ei in bucket Bi will have lower stack distance
than element e j in bucket B j if and only if i < j. Moreover,
the true LRU stack distance of elements in bucket B j will
be in the range between L and L+n j−1 where L = ∑

j−1
i=0 ni.

When bucket sizes are reasonably balanced, we can estimate
the histogram of stack distances as a probability distribution
over these intervals, and accumulate the probability distribu-
tions over requests to estimate the HRC.

A high-level illustration of our algorithm with B = 4
buckets is shown in Figure 2. Suppose a cache request is
made for element e for the LRU stack shown on label (i) on
the figure. From e’s identifier, we see it belongs to bucket
#2, which also contains two other elements. The invariant
implies that e’s stack distance must lie in the range [4,6],
since the two buckets on the left contain four elements and e
is one of the three elements in bucket #2.

Since we have no further information about where e lies
in the range, we assume it to be uniformly distributed within
the interval. We therefore update the estimated number of
hits at stack distances 4, 5 and 6 by a value of 1

3 each (label
(ii)). Element e is now moved to the front of the list and
tagged as belonging to bucket #0 (label (iii)). To ensure
load is balanced across the buckets, the bucket contents are
shifted down the list by an aging procedure when the front
bucket holds more than its fair share (N/B) of items (label
(iv)). We discuss more details of the algorithm, two aging
procedures (ROUNDER and STACKER) and their properties
in §3.

4

2.4 Estimating HRC for larger cache sizes
Internally, MIMIR manages statistics for the current work-
load, including short data for every item stored in the cache.
As an optimization, MIMIR may piggyback on the cache
server to maintain the per-item information.

[Talk about ghost lists and bloom filters. Defer to special
section?]

Ghost lists. Hit rate profilers XXX The above technique
for calculating HRCs assumes that n≤N. But can we predict
whether the cache needs to grow in size? To this end, we use
dataless items called ghosts [16] as placeholders to record
accesses to items whose data would have been included in
the cache if more memory had been available [34].

Normally, placeholders consume minor amount of mem-
ory relative to the data normally stored by items, so their
memory overhead can be viewed as “tax” on elements
actually stored in the LRU list. Thus when an item is evicted
from the primary LRU list, it is added to a ghost LRU stack.
The last ghost is also popped off and discarded. Hits on ghost
entries are therefore still cache misses, because no data could
be returned to the user, but allows statistics about the item
itself to be gathered.

Unfortunately, the memory tax of maintaining ghost
items can be significant when the values are short relative
to the key size in the workload. Such situations happen in
practice: a recent survey of Facebook workloads showed
that tiny values (11 bytes or less) are very common, making
up more than 40% of the values sampled from the largest
memcached pool (ETC) in the study [3].

Ghost filters. We consequently devised a novel mecha-
nisms to optimize ghost lists.

In summary, to estimate H(n) for cache memories larger
than the current allocation, that is N ≤ n≤ 2N, we employ a
ghost list of length N. Shorter or longer ghost lists trade off
performance for accuracy of H(n) at larger values of n.

2.5 Combining estimates
Having described how the HRCs are generated on a single
cache server, we can now address the distributed case. If
the caching capacity allocated to an application is distributed
across k servers in the caching tier, the HRCs produced by
MIMIR on individual servers can be joined to produce a
single tier-wide HRC as follows. Every server i maintains
an array of hit statistics Hi where each entry Hi(j) for j ≥ 0
holds the number of hits obtained by a cache replacement
algorithm on a cache of size j along with the total number
of hits Ni. To produce a combined HRC, H, observe that by
assuming the items are spread between the caches uniformly
at random [?], each Hi(j) represents server i’s portion of
the total number of hits obtained by the combined cache
of size k(j + 1). Hence, for each j ≥ 0, H(k(j + 1)) =
∑

k−1
i=0 Hi(j). For simplicity, we fill the “gaps” between each

pair of combined cache sizes k j and k(j+ 1), by assigning
the same number H(k(j + 1)) of hits to each cache size

within this range resulting in the combined HRC being a
step function. Note that other approaches, such as piecewise
linear approximation, could also be applied. Finally, we
normalize the combined HRC as H̄, obtained by dividing
each entry in H by ∑

k−1
i=0 Ni.

3. The MIMIR Algorithm
At the center of MIMIR is the HRC profiling algorithm

we outlined in §2.3. Our algorithm is designed to generate
estimates for LRU stack distances while incurring minimal
overhead, even when deployed in multi-threaded settings.
While we focus on the in-memory caching tier as our
target setting, our algorithm can also be applied in other
memory management scenarios, such as facilitating memory
partitioning between virtual machines [21, 27, 30, 44] or
applications [28, 46]. We will now discuss specifics and
optimizations for the HRC estimator, and formally analyze
their running time and accuracy.

3.1 Preliminaries
Recall that our method relies on maintaining a dynamic
partition of all currently cached elements into a fixed number
B of buckets. The buckets are logically organized into a
circular list with the most and least active buckets occupying
the head and tail of the list, respectively. Whenever a cache
hit occurs, the element causing the hit is moved to the head
of the list. The total number of elements in the buckets in
front of the one being hit is then used to estimate the stack
distance of the hit, as we explain below.

To keep the elements in our buckets consistent with their
stack distances, the elements are aged by shifting them one
bucket down in the bucket list. Note that since we do not
differentiate between the stack distances of the elements
mapped to the same bucket, the aging is only necessary when
the head bucket becomes full (i.e., the number of elements in
it reaches N/B). This allows us to both reduce the frequency
of aging to at most once per N/B requests, and amortize its
overhead.

In our implementation, we maintain a correspondence
between the elements and the buckets in the following three
state variables (see Algorithm A):

(1) An e.rank tag associated with each cached element e is
used to establish the identity of the e’s current bucket.

(2) A circular array buckets tracks the number of elements
currently mapped to each bucket.

(3) The tail variable holds the current index of the lowest
bucket in the buckets array.

Initially, tail = 0, buckets[i] = 0 for all 0≤ i < B, and e.rank
is undefined.

The MIMIR implementation divides the logic of LRU
stack processing into an HRC estimator, which intercepts
and processes the calls made to the MIMIR’s framework,
and an aging policy, which balances the load between
buckets and manages the tail index. We assume that the

5

Figure 4: Pseudocode for (B) MIMIR’s HRC estimator algorithm and the (C) STACKER and (D) ROUNDER aging policies.

1: (A) Initialization
2: Record Element:
3: rank, initially undefined ;Bucket in

which item is associated:
4: buckets[B]← [0, . . . ,0] ;Cyclic array of per

bucket item counts
5: tail← 0 ;Index of the tail bucket
6: AvgStackDist← 0 ;Estimated average stack

distance touched since latest aging round
(used by STACKER)

7: DELTA[N] ← [0, . . . ,0] ;Cumulative hit
count statistics

8: HRC[N]← [0, . . . ,0] ;HRC estimate

1: (B) MIMIR Estimator Algorithm
2: procedure HIT(e)
3: if e.rank < tail then
4: e.rank← tail ;adjust last bucket

for ROUNDER
5: (start,end)← get-stack-dist(e)
6: update-HRC(start, end)
7: i← e.rank mod B
8: buckets[i]← buckets[i]−1
9: head← (tail+B−1) mod B

10: if buckets[head] = N/B then
11: age()
12: e.rank← tail+B−1
13: buckets[head]← buckets[head]+1

14: procedure INSERT(e)

15: head← (tail+B−1) mod B
16: if buckets[head] = N/B then
17: age()
18: e.rank← tail+B−1
19: buckets[head]← buckets[head]+1

20: procedure DELETE(e)
21: if e.rank < tail then
22: e.rank← tail ;adjust last bucket

for ROUNDER
23: i← e.rank mod B
24: buckets[i]← buckets[i]−1

25: procedure get-stack-dist(e)
26: (start,end)← (0,0)
27: (head, tail)← (tail+B−1, tail)
28: for i← head→ tail do
29: if i = e.rank then
30: break
31: start← start+buckets[i]
32: end← start+buckets[e.rank mod B]
33: return (start,end)

34: procedure update-HRC(start,end)
35: delta← 1/(end− start)
36: DELTA[start]← DELTA[start]+delta
37: DELTA[end]← DELTA[end]−delta

38: procedure export-HRC()
39: HRC[0]← DELTA[0]

40: for i = 1→ N−1 do
41: HRC[i]← HRC[i−1]+DELTA[i]

1: (C) STACKER aging policy
2: procedure age()
3: b← get-bucket(AvgStackDist)
4: for all elements e in the cache do
5: i← (e.rank) mod B
6: if i≤ b then
7: buckets[i]← buckets[i]−1
8: e.rank← e.rank−1
9: buckets[i−1]← buckets[i−1]+1

10: procedure get-bucket(d)
11: len← 0
12: for i← B−1→ 0 do
13: len← len+buckets[i]
14: if d ≤ len then
15: break
16: return i

1: (D) ROUNDER Aging Policy
2: procedure age()
3: buckets[(tail+1) mod B]←

buckets[(tail+1) mod B] +
buckets[tail mod B]

4: tail← tail+1
5: buckets[(tail+B−1) mod B]← 0

implementation of the replacement algorithm (see Figure 1)
ensures that each call to HIT (or MISS) can only be made
for the elements that have been previously inserted into the
cache (through the INSERT call), and are still undeleted at
the time the HIT (or MISS) is invoked.

To simplify presentation, we defer the details of the ghost
list management to the full paper (see Section 2.4 for the
informal disuccious), and focus solely on estimating HRC
for the currently occupied caching space. Consequently, the
HRC estimator code in Algorithm B only includes the details
of processing the HIT, INSERT, and DELETE calls, and omits
those of the MISS call.

For output, the hit statistics are collected into a DELTA
array whose entries DELTA[i] hold the differences between
the consecutive elements of the hit histogram. Using the
DELTA, we can derive an HRC via the export-HRC routine,
which assigns ∑

k
i=0 DELTA[i] to each HRC(k) for all 0≤ k≤

N where N is the size of the cache.
Below, we will discuss the MIMIR algorithm with two

different aging policies, STACKER and ROUNDER, that rep-
resent different trade-offs between estimation accuracy and
efficiency.

3.2 HRC estimator
When the cache replacement algorithm receives a hit on
element e, the MIMIR HRC estimator’s HIT routine is
invoked with e as a parameter, and proceeds as follows (see
Algorithm B): First, the get-stack-dist routine determines the
lower (start) and upper (end) stack distance boundaries of
the bucket in which e is currently contained. This is done by

summing up the entries in the buckets array starting from
the topmost entry until the bucket whose index is equal
to e.rank is reached (see the get-stack-dist routine). Our
invariant implies that the relative stack distance order of
items within the bucket is unknown. Therefore, we cannot
count the hit by simply adding 1 to the array at the precise
stack distance of e. We will instead assume a hit is equally
likely to occur at any stack distance between start and end.
Accordingly, we add 1

end−start to each distance in the interval
[start,end].

Next, e’s mapping is adjusted by moving it to the topmost
bucket (tail+B−1) mod B, and then adjusting the affected
buckets array entries to reflect the update. Before making
the move, the HIT handler checks if the number of elements
in the head bucket would consequently exceed N/B. If so,
we balance bucket sizes by invoking the aging policy, which
will empty the head bucket and possibly shift the elements
in other buckets to an adjacent bucket further back in the
list. The details of the aging strategies are discussed further
below.

The HRC estimator is notfied of an element e newly
inserted into the cache via the INSERT routine which adds
e to the topmost bucket, possibly aging the elements if the
topmost bucket is full. Finally, deleting an element e from
the cache triggers the DELETE(e) handler, which removes e
from the bucket in which it is currently located.

6

3.3 Aging Policies
In this section, we describe the details of the two aging
policies, called STACKER and ROUNDER respectively, that
can be used in conjunction with the MIMIR’s HRC estimator.

STACKER. The pseudocode for STACKER aging policy
appears in Algorithm C. The idea behind the method is to
track the average stack distance that has been accessed, and
approximating the LRU aging by only shifting the items
whose stack distance is less than the average. To this end,
the algorithm maintains a variable AvgStackDist holding the
weighted running average of the stack distances that have
been accessed so far (details deferred to the full paper).

The aging then proceeds as follows. First, the average
stack distance is converted to the bucket number in the
get-bucket routine by finding the first (from the top) bucket b
in the bucket list such that the total number of the elements
in the buckets preceding b is at least as high as AvgStackDist.
The elements in the cache are then traversed in a top-down
fashion, decrementing their e.rank value, and adjusting the
affected bucket counts for each element element e whose
e.rank does not exceed b.

Note that the STACKER’s age routine never updates the
value of tail, thus leaving the tail bucket coinciding with
buckets[0] for the entire duration of the algorithm’s run.

ROUNDER. Observe that the running time of the
STACKER aging policy is linear in the number of the cached
items, which can be quite expensive for large cache sizes.
To address this shortcoming, the ROUNDER aging policy
replaces the downward shift of the cached elements with
advancing the current tail bucket index in the circular buckets
array, thus effectively shifting the frame of reference of
bucket identifiers. This shift is implemented in three steps
(see Algorithm D). First, the current tail bucket count is
folded into the one immediately after. Then, the tail is
incremented thus turning the former tail bucket into the head
one. Finally, the new head bucket is emptied by setting its
entry in the buckets array to 0.

Following this transformation, all elements with rank tag
value of tail+B−1 will be correctly mapped to the new head
bucket. However, the new tail bucket will end up populated
by the elements from the old tail. To map these elements to
correct buckets on either HIT or DELETE we adjust their rank
tags to point to the current tail.

3.4 Maximizing concurrency
The simple data structure and aging mechanism used by
ROUNDER makes our HRC estimator highly amenable to a
concurrent implementation, boosting performance on mod-
ern multi-processor architectures. We implemented a non-
blocking version of ROUNDER, where no thread, even a slow
one, can prevent other threads from making progress.

First, we update bucket counters atomically using stan-
dard compare-and-swap (CAS)-based technique whereby

the update is retried until it is verified that the new counter
value is derived from the most recently read one.

Second, to guarantee that at most one of the threads
executing within the age routine for a given value of tail can
succeed to update the head and tail buckets, and advance
the tail, we do the following. The most significant bit of
each bucket counter is reserved to serve as a mark indicating
whether the bucket was successfully set as a tail bucket
by a recent update. The threads executing within the age
routine then attempt to update both the penultimate bucket
counter and its mark in a single atomic step using CAS until
one of the threads succeeds. This thread will then proceed
to both update the head and advance the tail whereas all
other threads will discover the mark set and return. This
mechanism guarantees that all threads invoking age for a
given value of tail will eventually return, and all the aging
updates will be executed exactly once as needed.

3.5 Complexity analysis
Let N > 0 be the maximum cache capacity. As we discussed
earlier, the MATTSON and AVL-trees profiling algorithms
incur Θ(N) and Θ(log(N)) overhead on every cache hit, re-
spectively. In contrast, the complexity of our HRC estimator
is bounded by the number of buckets B, which is effectively
a constant.

Specifically, the running time of the HIT handler is
dominated by the get-stack-dist routine, which may take at
most O(B) steps in the worst case. In addition, the STACKER
aging policy (see the age routine in Algorithm C) takes
O(B+N) time to complete, which includes O(B) steps of
the get-bucket routine, and additional O(N) iterations of the
aging loop. And, the complexity of the ROUNDER aging
policy is O(1).

Thus, the maximum hit processing time of MIMIR is
either O(N) or O(B) for the STACKER and ROUNDER aging
policies respectively. Furthermore, since the age routine is
executed no more than once per N/B requests, and N ≥ B,
the MIMIR’s amortized time complexity per hit is just O(B)
for both STACKER and ROUNDER. If ROUNDER is used, the
ammortized complexity can be further reduced to O(1) if
N ≥ B2, and tends to 0 if N� B2.

Since, as we show in §3.6 and §4, the values of B as
small as 8 or 16 are sufficient to obtain high quality HRC
estimates for caches of any size, the hit processing times of
our algorithms are essentially bounded by a small constant.

Further optimizations are possible. We can bound
STACKER’s processing time on hits by limiting the max-
imum number of elements that can be processed at each
invocation of the age routine, or by delegating the aging
loop execution to a background thread. We can also speed
up the stack distance computation of get-stack-dist by using
a tree of partial sums of the buckets array entries to quickly
compute the lengths of the relevant stack segments resulting
in the O(logB) execution time [7].

7

3.6 Average error analysis
Our methods trade off prediction accuracy for performance
by assessing statistics at a granularity of B buckets. Having
discussed the asymptotic complexity of the algorithm, we
now turn to analyzing the prediction error. We use the mean
average error2 MAE of a distribution h : [1,N] → [0,1]
relative to an optimal distribution h∗:

MAE(h,h∗) =
1
N

N

∑
x=1
|h(x)−h∗(x)| . (1)

We can derive an upper bound on the mean average error of
the estimated HRC for STACKER given a trace of requests.

Theorem 1. For an LRU cache of size N during a trace of R
requests, With B buckets, our algorithm has a mean average
prediction error (MAE) bounded by the largest bucket size
during the trace, divided by N/2. Consequently, if no bucket
grows larger than αN/B for α ≥ 1 during the trace, then the
MAE for our approach is at most 2α

B .

Proof. We consider R cache requests to have true reuse
distance r1,r2, . . . ,rR. It suffices to consider only requests
that result in LRU hits, so ri ≤ N for all i. Define δt(x) = 1
if x = rt and δt(x) = 0 otherwise. Then the optimal LRU hit
rate curve HRC∗ satisfies:

HRC∗(x) =
1
R

R

∑
t=1

x

∑
z=0

δt(z)

In STACKER, there are B buckets with variable boundaries
over time. For request t with true reuse distance rt , we
estimate the reuse distance over an interval [at ,bt] that
includes rt . Furthermore, we assign uniform probability to
all possible distances within that interval. Define ct(x) =

1
bt−at

when x ∈ [at ,bt) and ct(x) = 0 otherwise. Then the
hit rate curve for our algorithm satisfies:

HRC(x) =
1
R

R

∑
t=1

x

∑
z=0

ct(z)

2 Our results are robust against other `p-norms.

Using the triangle inequality, we obtain the following upper
bound on the mean average error for the two HRCs.

MAE(HRC,HRC∗) =
1
N

N−1

∑
x=0
|HRC(x)−HRC∗(x)|

=
1

NR

N−1

∑
x=0

∣∣∣∣∣ R

∑
t=1

x

∑
z=0

δt(z)− ct(z)

∣∣∣∣∣
≤ 1

NR

R

∑
t=1

N−1

∑
x=0

x

∑
z=0
|δt(z)− ct(z)|

=
1

NR

R

∑
t=1

bt

∑
x=at

x

∑
z=0
|δt(z)− ct(z)|

≤ 1
NR

R

∑
t=1

bt

∑
x=at

x

∑
z=0

(|δt(z)|+ |ct(z)|)

≤ 1
NR

R

∑
t=1

bt

∑
x=at

(1+1) =
2

NR

R

∑
t=1

bt −at .

The average bucket size for hits 2
R ∑

R
t=1(bt − at) can

be calculated during the execution of the algorithm. We
computed the average bucket size for hits in our simulations
and found that it provides a loose but useful bound on the
MAE without needing to compute the optimal HRC∗. The
average can also be bounded above by the largest bucket

that receives hits during the trace,
2
N

sup
t=1,...,R

(bt−at), but our

experiments indicate that the least-significant bucket which
tracks the largest reuse distances can consume a significant
portion of the cache.

In summary, the analytic result enables operators to
dynamically track the MAE of the HRC estimate without
computing the optimal hit rate curve. The algorithm could
thus be extended to adaptively add or remove buckets de-
pending on changes in the MAE so as to maintain accuracy.

3.7 Extensions
Items of different sizes. The HRC estimator algorithm
implicitly assumes that cached elements are all of the same
size. In other words, the contribution of each hit to the
HRC is assumed to be independent of the space occupied by
the element being accessed. The approach can be extended
easily to support different element sizes by expressing the
size of each element in terms of pages of fixed size (similar
to virtual memory pages), and then treat each hit of an
element of size p pages as p simultaneously occurring
individual hits with one hit per page. When updating the hit
contribution in line 35 of Algorithm B, we would instead
compute the value as p/(end− start). In addition, the code
computing the value of end in get-stack-dist must be adjusted
to address the case of elements spanning multiple buckets.

Adaptive profiling. To adapt the HRC estimation to
dynamically changing cache access patterns, the hit statistics

8

stored in the DELTA array are periodically aged using an
a priori chosen aging factor parameter γ , 0 < γ < 1. More
specifically, we collect statistics in epochs of equal duration.
At the end of each epoch, the values stored in the DELTA
array are folded into the HRC using the export-HRC routine,
and the DELTA array entries are multiplied by γ . The value
of γ reflects the trade-off between the speed of the HRC
adaptation, and its resistance to short-lived fluctuations in
the workload. In our experiments, γ = 0.1 was a good match
for the workload types we analyzed.

4. Evaluation
Our evaluation on the MIMIR HRC algorithm focuses on
quantifying the following questions.

• Accuracy. What is the degree of fidelity between the op-
timal HRC and the estimates produced by the algorithm?
How different is the precision between ROUNDER and
STACKER? How is it affected by algorithm parameters?

• Performance. What is the performance overhead of the
estimation algorithm? To what extent does the gathering
of statistics degrade the cache throughput?

Methodology. We begin by assessing the accuracy of
our methods through simulations. We implemented a trace-
driven cache simulator in Python and measured the algo-
rithms on a variety of standard cache traces and bench-
marks. We then experiment with ROUNDER running within
memcached, and measure the impact on memcached’s
throughput. We also compare the accuracy of our method
compared with the optimal MATTSON algorithm, and look
at the prediction accuracy.

Many results are similar, so we present only representa-
tive traces and benchmarks to save space.

4.1 Accuracy
We ran simulations on a variety of traces from the cache
literature to measure the estimation quality of our methods.
As the primary metric for assessing quality, we use the mean
average error (MAE, eq. 1) – the proximity between h: the
HRC generated by an algorithm, and h∗: the optimal LRU
hit rate curve generated by MATTSON. The MAE between
two distributions ranges from 0% for identical curves to at
most 100% for complete dissimilarity. Accuracy is defined
as 1−MAE(h,h∗).

Workloads. We use traces and benchmarks that are
commonly used by the cache replacement algorithm com-
munity [25, 26, 32], with the parameters outlined in Table 1.
The traces present challenging workloads whose hit rate
curves are hard to approximate. The difficulty stems from
abundance of sequential and looping references in the buffer
cache that are characteristic of file-system accesses [28].

The traces 2-pools,glimpse, cpp, cs, ps and sprite, were
respectively collected from a synthetic multi-user database,
the glimpse text information retrieval utility, the GNU C
compiler pre-processor, the cs program examination tool,

join queries over four relations in the postgres relational
database, and requests to file server in the Sprite network
file system [25, 26]. The traces multi1, multi2 and multi3
are obtained by executing multiple workloads concurrently
[25]. For these first nine traces, we use identical cache set-
up as the authors of the LIRS algorithm [25]. We also used
workloads captured from IBM SAN controllers at customer
premises [32]. The workloads P1-P13 were collected by disk
operations on different workstations over several months.
WebSearch1 consists of disk read accesses by a large search
engine in response to web search requests over an hour, and
Financial1 and Financial2 are extracted from a database
server at a large financial institution [32].

Profiling accuracy. Figure 6 summarizes the quality
of the estimates for MIMIR on the workloads with both
STACKER and ROUNDER aging policies as we vary the
numbers of buckets B. We observe that the average ac-
curacy exceeds 96% for both methods on all traces, and
for STACKER with 128 buckets the accuracy is 99.8% on
average over all the traces. The bucket parameter trades off
overhead for more granular reuse distance estimates, and the
improvement in accuracy is evident as we increase the num-
ber of buckets B. It is noteworthy is that the extra overhead
of STACKER over ROUNDER translates consistently to better
HRC predictions.

Unlike the more expensive STACKER aging policy,
ROUNDER had modest performance on the WebSearch1
trace even as more buckets were added, with accuracy just
below 96%. The elements in the trace have very high stack
distances and thus the workload requires a large cache to
obtain reasonable hit rates. The ROUNDER approximation
falls short of properly balancing the buckets due to large
miss rates.

Theorem 1 in §3.6 renders an upper bound on accuracy in
terms of average bucket size of items that were hit during
the execution of the algorithm. We found that the upper
bound is loose, within 5× of the MAE experienced by
both algorithms. The large factor is explained by the HRC
predictions being nearly accurate, since the average accuracy
exceeds 99.8%.

Ghost filters. XXX
Other stack replacement policies. Most LRU imple-

mentations suffer from lock contention on the list head,
which needs to be updated on every cache reference. Several
real-world systems instead opt to use approximations to
LRU such as the CLOCK algorithm [12]. For example, a
recent paper of Fan et al. showed how the throughput of
memcached could be improved through the use of CLOCK
and concurrent Cuckoo hashing [18].

In CLOCK, cache items are arranged in a circular linked
list, and a “recently-used” activity bit is set when an item
is accessed. On a miss, a “hand” steps clockwise through
the linked list and resets the activity bits from entries until
an item i with an unset activity bit is found. Item i is then

9

0 500 1000 1500 2000 2500
Cache size (items)

0.00

0.25

0.50

C
u
m
u
la
ti
v
e
 h
it
 r
a
te

B=8

B=16

B=32

B=64

LRU

(a) ROUNDER on trace file glimpse

0 500 1000 1500 2000 2500
Cache size (items)

0.00

0.25

0.50

C
u
m
u
la
ti
v
e
 h
it
 r
a
te

B=8

B=16

B=32

B=64

LRU

(b) STACKER on trace file glimpse

0 600 1200 1800 2400 3000
Cache size (items)

0.0

0.3

0.6

C
u
m
u
la
ti
v
e
 h
it
 r
a
te

B=8

B=16

B=32

B=64

LRU

(c) ROUNDER on trace file postgres

0 600 1200 1800 2400 3000
Cache size (items)

0.0

0.3

0.6

C
u
m
u
la
ti
v
e
 h
it
 r
a
te

B=8

B=16

B=32

B=64

LRU

(d) STACKER on trace file postgres

Figure 5: Accuracy on microbenchmarks. Hit rate curves of ROUNDER (top row) and STACKER (bottom row) with varying bucket sizes (B) running over
LRU replacement on two representative trace files. The true LRU hit rate curve is also shown.

Table 1: Traces. Workloads used to measure accuracy of HRC algorithms, number of requests and configured cache size [25, 26, 32].

Trace 2 pools cpp cs glimpse multi1 multi2 multi3 postgres sprite Financial1 Financial2 WebSearch1
Requests 100K 9K 7K 6K 16K 26K 30K 10K 134K 1M 3M 1M

Cache size 450 900 1K 3K 2K 3K 4K 3K 1K 50K 50K 50K
Trace P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P12 P13

Requests 3M 666K 239K 967K 1M 520K 751K 2M 682K 1M 547K 1M
Cache size 50K 50K 50K 50K 50K 50K 50K 50K 50K 50K 50K 50K

90%

92%

94%

96%

98%

100%

2-pools

cpp
cs glim

pse

m
ulti1

m
ulti2

m
ulti3

postgres

sprite

Financial1

Financial2

W
ebSearch1

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10
P12

P13
2-pools

cpp
cs glim

pse

m
ulti1

m
ulti2

m
ulti3

postgres

sprite

Financial1

Financial2

W
ebSearch1

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10
P12

P13

E
s
ti
m

a
ti
o

n
 a

c
c
u

ra
c
y
 (

1
 -

 M
A

E
)

Rounder B=8
B=16
B=32
B=64

B=128

Stacker B=8
B=16
B=32
B=64

B=128

StackerRounder

Figure 6: Accuracy on cache traces. Comparison of prediction accuracy, measured by mean average error (MAE) between MIMIR’s predicted and optimal
LRU hit rate curves, across canonical cache workloads as we vary the number of buckets B in ROUNDER and STACKER. Note that the y-axis begins at 90%
accuracy.

evicted and replaced with the requested item, which has its
activity bit set, and the clock advances to the following item
on the list. The “second chance” aspect of CLOCK provides
a 1-bit approximation to the LRU policy. However, CLOCK
is not a stack algorithm due the FIFO behavior of the hand
[12].

Since both CLOCK and our algorithms are designed to
approximate LRU cache evictions, we investigated how well
the HRC computed by our methods predict the behavior of
CLOCK. We compare against an earlier profiling algorithm
SC2 that was explicitly designed to approximate HRC for
CLOCK [10].

We computed the MAE of STACKER compared to the
optimal CLOCK HRC, which was computed at every cache
size. The average accuracy over the traces in Table 1 ranged
from 98.9% for B = 8 to 99.3% for B = 128 for both
aging policies. Even though our methods were not explicitly
designed for CLOCK, they approximated the HRC with
significantly higher fidelity than the previous method SC2
[10], whose prediction accuracy averaged 96.4% on the
traces.

Takeaways. Our methods consistently profile LRU hit
rate curves with accuracy over 96%, with accuracy of
over 99.8% when 128 buckets are used. Moreover, our
method also tracks CLOCK hit rate curves with over 98.9%

10

1024 2048 4096 8192 16384
Cache size (MB)

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

T
hr
ou

gh
pu

t
(o
ps
/s
ec
) 13.9%

13.0%

10.3%

3.4% 2.2%

16.0%

12.6%

9.3%

1.8% 2.1%

16.0%

12.5%

11.1%

2.0% 2.0%

17.9%

15.0%

13.2%

3.7% 3.3%

memcached

MIMIR B=4

MIMIR B=8

MIMIR B=16

MIMIR B=32

(a)

 0

 5

 10

 15

 20

 25

 30

 35

 0 5 10 15 20

H
it

 r
a
te

 (
%

)

Cache size (MB)

Rounder B=8
Rounder B=16
Rounder B=32
Rounder B=64
Rounder B=128
Mattson
True memcached

(b)

B MAE
8 1.2 %

16 0.6 %
32 0.4 %
64 0.3 %

128 0.3 %

(c)
Figure 7: (7a) Performance. Throughput of the original memcached, and memcached augmented with ROUNDER for B = 8 and B = 128 in MOPS for
different cache sizes, showing that our statistics routines in ROUNDER impose minor performance overhead. Error bars represent two standard deviations
over 7 runs. (7c) Prediction accuracy of ROUNDER on memcached with varying number of buckets (B) on the YCSB b2 benchmark. (7b) Accuracy. Figure
showing ROUNDER and MATTSON running in memcached with varying buckets on the YCSB b2 benchmark. The circles are true hit rates reported by
memcached at various sizes on the same trace.

accuracy, out-competing approaches that were specifically
designed for profiling CLOCK [10].

4.2 Experiments
To validate our methods on real systems, we integrated a
prototype of ROUNDER within memcached [19].

Implementation. memcached exposes a lightweight
get-set-delete interface to serve key-values tuples from
DRAM. Internally, keys and values are stored within so-
called slabs maintained by a custom memory allocator. Slabs
are further subdivided into chunks and all chunks of the same
size are said to belong to the same slab class. Each slab class
runs its own separate LRU queue, implemented as a doubly-
linked list. memcached is multi-threaded and uses global
locks on index updates and cache eviction. The source code
for recent optimizations within memcached [18] was not
available.

We modified memcached 1.4.20 to use the MIMIR inter-
face with the ROUNDER aging policy on cache accesses. We
made minimal modifications to the source to hook it up with
our C implementation of MIMIR with the implementation
of ROUNDER. We note that memcached does not provide
ghost lists out of the box so we enlarge the cache size
since we focus on the overhead of computing statistics. Our
ROUNDER implementation is lock-free, except for a try-lock
that is periodically acquired for aging. We added a routine to
the memcached stats interface to collect the HRC that
were created.

The space overhead in our prototype implementation is
currently three 64-bit integers for each item. Optimizations
such as making the resolution of the resulting HRC and
the DELTA array less granular (through bucketing), and
wrapping e.rank values in a smaller integer range could
bring the overhead down to about four bytes per item.

The memcached LRU queue runs several performance
optimizations that cause it to diverge from a standard LRU

policy, such as updating frequently accessed elements in
place rather than promoting them to the head of the list to
reduce contention. In these cases, we ensure that the element
ranks are accurately reflected in our statistics algorithms.

Platform. We ran our experiments on 11 IBM HS22
blades in an IBM BladeCenter H. Each node in the cluster
has 6 Intel Xeon E5645 quad-core CPUs@2.4 GHz with
CPU frequency scaling turned off, and 48GB of DRAM. The
nodes communicate via 40Gbps QDR Infiniband intercon-
nect using Ethernet, and have shared storage.

Throughput experiment. We started by measuring
comparing the request throughput of memcached with
and without the MIMIR profiler. We ran both versions of
memcached on a server node on our cluster platform with 8
concurrent threads, and varied the size of cache memory. We
deployed libmemcached 1.0.18 on 10 nodes and used the
built-in memaslap workload generator. Each node requests
2 million random 16 byte unique keys and 32 byte values via
10 threads. The proportion of GET requests to SET is 9:1,
and we bundle 100 GETs together in a single MULTI-GET
request. Our experimental set-up follows Fan et al. [18] and
the value lengths are inspired by the predominance of short
values seen on Facebook’s memcache servers [3].

Figure 7a shows the total throughput from the clients to
the central memcached server, each point measuring 2 min-
utes. The throughput of our augmented memcached is on
average 3.1% lower than the original memcached imple-
mentation with B = 8 buckets, and 8.3% with B = 128 buck-
ets that produces more granular statistics. At larger memory
sizes when fewer misses need to be handled, throughput
degradation is between 1− 2% for B = 8. We observe a
paradoxical drop in throughput for all three services as
cache size increases. This stems from memory management
inefficiencies and coarse-grained lock contention within
memcached [18, 42] as the hit rate rises from ∼ 40% at
1GB to effectively 100% at 4GB and up.

11

We also implemented MATTSON within MIMIR for com-
parison. In our experiment, however, the linear lookup time
in MATTSON created inefficiencies causing an avalanche of
trouble within memcached, including various time outs,
even for small cache sizes. These problems are telling of
MATTSON’s performance and so we omit the figures. We
use the method, however, to generate true hit rate curves for
smaller caches.

Accuracy experiment. We next measure the prediction
accuracy with our memcached implementation with larger
cache sizes than afforded by our trace-driven simulator. We
used the YCSB benchmark [11] to generate workload b2,
representative of a real-world read-heavy photo tagging site
with a heavy-tailed popularity distribution on the items.
MATTSON’s lack of scalability prevented us from computing
the true LRU histogram for large cache sizes, and so we con-
fine ourselves to allocation sizes that allows us to quantify
the prediction error.

Table 7c shows the HRC generated by memcached
augmented with ROUNDER on a 20MB cache. To validate
the accuracy of the HRC, we also ran MATTSON on the same
trace. Additional, we reran memcached at varying cache
sizes on the same input and plot its reported hit rate, as can
be seen in Figure 7b. The prediction is over 98%, reaching
99.7% with 128 buckets.

Takeaways. memcachedwith MIMIR and the ROUNDER
aging policy has minor impact on performance in terms
of throughput (3% at B = 8 XXX), while the estimates for
hit rate curves at different cache sizes are more than 98%
accurate.

5. Related Work
Hit rate curves have been discussed to model memory
demands since the advent of cache replacement algorithms
[13, 28, 31].

Offline evaluation of HRC for the sake of accurately
profiling programs and analyzing patterns in the control flow
for locality optimizations has been studied in a series of
papers [2, 7, 14]. These improvements on the MATTSON
algorithm achieve high degrees of space and time efficiency
for profiling the entire HRC of a program. Unfortunately,
they rely on self-balancing tree data structures that make
them susceptible to lock contention when subjected to dy-
namic settings with multiple competing threads, as men-
tioned above. In contrast, our methods below have constant
overhead per request, assuming the number of buckets defin-
ing accuracy is kept constant.

Dynamic evaluation of HRC has been explored in various
contexts, from improving memory utilization across virtual
machines [21, 27, 30, 44], sharing dynamic memory be-
tween applications on the same system [28, 46] to supporting
garbage-collected applications [43]. All of these examples
exploit context-specific assumptions and optimizations, such
as specialized hardware and lack of thread contention in

the kernel. The VMWare ESX server samples pages that
are utilized to approximate global memory utilization [41],
but does not estimate performance at cache size beyond
the current allocation. Geiger monitors memory pressure to
infer page faults from I/O and employs ghost lists, but their
MemRx estimation algorithm traverses the entire LRU list
on evictions. Zhao et al. [45] couple an LRU list with an
AVL-tree for reuse distance lookups and discuss how the
overhead can be reduced by disabling the monitor during
stable memory accesses. While bursty memory access pat-
terns are common in operating systems and virtual machines,
memory caches face continuous request load [3].

Kim et al. [28], and later systems in cache architecture
such as RapidMRC [39] and PATH [4], partition the LRU
list into groups to reduce cost of maintaining distances,
which is conceptually similar to our approach except the
group sizes are fixed as powers of two. Our variable sized
buckets affords substantially higher accuracy in trade for
modest overhead.

Recently porposed cache replacement policies, such as
ARC [32], LIRS [25], CAR [5] and Clock-Pro [26] that are
slowly being adopted, open up new questions for monitoring
hit rate curves. They are not stack algorithms and their goal
is to strictly improve on LRU and CLOCK. Our hit rate
estimation methods will thus require adaptation for these
scenarios. We believe generalization of our approach for
ARC is possible by leveraging that it is internally composed
of two stack algorithms, LRU and LFU.

6. Conclusions
Popular websites regularly deploy and use large in-memory
caches to enhance scalability and response time of their web
sites. Such caches have a price tag, begging the question
of how well these resources are being spent. We argue that
exposing dynamic curves of cache hit rate versus space
(HRCs) allows cache operators to profile and calibrate their
cache resources by understanding how provisioning differ-
ent capacities to their cache servers affects both performance
and cost.

We introduced MIMIR, a lightweight monitoring system
for dynamically estimating hit rate curves of live cache
servers. A key component of MIMIR is a novel approxima-
tion algorithm, which partitions the LRU stack into a fixed
number of buckets, to track LRU stack distances with low
space and time complexity, and provably bounded average
error.

Our experiments on a variety of cache traces show that the
HRCs generated by MIMIR are between 96-100% accurate
and that the accuracy of our methods can be traded off for
time and space overhead by adjusting the number of buckets
employed by the estimation algorithm.

To demonstrate practicality of our approach, we plugged
MIMIR into the popular memcached system and ran exper-
iments on standard benchmarks. Our measurements indicate

12

that HRCs can be gathered within real systems with high
accuracy (over 98%) while incuring a negligible drop in
the request throughput. We therefore believe that accurate
performance monitoring of live distributed caches is feasible
in practice, and can be a valuable tool to facilite elastic pro-
visioning of cache capacity to the cloud-based applications
and services.

References
[1] Redis key-value store. http://redis.io.

[2] G. Almási, C. Caşcaval, and D. A. Padua. Calculating stack
distances efficiently. SIGPLAN Notices, 38(2 supplement):
37–43, June 2002.

[3] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and
M. Paleczny. Workload analysis of a large-scale key-value
store. In SIGMETRICS ’12, pages 53–64, 2012.

[4] R. Azimi, L. Soares, M. Stumm, T. Walsh, and A. D. Brown.
PATH: page access tracking to improve memory management.
In ISMM ’07, pages 31–42, 2007.

[5] S. Bansal and D. S. Modha. CAR: Clock with Adaptive
Replacement. pages 187–200, 2004.

[6] L. A. Belady. A study of replacement algorithms for a virtual-
storage computer. IBM Systems Journal, 5(2):78–101, 1966.

[7] B. T. Bennett and V. J. Kruskal. LRU stack processing. IBM
Journal of Research and Development, 19(4):353–357, July
1975.

[8] N. G. Bronson, J. Casper, H. Chafi, and K. Olukotun. A
practical concurrent binary search tree. SIGPLAN Not., 45
(5):257–268, Jan. 2010.

[9] G. Chockler, G. Laden, and Y. Vigfusson. Data caching as a
cloud service. In LADIS ’10, pages 18–21, 2010.

[10] G. Chockler, G. Laden, and Y. Vigfusson. Design and
implementation of caching services in the cloud. IBM Journal
of Research and Development, 55(6):9:1–9:11, 2011.

[11] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and
R. Sears. Benchmarking cloud serving systems with YCSB.
In SoCC ’10, pages 143–154, 2010.

[12] F. J. Corbato. Festschrift: In Honor of P. M. Morse, chapter A
Paging Experiment with the Multics System, pages 217–228.
MIT Press, 1969.

[13] P. J. Denning. Working sets past and present. IEEE Transac-
tions on Software Engineering, 6(1):64–84, Jan. 1980.

[14] C. Ding and Y. Zhong. Predicting whole-program locality
through reuse distance analysis. In PLDI ’03, pages 245–257,
2003.

[15] A. Dragojević, D. Narayanan, O. Hodson, and M. Cas-
tro. FaRM: Fast remote memory. In Proceedings of the
11th USENIX Conference on Networked Systems Design and
Implementation, NSDI’14, pages 401–414, Berkeley, CA,
USA, 2014. USENIX Association. ISBN 978-1-931971-09-
6. URL http://dl.acm.org/citation.cfm?id=
2616448.2616486.

[16] M. R. Ebling, L. B. Mummert, and D. C. Steere. Overcoming
the network bottleneck in mobile computing. In WMCSA ’94,
pages 34–36, 1994.

[17] B. Fan, H. Lim, D. G. Andersen, and M. Kaminsky. Small
cache, big effect: Provable load balancing for randomly par-
titioned cluster services. In Proceedings of the 2Nd ACM
Symposium on Cloud Computing, SOCC ’11, pages 23:1–
23:12, New York, NY, USA, 2011. ACM. ISBN 978-1-
4503-0976-9. . URL http://doi.acm.org/10.1145/
2038916.2038939.

[18] B. Fan, D. G. Andersen, and M. Kaminsky. MemC3: Compact
and concurrent MemCache with dumber caching and smarter
hashing. In NSDI ’13, pages 385–398, 2013.

[19] B. Fitzpatrick. Distributed caching with memcached. Linux
journal, (124):72–74, 2004.

[20] S. Hart, E. Frachtenberg, and M. Berezecki. Predicting Mem-
cached throughput using simulation and modeling. In Pro-
ceedings of the 2012 Symposium on Theory of Modeling and
Simulation - DEVS Integrative M&S Symposium, TMS/DEVS
’12, pages 40:1–40:8, San Diego, CA, USA, 2012. Society
for Computer Simulation International. ISBN 978-1-61839-
786-7. URL http://dl.acm.org/citation.cfm?
id=2346616.2346656.

[21] M. Hines, A. Gordon, M. Silva, D. Da Silva, K. D. Ryu, and
M. Ben-Yehuda. Applications know best: Performance-driven
memory overcommit with Ginkgo. In CloudCom’11, pages
130–137, 2011.

[22] Y.-J. Hong and M. Thottethodi. Understanding and mitigating
the impact of load imbalance in the memory caching tier. In
Proceedings of the 4th ACM Symposium on Cloud Computing,
SOCC ’13, pages 13:1–13:17, New York, NY, USA, 2013.
ACM. ISBN 978-1-4503-2428-1. . URL http://doi.
acm.org/10.1145/2523616.2525970.

[23] Q. Huang, K. Birman, R. van Renesse, W. Lloyd, S. Kumar,
and H. C. Li. An analysis of Facebook photo caching.
In Proceedings of the Twenty-Fourth ACM Symposium on
Operating Systems Principles, SOSP ’13, pages 167–181,
New York, NY, USA, 2013. ACM. ISBN 978-1-4503-2388-8.
. URL http://doi.acm.org/10.1145/2517349.
2522722.

[24] J. Hwang and T. Wood. Adaptive performance-
aware distributed memory caching. In Proceedings
of the 10th International Conference on Autonomic
Computing (ICAC 13), pages 33–43, San Jose, CA,
2013. USENIX. ISBN 978-1-931971-02-7. URL
https://www.usenix.org/conference/icac13/
technical-sessions/presentation/hwang.

[25] S. Jiang and X. Zhang. LIRS: an efficient low inter-reference
recency set replacement policy to improve buffer cache perfor-
mance. ACM SIGMETRICS Performance Evaluation Review,
30(1):31–42, June 2002.

[26] S. Jiang, F. Chen, and X. Zhang. CLOCK-Pro: an effective
improvement of the CLOCK replacement. In ATEC’05, pages
35–35, 2005.

[27] S. T. Jones, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau.
Geiger: monitoring the buffer cache in a virtual machine
environment. In ASPLOS XII, pages 14–24, 2006.

[28] J. M. Kim, J. Choi, J. Kim, S. H. Noh, S. L. Min, Y. Cho, and
C. S. Kim. A low-overhead high-performance unified buffer

13

management scheme that exploits sequential and looping
references. In OSDI ’00, pages 9–9, 2000.

[29] H. Lim, D. Han, D. G. Andersen, and M. Kaminsky.
MICA: A holistic approach to fast in-memory key-value
storage. In Proceedings of the 11th USENIX Conference
on Networked Systems Design and Implementation,
NSDI’14, pages 429–444, Seattle, WA, Apr. 2014.
USENIX Association. ISBN 978-1-931971-09-6. URL
https://www.usenix.org/conference/nsdi14/
technical-sessions/presentation/lim.

[30] Y. Lu, T. Abdelzaher, C. Lu, and G. Tao. An Adaptive
Control Framework for QoS Guarantees and its Application
to Differentiated Caching Services.

[31] R. L. Mattson, J. Gecsei, D. R. Slutz, and I. L. Traiger.
Evaluation techniques for storage hierarchies. IBM Systems
Journal, 9(2):78–117, June 1970.

[32] N. Megiddo and D. Modha. ARC: A self-tuning, low overhead
replacement cache. In FAST ’03, pages 115–130, 2003.

[33] R. Nishtala, H. Fugal, S. Grimm, et al. Scaling Memcache at
Facebook. In NSDI ’13, pages 385–398, 2013.

[34] R. H. Patterson, G. A. Gibson, E. Ginting, D. Stodolsky, and
J. Zelenka. Informed prefetching and caching. In SOSP ’95,
pages 79–95, 1995.

[35] M. Rajashekhar and Y. Yue. Caching with twem-
cache. http://engineering.twitter.com/2012/
07/caching-with-twemcache.html.

[36] H. S. Stone, J. Turek, and J. L. Wolf. Optimal partitioning
of cache memory. IEEE Transactions on Computers, 41(9):
1054–1068, 1992.

[37] A. J. Storm, C. Garcia-Arellano, S. S. Lightstone, Y. Diao, and
M. Surendra. Adaptive self-tuning memory in DB2. In VLDB
’06, pages 1081–1092, 2006.

[38] G. E. Suh, L. Rudolph, and S. Devadas. Dynamic Cache
Partitioning for Simultaneous Multithreading Systems. In
PDCS’01, pages 116–127, 2001.

[39] D. K. Tam, R. Azimi, L. B. Soares, and M. Stumm.
RapidMRC: approximating L2 miss rate curves on commod-
ity systems for online optimizations. In ASPLOS XIV, pages
121–132, 2009.

[40] V. Venkataramani, Z. Amsden, N. Bronson, G. Cabrera III,
P. Chakka, P. Dimov, H. Ding, J. Ferris, A. Giardullo, J. Hoon,
S. Kulkarni, N. Lawrence, M. Marchukov, D. Petrov, and
L. Puzar. TAO: How Facebook serves the social graph.
In Proceedings of the 2012 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’12, pages
791–792, New York, NY, USA, 2012. ACM. ISBN 978-1-
4503-1247-9. . URL http://doi.acm.org/10.1145/
2213836.2213957.

[41] C. A. Waldspurger. Memory resource management in
VMware ESX server. In OSDI ’02, 2002.

[42] A. Wiggins and J. Langstone. Enhancing
the scalability of memcached. http://
software.intel.com/en-us/articles/
enhancing-the-scalability-of-memcached-0.

[43] T. Yang, E. D. Berger, S. F. Kaplan, and J. E. B. Moss.
CRAMM: virtual memory support for garbage-collected ap-
plications. In OSDI ’06, pages 103–116, 2006.

[44] W. Zhao and Z. Wang. Dynamic memory balancing for virtual
machines. In VEE ’09, pages 21–30, 2009.

[45] W. Zhao, X. Jin, Z. Wang, X. Wang, Y. Luo, and X. Li. Low
cost working set size tracking. In ATC’11, pages 17–23, 2011.

[46] P. Zhou, V. Pandey, J. Sundaresan, A. Raghuraman, Y. Zhou,
and S. Kumar. Dynamic tracking of page miss ratio curve for
memory management. In ASPLOS XI, pages 177–188, 2004.

[47] T. Zhu, A. Gandhi, M. Harchol-Balter, and M. A. Kozuch.
Saving cash by using less cache. In Proceedings of the 4th
USENIX Conference on Hot Topics in Cloud Ccomputing,
HotCloud’12, pages 3–3, Berkeley, CA, USA, 2012. USENIX
Association. URL http://dl.acm.org/citation.
cfm?id=2342763.2342766.

14

