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Abstract

Transverse particle beam diagnostics is crucial for stable and reliable operation of the

future accelerators. In some cases, conventional invasive methods for measuring the beam

parameters cannot be applied. In these cases, new non-invasive methods are required.

The state-of-the art in non-invasive transverse diagnostic is based on laserwire technology

where by scanning the focused laser beam across the beam of particles and measuring the

flux of the secondary particles produced in laserwire interaction one can determine the

particle beam parameters.

This thesis describes the implementation of the laserwire technology in two differ-

ent cases. The first one is the development of the laserwire beam profile monitor at the

Accelerator Test Facility 2 (ATF2) in KEK, Japan for measuring the transverse profiles

of very small electron beam which is required for future electron-positron colliders such

as Compact Linear Collider and International Linear Collider. Resent results, showing

achievement of sub-micrometre resolution are presented. In conjunction to laserwire, a

supplementary beam profile monitor based on optical transition radiation was developed

and implemented. The recent results of measuring the electron beam profile and emit-

tance are presented.

The second one is the demonstration of low power, fibre coupled laserwire emittance

scanner for measuring the transverse phase-space parameters of the high intensity beam

of negative hydrogen ions at LINAC4 in CERN, Switzerland. The new LINAC4 will ac-

celerate H− ions to 160 MeV and ultimately replace the existing 50 MeV LINAC2 in the

injector chain for the Large Hadron Collider upgrade. Recent results obtained at 3 MeV

commissioning stage are presented.

Finally the thesis discusses the future plans and prospects including improvements of

the laserwire system for future electron linear colliders and development of the new com-

bined optical transition/diffraction radiation station at ATF2 for measuring the electron

beam emittance and profile with 100 nm resolution. Future plans toward the final design

of the laserwire station for 160 MeV H− beam at LINAC4 and 12 MeV beam at the Front

End Test Stand (FETS) in Rutherford Appleton Laboratory are discussed.
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Chapter 1

Introduction

Begin at the beginning, the King
said gravely, and go on till you
come to the end: then stop.

– Lewis Carroll

PARTICLE accelerators have been used as the major tool for probing the laws of na-

ture since the beginning of the last century. At the beginning, accelerators were

used primarily for fundamental research in particle physics. However, with rapid devel-

opment of technology, accelerators nowadays are used in many industry applications such

as non-destructive material testing, ion implantation and isotope production. In medicine

accelerators are used for cancer therapy, tomography and as a new sources of X-rays.

Fundamental properties of elementary particles are studied by colliding two high en-

ergy beams together in an accelerator. In such machines, two circulating in opposite

direction particle beams are accelerated to a high energy and then collide at the interac-

tion point. During the interaction a number of secondary particles can be produced. The

sum of the energies of these particles is equal to the double of the energy of the colliding

beams. Therefore, by accelerating beams to a higher energies, particles with higher mass

can be produced and studied. A good example of such machine is Large Hadron Collider

(LHC) [1] - the largest accelerator in the world, built in Geneva, Switzerland which can

accelerate proton beams to the nominal energy of about 7 TeV (14 TeV at the collision).

To accelerate particles to a greater energy a higher magnetic field is required to keep

particles on a circular orbit of certain radius or the radius of the machine has to be in-

creased for certain magnetic field. Because the strength of magnetic field produced by

modern magnets is limited (approximately 15 T for magnets based on superconducting

technologies) and increasing the size of the machine will lead to enormous increase in

the machine cost, this fact remains the main limitation for achieving very high energies in

modern accelerators.

Another limitation factor is related to the fact that the radially accelerating charged

particle emits radiation called synchrotron radiation. Synchrotron radiation, for the first

time, was predicted by Ivanenko and Pomeranchuk in 1944 [2] and then discovered ex-
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perimentally in 1947 [3]. The power of emitted radiation for a single particle is given by

the following formula:

P =
q2c

6πε0ρ2

(
E

E0

)4

, (1.1)

here q is the charge of a particle, c is the speed of light, ε0 is the electric constant, ρ is

the bending radius, E is the energy of the particle and E0 is the energy of the particle

in the rest frame. As one can see, the power of emitted radiation raises very rapidly (as

fourth power) with increasing the energy of the accelerating particles. Such dependence

leads to the fact that at some point, where the energy transferred to the particle by the

accelerator and the energy emitted as synchrotron radiation are equal, further acceleration

is impossible. Also, note that the power of the emitted synchrotron radiation inversely

proportional to the fourth power of the mass of the particle. This means that this limitation

strongly affects only light particles (e.g. electrons or positrons) but less noticeable for

heavy particles such as protons and ions. Because of the properties, synchrotron radiation

is widely used in many areas of science and industry and circular electron accelerators are

used as a light sources.

The latter limitation can be overcome by accelerating electrons and positrons in linear

accelerator. In this case, high energy electron-positron linear colliders can be very useful

to study some particular processes at high energy (for example production of Higgs boson

and studying some properties of Higgs field). As an example, International Linear Collider

(ILC) [4] and Compact Linear Collider (CLIC) [5] has been recently proposed as a major

tools to study Higgs boson and other new particles associated with it.

The ILC is a 31 km long machine consisting of two linear accelerators (linacs), in which

acceleration is accomplished by using niobium superconducting cavities, where each linac

accelerates electrons or positrons in opposite directions up to 250 GeV (500 GeV centre of

mass energy) with an option to upgrade to 1 TeV.

Figure 1.1. Schematic layout of the CLIC accelerator complex (picture from [5]).

CLIC, on the other hand, based on room temperature accelerating structures and aims
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to accelerate electrons and positrons to a centre of mass collision energy of 3 TeV. The

schematic layout of the CLIC accelerator complex is shown in Fig. 1.1. The main param-

eters of the CLIC accelerator for 500 GeV and 3 TeV beams are presented in Table 1.1.

The main feature of the CLIC acceleration scheme is that the RF field needed for powering

the accelerating structures of the linac is generated from a second “Drive Beam”. Such

scheme allows to generate a very short pulses (∼ 150 ns) of RF field with a very high

acceleration gradient (100 MV/m) that can not be generated by currently available power

sources (klystrons).

Table 1.1. CLIC main parameters for 500 GeV and 3 TeV (data from [5]).

Parameter Symbol 500 GeV 3 TeV Units

Total luminosity L 2.3 5.9 × 1034 cm−2 s−1

Total site length L 13 48.4 km

Main linac RF frequency fRF 12 12 GHz

Beam power Pbeam 4.9 14 MW

Bunch charge Qbunch 6.8 3.72 × 109 e+/e−

Bunch separation ∆fb 0.5 0.5 ns

Bunch length σz 72 44 µm

Beam pulse duration tbeam 177 156 ns

Repetition rate frep 50 50 Hz

Horizontal emittance γεx 2.4 0.66 µm

Vertical emittance γεy 25 20 nm

IP horizontal beam size σx 202 40 nm

IP vertical beam size σy 2.3 1 nm

An important property of any general collider is its luminosity:

L ∝ N1N2

4πσxσy
fH. (1.2)

Here N1 and N2 are the number of particles in the interacting bunches, f is the bunch

frequency, σx and σy are the vertical and horizontal transverse beam sizes at the collision

point respectively and H is the enhancement factor for the mutual attraction or repulsion

between the colliding bunches caused by their charge. Luminosity, multiplied to the cross

section of some process, shows how frequent this process will be happening in the collider.

As one can see from Eq. 1.2, the luminosity of the collision is greater when the transversal

sizes of colliding beams are smaller. It should be noted that the luminosity is higher for

the flat beams (beams with high aspect ratio) than for a round beams. Both ILC and CLIC

aim to produce an extremely low size (less than a micrometre) beam at the interaction

region. In order to control such a small beam, special diagnostic tools are required.
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For stable operation of the accelerator the size and other properties of the particle

beam have to be precisely determined. The size of the particle beam in the accelerator

depends on the properties of the focusing and bending elements of the machine (which

can be designed and calculated) and also depends on some internal properties of the beam

itself which have to be measured. For some machines where the beam size is very small

(micrometre or sub-micrometre) or for machines with high beam currents the task of the

beam size measurement can become very challenging. Therefore, development of new

methods and techniques for beam size measurements is required for modern accelerators.

1.1 Transverse motion of a charged particle in accelerators

Let us consider a charged particle with the charge q and mass m moving around a

circular orbit in electromagnetic field described by the electric field vector E and magnetic

field vector B. The motion of such particle is described by the following equation [6]:

dp
dt

= q (E + v× B) , (1.3)

here p = γmv is the relativistic momentum of the particle, v =
dr
dt

is the velocity and

γ = E/mc2 = 1/
√

1− β2 (where β = v/c is the relative velocity of the particle) is the

relative energy (relativistic Lorentz factor) of the particle. Traditionally, dynamics of the

particles in the accelerator is described in circular coordinate system. The diagram of such

coordinate system is presented in Fig. 1.2. Position of the particle in this coordinate system

is defined by the arc length smeasured along the circular orbit of radius ρ from a reference

initial point and horizontal x and vertical z displacements from the ideal position.

s

x

z

ρ

p

θ

reference orbit

Figure 1.2. Circular coordinate system for particle motion.

Particles in the accelerator are guided and focused by a magnetic field. In this case

the electric field E in Eq. 1.3 can be neglected. The components of an arbitrary, spatially

dependent magnetic field B in transverse plane can be represented as:

B(x) = B0 +
dBz
dx

x+
1

2

d2Bz
dx2

x2 + . . . (1.4)
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Magnetic field of a certain configuration is generated by magnets with a number of

pole pairs corresponding to the term number in the expansion Eq. 1.4. The pattern of

bending and focusing magnets is repeated around the accelerator and usually referred as

lattice of the machine. Dipole magnets producing uniform magnetic field in transverse

plane (first term in Eq. 1.4) are used to bend the trajectory of particles and keep them on

a circular path. In case of the dipole magnet, Eq. 1.3 can be resolved with the following

substitution:

dp

dt
= p

dθ

dt
=
p

ρ

ds

dt
, (1.5)

in conjunction with the expression for the magnitude of the Lorentz force in case when

the particle moving in the plane perpendicular to the magnetic field:

q |v× B| = qB
ds

dt
. (1.6)

The solution can be written in the following form:

Bρ =
p

q
. (1.7)

Quantity Bρ is called the magnetic rigidity. As one can see from Eq. 1.7, to accelerate

particles to a higher energy higher magnetic field is required to keep particles on the

circular path of certain radius ρ. The strength of a typical dipole magnet is limited to

approximately 1.6 T for room temperature magnets and to approximately 15 T for super-

conducting magnets. With such constraints, the only way to increase the energy of the

particles is to increase the radius of the orbit and, hence, the size of the machine.

In order to focus the beam of particles and prevent them from spreading out quadrupole

magnets are used. The quadrupole magnet consists of four poles symmetrically distributed

around the center of the magnet bore. Poles of the quadrupole magnet arranged in such a

way that the magnetic field is equal to zero at the center of the magnet and linearly rises

(in accordance to the second term in Eq. 1.4) with the distance from the center. When

a charged particle with an offset from the center of the quadrupole enters the magnet,

in one direction, it experiences the restoring force towards the center of the magnet that

is proportional to the distance from the center of the magnet. In the other direction,

quadrupole magnet acts in opposite way. By arranging pairs of focusing and defocusing

quadrupoles throughout the accelerator, the beam of particles can be effectively focused.

Transverse motion of a particle around the circular orbit (sometimes referred as beta-

tron motion) is described by Hill’s equations:

z′′ + k(s)z = 0, (1.8)

x′′ +

(
1

ρ2
− k(s)

)
x = 0. (1.9)

Eq. 1.8 describes the motion of particles in the vertical plane and Eq. 1.9 in the horizontal.

Periodic coefficient k(s) describes the distribution of focusing strengths around the ring.
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The strength of a single quadrupole depends on its gradient
dBz
dx

and usually presented in

the following form:

k =
1

Bρ

dBz
dx

. (1.10)

If k is positive, the quadrupole is vertically focusing and horizontally defocusing. For

negative k the situation is opposite.

The solution of the Hill’s equation can be found by assuming that the focusing functions

k(s) are periodic (k(s) = k(s + L), where L is the length of the periodic structure in the

accelerator) and can be presented in the following way:

x =
√
β(s)ε cos (φ(s) + φ0) . (1.11)

x′ =

√
ε

β(s)

(
β′(s)

2
cos(φ(s) + φ0)− sin(φ(s) + φ0)

)
(1.12)

Here ε and φ0 are constants that can be determined from initial conditions, φ(s) is the

phase advance and β(s) is the amplitude function describing the variation of the amplitude

with the focusing strength. Note that the amplitude function β is the property of the

chosen lattice, not the beam of particles.

The solution of the Hill’s equation for non periodic lattices can also be found as-

suming that the magnet strength parameters are constant within each individual magnet

(k(s) = const). These solutions can be applied to any arbitrary beam transport line where

the focusing parameter changes in a step along the beam line. To find the solutions at any

point of the lattice, provided that the solution for the preceding element in the lattice is

known (for example, periodic solutions in the damping ring can be used as initial condi-

tions for calculation in the transfer line), one can use the following matrix formalism:(
x2

x′2

)
= M21

(
x1

x′1

)
, (1.13)

here M21 is the 2 × 2 matrix (also known as transfer matrix) that in general has the

following form:

M =

(
cosψ + α sinψ sinψ

−γ sinψ cosψ − α sinψ

)
. (1.14)

Parameters α = −β
′

2
, β and γ =

1 + α2

β
are called Twiss parameters, ψ is the phase

advance per period of the lattice. It should be noted that Twiss parameters β and γ have

no relation to the relative speed and relativistic Lorentz factor defined earlier.

By substituting Eq. 1.11 into Eq. 1.12 and resolving it with respect to ε one can obtain

the following equation:

ε = γx2 + 2αxx′ + βx′2 (1.15)
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This equation (also known as Courant - Snyder invariant) describes the ellipse in the

phase-space (x, x′) with major and minor axes equal to
√
εβ and

√
ε/β respectively. The

area of the phase-space enclosed by the ellipse is equal to πε. The quantity ε is called

emittance of the particle beam. According to Liouville’s theorem the area within the trans-

verse phase-space ellipse is invariant. This fact defines the importance of the emittance.

The relation between phase-space ellipse and Twiss parameters is shown in Fig. 1.3.

x

x′ −α
√
ε/γ

−
α
√ ε/

β

√
ε/γ

√
εβ

√ ε/
β

√
εγ

Figure 1.3. The phase-space diagram showing relation between phase-space ellipse and

Twiss parameters.

As one can notice, the transverse size of the beam can be defined as σ =
√
εβ. Such

definition of the beam size is true only for mono-energetic beams or for a dispersion

free region. However, in real accelerators, particles always have an energy (momentum)

spread ∆E/E (∆p/p) that alternates the trajectory of particles when they pass through

the elements of the lattice. This phenomena is called the dispersion and contributes to the

beam size as following:

σ =

√
εβ(s) +D(s)2

(
∆p

p

)2

. (1.16)

Here D(s) is the dispersion function which depends on the particular beam line lattice

and can be calculated.

Derivations presented in this section mostly follow the description given in [7]. Addi-

tional and more detailed explanation of the beam dynamics can be found in [8–10].
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1.2 Overview of techniques for measuring the size and emit-

tance of particle beams

1.2.1 Methods of profile measurements

There are a few methods for measurement of the beam size in accelerators. One of

the common technique is to place scintillation screen on the way of the beam [11]. When

particles interacts with the screen it produces sparks of visible light that can be detected.

As a scintillator material, a thin layer of phosphor on a metallic base is commonly used.

By placing the screen at an angle to the particle beam, the image of the beam produced in

the interaction can then be intensified and transported by the optical system to a detection

device (e.g. a CCD camera). The main factor limiting the resolution of such devices is the

size of the scintillator grains which is typically around 20 - 30 µm. Normally, scintilator

screens are used for measuring the profile of a very low intensity beams because thin layer

of scintillator can become damaged very quickly.

Metallic target

Beam
Beam

Backward OTR

Forward OTR Forward ODR

Backward ODR

Figure 1.4. Schematic diagram showing the concept of transition radiation (left) and

diffraction radiation (right) generation.

Another method is to use a thin metallic wire, usually made of tungsten, to scan across

the beam [12]. When particles of the beam interact with the wire a stream of secondary

particles and bremsstrahlung is produced. The intensity of the radiation is proportional

to the density of the particles in the beam. By placing a detector downstream the wire

scanner and measuring the bremsstrahlung flux or flux of secondary particles at each

position of the wire, the beam profile can be mapped. Some times, to measure the beam

profile in two dimensions, a grid of wires is used. In this case one can measure the electric

current induced on each wire by the secondary emission of electrons. The signal in the

wire is proportional to the number of particles in the interacting beam. The resolution of

wire scanners is defined by the wire diameter which is usually tens of micrometers [13].

A major disadvantage of the wire scanner systems is that the wire can be easily destroyed

by the beam. Therefore, wire scanners, like screens, are used to measure the profile of the

low intensity beams.

Relatively new technique for measuring the beam profile is based on optical transition
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radiation (OTR) [14]. Transition radiation appears when charged particles passes through

the target (usually metallic). Schematic of the OTR generation is presented in Fig. 1.4.

The light, emitted during the interaction is then captured by the CCD camera and profile

of the beam can be retrieved. The resolution of conventional beam profile monitors based

on optical transition radiation is limited to a few micrometers, however it can be reduced

by using the technique described in section 2.3 of chapter 2 of this thesis.

All the methods described above are invasive. It means that the measuring device

directly interacts with the beam of particles. The main disadvantage of these methods is

that the beam is destroyed during the measurement and, in some cases, the measuring

device itself can be destroyed. Therefore, a new, non-invasive method is required which

will be able to measure very small or high intensity beams with high resolution.

There is a possibility to measure transverse beam size using optical diffraction radia-

tion (ODR) [15,16] which has the same nature as OTR. Diffraction radiation arises when

charged particle or bunch of charged particles passes near an optical inhomogeneity, for

example an electron moving near a metallic screen or through the slit or aperture in the

metallic screen (see Fig. 1.4). Despite the very promising results this technique is still

under development.

Nowadays, the state-of-the art in transverse beam diagnostic is based on so-called

laserwire technology. By scanning the focused laser beam across the beam of particles and

measuring the yield of secondary particles produced in laserwire interaction, the profile

of the beam can be deconvolved. The advantage of this method over the conventional

ones is that it is almost non-invasive and can be used continuously during the operation of

the machine. Only a small portion of the initial beam interacts with the laser while most

of the beam passing through without distortion. Another advantage of this method is

that the resolution of the system is limited only by the wavelength of the laser beam. The

resolution can even be reduced to tens of nanometres by using the method where the beam

size is measured by scanning an interference pattern of two lasers across the beam [17].

This method was recognised as a primary diagnostics for future linear colliders [4, 5]

and is being developed as a diagnostics monitor for high power H− drivers for proton

accelerators.

1.2.2 Methods of emittance measurements

In order to measure the emittance of the particle beam one need to determine its

spatial and angular distributions. One of the commonly used techniques is called “pepper-

pot” [18]. The concept of this method is the following (see Fig. 1.5): the beam is in-

tercepted by a “pepper-pot” plate which contains a regular array of identical holes with

known positions with respect to the center of the beam. The “pepper-pot” plate cuts the in-

cident beam into small portions – beamlets which then propagated to the profile monitor.

Measuring the total intensity of each beamlet as a function of the corresponding hole posi-

tions one can define the spatial profile of the beam. The angular distribution of the beam

at the position of each hole can be obtained by measuring the profiles of corresponding
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beamlets.
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Pepper-pot

Beam Detection plane

Beamlet profiles

L

plate

Figure 1.5. Concept of the “pepper-pot” method of the transverse emittance measurement.

The advantage of this method is that the 2D transversal phase-space distribution of the

beam can be directly measured and the emittance can be extracted in a single shot. The

precision of the method is limited by the holes size and spacing.

Another common method of the emittance measurement is a slit scanner. The basic

principle of the slit scanner operation is shown in Fig. 1.6. When the slit is scanned across

the beam it selects a narrow portion of the incident beam. The selected beamlet then

propagated to the detector where its intensity distribution can be measured. By measuring

the intensity distribution of the beamlets at different slit positions one can directly measure

the phase-space distribution and, consequently, calculate the emittance of the beam.

x

y

y

z

Slit

Beam Detection plane

Beamlet profile

L

Figure 1.6. Concept of the slit scanner emittance measurement.

In order to calculate both vertical and horizontal transverse emittance two orthogo-

nally positioned slits are usually used. The resolution of the slit scanner is mainly defined

by the size of the slit.

The slit scanner and “pepper-pot” methods imply interaction of the beam with the

target material. Therefore, to avoid the damage of the target they are usually used to

measure the emittance of low intensity beams.

The beam emittance can also be measured from the beam profiles taken under various

transport conditions downstream of the given point. This can be achieved by measuring
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the beam width at several locations along the beam line separated only by drift spaces. An-

other way to vary the transfer matrix elements is by varying the strength of a quadrupole

magnet located upstream of the interaction point (IP) [19]. The figure 1.7 demonstrates

the concept of the emittance measurement using quadrupole magnet.

The beam matrix at the interaction point can be calculated using a standard for-

mula [10]:

Σ(s2) = RΣ(s1)RT . (1.17)

Here Σ(s1) and Σ(s2) are the beam matrices at the quadrupole and at the interaction

point respectively. The total transfer matrix R can be calculated as R = RLRQ, where

RQ =

 cos(Klq)
1

K
sin(Klq)

−K sin(Klq) cos(Klq)

 (1.18)

is the transfer matrix of the focusing quadrupole and RL is the transfer matrix between

the quadrupole and the interaction point. In the case when it is only a drift space between

the quadrupole and IP, the RL can be represented as:

RL =

(
1 L

0 1

)
. (1.19)

Here K is the quadrupole strength, lq is the length of the quadrupole and L is the distance

between the quadrupole and IP.

Llq

Quadrupole

e− beam

IP

Figure 1.7. Illustration of the concept of the emittance measurement using quadrupole

magnet.

To demonstrate the principle, let us assume that the length of the quadrupole is short

compared to its focal length (thin lens approximation). In this case total transfer matrix

can be simplified to:

R =

(
1 +KL L

K 1

)
(1.20)
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Expanding the matrix product in Eq. 1.17 taking into account Eq. 1.20 and equating the

(1,1) elements on both sides, the square of the vertical or horizontal beam size can be

represented as:

Σ11(s2) = σ2
x,y = Σ11(s1)L2K2 + 2L

(
Σ11(s1) + LΣ12(s1)2

)
K+

+ Σ11(s1) + 2LΣ12(s1) + L2Σ22(s1). (1.21)

As one can see the beam size at the interaction point has a quadratic dependence on the

field parameterK. Thereby, to implement described above technique one need to measure

the beam size at the interaction point for different values the quadrupole strength. Then,

applying the parabolic fit function:

σ2
x,y(K) = A(K −B)2 + C (1.22)

to the obtained data, one can reconstruct elements of the beam matrix σ by equating

coefficients of Eq. 1.22 and Eq. 1.21:

Σ11 = A/L2 (1.23)

Σ12 = − A

L2

(
B +

1

L

)
(1.24)

Σ22 =
1

L2

(
(AB2 + C) + 2AB

1

L
+A

(
1

L

)2
)

(1.25)

The beam emittance is defined as the square root of the beam matrix and can be

calculated from free fit parameters:

εx,y =
√

det Σ(x, y) =
√

Σ11Σ22 − Σ2
12 =

√
AC/L2 (1.26)

In the case of a thick lens, the transform matrix is:

R =

(
m11 m12

m21 m22

)
=

cos(Klq)− LK sin(Klq)
1

K
sin(Klq) + L cos(Klq)

− cos(Klq)−K sin(Klq) cos(Klq)

 (1.27)

Substituting Eq. 1.27 into Eq. 1.17 and doing analogous calculations as for the thin

lens one can get to the following expression:

Σ11(s2) = σ2
x,y = Σ11(s1)

(
m2

11 + 2m11m12
Σ12(s1)

Σ11(s2)
+m2

12

Σ2
12(s1)

Σ2
11(s2)

)
+

+m2
12

εx,y
Σ11(s2)

. (1.28)

Defining new parameters A ≡ Σ11(s2), B ≡ Σ12(s2)

Σ11(s2)
, C ≡ εx,y

Σ11(s2)
and substituting

them into Eq. 1.28 leads to the following formula:
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σ2
x,y = A [m11(Klq) +Bm12(Klq)]

2 + Cm2
12(Klq). (1.29)

As one can see the beam size at the interaction point is a quadratic function of the

quadrupole strength. Applying Eq. 1.29 as a fit function to the quadrupole scan one can

obtain free fit parameters A, B and C. The geometric emittance is then calculated using:

εx,y =
√
AC. (1.30)

1.3 Thesis overview

The implementation of the laserwire technique to the measurement of the extremely

low emittance transverse electron beam sizes is described in Chapter 2. The first section

of the chapter describes the concept of the laserwire for measuring transverse electron

beam size. The section 2.2 gives an overview and represents recent results obtained from

laserwire experiment at ATF2 in KEK, Japan. Section 2.3 is devoted to description of the

sub-micrometre beam size monitor based on OTR used as an auxiliary device to check

the laserwire measurements. Main results presented in the chapter are gathered in the

section 2.4.

The main topic of the Chapter 3 is the development and implementation of the laser-

wire technology for measuring the profile and emittance of the beam produced in ma-

chines which accelerate negative hydrogen ions. The Chapter begins with the description

of the main principles of the laserwire system for H− ions. Section 3.1 is devoted to the

description of the laserwire emittance scanner recently installed and tested at LINAC4 in

CERN. The main results of the measurements performed during the winter 2013/2014

operation of the machine at 3 MeV commissioning stage is presented in section 3.1.4.

Chapter 4 describes the future plans for the experiments described in this thesis. Fu-

ture plans for the micron scale laserwire and sub-micron beam profile measurements using

OTR/ODR at the ATF2 is described in sections 4.1 and 4.2 respectively. Section 4.3 em-

phasizes the key points of the final design for the laserwire emittance meter at LINAC4

in CERN. The chapter ends with the description of the simulation code that has been de-

veloped to simulate the laserwire interaction for H− beams. Results of the simulation for

FETS laserwire project obtained with this code are presented in section 4.4. Finally, main

results of this thesis are summarized in Chapter 5.
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Chapter 2

Laserwire for electron machines

Everything should be made as
simple as possible, but not
simpler.

– Albert Einstein

2.1 Principles of the laserwire system for electrons

THE idea of the laserwire beam profile measurement is very similar to the concept of a

traditional wire scanner. But instead of the metallic wire a high power laser focused

in the interaction region down to a micrometre dimensions is used to scan across the elec-

tron beam at 90◦. During the laser-beam interaction an intense inverse Compton scattered

photons are generated. After the interaction, Compton scattered photons propagate along

with the electron beam. By measuring the Compton photon yield versus laser position one

can directly measure the transverse beam profile.

The number of scattered photons per collision can be calculated using the following

formula [20,21]:

Nγ = σCL, (2.1)

where σC is the cross-section of the Compton scattering and L is the luminosity of the

laser-electron collision. The luminosity of the collision is given by:

L = NeNL

∫ ∫ ∫ ∫
dx dy dz dt ρe(x, y, z, t)ρL(x, y, z, t). (2.2)

Here Ne and NL are the number of electrons and photons respectively and ρe(x, y, z) and

ρL(x, y, z) are the 3D density distribution functions of the electron bunch and the laser

pulse respectively.

Assuming the electron beam with the energy Ee and the laser with wavelength λ0 the

cross-section of the Compton scattering is given by Klein-Nishina formula [22]:

σC(w) = σT f(w), (2.3)
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where w =
γhc

λ0mec2
is the normalised energy of the laser photons in the electron rest frame

and the cross-section of the Thompson scattering, σT , is defined as:

σT =
8π

3

(
q2

4πε0mec2

)2

. (2.4)

Here q and me are the charge and mass of a particle respectively, ε0 is the vacuum per-

mittivity. In the case of electron the cross-section of the Thompson scattering is 6.6528 ×
10−29 m2. The energy and frequency dependent part f(w) in 2.3 is given by:

f(w) =
3

4

(
1 + w

w3

(
2w(1 + w)

1 + 2w
− log(1 + 2w)

)
+

log(1 + 2w)

2w
− 1 + 3w

(1 + 2w)2

)
. (2.5)

Figure 2.1 represents the cross-section of the Compton scattering as a function of the

electron energy for different wavelengths commonly used in high power lasers. As one

can see the Compton cross-section decreases as the energy of the electrons increases.
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Figure 2.1. The cross-section of the Compton scattering as a function of electron energy

for different wavelengths.

The energy spectrum of the scattered photons can be obtained from 2.3 and is given

by:

1

σT

∂σC
∂ξ

=
3

8w

(
1

1− ξ
+ 1− ξ +

(
ξ

w(1− ξ)

)2

− 2ξ

w(1− ξ)

)
. (2.6)

Here ξ =
Eγ
Ee

=
hν

Ee
is the normalized energy of the scattered photons. The maximum

photon energy can be derived from 2.6 and is given by:

Emaxγ = Ee

(
2w

1 + 2w

)
. (2.7)
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Figure 2.2 shows the spectrum of the Compton scattered photons for different laser wave-

lengths. The spectrum is broad with the sharp maximum at the maximum energy of the

scattered photons. For a moderate electron energies (about 1 GeV) the energy of the

scattered photons is a small fraction of the incoming electron energy. Because incoming

electrons experience only a small degradation in their energy they will continue to be

transported and inverse-scattered photons can be detected.
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Figure 2.2. Spectrum of the Compton scattered photons from a 1.3 GeV electron beam.

The laserwire scan consists of the measurement of the Compton-scattered photon rate

for different laser transverse positions. Therefore, it can be represented as the convolution

of the transverse density function of the laser and electron beams along the axis of scan.

The schematic of the laserwire interaction is shown in Fig. 2.3. Assuming that the laser

and the electron beams have 3D Gaussian density functions, the convolution also has a

Gaussian form. However, it should be taken into account that the transverse laser beam

size is not constant along the axis of propagation. The length scale of this is described

by the Rayleigh range which is the distance along the propagation direction from the

laser focus to the place where the transverse area of the laser beam is doubled [23].

If the Rayleigh range is much bigger than the electron beam size the laser beam size

can be assumed to be constant across the electron beam (like a wire in conventional

wire scanner) and the electron beam profile can be easily deconvolved from the scan

independently of the horizontal size of the electron beam. In the case when the Rayleigh

range is comparable to or shorter than the electron beam size the divergent tails of the

laser beam interact with the electron beam even when the laser significantly displaced

transversely from the center of the electron beam. In this case to deconvolve the electron

beam size from the scan the time-varying laserwire profile must be taken into account.

To derive the form of the scan one can use the Eq. 2.1. Because the cross-section

of the Compton scattering is constant for given geometry of the collision, electron beam

energy and laser wavelength, the rate of the scattered photons Nγ is defined only by the
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Figure 2.3. Schematic of the laserwire interaction with the key dimensions.

luminosity of the laserwire interaction (Eq. 2.2). The luminosity of the collision can be

represented as the function of ∆x and ∆y, the horizontal and vertical displacement of the

laser focus from the center of the electron beam. Let us assume that the laser pulse length

is much longer than the electron bunch length (so the laser distribution can be treated as

a static target) and that both laser and electron beams have Gaussian density functions:

ρL(x, y, z) =
1

2π

1

σLy (x−∆x)σLz (x−∆x)
×

× exp

(
− (y −∆y)

2

2σ2
Ly (x−∆x)

− z2

2σ2
Lz (x−∆x)

)
, (2.8)

ρe(x, y, z, t) =
1

(2π)3/2

1

σexσeyσez
exp

(
− x2

2σ2
ex

− y2

2σ2
ey

− (z − βct)2

2σ2
ez

)
. (2.9)

Here σLy (x−∆x) and σLz (x−∆x) are the vertical and horizontal laser beam sizes. By

substituting Eq. 2.8 and Eq. 2.9 into the overlap integral Eq. 2.2 one can perform integra-

tion over three of the dimensions resulting in the following formula:

Nγ(∆x,∆y) =
PlNeλσC
βhc2

1

2πσex

∞∫
−∞

1√
σ2
ey + σLy (x−∆x)2

×

× exp

− x2

2σ2
ex

−
∆2
y

2
(
σ2
ey + σLy (x−∆x)2

)
 dx. (2.10)
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Here Pl is the peak laser power, σex and σey are the horizontal and vertical electron beam

sizes respectively. The propagation of a focused multimode laser beam is given by:

σLy (x−∆x) = σl0

√
1 +

(
x−∆x

xR

)2

, (2.11)

where σl0 is the size of the laser at its focus. The Rayleigh range xR can be defined as:

xR =
4πσ2

l0

λM2
. (2.12)

Here M2 is a beam quality factor describing the spatial quality of the actual laser beam

with respect to the ideal Gaussian beam at the same wavelength and can be measured [24].

In the case when xR � σex and the laser focus is aligned to the electron beam center

(∆x = 0) Eq. 2.10 can be simplified to:

Nγ(∆y) =
PlNeλσC
βhc2

1

(2π)3/2
√
σ2
ey + σ2

Ly

exp

− ∆2
y

2
(
σ2
ey + σ2

Ly

)
 (2.13)

As one can see, Eq. 2.13 has the form of Gaussian. In this case the electron beam

size σey can be deconvolved from the vertical laserwire scan with knowing only the σl0
independently of the horizontal beam size σex. In the case when xR ≤ σex Eq. 2.10 must

be used with the measured longitudinal laser profile and horizontal electron beam size

σex.

2.2 Laserwire beam profile monitor at ATF2

Figure 2.4. Schematic layout of the ATF2 (picture from [28]).

In order to demonstrate a micrometre beam size a laserwire system has been developed

at the Accelerator Test Facility 2 at the Japanese National High Energy Physics Research
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Organisation (KEK) in Tsukuba, Japan. In 2008 the ATF was upgraded by extending

the extraction line in order to create the prototype final focus system required for future

linear colliders. The aim of the ATF2 is to demonstrate the focused vertical beam size of ∼
37 nm [25]. The minimum vertical beam size of ∼ 65 nm has been demonstrated during

beam operations in 2012 and 2013 [26].

The ATF2 consists of 1.3 GeV S-band linac followed by damping ring where the electron

beam emittance is cooled by synchrotron radiation [27]. After remaining in the damping

ring the beam is extracted into the extraction line where it can be diagnosed and trans-

ported to the final focus. Schematic layout of the entire machine is presented in Fig. 2.4.

A summary of the electron beam parameters is given in Table 2.1.

Table 2.1. ATF2 parameters.

Parameter Symbol Value Units

Beam energy E 1.3 GeV

Horizontal emittance γεx 4×10−6 m rad

Vertical emittance γεy 4×10−8 m rad

Bunch repetition rate fbunch 3.12 Hz

Bunch length σez ∼ 30 ps

Electrons per bunch Ne 0.5-1.0×109 e−

Fractional momentum spread ∆p/p 0.001 –

The first laserwire system at the ATF was commissioned in 2010 and demonstrated the

smallest electron beam size of 4.8±0.3 µm [29]. In Summer 2011 the laserwire station

was relocated [30, 31] to the beginning of the ATF2 final focus section where strong,

closely spaced matching quadrupoles allow a vertical electron beam size < 1 µm to be

achieved.

IP

Quadrupole Sextupole

Dump Detector

Final focus Matching

OTRsLaserwire

Damping ring

Extracition line

Dipole Skew quadrupole Corrector

Wire Scanners

Figure 2.5. Schematic of the ATF2 extraction line showing the location of the laserwire

system as well as the detector located immediately after the first dipole magnet after the

LWIP.

The extraction line of the ATF2 contains various diagnostic tools to control and mea-

sure the electron beam. Aside from micron-scale laserwire it includes multi OTR screens,
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wire scanners and high resolution OTR beam profile monitor for measuring the transverse

profile and emittance of the electron beam. Schematic of the matching section showing

the location of the laserwire station and the detector is shown in Fig. 2.5.

2.2.1 Electron beam optics

During laserwire operations, especially developed electron beam optics was used to

minimize the vertical beam size at the LWIP. Figure 2.6 represents both sets of electron

beam optics for the extraction line, matching section and beginning of the final focus. With

the normal ATF2 settings the vertical waist exists ∼ 20 cm downstream from the LWIP at

the location of the MFB2FF cavity beam position monitor (CBPM) [32]. The laserwire

optics were designed to shift the waist to the LWIP and reduce vertical beam size even

further. With the normal ATF2 optics, the horizontal amplitude function βx expands in

the final focus section to βx > 40 km (see Fig. 2.6), which intentionally collimates the

beam using the beam pipe. As a result, this produces a large background for the laserwire

detector, so for laserwire operations βx was significantly reduced. As expected, reducing

βx increases βy, but this does not generate comparable background levels as the vertical

emittance much lower than the horizontal one. Amplitude functions βx and βy around the

laserwire location, where the shifted vertical waist is clear, are shown in Fig. 2.7.

Using laserwire beam optics at the LWIP with βx = 8.822 m and βy = 15.625 mm,

which combined with the nominal emittance values, gives a predicted electron beam size

of 0.495 µm in vertical and 117 µm in horizontal direction. Additionally, apart from

amplitude functions βx,y, the electron beam size σe also depends on the dispersion at the

LWIP. This dependence usually represents by Eq. 1.16. Nominal horizontal and vertical
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Figure 2.6. Electron beam amplitude functions at the end of the extraction line, matching

section and beginning of the final focus for normal ATF2 operation (top) and for laserwire

operation (bottom).
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dispersion at the LWIP are supposed to be zero, however there is possible a finite amount

due to residual dispersion from beam misalignment in the extraction line quadrupoles

or residual x - y coupling. Dispersion and coupling are measured and corrected using

the Flight Simulator software [33], which measures the electron beam trajectory using

the high resolution CBPM system as a function of electron beam energy. The energy is

modulated by adjusting the damping ring RF frequency, and the calculated coupling and

dispersion is corrected using four upstream skew quadrupoles in combination.
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Figure 2.7. Electron beam amplitude functions about the laserwire interaction point for

normal ATF2 operation (top) and for laserwire operation (bottom). QM12FF – QM15FF

are the quadrupoles around LWIP.

2.2.2 Experimental setup

The experimental setup consists of a high power laser system mounted on the optical

table which is located in the interlocked laser laboratory above the accelerator enclosure,

so the laser can be operated in radiation safe and temperature controlled environment.

The laser beam is transported to the accelerator environment in free space through the

10 cm hole in both the table and concrete shielding blocks using periscope of mirrors. The

mirrors are mounted in two optical tables beside the beam line which contain all necessary

optics to perform alignment of the laser beam and deliver it to the interaction point.

After the laser is transported to the interaction point it is directed into a custom made

vacuum chamber with high damage threshold vacuum window on either side to allow the

laser beam enter and exit. The vacuum chamber can be moved ±3 mm in both horizontal

and vertical axes. To focus the laser beam a laserwire lens is mounted on to especially

designed kinematic lens mount which provides precise control of the lens separation from

the vacuum window as well as its angle. The laserwire lens with a focal length f =

56.6 mm consists of two radiation hard fuse silica elements that are designed to correct

geometric aberrations. The laserwire scan is performed by moving the vacuum chamber
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with the attached lens and therefore the laser focus across the electron beam in vertical or

horizontal direction. Optical position encoders provide 50 nm accuracy on the chamber

position measurements. The coordinate axes of the interaction point are presented in

Fig. 2.8.
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Figure 2.8. Schematic of the beam geometry at the laserwire interaction point.

The schematic and the photograph of the laserwire interaction region are shown in

Fig. 2.9 and Fig. 2.10 respectively. A metal screen for OTR sub-micrometer beam size

monitor (see Section 2.3) and laserwire alignment is mounted on a 4D vacuum manipu-

lator that access the vacuum chamber from the top. The position of the screen in x and

z direction can be adjusted by manual micrometers. The angle of the OTR screen with

respect to the electron beam direction and its vertical position in y axis is controlled by

motorized actuators.

After the interaction point (Post-LWIP) the laser beam exits the vacuum chamber

through the vacuum window and is propagated to the energy meter by two mirrors. A

plano-convex lens is used to re-collimate the laser beam and brings it inside to the active

area of the energy meter. A small amount of laser light transmitted through the first mir-

ror is detected by an avalanche photodide (APD). The APD collects both the OTR and the

laser light and is used for the temporal alignment of the laser and electron beams. The

alignment procedure will be explained in details in section 2.2.4. Because laserwire and

OTR experiments share the same vacuum chamber and to avoid the damaging of the OTR

optics by gigawatt laser pulses two separate switchable optical paths are used. Mirrors

for each optical path are mounted on a small optical breadboard placed on top of the

translation stage which allows to switch the optics for different experiments during the

operation.
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Figure 2.9. Schematic of the laserwire interaction point in plain view.

After collision, high energy, Compton scattered photons propagate along the direction

of the electron beam. To detect these photons the laserwire detector is placed approxi-

mately 10 m downstream immediately after the BH5X dipole magnet in the ATF2 lattice,

which is the first bend after the LWIP. The box-shaped vacuum pipe inside the dipole has

an aluminium window 26 mm in diameter and 200 µm in thickness at the end. That win-

dow allows to withdraw the beam of Compton scattered photons and then detect it by the

laserwire detector.

The detector consists of a 40 × 40 × 6 mm3 lead plate followed by 40 × 40 × 50 mm3

block of SP-15 Aerogel (density 60 kgm−3 and refractive index 1.015). The lead plate

acts as a converter: when high energy Compton scattered photons from the LWIP passing

through the lead it generates a high momentum electron-positron pairs. The Aerogel

acts as a radiator for the electron-positron pairs generating Cherenkov radiation as they

pass through. The Cherenkov light is guided in a light tight pipe, internally coated with

aluminumized mylar, to a shielded “Hamamatsu” R877 photomultiplier (PMT) tube [34]

out of the accelerator plane. The voltage generated by the PMT is then digitized using 14

bit analogue to digital converter (ADC) which is integrated into the CAMAC crate, so the

signal from the detector can be accessed from the main data acquisition system (DAQ).

The detector can also catch the synchrotron radiation background coming from the

dipole located upstream. However, it is negligible because the synchrotron radiation en-

ergy at the peak of its spectrum is ∼ 0.3 keV, which is not enough to produce electron-

positron pairs in the lead plate.

To record data and control different parts of the experimental setup, data acquisition

system based on Experimental Physics and Industrial Control System (EPICS) database
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Figure 2.10. Photograph of the laserwire setup in the ATF2 beam line.

software [35] has been developed. EPICS provides an easily extendable common inter-

face for all devices involved in the experiment as well as graphical user interface using

Extensible Display Manager (EDM). To control, store and analyse experimental data a

Python [36, 37] based software were used. Individual devices were controlled through

LabView [38] or C software directly, which monitor command variables in the EPICS

database and publish data and measurements to other variables. Data were recorded

from all devices for each machine cycle at 3.12 Hz as well as data from other ATF2 instru-

mentation.

2.2.3 Laser system

The laser system consists of a seeded, Q-switched neodymium-doped yttrium alu-

minium garnet (Nd:YAG) amplifier that provides laser pulses with a duration of στ =

70.8 ± 0.6 ps at 3.12 Hz, the repetition rate of the ATF2. The output energy of the laser

is ∼ 150 mJ with a wavelength of 532 nm. The schematic of the laser system is shown in

Fig. 2.11.

The seed laser is 357 MHz mode locked Time-Bandwidth Neodymium-Doped Vanadate

(Nd:VAN) oscillator that generates pulses with maximum output energy of 500 mJ and

wavelength of 1064 nm. One of the oscillator’s mirror is equipped with a piezo actuator

(temporal jitter < 2 ps), so the laser oscillator can be stabilized and locked to an external

signal generator. The signal generator is manually adjusted to match the ATF2 master

oscillator frequency at the start of each operation period, because the ATF2 frequency is

varied slightly according to the annual expansion cycle of the damping ring. To provide a

stable phase relationship between the electron bunches and the laser a 10 MHz reference
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signal is relayed between the ATF2 master oscillator and the laserwire signal generator.

Seed laser
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Figure 2.11. Schematic of the main components of the laser system. PC1, PC2 and PC3

is the first, second and third EOMs, RA is the regenerative amplifier, LA1 and LA2 is the

linear amplifiers, FD is the frequency doubling crystal, HWP is the half-wave plate and AL

is the alignment laser.

After the seed laser the beam is directed to the main laser system. Two electro-optic

modulators (EOM) are used to isolate a single laser pulse from the oscillator which is then

amplified in a regenerative amplifier where the laser pulse is passing through the laser

gain medium many times reaching high level of amplification. A third EOM is used to

extract the laser pulse from the regenerative amplifier when it is reached the maximum

possible energy. After regenerative amplifier the laser pulse passes through the spatial

filter and then transported to two single-pass linear amplifiers that contain flash-lamp

pumped Nd:YAG laser gain media which provides additional level of amplification. The

trigger for the flash lamps in the linear amplifiers and trigger for the regenerative amplifier

can be controlled manually and independently. By changing the delay of the flash lamp

in the linear amplifier one can vary the output energy of the laser system (for example,

increasing the delay, so the flash lamp fires later, the laser pulse experienced the lower

gain).

After linear amplifiers the laser pulse passes through a non-linear potassium titanyl

phosphate crystal that doubles the frequency, hence halves the minimum achievable fo-

cused spot size of the laser beam [39].

Various “CVI” mirrors [40] with 3 inch diameter coated for a high reflectivity (> 99.6

%) at 532 nm, as well as a high damage threshold are used to guide the laser beam after

the main laser system into the accelerator environment. In order to achieve a higher
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Figure 2.12. Input laser profile measured at the end of the laser diagnostic line.

reflectivity from each mirror the output linear polarization of the laser beam is rotated

using a half-wave plate inserted at the exit port of the main laser system. To adjust the

input laser beam size a demagnifying Galilean telescope consisting of a plano-concave lens

followed by plano-convex lens is used. The telescope is placed after the main laser system

far from the IP so the telescope could be used to manipulate the input beam size without

strongly affecting the laser divergence and therefore the x location of the focus at the

LWIP. One of the lens of the telescope is placed on the linear translation actuator so the

divergence and therefore the input laser beam size at the laserwire lens can be precisely

controlled by adjusting the spacing of the lenses.

Two insertion mirrors (M1 and M2 in Fig. 2.11) mounted on linear translation stages

are used either to insert a low power alignment laser into the main laser beam path or

redirect the main laser beam to a diagnostic line. The diagnostic line consists of a series

of semi-transparent mirrors that provide exactly the same optical path length as to the

laserwire lens beside the LWIP (∼ 8.4 m).

Laser characterisation

In order to deconvolve the laserwire scans, precise knowledge of the laser beam qual-

ity is required. This can be done by measuring the M2 parameter of the laser and the

input laser beam profile at the laserwire lens. Because the laser profile is affected by dif-

ferent optical components of the laser system, the slight adjustment in alignment is often

necessary to maintain the required laser output power. Therefore, the reproducibility of

the M2 measurement is important. To measure the M2 and the profile of the laser beam

the diagnostic line was used in the laser hut without requiring an access to the acceler-
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ator tunnel. To record the intensity profile of the laser a “WinCamD” CCD camera [41]

was placed at the end of the diagnostic line. A lens with focal length of f = 1.677 m (at

532 nm) was used to create a variation of the laser spot sizes along the laser beam. Var-

ious reflective beam splitters were used to reduce the intensity of the laser to within the

dynamic range of the CCD. The CCD camera was mounted on a linear translation stage

so the laser beam profiles can be recorded at different positions along the direction of the

laser beam propagation. Laser intensity profiles at various positions throughout the focus

were recorded using “DataRay” software provided with the CCD camera. An example of

the input laser beam profile is shown in Fig. 2.12. It is obvious that the laser beam profile

is not Gaussian. To extract the M2, measured laser beam sizes as a function of the camera

position were fitted to the M2 model (Eq. 2.11 with ∆x = 0). The 4σ width along the

intrinsic laser beam axes as a function of CCD position along with the M2 fit are shown in

Fig. 2.13.
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Figure 2.13. Measured 4σ width of the laser beam through the focus created with a f =

1.677 m lens.

This shows that the laser is astigmatic with different focused spot sizes at different

locations with different divergences. The intrinsic axes of the laser were found to be

rotated to the (extrinsic) lab axes by -17.4◦.

The laser propagation was measured each week after maintenance was carried out on

the laser system. The relevant measurement was used in the analysis of the laserwire data.

The laser pointing stability was measured at the end of the diagnostic line by record-

ing 600 laser beam profiles. For each profile the centroid was calculated. The standard

deviation of the centroids in the horizontal and vertical was measured to be 125.7 and

132.7 µm, respectively, at the laserwire lens. This spatial variation can be scaled by the

beam size at the ratio of the input laser beam size to that at the LWIP to give a laser position

variation of ∼ 40 nm in both dimensions. This spatial variation therefore systematically

increases the measured electron beam size by ∼ 0.08% and, hence, can be neglected.
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2.2.4 Alignment

Before performing the data taking, the laser and electron beams must be spatially and

temporally overlapped in order to achieve collisions between them. The OTR screen was

used as an alignment tool in both cases.
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Figure 2.14. Measured bremsstrahlung radiation as a function of vertical chamber position

with the OTR screen at the laser focus position. The red dashed line shows the chosen

alignment position.

Firstly, before operations, the laser beam must be precisely aligned to the center of the

laserwire lens as well as perpendicular to the vacuum window in order to achieve mini-

mum possible laser spot size at the focus. As the first step, the low power alignment laser

was guided through the optical path from the source to the vacuum window. Two mirrors

before the LWIP were used to adjust the position of the laser such that its back reflection

from the vacuum window overlapped with the incoming laser beam. After that, a mirror

was placed in the kinematic laserwire lens mount and the angle of the mount adjusted

until the reflected laser beam also overlapped the incoming laser beam. At the end the

alignment was verified with the main laser beam at low power. After this procedure the

mirror was removed and the laserwire lens was placed into the mount.

During the access before operations, strongly attenuated laser beam (so it does not

cause the damage of the OTR screen) was sent to the LWIP. The OTR screen then was

moved vertically to find the point where it intercept the laser focus. The moment of in-

terception can be observed in the post-LWIP optics. In order to center the OTR screen at

the laser focus along the axis of laser propagation (x axis in Fig. 2.8), position of the OTR

screen in x direction was manually adjusted in such a way that the vertical distance re-

quired to intercept the laser beam was minimal. After that, during experimental shifts, the

OTR screen was set to the reference position and the vacuum chamber with the OTR screen

as a whole was scanned vertically until the electron beam was intercepted. When the OTR
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Figure 2.16. Peak APD signal as a function of phase shifter voltage. The red dashed line

shows the chosen phase setting.

screen intercepts the electron beam bremsstrahlung radiation is produced. This radiation

can be detected by the wire scanner detector located behind the laserwire detector. The

chamber was aligned to the point where half the maximum bremsstrahlung radiation was

produced. An example of the vertical alignment scan is presented in Fig. 2.14.
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Figure 2.15. Measured bremsstrahlung radiation as a function of horizontal chamber

position with the OTR screen at the laser focus position. The red dashed line shows the

chosen alignment position.

To align the laser focus horizontally the same OTR screen was used. During the op-

eration in 2011 the OTR screen was accidentally damaged by focused high power laser

beam that created a semicircular hole at the bottom of the screen approximately 500 µm

in diameter. This notch allowed the horizontal alignment of the chamber. The OTR screen
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was raised approximately 200 µm above the electron beam which was found during the

vertical alignment. Then the chamber was scanned in the horizontal x axis. When the

electron beam passes through the notch in the screen the intensity of bremsstrahlung ra-

diation monitored by the wire scanner detector is dropped. The horizontal position of the

vacuum chamber corresponding to the minimum of the radiation indicates the alignment

of the electron beam to the laser focus. An example of the horizontal alignment scan is

presented in Fig. 2.15.

For temporal alignment the OTR screen was moved above the laser focus reference po-

sition so the laser beam can pass through the LWIP to the APD. The vacuum chamber then

was lowered so the electron beam can hit the screen and produce OTR which can also be

detected by the APD. The APD signal was observed on a 1 GHz bandwidth, 5 gigasamples

per second oscilloscope. Because of the bandwidth limitations of the APD, cables and the

oscilloscope, both the laser and OTR signals are represented by approximately 1 ns pulses

on the oscilloscope. To perform the alignment the laser light was attenuated to match the

OTR signal level and the laser timing system was adjusted until the APD signal is doubled.

This method allowed alignment within 40 ps which was sufficient to produce detectable

collision.

Initially, the laser timing was roughly adjusted in integer clock cycles to align the laser

and OTR signals as close as possible. Then the voltage-controlled phase shifter was used

to adjust the phase between the electron beam and the laser pulses for precise alignment.

The maximum voltage of the APD signal on the oscilloscope was then recorded as a func-

tion of the phase-shifter voltage. An example of the phase-shifter voltage scan is presented

in Fig. 2.16. Position of the maximum of the obtained curve was used as the voltage that

provides the best time overlap.

2.2.5 Signal linearity

In order to understand the detector linearity the electron bunch charge and laser pulse

energy were varied independently and the Compton signal was recorded accordingly. The

bunch charge was varied by changing the photocathode laser pulse energy. The bunch

charge delivered to the extraction line varies very non linearly with the photocathode laser

pulse energy, but settings were chosen to give approximately equidistant steps. Fig. 2.17

shows the Compton signal as a function of the electron bunch charge variation with no

laser at the LWIP, as well as medium and maximum laser output power levels. As one can

see, the picture shows linear dependence with charge in all cases. The charge variation

was not continued to the highest bunch charge with the highest output laser pulse energy

in order to avoid detector saturation during the measurement.

Afterwards, another set of scans was performed by varying the output laser pulse

energy while keeping the bunch charge fixed. The resultant curves for different bunch

charges are presented in Fig. 2.18. In that case, despite showing an approximately lin-

ear dependence of the signal with the laser pulse energy as expected, a greater degree of

variation was observed. This non linearity is most likely due to the variation of the laser
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Figure 2.17. Variation of the Cherenkov signal with electron bunch charge for various

laser levels.

profile with the laser pulse energy. The laser characterisation was performed at the laser

pulse energy that would be used for operation.

From this linearity scans it is clear that the detector gives a linear response over the

small range of variation of bunch charge and laser pulse energy during a complete laser-

wire scan.
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Figure 2.18. Variation of the Cherenkov signal with laser pulse energy for various electron

bunch charges.
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2.2.6 Results of the laserwire beam profile and emittance measurements at
ATF2

After establishing a detectable collisions, the alignment between the laser and electron

beams was optimized to produce maximum number of Compton scattered photons. This

was achieved by scanning laserwire vertically, then in phase and then horizontally. The

sequence of scans was repeated until no further improvement was observed.
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Figure 2.19. Vertical laserwire scan with nonlinear step size and the smallest measured

electron beam size.

During the operations it was immediately realised that the vertical laserwire scans have

non Gaussian shape with a narrow peak and broad tails observable up to 30 µm away from

the peak. To accurately sample such shape in the minimum time, scans with variable step

sizes were used (nonlinear scan). Initially, vertical scan with a low number of samples

and linear step sizes was used to roughly determine the center of the scan. Furthermore,

to deconvolve the vertical beam size from the scan Eq. 2.10 must be used. This requires

knowledge of the horizontal electron beam size. To both optimize the alignment and

measure the horizontal electron beam size, the laser focus was scanned horizontally across

the electron beam within 3 mm range. After this, the vacuum chamber was positioned at

the center of the horizontal scan and a detailed nonlinear vertical scan was performed.

The electron beam optics were manipulated to minimize the electron beam size at the

LWIP. The vertical and horizontal laserwire scans are shown in Fig. 2.19 and Fig. 2.20 re-

spectively. These scans were analysed together and represent the smallest vertical electron

beam profile measured. These were recorded with an electron bunch population of 0.51

± 0.05 × 1010 e−.

The measured vertical electron beam size was 1.07± 0.06 (stat.) ± 0.05 (sys.) µm and

the horizontal beam size was 119.0 ± 2.4 (stat.) ± 0.01 (sys.) µm [31]. The analysis was

performed using Minuit minimization software using a weighted least square method that
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Figure 2.20. Horizontal laserwire scan for the smallest vertical scan.

allowed for asymmetrical uncertainties using the Minos algorithm [42]. The systematic

uncertainties were calculated as a standard deviation of the fit parameters from randomly

sampling the laser parameters from the M2 model analysis with their associated uncertain-

ties. The calculated laserwire signal from the fit as a function of vertical and horizontal

chamber positions is shown in Fig. 2.21.

The laserwire was used to profile the electron beam throughout a quadrupole scan

of the vertically focusing quadrupole (QM14FF) immediately before LWIP. The magnet

current was varied from -80 A to -104 A in 3 A steps. At each point, a short range, low

sample number vertical scan was performed to center the laser beam in vertical direction.

After this, a detailed horizontal scan was performed followed by a nonlinear vertical scan.

The horizontal and vertical scans were fitted together in order to extract horizontal σex
and vertical σey electron beam sizes. Horizontal and vertical beam sizes as a function of

QM14FF quadrupole current are presented in Fig. 2.22.

The quadrupole scan corresponding to the variation of the vertical electron beam size

shows a clear hyperbolic focus as expected with a maximum measured size of 7.30 ± 0.16

(stat.) ± 0.17 (sys.) µm and a smallest size of 1.43 ± 0.05 (stat.) ± 0.04 (sys.) µm. The

horizontal electron beam sizes demonstrate a nearly liner progression as expected. Such

behaviour of the horizontal beam size during the scan is explained by the special design

of the lattice. The beam entering the QM14FF quadrupole is astigmatic with a very broad

focus in the horizontal plane (see Fig. 2.7). By varying the strengths of this quadrupole

the vertical beam size changes sharply when the variation of the horizontal beam size is

not noticeable. The horizontal scan shows a greater degree of variation from expected

linear shape. This is due to variation in the electron beam energy over the time of the

scans. The set of three laserwire scans required to make a measurement of the electron

beam size takes approximately 20 minutes and the whole quadrupole scan is about 3.5

hours. A low electron beam bunch charge (0.2 × 1010 e−) was used during the scan in
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order to provide the most stable condition over the duration of the measurement.
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Figure 2.21. Calculated laserwire signal for a range of horizontal and vertical chamber

positions from the simultaneous fit of the horizontal and vertical laserwire scans.
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Figure 2.22. Horizontal (top) and vertical (bottom) electron beam sizes measured for

various currents of QM14FF quadrupole.

As described in section 2.1 the quadrupole scan allows to reconstruct the emittance of

the electron beam. Measured vertical electron beam size as function of QM14FF integrated

quadrupole strength is presented in Fig. 2.23. Experimental data was fitted with second

order polynomial using thick lens formalism (see Eq. 1.29). There is only a drift section

between QM14FF quadrupole and the LWIP, so L in Eq. 1.27 is the drift distance, 692 ±
1 mm. Using the values from the fit the measured geometrical emittance was calculated

using 1.30 and found to be 82.56 ± 3.04 pm rad. This value is a relatively large emittance

compared to the typical optimized vertical value of the ATF2, which in the damping ring
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is 10 pm and 10 – 30 pm in the extraction line. The extraction line optics optimization

procedure was not carried out in full for laserwire operation periods and higher emittance

values are to be expected.
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Figure 2.23. Measured electron beam size squared as a function of QM14FF strength.

2.3 OTR cross-check monitor

The laserwire beam profile monitor, described in the previous section is the state-of-

the-art in transverse beam diagnostics providing micron scale resolution, non-invasive

beam size measurements. However, at a current state it requires a team of people looking

after a high power laser, detailed laser and optical system alignment, day-by-day operation

and maintenance. Moreover, the use of high power laser significantly increases the cost

of the laserwire system. Thereby, a simpler and relatively inexpensive method to measure

micron-scale beam sizes is required both to confirm the laserwire performance and relia-

bility and to be a supplementary monitor wherever it can be used. A beam profile monitor

based on OTR is very promising. It is widely used to measure a few micrometre beam size

which is just above the diffraction limit [43,44]. This is one of the best monitors which is

simple in use and gives a two-dimensional beam profile in a single shot. Although such a

monitor destroys the beam or the beam can destroy the monitor itself, it still can be used

to backup the laserwire for diagnostics of low current “pilot” beams.

Transition radiation arises when a relativistic, uniformly moving charged particle crosses

a boundary between two media with different optical properties (for example a vacuum-

metal interface). First, transition radiation was predicted and described theoretically by

Ginzburg and Frank in 1946 [45]. Experimentally, transition radiation in the optical wave-

length region was observed in 1959 [46]. Since then the transition radiation theory has

been developed by many authors [47–49].

A so-called Point Spread Function (PSF) defines the resolution of the OTR monitors. In
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classical optics the PSF is an image generated by a point source emitting a spherical wave

which is projected by an optical system on a detector. Due to the diffraction effects the

image from a point object is no longer a point, but rather an extended distribution with

dimensions defined by the wavelength and the optical system angular aperture. In case of

OTR the PSF has a different definition. The OTR PSF is an image from a source induced

by a single electron on a target surface and projected by an imaging optical system on

a detector. As a matter of fact the source generated by a single electron is not a point

but a distribution defined by the shape and dimensions of the charged particle electric

field. In [14] the first observation of the OTR PSF was presented and demonstrated that

its vertical polarization component has a two-lobe distribution. It was also very clear

that the visibility of the pattern strongly depends on the electron beam size. In [50] the

first attempt to demonstrate the sensitivity of the OTR PSF to the beam size has been

performed.

2.3.1 Theory

Consider a single particle with a charge q and energy γ moving uniformly and recti-

linearly in a vacuum and intersecting a metal screen with a perfect conductivity resulting

in transition radiation. Assuming an optical system with an aberration free lens with ra-

dius d located at distance a from the source (which in this case is the OTR screen) and b

from the image plane the vertical component of the OTR electric field at an image point

P (ρ =
√
x2 + y2, φ) is given by [51]:

Ey(P, ω) = − 2πq

vλM
sinφ

θlens∫
0

dt
t2

t2 + (βγ)−2

(√
1− t2 + 1

)
J1

[
2πρt

λM

]
. (2.14)

Here M = b/a is the lens magnification factor, λ is the wavelength of the radiation, J1

is the Bessel function of the first kind and θlens = d/a is the acceptance of the lens. The

intensity distribution in the image plane can be obtained using the common formula [6]:

S(ρ, ω) =
c

4π2
|Ey|2 (2.15)

The OTR field described by Eq 2.14 is derived for a single particle and thus Eq. 2.15

represents the PSF. For a bunch of particles the resulting image is a convolution of the PSF

with the transverse distribution of the bunch.

The intensity distribution of the OTR calculated for the ATF2 parameters is presented

in Fig. 2.24. In order to demonstrate how the diffraction effects influence the OTR PSF

a projection of the intensity distribution in vertical direction has been calculated for dif-

ferent angular acceptances of the lens θlens and is shown in Fig 2.25. As one can notice,

diffraction effects lead to the broadening of the PSF and hence to worse resolution. The

theoretical study of the diffraction effects and how they affect the spatial resolution in

OTR beam diagnostics has been developed in [51–53].
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Figure 2.24. OTR distribution calculated using Eq. 2.15 for γ = 2500 and λ = 550 nm.
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Figure 2.25. Vertical projection of the OTR intensity distribution for different values of the

angular acceptance of the lens θlens. Parameters: γ = 2500, λ = 550 nm.

Besides the diffraction, different aberration effects (chromatic and geometric) also

limit the resolution of the OTR beam diagnostics. Theoretical study of the aberration

effects is very difficult. Instead a simulation software such as ZEMAX [54] can be used

for these purpose. The Physics Optics Propagation mode of ZEMAX allows to propagate

the OTR field through realistic optical components using diffraction laws. ZEMAX offers a

large database of commercially available optical components (lenses, mirrors, polarazers,

etc.) which can be used to simulate any optical system and evaluate different errors

occuring along the optical path. In order to understand the limitations and improve the

resolution of the optical system for the OTR beam profile monitor a series of numerical

simulations using ZEMAX have been performed [55–57]. Results of these simulations



CHAPTER 2. LASERWIRE FOR ELECTRON MACHINES 53

have been compared with the experimental study of the aberration effects which will be

described in section 2.3.8 of this chapter.

2.3.2 Experimental setup

Initially the OTR system was used in combination with laserwire system to cross check

the laserwire results, provide the initial horizontal beam size required in order to decon-

volve the beam size from the laserwire scan and for spatial and temporal alignment of

the laserwire system. Since the beginning the general structure of the OTR experimental

setup has remained unchanged [50,58].

x
z y

Vacuum pipe
Vacuum bellows

Vacuum Window

LW chamber

OTR screen

e−

M1

M2

M3

M4

CCD camera
Polarizer

Filter wheel
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S2

Set of lenses

Motorized iris

QM14FF
quadrupole

Figure 2.26. Schemaic of the OTR beam profile monitor setup.

In order to study the optical system and achieve better resolution, in 2013 new op-

tical elements have been added to the experimental setup [59, 60]. A schematic and a

photograph of the experimental setup is presented in Fig. 2.26 and 2.27 respectively.

To produce the OTR beam a 30×30×0.3 mm aluminized silicon target was used. The

target was tilted at 45◦ with respect to the electron beam direction. Vertical position of

the target was controlled by 4D vacuum manipulator installed at the top of the vacuum

chamber. The OTR beam passes through the optical system which consists of a motorized

iris, a lens holder with a set of lenses, a periscope of mirrors (M1–M4), a filter wheel

with a set of optical filters, a polarizer and a CCD camera. The iris and the lens holder

were mounted on the same board to keep them centred. The lens holder mounted on the

board has a possibility of 3D adjustment of the lens position. Filter wheel with a set of

optical filters followed by the polarizer was attached to the CCD camera and mounted on

a remotely controlled rotation stage. The whole setup was mounted on a bread board and
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placed in a light protective enclosure. The full specification of the main components is

presented in Table 2.2.

Table 2.2. Specification of the main components of the experimental setup.

Component Properties

VW Vacuum window: “CVI Laser Optics”

W2-PW-2050-UV-532-0-27

M1 motorized aluminum mirror, ø = 50 mm ,

mount: “Thorlabs” [61] PT1-Z8, motor: Z625B

M2- M3 aluminum mirror, ø = 50 mm

M4 aluminum mirror, ø = 75 mm

S1 lens transverse stage: “PI” [62] PI-410.2S

S2 lens focus stage: “Thorlabs” PT1-Z8,

motor Z625B

lens vertical stage: “Sigma-Koki” [63]

SGSP 60-10ZF

S3 rotation stage: “Suruga Seiki” [64] K402-160-5

Lens ”CVI Laser Optics” cemented achromat,

f=120 mm, ø=30 mm

Iris “Standa” [65] 8MID98-4-90

Filter wheel “Thorlabs” FW102B

Polarizer “Sigma-Koki” SPF-50C-32

CCD camera “SBIG” [66] model: SBIG-ST8300M based on Kodak

KAF-8300 (monochrome) sensor

with 5.4 µm pixel size, 3352×2532 pixel

array and ∼50% quantum efficiency

To align the optical system a special alignment laser system was used. This system

is located approximately 25 m upstream the LW chamber and consists of a laser stage

equipped with continuous wave (CW) He – Ne (Helium - Neon) laser with 632.8 nm

output wavelength, a spatial filter, a focusing lens and a vacuum mirror. The vacuum

mirror is used to send the laser along the beam line to the ATF2 extraction line. Changing

the distance between spatial filter and the focusing lens one can focus the laser beam at

each point of the optical system. After tuning the laser and sending it to the beam pipe

the OTR screen was placed at 45 degrees with respect to the beam line to reflect the laser

out from the vacuum chamber and to align the entire optical system.
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Figure 2.27. Photograph of the OTR beam profile monitor setup.

2.3.3 Calibration
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Figure 2.28. CCD image of the OTR screen.

Magnification factor is one of the essential parameters of the optical system and it is

required in order to convert sizes on OTR image from pixels to microns as:

xµmi
m

=
xpixeli × binning× pixel size

magnification factor
(2.16)



CHAPTER 2. LASERWIRE FOR ELECTRON MACHINES 56

400 600 800 1000 1200 1400 1600 1800 2000
Y (px)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

In
te

ns
it

y
(a

rb
.

un
it

s)

Fit

Data

Figure 2.29. Vertical projection of the OTR screen edge.

In order to calibrate the optical system and measure the magnification factor the fol-

lowing procedure was used. The OTR screen was gradually moved out of the vacuum

chamber. At each step the image of the OTR screen edge (due to reflected laser light)

was recorded by the CCD camera. A position of the target was obtained from the ma-

nipulator motor controller encoder system with ± 5 µm precision. To obtain the position

of the screen edge the image of the target was digitized and the vertical projection in a

rectangular box (see Fig. 2.28) was fitted using:

f(x) = a0 +
a1

1 + exp

(
x− a2

a3

) . (2.17)

Here, a0, a1, a2, a3 are the free fit parameters. Parameter a2 represents the screen edge
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Figure 2.30. Calibration curve.
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position. The vertical projection of the screen edge image with the fit function is presented

in Fig. 2.29. The dependence of the screen edge position measured at the CCD camera

versus manipulator position was used as a calibration curve. Then, the calibration curve

was fitted using linear function (see Fig. 2.30). Gradient of the line is the magnification

factor which was found to be 7.17.

2.3.4 Beam based alignment and tuning

Before each operational shift the following tuning procedure has been applied to the

OTR beam profile monitor in order to maximize its resolution.

First, the CCD camera was set to the low resolution mode in order to decrease time

required to acquire the image. The camera software was switched to the automatic mode

which allows the on-line, shot-by-shot, monitoring of the acquired images. To increase the

intensity of the OTR light coming to the CCD camera optical filters were removed from the

optical line. After that, the angle of the mirror M1 (see Fig. 2.26) in horizontal and vertical

direction has been adjusted by means of two remotely controlled actuators attached to the

mirror holder until the OTR spot was found.

Once the OTR spot was found and centred at the image, the longitudinal position of

the focusing lens was adjusted to minimize the size of the OTR spot and maximize its

visibility. To define the best lens position a so-called focusing scan was performed. The

focusing lens was gradually moved and at each lens position the OTR image was recorded

and vertical projection of the image was calculated. The width of the vertical projection

(distance between peaks) as a function of the longitudinal lens position (an example of

the focus scan is presented in Fig. 2.41) then was fitted using parabolic function. The

minimum of the fit function corresponds to the best position of the lens. Initially, the

vertical and horizontal position of the focusing lens was adjusted during the calibration

procedure (see previous section) in such a way that the alignment laser has passed the lens

at the very centre. During the operational shifts horizontal and vertical position of the lens

was corrected until the equal light intensity between the lobes of the OTR distribution has

been reached.

At last, the CCD camera was set back to the high resolution mode and optical filters

were applied. After described above tuning operations the monitor was ready to perform

beam size measurements.

2.3.5 Analysis

A typical CCD image of the OTR spot taken with linear polarizer and 550±20 nm

optical filter is presented in Fig. 2.31.

To begin with, image noise and bad pixels are removed using a median filter [67] in

which n× n pixel sub-frame is moved through the image, replacing central pixel with the

mean of remaining pixels within the frame if it runs over a given threshold.
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Figure 2.31. CCD image of the OTR spot taken with linear polarizer, 550±20 nm optical

filter and focusing lens with f =120 mm focal length.

The next step in image processing is pixel-by-pixel background subtraction with correct

error propagation as:

STDsub
pixel =

√(
STDimage

pixel

)2
+
(
STDbackground

pixel

)2
, (2.18)

where the standard deviation for a pixel is defined as [68]:

STDpixel =
√

gain×N. (2.19)

Here N is the amplitude detected by a pixel and gain of a CCD camera represents the con-
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Figure 2.32. An example of the horizontal projection of the OTR image along with the

associated fit function.
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version factor from electrons (e−) into digital counts, or Analogue-to-Digital Units (ADUs).

Gain is expressed as the number of electrons which get converted into a digital number,

or electrons per ADU (e-/ADU). Gain values are selected by the camera manufacturer to

maximize the dynamic range available from any given sensor.

After that, an integration window is defined in which a portion of resulting image is

used to produce horizontal or vertical projections summing rows or columns respectively.

Since the horizontal beam size is much bigger than the vertical one, the horizontal

RMS beam size can be directly obtained from the symmetric Gaussian fit applied to the

horizontal projection. An example including the uncertainties calculated using Eq. 2.18 is

shown in Fig. 2.32. This horizontal projection was obtained by integration of the image

in FIg. 2.31 within the borders indicated by dashed yellow lines. The PSF dimension in

the horizontal direction is much smaller than the horizontal beam size. Therefore, the

horizontal projection gives the horizontal electron beam profile. A Gaussian fit was used

in Fig. 2.32 which resulted in a beam size of 142.189±0.139 µm, which is consistent with

expectations from SAD [69].
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Figure 2.33. An example of the vertical projection of the OTR image along with the

associated fit function.

The vertical projection of the OTR image has a two-lobe structure (an example ob-

tained from the integration of the image in Fig. 2.31 within the borders indicated by

dashed red lines is shown in Fig. 2.33) and the vertical beam size can not be directly ob-

tained from the fit function applied to it. The idea of the vertical beam size extraction is

based on fact that the contrast ratio of the distribution, which is defined as the ratio of the

central minimum intensity to the maximum intensity, strongly depends on the real beam

size.

In order to analyse the vertical projection the following, empirically found fit function

has been proposed:
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f1(x) = a0 +
a1

(
a4 + (x− a3)2

)
1 + (a2 (x− a3))4 , (2.20)

where fit parameters are: a0 the vertical offset of the distribution with respect to zero;

a1 the amplitude of the distribution; a2 the smoothing parameter; a3 the horizontal offset

of the distribution with respect to zero and a4 the distribution width. This fit function is

advantageous because the distribution has a simple form allowing the contrast ratio to be

calculated analytically. The contrast ratio calculated from the fit function parameters is

given by:

Imin
Imax

=
2a2

2a4

a2
2a4 +

√
1 + a4

2a
2
4

. (2.21)

In addition, the peak to peak distance can also be calculated analytically as:

Peak Distance =
2
√
−a2

2a4 +
√

1 + a4
2a

2
4

a2
, (2.22)

which is important for tuning and alignment of the optical system which strongly affects

the resolution of the beam size measurements.

The numerical fit uses the Levenberg-Marquardt method [70] to calculate the best fit

parameters which minimise the weighted mean squared error between the data and the fit

function. The error propagation has been performed using the standard method as [71]:

∆f(a0, ..., an) =

√√√√ n∑
i=0

(
∂f(a0, ..., an)

∂ai

)2

∆a2
i . (2.23)

Here
∂f(a0, ..., an)

∂ai
is the partial derivative with respect to each fitting parameters and

∆ai is the error in each fitting parameter. In Eq. 2.23 ∆f can be an uncertainty for f1(x),

Imin/Imax or Peak Distance.

As it was mentioned before, the OTR PSF contrast ratio predominantly depends on

the transverse beam size. In order to convert the contrast ratio to the beam size, a self-

calibration procedure has been developed. To perform a calibration procedure a data set

with varying vertical beam sizes is required. For each file, the PSF-like fit is used and

the contrast ratio is extracted. The file with the smallest contrast ratio is then used for

calibration as it is the closest fit to the original PSF generated by a single electron. The

fit curve for that file is then regenerated setting a0 to zero removing any offset due to the

constant background and a4 to zero in order to eliminate the distribution smoothing. We

assume that such distribution represents the OTR PSF for a zero beam size.

Assuming that the beam profile has Gaussian shape, a numerical convolution with the

fit function is performed to take into account the effect of the beam size:
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F (y) =

N∑
j=1

f(yj) exp

(
−(y − yj)2

2σ2

)
N∑
j=1

exp

(
−(y − yj)2

2σ2

) (2.24)

The plot in Fig. 2.34 shows the effect of beam size on the PSF-like distribution. In-

creasing the sigma of the convolution slowly increases the contrast ratio until the mini-

mum disappears. The errors are also propagated through the convolution according to

Eq. 2.23. The convolution is repeated N times increasing σ with a fine step from zero.

For each iteration, the contrast ratio Imin/Imax is found along with its errors ∆Imin/Imax

resulting in calibration curve. The convolution is repeated until the maximum contrast

ratio of unity is found.
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Figure 2.34. The effect of the beam size.

Finally, one need to obtain a calibration curve σ = f(Imin/Imax). For that purpose, the

following empirically found fit function is used:

σ(Imin/Imax) = b0 +
1

b1

(
− log

(
1− Imin/Imax

b2

))b3
+ b4(Imin/Imax)12, (2.25)

where b0, ...b4 are free fit parameters. An example calibration curve presented in Fig. 2.35.

The resultant curve exhibits a symmetric nature with larger errors at each end due to the

increased gradient in this area. With the calibration curve now determined, it can be

used to extract vertical beam size for each image in the data set. Again to calculate

the uncertainties Eq. 2.23 was used, including uncertainties of all five fit parameters and

∆Imin/Imax
. Uncertainties ∆Imin/Imax

appear at the calibration curve as horizontal errors.

They can be converted to vertical errors with a good approximation by multiplying them

to the slope of the line ∆y/∆x.
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Figure 2.35. An example of the calibration curve.

The choice and position of the integration window affects the contrast ratio and there-

fore, the beam size. Fig. 2.36 shows how changing the gap size affect the contrast ratio. At

small gap sizes, the quality of the fit produces a noisy contrast ratio. At very large gap size,

a large amount of extra noise is integrated leading to an artificially high contrast ratio. In

order to choose the correct region, the correlation of contrast ratio to the extracted beam

size was used. The correlation is shown in Fig. 2.37. Ideally, this correlation must be zero,

because the real beam size does not change. However we observe linear correlation which

suggests that the pixel-by-pixel noise is accumulated linearly. The correct region for the

gap size was chosen to be where the correlation has the densest number of points within

5% of the beam size variation which fits well in the beam size measurements accuracy. In

Fig. 2.36, this is shown as the highlighted red region.
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Figure 2.36. The contrast ratio and its error as a function of gap size.
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Figure 2.37. The correlation between contrast ratio and calibrated beam size for each gap

size. The red dots are represent the densest correlated region. This region is represented

on the Fig. 2.36 as the highlighted area.

2.3.6 OTR PSF beam size measurements

Initially the accelerator was carefully tuned to minimize the background level and

provide a stable working regime during the data taking. The longitudinal position of

the focusing lens was adjusted to provide a clear OTR image with a minimum peak to

peak distance. After that, the monitor was ready to perform beam size measurements.

All measurements were performed in single-bunch mode, with a bunch repetition rate of

3.12 Hz and ∼0.3 nC bunch charge.
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Figure 2.38. The measured horizontal (top) and vertical (bottom) electron beam sizes as

measured by the OTR system using QM14FF quadrupole at different currents.
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A quadrupole scan was then performed in which the current of the QM14FF quadrupole

magnet was changed in a range from -88 A to -97 A in steps of 1 A. For each value of the

quadrupole current, three OTR images were taken in order to minimise the statistical er-

rors. Figure 2.38 shows the measured horizontal and vertical beam sizes at each current.

It can be seen that the horizontal beam size remains roughly constant at around ∼145 µm

as desired while the beam size in the vertical direction shows a hyperbolic dependence

with a minimum beam size of 0.754±0.034 µm.
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Figure 2.39. The measured vertical beam size squared as a function of effective QM14FF

quadrupole strength.

The vertical emittance was extracted using the same method described in section 2.2.

From the data and the fit in Fig. 2.39 the emittance was found to be 59.306±4.153 pm rad

which is consistent with the laserwire measurements presented in section 2.2.6. The

emittance was measured the following shift using the multiOTR [44] and found to be

23 pm rad however, this was measured after a series of beam tuning routines performed

and thus a smaller emittance is expected.

This measured emittance is cross checked with SAD simulations. Using the beam size

definition from Eq. 1.16 and assuming at the location of the OTR screen εβ >> D2
(

∆p
p

)2
,

the beam size can be approximated by
√
βε. The beta function is defined by the optics and

while the initial Twiss parameters used for the SAD simulation will affect the location of

the minimum beta function, the value of the beta function at the minimum should remain

constant. Using this minimum value along with the measured emittance, a beam size

can be calculated to compare with measurement. With the simulated beta function and

the measured emittance, the minimum beam size was expected to be 0.65 µm which is

comparable to the 0.754±0.034 µm directly measured using the OTR PSF technique.
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2.3.7 Comparison between OTR and laserwire

During the laserwire operations, results of the vertical electron beam size measure-

ments were cross-checked using OTR based technique. Vertical electron beam size as a

function of the QM14FF quadrupole current was measured first using OTR beam profile

monitor and then using laserwire system. Results of the measurement are presented in

Fig. 2.40. As one can see, both measurements demonstrate a very good agreement. Bigger

errorbars at the tails of the scan for the OTR measurement is due to the vertical beam size

extraction method.
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Figure 2.40. Vertical electron beam size as a function of the QM14FF current measured

with the laserwire and OTR technique.

2.3.8 Aberration effects limiting the OTR monitor resolution

The form of the PSF, and hence the resolution of the OTR monitor, strongly depends

on the diffraction and aberration effects of the optical system. These effects lead to broad-

ening of the PSF and, consequently, to a lower resolution. To be able to progress in the

research and develop a new optical system with minimized PSF distortion, the aberration

contribution needs to be studied and understood.

In order to study such effects a series of measurements with different optical elements

were performed. The broadening of the distribution caused by the aberration effects can

be easily measured as the distance between peaks in the vertical projection of the OTR

image. To study chromatic aberration effects, a several focus-scans (measuring a distance

between peaks of the distribution at different longitudinal lens positions) with different

optical filters in a wavelength range 480 – 620 nm were performed. The resultant depen-

dencies are presented in Fig. 2.41. These measurements were performed using “Sigma

Koki” achromatic doublet lens with a focal length of 120.1 mm and 30 mm diameter. As

one can see from the picture, the focus positions are different for different optical filters

even for the lens designed to minimize the chromatic aberrations. Therefore for any lens
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its position must be carefully adjusted to maximize the resolution of the instrument.
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Figure 2.41. Distance between peaks as a function of the lens position for different optical

filters. Presented data was taken with the “Sigma Koki” lens (f=120 mm).

Another optical effect that degrades the resolution is the diffraction of the OTR tails

by the hard aperture of the optical elements. To study this effect, an iris was mounted in

front of the lens (see Fig. 2.26). Similar to aberrations, diffraction effect leads to broad-

ening of the distribution hence to worse resolution. In order to estimate the influence of

the diffraction on distribution width the distance between peaks as a function of the iris

aperture diameter was measured (see Fig. 2.42). It is clear that diffraction effect becomes

noticeable at the iris diameter of ∼15 mm. This means that the diameter of the focusing

lens can be reduced down to 15 mm, thereby the lens can be manufactured thinner which

leads to reduction of the spherical aberrations.
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Figure 2.42. Distance between peaks as a function of the iris diameter for different lenses.
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Results of the beam size measurements using focusing lenses with different optical

properties are presented in Fig. 2.43. As one can see, the measurements performed with

the aberration corrected lenses (“CVI” f =120 mm and “Sigma Koki” f = 120 mm) in a

good agreement with the simulations while use of simple plano-convex lens (“Sigma Koki”

f = 100 mm) results in a bigger measured beam size with bigger errors.
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Figure 2.43. Vertical beam size as a function of the QM14FF quadrupole magnet current

for different lenses: “CVI Laser Optics” cemented achromat with 120 mm focal length,

“Sigma Koki” achromatic doublet with focal length of 100.7 mm, “Sigma Koki” plano-

convex lens with 100 mm focal length.

Test bench to study the chromatic and spherical aberrations

In order to study chromatic and spherical aberration effects more deeply a special test

stand was developed. The schematic picture and photograph of the stand are presented

in Fig. 2.44, and 2.45 respectively.
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Figure 2.44. Schematic of the test bench.

The whole setup was assembled on an optical table. Three continuous wave (CW)

lasers with 532 nm, 400 nm and 632 nm wavelengths were used as sources of light. The

lasers were placed on a stage that allows to change the lasers without changing the align-

ment. Alignment of the laser beam was performed using two aluminum coated mirrors
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with diameter of 50 mm and two irises. To imitate the OTR screen a “ThorLabs” R3L3S1P

- positive USAF target was used. A lens was mounted on the remotely controlled linear

stage. The image of the pattern was detected by the CCD camera and recorded by the cam-

era software. Images were recorded as a function of the lens position. Focusing properties

of the lens were measured by analyzing the target images.
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Figure 2.45. Photograph of the test stand setup with parabolic mirror (left) and with lens

(right).

One way to reduce chromatic aberrations is to use reflective optics instead of refractive.

In order to compare these two approaches the measurements of the focusing properties

using both an achromatic lens and an off-axis parabolic mirror have been performed. In

Fig. 2.46 and Fig. 2.47, a focused CCD image of the target taken with the parabolic mirror

and the lens are presented. Fig. 2.48 represents the vertical projection of the strip edge. As

one can see, the image taken with the lens is well focused and has small distortion caused

by geometrical aberrations whereas the image taken with the parabolic mirror is focused
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Figure 2.46. CCD image of the target taken with ‘Edmund Optics” 90◦ off-axis parabolic

mirror with parent focal length of 50.8 mm and ø=50.8 mm.
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only in a small region and significantly distorted because of the comatic aberration effects.

A parabolic mirror has to be perfectly aligned both vertically and horizontally because even

small deviations of the beam from the center lead to significant distortion of the image.

Moreover, an off-axis parabolic mirror surface does not form an ideal image due to coma-

like geometrical aberrations. For that purpose an elliptical mirror might be used. However

design and manufacturing of such mirror with an optical quality might be a challenging

and expensive task.
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Figure 2.47. CCD image of the target taken with “CVI Laser Optics” lens with focal length

of 120 mm.
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Figure 2.48. Vertical projection of the strip edge along with the fit.

To study the chromatic aberrations of the lenses three lasers with different wavelengths

were used. Every lens was gradually moved along the laser beam through the focus. At

each lens position the image of the target was recorded by the CCD camera. A part of
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the image containing a strip edge was selected (see Fig. 2.47 and 2.48). Then vertical

projection of this selected area was fitted using Eq. 2.17. Parameter a3 of the fit function

strongly depends on the image contrast and can be used as a measure of the focusing (e.g.

if a3 = 0 the image is perfectly focused). The final dependencies of the focusing parameter

versus the lens position are presented in Fig. 2.49 – 2.51.
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Figure 2.49. Chromatic aberration study for “CVI Laser Optics” cemented achromat with

120 mm focal length.
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Figure 2.50. Chromatic aberration study for “Sigma Koki” achromatic doublet with focal

length of 100.7 mm.

As one can see, achromatic doublets (Fig. 2.49, 2.50) have small chromatic aberra-

tions because the position of the best focus (i.e. the minimal a3 parameter) is nearly the

same. While singlet lens shows a strong chromatic aberration (Fig. 2.51) for presented

wavelengths. These results demonstrate a good correlation with beam size measurements
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Figure 2.51. Chromatic aberration study for “Sigma Koki” plano-convex lens with 100 mm

focal length.

described in the previous section.

2.4 Chapter summary

In this chapter the principles of the laserwire technique for transverse diagnostic of

the electron beams have been presented. Implementation of these principles has been

demonstrated on the example of laserwire beam profile monitor designed for measuring

the electron beam size with micrometre resolution at ATF2 in KEK, Japan. Description and

principle of operation of the beam profile monitor based on optical transition radiation

that was used to cross-check the laserwire results was also presented.

The author has joined the project at its final stage. All the hardware was already

created and commissioned.

Author’s contribution to the laserwire and OTR project at ATF2 was as following:

• Participating in the operational shifts including ATF2 accelerator tuning, data taking

and analysis.

• Tuning the laser system including alignment of the laser beam, systematic M2 and

power measurements.

• Improvement of the optical system and experimental setup of both OTR and LW.

• Developing the fit function for vertical projection of the OTR distribution which

allowed to reduce the imperfections in the data analysis procedure and prepare a

complete set of Python scripts for OTR data analysis.

• Design and commissioning of a special test stand for studying the chromatic aber-

ration effects of the OTR optical system and their effects on the resolution of the
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instrument.

• Presentation of the results at International Conferences and Symposia.

• Preparation of graphic material and writing of scientific papers [30,31,60] and con-

ference proceedings [55,56,59,72,73]

The main results of the chapter can be represented as following:

• A high resolution, effectively non-invasive laserwire system capable of measuring

high aspect ratio, low emittance electron beams such as that at a future linear

electron-positron colliders using visible wavelength laser source has been demon-

strated.

• A minimum vertical electron beam size of 1.07 ± 0.06 (stat.) ± 0.05 (sys.) µm was

measured with a corresponded horizontal beam size of 119.0 ± 2.4 (stat.) ± 0.01

(sys.) µm using the laserwire.

• A single quadrupole scan was used to measure the vertically projected geometric

emittance of 82.56 ± 3.04 pm rad.

• A high resolution transverse beam profile measurement system based on OTR has

been demonstrated.

• A minimum measured vertical electron beam size was found to be 0.754± 0.034 µm

which matches the LW measurements.

• The vertical geometrical emittance extracted from quadrupole scan was found to be

59.306 ± 4.153 pm rad which is consistent with LW and simulations.

• Vertical electron beam size measurements using two different methods (OTR and

laserwire) have demonstrated a very good agreement.
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Chapter 3

Laserwire for H− machines

Principles of the laserwire system for H− ions

ACCELERATORS for negative hydrogen ions are now widely used mostly as injectors

for proton synchrotrons. After preliminary acceleration, H− ions is converted into

protons by stripping off two electrons from the ions. Such injection scheme (also called

charge-exchange injection) has a major advantage in comparison with conventional meth-

ods. During the injection by charge exchange process the charge is not conserved because

of the stripped electrons. Particles produced in this process are not described by Hamil-

tonian equation and hence there are no restrictions imposed on the storage of protons

on orbit by Liouville’s theorem [74]. Thereby, protons obtained in the charge exchange

process can be injected into the ring repeatedly into the same phase space. Due to a very

high power H− beam, anything installed on the beam might be damaged by it. In order

to diagnose the high power beam of H− particles a non-invasive measurement technique

is required. The best candidate for diagnostics system is a laserwire scanner. The basic

idea of the laserwire technique for negative hydrogen ions is a similar to the one used

for electrons. The difference is in the process of interaction between the laser and the

particle beam. In case of electrons it is the Compton scattering and in case of ions it is

photo-detachment process. The photo-detachment process can be written as the following

reaction:

H− + γ → e− +H0

The diagram, showing the basic principle of the laserwire for H− beam diagnostic is

shown in Fig. 3.1. Focused in the interaction region, laser beam collides with the ion beam

producing a stream of neutral particles and electrons. Since the binding energy, holding

second electron in the H− ion is very small (∼0.75 eV) even a low energy laser photon

can be used for stripping the electron off.



CHAPTER 3. LASERWIRE FOR H− MACHINES 74

H− beam

Laser

Dipole magnet

IP

H0

H−

Photodetached electrons

Figure 3.1. Schematic of the laserwire emittance scanner for H− ions.

The first laserwire diagnostic for measuring the parameters of the H− beam was built

at Los Alamos National Laboratory [75] and then developed and implemented in other

facilities such as Spallation Neutron Source (SNS) commissioned at Oak Ridge National

Laboratory (ORNL) and Brookhaven National Laboratory for measuring transverse and

longitudinal parameters of the H− beam [76–83]

There are two possibilities of measuring the properties of the ion beam. First is to

use photodetached electrons. These electrons can be separated from the main ion beam

using a low power dipole magnet and then detected by, for example a Faraday Cup, which

measures the amount of charge that has been detached. The number of electrons detached

at each position of the laser while it is scanned across the ion beam is proportional to

the ion beam density integrated along the path of the laser. This allows an ion beam

profile in a plane perpendicular to the direction of laser propagation to be measured.

However, since stripped electrons have a very small energy (∼10 eV) it is quite challenging

to develop a suitable detection system. Moreover, due to low energy the electron Coulomb

repulsion leads to a loss of information about the ion beam angular divergence, and,

hence, the beam emittance. Nevertheless, a laserwire utilizing such detection scheme

has been developed and successfully demonstrated at SNS [81] to measure the ion beam

profile.

Another approach is to detect the neutralized particles. This method allows not only to

measure the ion beam profile, but also measure the transverse emittance of the ion beam.

At each transverse laser position with respect to the the ion beam the angular distribution

of the neutral particle beamlets can be recorded by scanning a detector across the beamlet

at a certain distance from the IP while the main beam of negative ions could be deflected

using dipole magnet installed upstream the detector. Measuring the profile of the beamlet

at each laser position when the laser is scanned across the beam allows to directly measure

the transverse phase space distribution and, subsequently, reconstruct the transverse beam

emittance as well as profile of the ion beam. Such scheme has been first demonstrated

at SNS [82] and recently deployed at LINAC4 in CERN (described in this chapter) and is

planned to be used at FETS in Rutherford Appleton Laboratory (see chapter 4).

The number of particles (electrons or neutrals) produced in the laserwire interaction
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can be estimated using Eq. 2.1 and Eq. 2.2 by replacing σc → Σ0 and ρe(x, y, z, t) →
ρH(x, y, z, t), where Σ0 is the cross-section of the photodetachment process and ρH(x, y, z, t)

is the probability distribution function of the H− ion bunch pulse.

The cross section of the photo-detachment process firstly has been measured in [84]

and then calculated and verified by many authors (see for example [85,86]). Total photo-

detachment cross-section as a function of wavelength is presented in Fig. 3.2. As one can

see the photo-detachment cross-section exceeds 3.5×10−17 in wavelengths range of 800–

1100 nm. That opens a possibility of use an infra-red laser with a standard wavelength of

1080 nm for the laserwire experiment.

The ion beam size in transverse plane is much smaller than the Rayleigh range of the

laser beam. In this case the variation of the laser beam size across the ion beam can

be neglected and the vertical or horizontal profile of the ion beam can be deconvolved

independently from each other. In this case, assuming that both laser and ion beams have

3D gaussian distribution and the laser pulse is much longer than the ion bunch pulse one

can estimate number of photodetached particles using Eq. 2.13.
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Figure 3.2. Total photo-detachment cross-section (data from Table IV in [85]).

In order to calculate the emittance it is necessary to know a distribution of the neutral-

ized particles at the detector plane. Latest can be calculated by weighting the particles in

the initial distribution (which can be obtained from any standard particle tracking code)

at the IP with a stripping probability for each particle. The stripping probability or the

fraction of the initial H− ions that are neutralised in the volume where the laser intercepts

the ion beam can be derived from the rate of loss of H− (n(t)) due to photo-ionisation

which is given by:

dn

dt
= −Σ0(λ)ρn, (3.1)

here Σ0(λ) - photodetachment cross-section, ρ - laser photon flux, t - interaction time of

the ion with the laser beam. Integrating the Eq. 3.1 one can obtain the number of H− ions
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N after the interaction with the laser beam over time tint and the photodetachment prob-

ability can be calculated as:

pstrip =
N0 −N
N

= 1− exp (Σ0(E)ρ tint) , (3.2)

where N0 is the initial number of ions per pulse.

For the high energy ions there is very considerable relativistic shift of the laser photon

energy to higher energies in the frame of reference related to the ion beam. In this case,

energy dependent parts in 3.2 must include the photon energy ECM in the ion beam rest

frame. The relation between the laser photon energy in the ion beam rest frame and laser

photon energy EL in the lab frame of reference is given by:

ECM = γEL (1− β cos θL) . (3.3)

Here θL is the angle between laser beam and ion beam in the lab frame of reference.

3.0.1 Emittance measurement technique for H− beams

As it was mentioned before, a transverse geometrical emittance of the H− beam can

be measured directly using laserwire. By measuring the profile of the H0 beamlets at the

detector one can calculate the divergence of the initial H− beam at each laser position at

the IP. Schematic diagram explaining this method is shown in Fig. 3.3. The divergence of

the ion beam x′ can be calculated as:

x′ =
x1 − x0

L
, (3.4)

where x0 is the position of the laser with respect to the center of the ion beam, x1 is the

position of the detector with respect to center of the ion beam and L is the drift distance

between LWIP and the detector.

beamlet of H0

x0

x1

LWIP Detector

L

Laser

Ion beam

Figure 3.3. Principle of the laserwire emittance measurement. Spatial and angular distri-

bution (phase-space) of the beam can be measured by scanning the laser accros the ion

beam and recording the distribution of neutralized particles by scanning the detetor ac-

cross the beamlet at each laser position. The spatial distribution of the neutralized beamlet

measured by the detector can be converted to the angular distribution of the beam (using

Eq. 3.4) sampled at a certain laser position.
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The transverse geometrical emittance can then be reconstructed using standard ap-

proach [10]:

εrms =
√
< x2 >< x′2 > − < xx′ >2. (3.5)

Here < x2 >, < x′2 > and < xx′ >2 are the second moments of the phase space

distribution:

< x2 >=

∑
i

∑
j

(xi − xc)2 I(xi, x
′
j)

Itotal
, (3.6)

< x′2 >=

∑
i

∑
j

(
x′j − x′c

)2
I(xi, x

′
j)

Itotal
, (3.7)

< xx′ >=

∑
i

∑
j

(xi − xc)2
(
x′j − x′c

)2
I(xi, x

′
j)

Itotal
. (3.8)

Here Itotal is the total detected signal, xc and x′c - centroid of the distribution calculated

using the following formulas:

Itotal =
∑
i

∑
j

I(xi, x
′
j), (3.9)

xc =

∑
i

∑
j
xiI(xi, x

′
j)

Itotal
, (3.10)

x′c =

∑
i

∑
j
x′jI(xi, x

′
j)

Itotal
. (3.11)

Here I(xi, x
′
j) - integrated and averaged signal from the detector, x corresponds to the

laser position and x′ corresponds to the divergence.

To propagate errors Eq. 2.23 has been applied to Eq. 3.5.

∆εrms =
1

2εrms

√
< x′2 >2 ∆2

<x2>
+ < x2 >2 ∆2

<x′2>
+ 4 < xx′ >2 ∆2

<xx′>. (3.12)

Uncertainties ∆<x2>, ∆<x′2> and ∆<xx′> can be calculated by applying Eq. 2.23 to

Eqs. 3.6 – 3.11.

3.1 Laserwire emittance scanner at CERN LINAC4

The LINAC4 project located at European Organisation for Nuclear Research (CERN)

in Geneva, Switzerland was started in 2008 and aims to build a 160 MeV H− linear ac-

celerator that will replace the existing proton LINAC2 as the injector to the PS-Booster

(PSB). Injection of H− instead of protons into the PSB would reduce the beam losses and
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provide more flexible operational conditions. At the end of commissioning the injection

beam provided by LINAC4 is expected to double the beam brightness and intensity of the

ion beam from the PSB. LINAC4 project is an essential step in the High Luminosity LHC

upgrade required to future improvement of the CERN accelerator complex towards higher

performance [87–90].

H−source

3 MeV

RFQ MEBT DTL CCDTL PIMS

50 MeV 102 MeV 160 MeV45 keV

LEBT

∼ 76 m

to PSB

Figure 3.4. LINAC4 block diagram.

The LINAC4 is a normal conducting linac that consists of an ion source [91] that pro-

duces 80 mA, 400 µs beam pulses at the repetition rate of up to 2 Hz, a 352.2 MHz radio

frequency quadrupole (RFQ) that accelerates the H− beam to 3 MeV followed by medium

energy beam transport (MEBT), three Alvarez drift tube linac (DTL) tanks accelerating the

beam to 50 MeV , a cell-coupled drift tube linac (CCDTL) and finally a Pi-mode structure

(PIMS) that accelerate the beam to its final energy of 160 MeV. The LINAC4 basic archi-

tecture structure and schematic layout are presented in Fig. 3.4 and Fig. 3.5 respectively.

Main parameters of the LINAC4 are presented in table 3.1 (data from [87]).

Table 3.1. General parameters of LINAC4.

Parameter Value Units

Overall Linac length 76.33 m

Output energy 160 MeV

Bunch frequency 352.2 MHz

Maximum repetition rate 2 Hz

Beam pulse length 400 µs

Max. beam duty cycle 0.08 %

Average pulse current 40 mA

Beam transverse emittance 0.4 pm mrad

Beam power 5.1 kW

To successfully inject the beam from LINAC4 into PSB the transverse emittance at

the machine top energy of 160 MeV has to be measured precisely. The conventional slit

and grid beam diagnostics is precluded due to the excessive stopping range of a high

energy H− ions at 160 MeV in any possible slit material. Other methods, like the three -

profile measurement, can be heavily affected by space charge effects and cannot handle

the nominal LINAC4 pulse power. To overcome these problems a non-destructive method
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based on laserwire technology has been developed and will be described in the following

sections.

50 M
eV

102 M
eV

160 M
eV

3 M
eV

Figure 3.5. Schematic layout of the LINAC4 (picture from [92]).

3.1.1 Experimental setup

In order to characterize the H− ion beam at different stages of the LINAC4 commis-

sioning a movable, temporary test bench has been used [93]. After finishing the commis-

sioning of the 3 MeV stage the test bench was placed at the exit of the MEBT section and

was used to characterize the ion beam using various diagnostic tools such as beam current

transformers, wire scanners, beam position monitors, bunch shape and halo monitors, a

slit and grid emittance meter and a spectrometer line [94]. Schematic of the 3 MeV test

bench with the main components is shown in Fig. 3.6.

Slit and LWIP

LW delivery system

Bending magnet

Diamond detector Wire grids

Figure 3.6. Schematic of the CERN LINAC4 3 MeV test bench showing the layout of the

main components.
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The laserwire interaction is taking place inside the vacuum chamber that was ini-

tially designed to accommodate the movable graphite slit which is a part of the slit and

grid emittance scanner [95, 96]. The slit is used to select a narrow portion of the initial

H− beam at a certain position. The angular distribution of the selected beamlet is sam-

pled using two wire grids installed downstream the IP, thus the transverse phase space

can be measured (see section 3.0.1). The laser entering the vacuum chamber through

the vacuum window, specially coated to reduce back reflections in the infra-red range of

wavelengths. After the interaction the laser beam is dumped into one of the slit blades. To

avoid the damaging of the material, a series of tests has been performed proving that the

focused on a graphite plate full power laser beam does not cause any damage and can be

operated safely. Such location of the laserwire proved to be very useful because it allows

to perform measurements using two different methods and cross-check the results.

A laserwire experiment consists of a remotely controlled pulsed laser mounted in a rack

in the accelerator tunnel connected via an optical fibre to a laser delivery system which

controls the size and position of the laser beam delivered to the IP. A detection system,

installed downstream of a dipole magnet, to record the angular distribution of the neu-

tralized particles from the H− beam. A photograph showing the laserwire experimental

setup is presented in Fig. 3.7.

Laser delivery system

Laser and coupling box

Vacuum chamber

Figure 3.7. Photograph of the experimental setup at 3 MeV.

The laser is a Q-switched, diode pumped, Yb doped fibre Master Oscillator Power Am-

plifier (MOPA) manufactured by “Manlight S.A.S” (Lannion, France), model: ML-30-PL-

R-TKS. The oscillator generates ∼ 100 ns pulses (FWHM) at the repetition rate selectable

between 30 and 100 kHz, at wavelength of 1080 nm with a pulse peak power of 8.5 kW

and maximum output power of 28 W in CW mode. The master oscillator itself operates in

free mode and is not capable of being synchronized to an external source. The fibre am-

plifier is pumped by a diode that can run in CW mode or can be modulated by an external
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TTL signal with a repetition rate of up to 5 kHz, enabling the train of amplified pulses to

be synchronised to an external source. The schematic and the Interior view of the laser

with the arrangement of its main components is presented in Fig. 3.8 and 3.9 respectively.

Laser diode

Fibre amplifierMaster oscillator

Coupler

Q-switch control

Pump

Output fibre

Figure 3.8. Schematic of the laser.

a) b) c)

Figure 3.9. Interior view of the laser: a) - pump diode fibre-coupled to the MOPA system

(silver box on the right), b)- master oscillator, c) - power amplifier.

Summary of the laser parameters is presented in Table 3.2 (data according to the laser

specification [97]).

To deliver the laser beam to the interaction point a special delivery system has been

designed. The schematic and photograph of the system is presented in Fig. 3.11 and

Fig. 3.10 respectively. The collimated output from the fibre-laser passes through a safety

shutter and collimation lens (L1) and monitored by a photodiode (PD1) and then coupled

into a 5 m long optical fibre that transport light to the beam delivery system. A lens with a

focal length of 6.25 mm is set to collimate the beam to a waist of 0.5 mm. To optimize the

coupling efficiency the input end of the fibre is mounted on a 3D translation stage (S1).

From the output of the fibre light passes through a beam expander (BE), that has a range

of magnification from 1 to 8X and focusing lens (L2) all mounted on a pair of translation

stages (S2) that control the vertical and longitudinal position of the laser beam focus with

the micron resolution. A lens with a focal length of 500 mm focuses the laser radius to ∼
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Table 3.2. Main parameters of the laser system.

Parameter Value Units

Operation mode CW or pulsed –

Wavelength 1080 nm

Pulse repetition rate (external trigger) 30 - 100 kHz

Average output power (CW pump) 30 W

Pulse duration 150 ns

Output power stability < 2 %

External TTL modulation frequency up to 5 kHz

75 µm at the interaction region, such that only a small slice of ∼1 mm ion beam can be

neutralized.

PD1
PD2

S1

L1

M1

Dump

Colimator

Shutter

BEM3

S2

M4

FW

CCDS3

M2

L2

Figure 3.10. Photograph of the laser beam delivery system: coupling box (left) and deliv-

ery box (right).

By lowering the vertical stage the laser beam can be delivered via fold back mirrors to

the second photodiode (PD2) and a CCD camera. In order to avoid the CCD camera satu-

ration a filter wheel (FW) with a set of attenuators is placed in front of the camera. Both,

the camera and the filter wheel can be translated along the laser beam axis using a linear

translation stage (S3). This option is useful for measuring of the laser transverse profile

at and around the focal length corresponding to the particle interaction region. Both the

laser coupling and delivery optics are placed in the interlocked light-tight enclosures for

safety reason.

After the interaction with the laser beam, a beamlet of neutral H0 particles passes

through the specrometer magnet and then intercepted by the diamond detector that in-

stalled approximately 3 m downstream the LWIP. The detector is mounted on a vertical

translation stage which allows to move it across the beamline so the spatial profile of the
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Figure 3.11. Layout of the fibre-laser beam delivery optics.

neutralized beamlet can be determined.

The detector is composed by a polycrystalline diamond bulk produced with chemical

vapour deposition (CVD) process and metal electrodes on top and the bottom. The bulk

material acts as a solid state ionisation chamber. When the charged or neutral particle

passes through the diamond it creates electron-hole pairs along its way. By applying the

voltage to the electrodes the electrons and holes move inside the detector creating a signal

in the external circuit.

201820
18

3.52

7.14

0.
5

Figure 3.12. Schematic of the diamond detector showing the layout the top and bottom

electrodes. All dimensions are presented in millimetres.
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The diamond detector has been chosen because of the following advantages in com-

parison with other detectors [98]:

• good sensitivity (internal gain of the diamond detector is about 104 electrons per

H0 )

• response time in the nanosecond range

• radiation hardness (> 1015 particles cm−2 [99] ).

Table 3.3. Specification of the main components of the laser delivery system.

Component Properties

S1 “Thorlabs” 3-Axis NanoMax Flexure Stage

model MAX 313 D/M

S2 2D mover, consisting of

“Newport” [100] UTS 50 CC, M-UMR 8.5

translation stages and LTA - HS actuator

S3 “Newport” UTS 50 CC translation stage

BE Beam expander: “Sill Optics” [101] S6EZM2075/126

PD1, PD2 Photodiode: “Newport” model 818-BB-20

Dump Laser beam dump:“Laser 2000” [102] 119-0775

Shutter “Lasermet” [103] LS - 20

M1, M2, M3 Mirrors: “Thorlabs” BB1 - EO3P

M4 Window: “Thorlabs” WG 11050

L1 Lens: “Thorlabs” LA 1172 - C

f=400 mm, ø = 25.4 mm

L2 Lens: “Thorlabs” LA 1908 - C

f=500 mm, ø = 25.4 mm

FW Filter wheel: “Thorlabs” FW 2A

CCD CCD camera: “Gentec” [104] Beamage

In the experiment a 20×20×0.5 mm3 “CIVIDEC Instrumentation” [105] polycrystalline

diamond detector with five aluminium strips has been used. A schematic and a photograph

of the diamond detector is presented in Fig. 3.12 and Fig. 3.13 respectively.

Initially, readout channels of the detector were supplied with charge sensitive ampli-

fiers. However, they were completely saturated because they are made for single-particle

detection. After that, linear amplifiers has been installed which were found to give the

most reliable signal.

All components of the experimental setup were remotely controlled via NI-PXI with

LabView software. The software allows to control the laser system, position of the laser
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Figure 3.13. Photograph of the diamond detector.

focus and diamond detector. It automates the scans for laserwire position for different

detector positions and automates the data acquisition and saves it to the hard drive. Ex-

perimental data containing the information about the laser and detector positions, signal

from the detector channels and signal from the photodiode was stored in a special Lab-

View format called TDMS. Such type of the files has been chosen because it allows to

organize data in a hierarchy of objects, thereby, a big amount of data can be stored inside

a single file and then easily accessed for the further analysis.

In order to overlap the laser pulse with LINAC4 macropulse the timing scheme shown

in Fig. 3.14 has been used. The source can generate a pulse that anticipates the LINAC4

macropulse. The delay between this pulse and LINAC4 macropulse can be controlled and

was set to 500 µs. The rising edge of the source pulse triggers the 1 ms long laser amplifier

pulse which is generated by “Tektronix” AFG3000 function generator independently from

the control system. A 500 µs delay ensures that the LINAC4 macropulse is overlapped with

the second half of the laser amplifier pulse where each of the laser pulses already reached

the maximum amplification level. Once triggered, the control system generates pulses that

are used in combination with the laser output pulses to trigger the data acquisition. Data

acquisition trigger window was synchronized to the LINAC4 repetition rate at 0.85 Hz.

Data from the diamond detector and photodiodes were acquired using an oscilloscope at

1 GHz rate in short 1 µs acquisition segments that were synchronized with the 60 kHz

pulses generated by the laser. LINAC4 operates at a bunch frequency of 352.2 MHz with a

bunch spacing of 2.8 ns which implies each 77 ns laser pulse interacts with approximately

28 ion bunches.
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Figure 3.14. The timing diagram for the LINAC4 laserwire operation.

3.1.2 Background estimation

Since the laserwire experiment at LINAC4 utilizes the technique in which parameters

of the H− ion beam are measured by measuring parameters of the H0 beamlets produced

in the laserwire interaction, every H0 particle arriving to the detector that are not produced

by neutralization of the H− ion by the laser beam is regarded as a potential background

of the measurement. According to [106] there are three main sources of the background

particles associated with H− beams. First it is so-called Lorentz stripping in which an extra

electron from H− ion in a relativistic H− beam can be stripped by the Lorentz transformed

magnetic or electric field of a typical beamline magnet. Theory and the estimation of the

H− loss rate of the magnetic field stripping can be found in [107]. Second it is the black

body radiation stripping. The beam pipe of an accelerator heated to the room temperature

T = 300 K can emit approximately 5.47 × 1014 thermal photons [106] per cubic meter. In
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some cases, the energy of such thermal photon is sufficient to neutralize the H− particle.

The third process contributing to the background production is the H− stripping by inelas-

tic collisions with residual gas atoms. While the first two effects are negligible in case of

LINAC4 beam, the latter is a major source of the background.

The H− loss rate in case of residual gas stripping is giving by:

dN

dz
= −σstrip ρRGN, (3.13)

where N is the number of H− ions, z is the distance along the beamline, σstrip is the cross-

section of the residual gas stripping and ρRG is the density of the residual gas particles.

Integrating equation 3.13, the probability of the striping pstrip by collisions with resid-

ual gas can be calculated as:

pstrip = 1− exp

(
−σstrip

PM

RT
l

)
. (3.14)

Here P is the residual gas pressure, M is the ideal gas constant, T is the residual gas

temperature and l is the length of the beam pipe. As one can see, the stripping probability

primarily depends on the residual gas pressure which mainly consists of hydrogen. Due to

this fact, the background level decreases as the distance from the ion source increases.

In order to estimate the background distribution at the detector plane, gas pressures

and ion beam dynamics data from the source to the bending magnet were used. Cross-

section data from [108, 109] were used to calculate the stripping probability in 2 cm

intervals along the beam line and stripped portion was propagated to the detector. The

distribution of the integrated background created all along the beamline at the detector

for 3 Mev H− beam is shown in Fig. 3.15.
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Figure 3.15. Simulation of the background arriving at the detector caused by residual gas

stripping.

The simulations of diamond detector signal combined with the background estimations
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for the LINAC4 3 MeV setup predict that the signal coming from the laserwire interaction

should be approximately 15 times larger than the background level [110] which was con-

firmed in the experiment.

3.1.3 Commissioning of the laserwire system

Laser characterization
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Figure 3.16. The train of the amplified laser pulses.

To characterize the laser beam behaviour a series of measurements have been per-

formed. It includes measurements of the laser power, fibre efficiency and transverse mode

quality.

The amplified laser pulses were detected by a fast photodiode with 12.5 Ghz band-

width, 35 ps raise time and recorded by a 10 Ghz bandwidth oscilloscope at 4 GSample/s

rate. The scope trace of the amplified laser pulses and a longitudinal profile of the pulse

in a single shot are shown in Fig. 3.16 and 3.17 respectively.

The FWHM of the single pulse was measured as ∼ 77 ns (see Fig. 3.17) which ap-

proximately 50% shorter than the specified pulse duration of 150 ns. As one can see from

Fig. 3.16 the amplification steady state is reached after approximately 200 µs with the

modulation time of 1.5 ms. This figure also shows a visible transient time of about 20%

of the pulse duration.

Because the only way to control the output power of the laser is via changing the cur-

rent passing through the laser diode pump, it is very important to know how the output

power changes with changing the laser diode pump current. For that reason, the average

power of the laser pulses at 30 kHz for different diode amplification regimes in CW mode

(100% duty cycle) has been measured. The resultant curve presented in Fig. 3.18. As one

can see, the output power of the laser increases slightly non-linearly with increasing the

current flowing through the laser diode pump. Such behaviour is acceptable and demon-
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Figure 3.17. Single Laser pulse.

strates normal performance of the laser diode. The maximum average power recorded

was ∼ 25 W which is only 10% lower than the nominal maximum average power of 28 W.
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Figure 3.18. Average power as a function of the diode pump current measured at 30 kHz

in a CW mode.

The output power can also be controlled by changing the percentage of one period in

which a signal, provided by an external trigger, is active (duty cycle). The average power

as a function of the duty cycle presented in Fig. 3.19.

From these measurements one can clearly see that the output power changes linearly

with variation of the duty cycle of the external trigger. These graphs were used as a

calibration curves to choose a correct laser diode pump current and duty cycle of the

external trigger in order to send a correct amount of energy to the delivery system and

avoid its damage.
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Figure 3.19. Average power as a function of the duty cycle measured at 30 kHz with 55 A

amplification.

To deliver the laser beam to the LWIP a 5 m long, large mode area (LMA) double

clad optical fibre manufactured by “Nufern” was used. This fibre is based on 20 µm

diameter core and 130 µm diameter clad size with a low numerical aperture NA=0.08

(equivalent M2 = 2.35). The light from the output end of the main laser fibre was coupled

into the delivery fibre using “Thorlabs” fibre coupling system which allows to manipulate

position of the fibre end with nanometre resolution. In order to achieve a high coupling

efficiency and avoid damaging both facets of the fibre has been manually polished with a

high quality. A photograph of the polished fibre end is presented in Fig. 3.20.

Figure 3.20. photograph of the fibre end
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Two main measurements have been performed on the laser beam at the output of the

delivery fibre: coupling efficiency (the efficiency of optical power transfer between two

fibres) and transverse mode quality. The coupling efficiency has been calculated as the

ratio between average power at the output and input ends of the fibre . The coupling

efficiency as a function of the laser diode current at 1% duty cycle and 30 kHz repetition

rate is presented in Fig. 3.21. As one can see from the graph, the fibre efficiency slightly

decreasing from ∼ 70% to ∼ 65% with increasing the laser diode pump current from 0 A

to 55 A. This can be explained by imperfections of the fibre end polishing and by the fact

that the fibre efficiency depends on the laser intensity profile. The latter slightly changes

with variation of the laser energy.
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Figure 3.21. Measured fibre efficiency as a function of the average laser power.
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Figure 3.22. Picture of the focused laser spot.

To measure the transverse mode quality, the same technique as described in sec-

tion 2.2.6 was used. The laser beam from the output end of the delivery fibre was focused
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by a plano-convex lens with a focal length of 500 mm. Transverse profiles at intervals of

1 mm in longitudinal position of the laser beam were recorded dy “Gentec Beamage” CCD

camera. An example of a transverse intensity profile of the laser beam at the focal plane

of the lens is presented in Fig. 3.22. As one can see, the shape of the laser intensity profile

has a form very close to a Gaussian profile. A vertical and horizontal laser beam sizes were

extracted from the intensity profiles using software provided with the CCD camera. The

laser beam sizes as a function of the CCD camera position were fitted with Eq. 2.11 and

the M2 parameter was extracted from the fit. The 4σ laser beam sizes as a function of CCD

position is presented in Fig. 3.23. The measured value of the laser mode quality factor

was found to be 2.272 ± 0.013 in the horizontal direction and 2.002 ± 0.02 in vertical

direction.
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Figure 3.23. Laser propagation measured in both axes.

Detector response

In order to understand the diamond detector response several measurements with the

diamond detector has been performed. The diamond detector was moved to the center of

the vacuum pipe and the laser focus position has been set to the center of the ion beam at

LWIP in order to produce the maximum number of neutralized particles.

First, the diamond detector signal as a function of the applied to the detector electrodes

voltage has been measured. The voltage was varied from 50 V to 600 V with a step of 50 V

and the signal from the diamond detector for each voltage has been recorded. Result of

the measurement is presented in Fig. 3.24 . As one can see, the detector response to

the variation of the applied voltage has a so-called sigmoid shape which is usual for such

type of the detector. During the operation, the best signal was found when the diamond

detector was biased at 500 V.
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Figure 3.24. Response of the diamond detector at different biases.
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Figure 3.25. Variation of the diamond detector signal with laser energy.

Second measurement was performed in order to understand the linearity of the dia-

mond detector signal with variation of the laser beam energy. With the diamond detector

and laser focus centred with respect to the ion beam, the signal from the detector was

recorded when the energy of the laser beam was varied. Laser beam energy was varied

by changing the current applied to the laser diode pump (see section 3.1.1) from 0.5 A to

35 A with a variable step. Result of the measurement is presented in Fig. 3.25. As one

can see the data show very good linear dependence for smaller laser diode currents and

slightly greater degree of variation for higher current. During the laserwire measurements

laser diode current has been set to low value where diamond detector is linear over the

small variation of the laser beam energy.
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3.1.4 Results of the beam profile and emittance measurements at 3 MeV

After establishing a detectable collision between the laser beam and the ion beam the

laserwire station was ready to perform measurements. During the operation at the 3 MeV

stage of the LINAC4 two parameters of the ion beam were measured – beam vertical profile

and vertical transversal phase-space distribution [111].

To measure the vertical profile, the diamond detector was moved vertically in such a

way that the center of the detector coincided with the center of the ion beam. Initially,

in order to define scan borders a rough vertical laserwire scan with a big scan step size

was performed. After that, a vertical laserwire scan with the fine scan step of 0.25 mm

was performed. At each laser focus position the measurements were repeated three times

to reduce the statistical error. An example of the diamond detector signal acquired in 30

oscilloscope segments during one LINAC4 macropulse is shown in Fig. 3.26. Figure 3.27

shows the train of 60 kHz laser pulses, recorded by the photodiode before the fibre cou-

pling. Corresponding peaks in the diamond detector signal present only when the laser

is powered. The height of the peaks is modulated by the ion beam current which varies

along the macropulse. Different pedestal level for each peak in the detector signal is due

to neutral particles coming from the upstream residual gas background interactions. In

order to retrieve and analyse the acquired data a special Python based software has been

developed. To retrieve the profile of the ion beam from the laserwire scan, the diamond

detector signal was integrated only over the segments containing peaks from laserwire

interaction.
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Figure 3.26. Example of the diamond detector signal (red dashed lines represent borders

of the acquisition segments).

A zoomed region for one segment around the diamond signal and corresponding laser

pulse is shown in Fig. 3.29 and Fig. 3.28 respectively. For each chosen segment a follow-

ing integration procedure has been performed. First, in order to remove a high frequency

noise a smoothing window filter has been applied to the diamond signal. The filter pro-
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Figure 3.27. Example of the laser signal recorded with PD1 photodiode.

duces a discrete linear convolution of the signal with the array of ones with the length

equals to the filter width (in presented case width = 10 samples). The discrete convolu-

tion operation for any arbitrary discrete functions f and g is defined as [112]:

(f ◦ g) [n] =
∑
m

f [m]g[n−m]. (3.15)
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Figure 3.28. A zoomed region from Fig. 3.27.

After that, a linear fit to the residual gas background pedestal (red line in Fig. 3.29)

was performed for each segment, and subtracted from the diamond signal. To perform

the fit data points from the tails of the signal have been used (first and last 200 points).

Then, the signal was integrated over the window containing the peak. Such analysis was

performed for every laser position with respect to the ion beam centre.
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Figure 3.29. A zoomed region from Fig. 3.26.

The vertical laserwire scan that was analysed using described above method is pre-

sented in Fig. 3.30. As one can see, obtained distribution has a shape similar to a Gaus-

sian but with broader tails. The measured data were fitted using Gaussian and Cauchy-

Lorentz [113] models and the width of the distribution was found to be around 1 mm.
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Figure 3.30. An example of the vertical laserwire scan.

In order to measure vertical transverse emittance the following technique has been

used. The laser was scanned vertically across the ion beam with variable step size (0.5 mm

in the tails and 0.25 mm around the peak) in order to accurately sample the shape of the

distribution. At each laser position, the diamond detector was scanned across the beamlet

of neutral particles with step of 1.81 mm. Each detector scan corresponding to a certain

laser position (with the profile shape similar to Fig. 3.30) was stored in separate data file.

Such technique allows to directly sample the phase space as described in section 3. The
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data from these files then were analysed using the same analysis method as described

above. The integrated and averaged signal then was used to plot the phase space distri-

bution. Measured phase-space distribution for 3 MeV setup is presented in Fig. 3.31.
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Figure 3.31. Vertical transverse phase space of the 3 MeV H− beam measured by the

laserwire technique.
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Figure 3.32. Vertical transverse phase space of the 3 MeV H− beam measured by the

conventional slit and grid method.

The laserwire results were verified with the independent measurements from conven-

tional slit and grid emittance meter. The slit, installed at the same point as the LWIP was

scanned across the ion beam in vertical direction. At each vertical position, well defined

with respect to the ion beam center, the slit selects a narrow slice of the ion beam. The dis-

tribution of the particles transmitted through the slit was measured after approximately

3 m drift space by two wire grids [96]. Same as in case of laserwire, by scanning the
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slit vertically across the ion beam and measuring the profiles of particle beamlets passed

through the slit the whole phase space was reconstructed. The phase-space distribution

measured by slit and grid is presented in Fig. 3.32.

As one can see from the pictures, despite the lower spatial resolution of the laserwire

data in this first test, the phase-space shape and orientation in both pictures are in a good

agreement. Vertical position of the centroids on both pictures are slightly different. It can

be explained by the fact that the exact position of the laser and the detector center were

not perfectly aligned with respect to the center of the ion beam.
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Figure 3.33. Vertical profile of the 3 MeV H− beam measured by laserwire and SEM-grid.

In order to compare these measurements, the vertical profiles of the ion beam were

calculated using phase-space distribution. The vertical profile of the ion beam obtained

as a horizontal projection of the phase-space distribution for both laserwire and slit and

grid measurements is presented in Fig. 3.33. As one can see the beam core is in a very

good agreement. Values at the tails are slightly different. Also, it should be noted that

the beam profiles obtained with two different methods have a non-Gaussian shape similar

to the one presented in Fig. 3.30. The fact that the vertical profile of the ion beam has a

non-Gaussian shape regardless of the measurement methods indicates that such shape of

the beam is caused by the processes of the beam generation and transportation, but not

by the measurement system itself.

The phase space data presented in Fig. 3.31 and Fig. 3.32 were used to calculate the

geometrical RMS emittance. The method for the emittance calculation is described in

section 3.0.1. The vertical emittance measured with laserwire technique was found to be

2.905 ± 0.027 mm mrad. Emittance measured with slit and grid technique was 3.492

± 0.026 mm mrad. For both the slit-grid and laserwire systems, the result of calcula-

tion depends on the data thresholding which is used in order to filter out the noise from

the RMS calculation. The basic idea of thresholding is to exclude all wire and diamond

detector signals with an amplitude below a percentage of the maximum amplitude mea-
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sured during the whole scan. Both laserwire and slit-grid systems had shown very good

agreement [114].

3.2 Chapter summary

Principles and implementation of the laserwire for measuring the beam profile and

emittance of negative hydrogen ions have been presented in this chapter. Implementation

of the laserwire technique was demonstrated by the profile and emittance measurements

of the H− beam performed at CERN LINAC4 accelerator. Author’s contribution to the

laserwire project at CERN LINAC4 was as following:

• Commissioning and integration of the laser system to the LINAC4 setup at 3 MeV

stage.

• Tuning the laserwire system including measurements and analysis of the laser beam

parameters.

• Participating in the operational shifts for data taking.

• Development an analysis algorithm and Python based software to reconstruct the

vertical profile and transverse vertical RMS emittance from the data measured by

the laserwire system.

• Presentation of the results at International Conferences and Symposia.

• Preparation of graphic material and writing of conference proceedings [110, 111,

114]

Achievements reached during the laserwire operation at CERN LINAC4 can be sum-

marised as following:

• The milestone of proving the feasibility of laser-stripping H− profile and emittance

measurement with a relatively low power laser source was for the first time success-

fully achieved during the CERN LINAC4 commissioning at 3 MeV.

• The measured signal and background levels compare very well with the expected

ones from simulations.

• The experimental setup allowed a set of complete emittance scans to be performed,

which then was cross-checked with the operational slit and grid system. The emit-

tance measured with laserwire system was found to be 2.905 ± 0.027 mm mrad.

Emittance measured with slit and grid technique was 3.492 ± 0.026 mm mrad.

• These encouraging results, to be complemented by more tests at 12 MeV commis-

sioning stage of the LINAC4, represent the first step towards the design of one or

more laserwire systems for the LINAC4 at the top energy of 160 MeV.
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Chapter 4

Future plans and prospects

The afternoon knows what the
morning never suspected.

– Robert Frost

4.1 Micron scale laserwire for future linear colliders

DESPITE the successful demonstration of the laserwire at ATF2 it is clear that several

improvements could be made to reduce the measurements uncertainty for the laser-

wire system required for future linear colliders. These improvements include the follow-

ing [31]:

• New design of the vacuum chamber optimized for cost and ease of operation can be

implemented for future laserwire station. This vacuum chamber can be manufac-

tured smaller in size and put on the light weight mover system. The small laserwire

vacuum chamber would be surrounded by a small optical system to move the laser

beam onto the final focus lens and safely deal with the outgoing laser beam.

• The spatial quality of the laser source could be improved. The laser source that

was used in the experiment at ATF2 was astigmatic and had a non-Gaussian pro-

file. In particular, the non-Gaussian nature makes the M2 model an approximation

of the size of the laser beam and not the true intensity distribution. A laser with a

better spatial profile would adhere much more closely to the M2 model and reduce

the systematic uncertainty of the measured electron beam sizes. Fibre lasers are a

promising technology that could provide high spatial quality pulses at a much higher

repetition rate with high overall efficiency. Fibre lasers are not able to provide the

gigawatt peak powers used for this laserwire system, but in a well characterized en-

vironment with a higher bunch charge electron beam such as a future linear collider,

the peak power requirements would be considerably lower. On the other hand a

second stage amplification can be foreseen.
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• In an ideal laserwire diagnostic station there would be two laser beam lines or-

thogonal to each other; one for the vertical and one for the horizontal beam size

measurement. In the case of an electron beam with a high aspect ratio, the major

axis of the elliptical beam could be measured using a simple deconvolution requiring

no knowledge of the minor axis size. This measurement of the major axis could then

be used to deconvolve the laserwire scans of the smaller minor axis that may exhibit

Rayleigh range effects.

• Maximizing the signal-to-noise ratio of the Compton scattering rate measurement

is key to improving the precision of the laserwire measurement and therefore mini-

mizing the error in the emittance measurement. Although the electron beam optics

developed for laserwire operations reduced the background significantly, the back-

ground signal level was still significant and limits the precision of the measurement.

The effect of pointing jitter on the Compton-scattered photons as well as background

conditions should be simulated.

• For a more complete system, the beam charge and laser pulse energy need to be

measured with uncertainties significantly less than the Compton or background sig-

nal variation. This is possible with high resolution direct current transformers for the

particle beam, but the laser energy measurement systems would need more careful

and systematic verification of performance before use with a laserwire system.

The laserwire project at the ATF2 is now complete and desired resolution is achieved.

Now a technical design report is being prepared to be included into the CLIC Technical

Design Report.

4.2 OTR/ODR programe at ATF2

Currently, laserwire beam profile scanners are the main candidates for non-invasive

high resolution measurements for future linear colliders and represent the state-of-the-art

in the area of transverse beam size and emittance diagnostics. Recently a micron scale

resolution was successfully demonstrated at the ATF2 beam line at KEK (see Chapter 2).

However, over a distance of more than 40 km many laserwire monitors would be required.

Both the complexity and the cost of a laserwire system reveals a need to develop a simple

in use, robust, and relatively inexpensive alternative device with comparable accuracy and

resolution.

Recent experiments on beam profile measurements using Optical Transition Radiation

(see section 2.3 of Chapter 2) and Optical Diffraction Radiation [115] show that such

monitors are capable of measuring the size of the electron beam with micron resolution.

Following the success of these experiments it has been proposed to develop, install and

test a combined OTR/ODR emittance station at ATF2 with an opportunity to measure Ultra

Violet/soft X-ray radiation to minimize the diffraction limit effects [116]. The proposal
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includes design and manufacture a new vacuum system, targets and their manipulation

system, optical photon transport and the data acquisition.

The main goal of this programme is to achieve the resolution for the measurement with

OTR/ODR smaller than 1 µm with room for improvement on that limit down to a few tens

of nanometers. One possibility to improve the resolution is to go down a wavelength of

70 nm. This would improve the measurements both for OTR and ODR to a great extent,

however it would mean that the entire optical system needs to be located inside the vac-

uum chamber. Also, the choice of camera which takes images of the angular distribution

can be challenging in this case. It might be possible possible to use a CCD or an intensifier

such as an extreme UV photocathode. Since the optical resolution is a key element in the

measurement, the magnification of the optical system will be an issue. Therefore, a two-

lens system i.e. a telescope will be designed. An extensive simulations have to be made in

order to decide on appropriate OTR/ODR target parameters and improve the resolution

of the optical system.

4.3 Design of the laserwire station for 160 MeV at CERN LINAC4

To fully characterize the ion beam at the final 160 MeV section of the LINAC4, it is

proposed to use two laserwire stations. The proposed layout of the system is shown in

Fig. 4.1. Both stations will be able to measure the ion beam emittance and profile in

horizontal and vertical planes. Due to the close proximity to the beam dump and high

energy of the ion beam the radiation level must be taken into account. This fact mostly

affects two main systems of the laserwire meter: the laser system and detection system.

Figure 4.1. Layout of the two laserwire stations at the transfer line of the 160 MeV section

of the LINAC4 (picture from [110]).

To avoid the damage of the laser system due to the high radiation level it will be

located in the special hutch on the surface above the accelerator enclosure. The laser

optical system will be the same as it was designed for 3 MeV stage. The laser beam from
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the source will be delivered to the IP using optical fibre of approximately 20 m in length.

Another main concern is to choose the detection system for the final laserwire design.

The first candidate for measuring the profile of H0 particles at 160 MeV is the diamond

detector successfully tested at 3 MeV. For the final design, the number of read-out channels

of the detector can be increased by changing the design of the front electrodes. Instead

of five electrodes with 3.5 mm width that was used at 3 MeV measurement, it is possible

to use metallization pattern with up to 35 strips and width of 500 µm per channel. Even

though the diamond detector has a very high radiation hardness (e.g. in comparison

to the silicon detectors), it has been demonstrated that the detector already showed a

degradation after the measurements at 3 MeV H− beam. As an alternative, a Gas Electron

Multiplier (GEM) [117] can be used as a detector for final system, however this possibility

is still under investigation.

As an addition to the diamond detector a detection system for the stripped electrons

can be used to measure the ion beam profiles at 160 MeV. Such detection scheme can be

implemented by installing a weak bending magnet immediately after the LWIP that will

steer photodetached electrons to the detector. As a detector, a Faraday cup can be used to

collect these electrons. In order to achieve sufficient time resolution, the Faraday cup as

well as its read-out electronics will have to be designed to resolve laser pulses of 80 ns in

length.

For 160 MeV ion beam, stripped electrons will have the kinetic energy of 87 keV.

Thereby, a magnetic field of less than 0.02 T along the 8 cm gap is sufficient to turn such

electrons to 90 degrees. Initial beam of H− particles passing through such magnet will

be deflected less than 1 mrad and can be returned to its original trajectory by installing

corrector magnet with opposite polarity [110].

4.4 Laserwire emittance meter at the Front End Test Stand

The Front End Test Stand project at Rutherford Appleton Laboratory (RAL) built in

collaboration between ISIS, ASTeC, Imperial College London, University of Warwick, Uni-

1 2 3 4 5

Figure 4.2. Schematic layout of the FETS. 1 - ion source, 2 - LEBT, 3 - RFQ, 4 - MEBT, 5 -

Laser diagnostics (picture from [118]).
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versity College London and John Adams Institute at Royal Holloway, University of London

is designed to create a high quality, low emittance, high current, high duty factor H−

beam required for wide variety of future proton-accelerator projects. These applications

include future upgrades of the ISIS neutron source, future Spallation Neutron Sources, a

Neutrino Factory, Muon Collider, Accelerator Driven Sub-critical Systems and Waste Trans-

muters [119,120]

Laser beam

To the dump

To the detector

H−

To the dump

H0

H−

LWIP

20◦

65◦

Figure 4.3. Schematic of the interaction point.

The schematic layout of the FETS main elements presented in Fig. 4.2. The FETS

consists of a caesium-enhanced penning surface plasma H− ion source [121], a three-

solenoid magnetic low energy beam transport (LEBT) [122], a 324 MHz, 4 metre radio

frequency quadrupole (RFQ) [123], an electromagnetic quadrupole and rebunching cavity

medium energy beam transport (MEBT) [124] and laser diagnostics section (LD). The

main parameters of the FETS ion beam presented in table 4.1

Table 4.1. General parameters of the FETS.

Parameter Value Value

Ion beam energy 3 MeV

Ion beam current 60 mA

Ion beam micropulse width ∼3 ns

Ion beam macropulse width 2 ms

Ion beam repetition rate 50 Hz

Ion beam waist (from simulations):

σx 3.87 mm

σy 4.38 mm
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A detailed layout of the FETS laser diagnostics section is shown in Fig. 4.4. Laser

diagnostic section is designed to measure the emittance of a high power H− beam and

consists of a main beam dump in straight forward direction (1), a quadrupole doublet to

diffuse the beam after the LD dipole (2), a laser delivery system (3), a quadrupole doublet

at the entrance to the LD dipole (4), a LD dipole (5), a quadrupole doublet in front of the

secondary beam dump (6), a secondary beam dump (7) and detector (8) [125].

In order to reduce the background of the neutral particles, mostly generated by strip-

ping H− ions in interactions with the residual gas, the LW interaction point is designed to

be located inside the dipole magnet. To implement such scheme special vacuum chamber

for the dipole magnet has been designed. Schematic of the vacuum chamber showing the

laserwire interaction is presented in Fig. 4.3. The beam of H− enters the vacuum chamber

through the round port in the front face. When the magnet is off the ion beam is passing

straight through the vacuum chamber to the beam dump. When the dipole magnet is

powered on the main beam is deflected to 65◦ and coming out from the vacuum vessel to

the second beam dump. The background of neutral particles is coming straight through

the vacuum chamber to the first beam dump. The laser beam enters the vacuum chamber

through the port which is located at 20◦ from the front face of the vacuum chamber. After

the laserwire interaction, the beam of neutrals continues its propagation on tangent tra-

jectory. After exiting the vacuum chamber the beam of H0 particles is intercepted by the

detector. Such geometry allows to separate neutrals coming from laser stripping and from

the background.

1

2

3

45
6

7

8

Figure 4.4. Schematic layout of the laser diagnostics setup (picture from [118]).

To detect the angular distribution of the neutralized particles a crystal or organic scin-

tillator screen placed downstream of the vacuum chamber is planned to be used. The
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light, produced in interaction of the H0 with the scintillator material, then will be guided

to the CCD camera. The CCD camera will be placed out of the beamline plane in order to

avoid radiation damage of the camera sensor [126]. In order to choose correct size and

material of the scintillator and to design an optical system, a simulation of the laserwire

interaction is required.

4.4.1 Simulation of the laserwire interaction

In order to design an effective detection system it is necessary to estimate the yield

and the spatial distribution of the neutralized particles arriving at the detector [127].

To estimate the number of neutralized particles and hence the yield one can use Eq. 2.1

and Eq. 2.2. Parameters for the FETS ion beam are presented in Table 4.1. Parameters

for the laser system are the same as described in Chapter 3. Substituting these parame-

ters into Eqs 2.1–2.2 and assuming that both the ion beam and laser beam have Gaussian

distribution, one can obtain approximately 1.83×105 neutral particles produced in one in-

teraction. Assuming that each laser macropulse consists of approximately 60 micropulses

(at 30 kHz) and each laser micropulse interacts with approximately 30 ion bunches, the to-

tal number of H0 particles arriving at the detector per laser pulse per ion beam macropulse

can be estimated as ∼ 1.8 × 108.
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Figure 4.5. Distribution of the H− ions at the LWIP.

In order to simulate the spatial distribution of the H0 particles arriving at the detector

one can use the procedure described in section 3 of Chapter 3. To simulate the laserwire

interaction, each particle in the initial distribution was weighted with photodepachment

probability calculated using Eq. 3.2. As one can see from Eq. 3.2 the stripping probability

depends on three parameters: the cross-section of the process – which is constant for

certain wavelength of the laser, time of the interaction – which, in the presented case, is

laser micropulse length and the laser photons flux. The flux of the laser photons can be
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calculated as following:

ρ(x, y) =
I(x, y)

~ω
, (4.1)

where ~ω is the energy of the single photon and I(x, y) is the intensity profile of the

laser. The intensity profile can be calculated using the common formula [23]:

I(x, y) =
2P

πw(x)2
exp

(
−2y2

w(x)2

)
. (4.2)

Here P is the laser peak power, w(x) is the laser beam radius at distance x from the

waist (see Chapter 2 section 2.1 for details) and y is the radial distance from the center

axis of the laser beam.

The distribution of the H− ions at the laserwire interaction point was obtained using

a General Particle Tracer [128] code, that simulates the propagation of the ions trough

the lattice with real parameters. The particle distribution at the LWIP simulated for the

nominal lattice parameters is shown in Fig. 4.5.
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Figure 4.6. Distribution of the neutral particles at the detector plane (∼0.5 m downstream

the IP) for different vertical laser focus positions.

Each particle of the initial distribution was weighted with its stripping probability.

After a drift of about 0.5 m from the LWIP towards the detector the weighted particles

were integrated. An example of the resultant distribution of the neutralized particles at

the detector for different vertical laser focus positions in range from -10 mm to 10 mm

with step of 5 mm is presented in Fig. 4.6. As one can see from the picture, with nominal

lattice settings the scintillator screen size has to be no less than 40 mm in vertical and

30 mm in horizontal direction.

The simulated vertical laserwire scan along with the vertical ion beam profile, obtained

from initial distribution, is shown in Fig. 4.7. As one can see from the graph the simulated

profile overlaps the original profile very well.
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placement.

4.5 Chapter summary

This chapter has described the future plans of three experiments: sub-micrometre

electron beam profile measurements at the ATF2 using optical transition and diffraction

radiation, future development of the laserwire emittance scanner for CERN LINAC4 and

development of the laserwire emittance meter for measuring the H− ion beam at FETS.

The contribution of the author to the laserwire project at FETS was the following:

• Development of a Python based code to simulate the laserwire interaction for the

FETS H− beam. The code utilizes the measured laser propagation and simulated

ion beam distribution at the IP as input parameters. As a result, it calculates the

total yield of neutral particles produced in laserwire interaction and also calculates

the spatial distribution of neutrals at the detector. The code has been tested with

ion beam distribution simulated for nominal lattice settings. Once the design of the

machine will be finalized this software can be used to design an effective detection

system and optimize its parameters.

• Presentation of the results at International Conferences and Symposia.

• Preparation of graphic material and writing of conference proceedings [127]
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Chapter 5

Conclusions and outlook

A conclusion is the place where
you got tired of thinking.

– Arthur Bloch

THIS thesis has provided a comprehensive and detailed overview of the implementation

of laserwire technology for measuring the parameters (transverse beam profile and

emittance) of the particle beam of electrons and negative hydrogen ions. The study of the

laserwire transverse beam diagnostic including description of the basic principles of op-

eration and detailed technical implementation has been demonstrated with the example

of two diverse experiments. First experiment aims to demonstrate a sub-micrometer res-

olution laserwire measurement of the electron beam at ATF2 in KEK, Japan. The second

one is dedicated to the development of the laserwire emittance meter for measuring the

H− beam at LINAC4 in CERN, Switzerland.

The laserwire system at ATF2 has demonstrated a high resolution and relatively non-

invasive method of measuring the transverse profile of a high charge density, low emit-

tance electron beam that is required for future linear electron positron-positron colliders

such as CLIC or ILC. A minimum vertical electron beam size of 1.07 ± 0.06 (stat.) ±
0.05 (sys.) µm has been measured with a corresponding horizontal beam size of 119 ±
2.4 (stat.) ± 0.01 (sys.) µm. Vertical geometric emittance of 82.56 ± 3.04 pm rad was

measured using quadrupole scan technique.

The main challenge of measuring the small electron beams (where the Rayleigh range

of the laser is much less than the size of the electron beam) is correctly deconvolve the

beam size from the laserwire scan. Simultaneous fitting of the data from the horizontal

and vertical laserwire scans using the overlap integral model was demonstrated in the

presence of Rayleigh range effects and was shown to provide an accurate measurement

of both the horizontal and the vertical electron beam sizes. This has demonstrated that

Rayleigh range effects do not preclude the use of a laserwire to measure a high aspect

ratio beam. Furthermore, an alignment method capable of finding collisions between the

laser and electron beam in under 20 min was developed.

In addition to the laserwire system at ATF2 the OTR experiment has been also de-
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scribed. Initially, the OTR beam profile monitor has been designed as an auxiliary device

for the laserwire monitor and then has turned into a separate R & D program. The same lo-

cation of the laserwire and OTR interaction point allowed to cross-check the results of both

techniques. Study of the aberration effects and improving the optical system of the OTR

monitor lead to possibility of measuring the transverse beam size with sub-micrometre

resolution. The minimum measured vertical electron beam size was found to be 0.754 ±
0.034 µm. Vertical geometric emittance measured in a single quadrupole scan was found

to be 59.306 ± 4.153 pm rad which is very consistent with the laserwire measurements.

The design and initial results from the commissioning and testing of the laserwire

system installed at 3 Mev LINAC4 in CERN have demonstrated the ability of measuring

the transverse profile and emittance of the H− beam. The novelty of this system is the use

of the low power infrared laser and delivery of the laser pulse to the interaction point via

flexible optical fibre. Results of the laserwire emittance measurements collected during the

measurements campaign at 3 Mev commissioning stage and cross-checked with the results

obtained with conventional slit and grid technique showed a very good agreement with

the expected ones from simulations. The current design of the laserwire meter has proved

its feasibility and can be used for the final system at the top LINAC4 energy of 160 MeV.

Simulation results of the laserwire system for the FETS project (still under construction at

RAL in the UK) designed in a close collaboration with LINAC4 laserwire project have also

been presented.

Over more than twenty years of development, the laserwire technology has become

the state-of-the-art method in particle beam diagnostics. Despite some imperfections in

technical realisation of the method, the interest of the international community in the

laserwire will encourage the further development of this elegant technique.
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