
Recognition Is Not Parsing – SPPF-Style

Parsing From Cubic Recognisers

Elizabeth Scott and Adrian Johnstone

Department of Computer Science
Royal Holloway, University of London

Egham, Surrey, United Kingdom

Abstract

In their recogniser forms, the Earley and RIGLR algorithms for testing whether a
string can be derived from a grammar are worst-case cubic on general context free
grammars (CFG). Earley gave an outline of a method for turning his recognisers
into parsers, but it turns out that this method is incorrect. Tomita’s GLR parser
returns a shared packed parse forest (SPPF) representation of all derivations of a
given string from a given CFG but is worst-case unbounded polynomial order. The
parser version of the RIGLR algorithm constructs Tomita-style SPPFs and thus
is also worst-case unbounded polynomial order. We have given a modified worst-
case cubic GLR algorithm, that, for any string and any CFG, returns a binarised
SPPF representation of all possible derivations of a given string. In this paper we
apply similar techniques to develop worst-case cubic Earley and RIGLR parsing
algorithms.

Key words: Earley parsing, RIGLR parsing, cubic generalised parsing, context
free languages

Since Knuth’s seminal 1960’s work on LR parsing [16] was extended to LALR
parsers by DeRemer [6,5], the Computer Science community has been able to
automatically generate parsers for a very wide class of context free languages.
However, many parsers are still written manually, either using tool support or
even completely by hand. This is partly because in some application areas such
as natural language processing and bioinformatics we do not have the luxury
of designing the language so that it is amenable to known parsing techniques,
but also it is clear that left to themselves computer language designers do not
naturally write LR(1) grammars. Indeed, designers sometimes prefer to write
ambiguous grammars because they feel that they are easier to read.

Email address: e.scott@rhul.ac.uk, a.johnstone@rhul.ac.uk (Elizabeth
Scott and Adrian Johnstone).

Preprint submitted to Elsevier Science 9 July 2009

A grammar not only defines the syntax of a language, it is also the starting
point for the definition of the semantics, and the grammar which facilitates
semantic definition is not usually the one which is LR(1). This is illustrated by
the development of the Java Standard. The first edition of the Java Language
Specification [8] contains a detailed discussion of the need to modify the gram-
mar used to define the syntax and semantics in the main part of the standard
to make it LALR(1) for compiler generation purposes. In the third version
of the standard [9] the compiler version of the grammar is written in EBNF
and is (unnecessarily) ambiguous, illustrating the difficulty of making correct
transformations. Given the difficulty in constructing natural LR(1) grammars
that support desired semantics, the general parsing techniques, such as the
CYK [25], Earley [7] and GLR [24] algorithms, developed for natural language
processing are also of interest to the wider computer science community.

When using grammars as the starting point for semantics definition, we dis-
tinguish between recognisers which simply determine whether or not a given
string is in the language defined by a given grammar, and parsers which also
return some form of derivation of the string, if one exists. In their basic forms
the CYK, Earley and GLR-inspired RIGLR [21] algorithms are recognisers,
while standard GLR-style algorithms are designed with derivation tree con-
struction, and hence parsing, in mind. However, in both recogniser and parser
form, Tomita’s GLR algorithm [24] is of unbounded polynomial order in the
worst case. In this paper we describe the expansion of the Earley and RIGLR
recognisers to parsers which are of worst-case cubic order.

1 Generalised parsing techniques

There is no known linear time parsing or recognition algorithm that can be
used with all context free grammars. In their recogniser forms the CYK al-
gorithm is worst-case order n3 on grammars in Chomsky normal form and
Earley’s algorithm is worst-case order n3 on general context free grammars
and worst-case order n2 on non-ambiguous grammars, where n is the length
of the input string. General recognisers must, by definition, be applicable to
ambiguous grammars. Expanding general recognisers to parsers raises several
problems, not least because there can be exponentially many or even infinitely
many derivations for a given input string.

Of course, it can be argued that ambiguous grammars reflect ambiguous se-
mantics and thus should not be used in practice. This would be far too extreme
a position to take. For example, it is well known that the if-else construct in
the standard C grammar is ambiguous, but a longest match resolution results
in linear time parsers that attach the ‘else’ to the most recent ‘if’, as specified
by the ANSI-C semantics. The ambiguous ANSI-C standard grammar is cer-

2

tainly practical for parser implementation. However, in general ambiguity is
not so easily handled, and it is well known that grammar ambiguity is in fact
undecidable [12], thus we cannot expect a parser generator simply to check
for ambiguity in the grammar and report the problem back to the user.

It is possible that many of the ad hoc methods of dealing with specific ambi-
guity, such as the longest match approach for if-else, can be generalised into
standard classes of typical ambiguity which can be automatically tested for,
see for example [4], but this remains a topic requiring further research.

Another possibility is to avoid the issue by just returning one derivation.
Backtracking parsers are often implemented this way, and in [10] there is an
algorithm for generating a rightmost derivation from the output of an Earley
recogniser in at worst-cubic time. However, if only one derivation is returned
then this creates problems for a user who wants all derivations and, even in
the case where only one derivation is required, there is the issue of ensuring
that it is the required derivation that is returned. Furthermore, näıve users
may not even be aware that there was more than one possible derivation.

A truly general parser will return all possible derivations in some form. Perhaps
the most well known representation is the shared packed parse forest (SPPF)
described and used by Tomita [24]. Using this approach we can at least tell
whether there is more than one derivation of a given string in a given grammar:
use a GLR parser to build an SPPF and then test to see if the SPPF contains
any packed nodes. Tomita’s description of the representation does not allow
for the infinitely many derivations which arise from grammars which contain
cycles but it is relatively simple to modify his formulation to include these, and
a fully general SPPF construction, based on Farshi’s version [18] of Tomita’s
GLR algorithm, was given by Rekers [19]. These algorithms are all worst-
case unbounded polynomial order and, in fact, Johnson [13] has shown that
Tomita-style SPPFs are worst-case unbounded polynomial size. Thus using
such structures will also turn any cubic recognition technique into a worst-
case unbounded polynomial parsing technique.

The recogniser described in [2] is not applicable to grammars with hidden left
recursion, but the closely related RIGLR algorithm [21] is fully general and,
as we shall show, as a recogniser is of worst-case cubic order. There is a parser
version which correctly constructs SPPFs but as these are Tomita-style SPPFs
the parser is of unbounded polynomial order.

Leaving aside the potential increase in complexity when turning a recogniser
into a parser, it is clear that this process is often difficult to carry out correctly.
Earley gave an algorithm for constructing derivations of a string accepted by
his recogniser, but this was subsequently shown by Tomita [24] to return spuri-
ous derivations in certain cases. In [3] there is given an outline of an algorithm

3

to turn the recogniser reported there and in [2] into a parser, but again, as
written, this algorithm will generate spurious derivations as well as the correct
ones. Tomita’s original version of his algorithm failed to terminate on gram-
mars with hidden left recursion and, as remarked above, had no mechanism for
constructing complete shared packed parse forests for grammars with cycles.

As we have mentioned, Tomita’s GLR algorithm was designed with parse tree
construction in mind. We have given a GLR algorithm, BRNGLR [23], which
is worst-case cubic order and, because the tree building is integral to the
algorithm, the parser, which builds a modified form of SPPF, is also worst-
case cubic order. In this paper we apply similar techniques to the Earley and
RIGLR recognisers and construct complete Earley and RIGLR parsers which
are worst-case cubic order. In particular, we have an Earley parser which
produces an SPPF representation of all derivations of a given input string in
worst-case cubic space and time.

We begin with background material, describing derivations, shared packed
parse forests and Earley’s recogniser, for simplicity without lookahead. In Sec-
tion 3 we discuss Earley’s proposed parser and illustrate its problems. We use
this to motivate our Earley parser, and, in Sections 5 and 6, give both theoret-
ical and experimental results illustrating its run-time complexity. In Section 7
we give an overview of the RIGLR recogniser, and finally we show how the
same techniques that we used for the Earley parser can be used to construct
a cubic RIGLR parser.

2 Background theory

A context free grammar (CFG) consists of a set N of non-terminal symbols,
a set T of terminal symbols, an element S ∈ N called the start symbol, and
a set P of numbered grammar rules of the form A ::= α where A ∈ N and
α is a (possibly empty) string of terminals and non-terminals. The symbol ǫ
denotes the empty string.

A derivation step is an element of the form γAβ⇒γαβ where γ and β are
strings of terminals and non-terminals and A ::= α is a grammar rule. A
derivation of τ from σ is a sequence of derivation steps σ⇒β1⇒ . . .⇒βn−1⇒τ .
We may also write σ

∗
⇒τ or σ

n
⇒τ in this case.

A sentential form is any string α such that S
∗
⇒α, and a sentence is a sentential

form which contains only elements of T. The set, L(Γ), of sentences which can
be derived from the start symbol of a grammar Γ, is defined to be the language
generated by Γ.

4

A derivation tree is an ordered tree whose root is labelled with the start sym-
bol, leaf nodes are labelled with a terminal or ǫ and interior nodes are labelled
with a non-terminal, A say, and have a sequence of children corresponding to
the symbols on the right hand side of a rule for A.

A shared packed parse forest (SPPF) is a representation designed to reduce
the space required to represent multiple derivation trees for an ambiguous
sentence. In an SPPF, nodes which have the same tree below them are shared
and nodes which correspond to different derivations of the same substring
from the same non-terminal are combined by creating a packed node for each
family of children. Examples are given in Sections 3 and 4. Nodes can be
packed only if their yields correspond to the same portion of the input string.
Thus, to make it easier to determine whether two alternates can be packed
under a given node, SPPF nodes, u, are labelled with a triple (x, j, i) where
x is a grammar symbol and aj+1 . . . ai is the yeild of the subtree rooted at u,
so x

∗
⇒aj+1 . . . ai. To obtain a cubic algorithm we use binarised SPPFs which

contain additional intermediate nodes but which are of worst-case cubic size.
(The SPPF is said to be binarised because the additional nodes ensure that
nodes whose children are not packed nodes have out-degree at most two.)

Earley’s recognition algorithm constructs, for each position i in the input
string a1 . . . an, a set of items. Each item represents a position in the grammar
that a top down parser could be in after matching a1 . . . ai. In detail, the set
E0 is initially set to be the items (S ::= ·α, 0). For i > 0, Ei is initially set to
be the items (A ::= αai · β, j) such that (A ::= α · aiβ, j) ∈ Ei−1. The sets Ei

are constructed in order and ‘completed’ by adding items as follows: for each
item (B ::= γ · Dδ, k) ∈ Ei and each grammar rule D ::= ρ, (D ::= ·ρ, i) is
added to Ei, and for each item (B ::= ν·, k) ∈ Ei, if (D ::= τ · Bµ, h) ∈ Ek

then (D ::= τB · µ, h) is added to Ei. The input string is in the language of
the grammar if and only if there is an item (S ::= α·, 0) ∈ En.

Below are the Earley sets for the grammar Γ1, also below, and the input string
aa.

S ::= S T | a B ::= ǫ T ::= a B | a

E0 = {(S ::= ·ST, 0), (S ::= ·a, 0)}
E1 = {(S ::= a·, 0), (S ::= S · T, 0), (T ::= ·aB, 1), (T ::= ·a, 1)}
E2 = {(T ::= a ·B, 1), (T ::= a·, 1), (B ::= ·, 2), (S ::= ST ·, 0),

(T ::= aB·, 1), (S ::= S · T, 0), (T ::= ·aB, 2), (T ::= ·a, 2)}

3 Problems with Earley parser construction

Earley’s original paper gives a brief description of how to construct a repre-
sentation of all possible derivation trees from the recognition algorithm, and

5

claims that this requires at most cubic time and space. The proposal is to main-
tain pointers from the non-terminal instances on the right hand sides of a rule
in an item to the item that ‘generated’ that item. So, if (D ::= τ ·Bµ, h) ∈ Ek

and (B ::= δ·, k) ∈ Ei then a pointer is assigned from the instance of B on
the left of the dot in (D ::= τB · µ, h) ∈ Ei to the item (B ::= δ·, k) ∈ Ei. In
order to keep the size of the sets Ei in the parser version of the algorithm the
same as the size in the recogniser pointers are added from the instance of B
in (D ::= τB · µ, h) to each of the items of the form (B ::= δ′·, k′) in Ei.

Example 1 Applying this approach to the grammar Γ1 from the previous
section, and the string aa, gives the following structure.

(S ::= ·ST, 0)

(S ::= ·a, 0) (B ::= ·, 2)

(S ::= a·, 0)

(S ::= ST ·, 0)(S ::= S · T, 0)

(S ::= S · T, 0)

E0 E1 E2

(T ::= ·aB, 2)

(T ::= ·aB, 1)

(T ::= ·a, 1)

(T ::= a ·B, 1)

(T ::= ·a, 2)

(T ::= a·, 1)

(T ::= aB·, 1)

✛

✕

✕

✕

✕❯

From this structure the SPPF below can be constructed, as follows.☛✡ ✟✠☛✡ ✟✠☛✡ ✟✠
☛✡ ✟✠☛✡ ✟✠ ☛✡ ✟✠

S, 0, 2

S, 0, 1

a, 0, 1

T, 1, 2

a, 1, 2 B, 2, 2

❡ ❡
❧

❂ ⑦

❄ ✚✚❂ ❘✏✏✏✏✏✮

❅❅

ǫ

u0

u1

u2

u3

u5

u4 ❥

We start with (S ::= ST ·, 0) in E2. Since the integer in the item is 0 and it
lies in E2, we create a node, u0, labelled (S, 0, 2). The pointer from S points
to (S ::= a·, 0) in E1, so we create a child node, u1, labelled (S, 0, 1). From
u1 we create a child node, u2, labelled (a, 0, 1). Returning to u0, there is a
pointer from T that points to (T ::= aB·, 1) in E2, so we create a child node,
u3, labelled (T, 1, 2). From u3 we create a child node u4 labelled (a, 1, 2) and,
using the pointer from B, a child node, u5, labelled (B, 2, 2), which in turn has
child labelled ǫ. There is another pointer from T that points to (T ::= a·, 1)
in E2. We already have an SPPF node, u3, labelled (T, 1, 2) so we reuse this
node. We also have a node, u4, labelled (a, 1, 2). However, u3 does not have a
family of children consisting of the single element u4, so we pack its existing
family of children and create a further packed node with child u4.

This procedure works correctly for the above example, but adding multiple
pointers to a given instance of a non-terminal can create errors.

6

Example 2 As remarked in [24] p74, if we consider the grammar Γ2

S ::= SS | b

and the input string bbb we find that the above procedure constructs

(S ::= ·b, 0)

(S ::= ·SS, 1)

(S ::= ·SS, 0)

(S ::= ·b, 1)

(S ::= b·, 0)

(S ::= S · S, 1)(S ::= S · S, 0)

(S ::= ·SS, 2) (S ::= S · S, 2)

(S ::= SS·, 1)

(S ::= ·b, 3)
(S ::= S · S, 0) (S ::= SS·, 0)

E0 E1 E3E2

(S ::= SS·, 0) (S ::= S · S, 1)

(S ::= ·SS, 3)
(S ::= S · S, 0)(S ::= ·b, 2)

(S ::= b·, 1) (S ::= b·, 2)
✕

✕

✕✕ ⑥ ❨
❦ ②▼

❦

❦

✗

✐

✸

which generates the correct derivations of bbb but also spurious derivations of
the strings bbbb and bb. The problem is that the derivations of bb and b from
the left-most S in the item (S ::= SS·, 0) of E3 become intertwined with the
derivations of bb and b from the rightmost S.

We could avoid this problem by creating separate instances of the items for
different substring matches, so if (B ::= δ·, k), (B ::= σ·, k′) ∈ Ei where k 6= k′

then we create two copies of (D ::= τB · µ, h) one pointing to each item. In
the above example we would create two items (S ::= SS·, 0) in E3 one in
which the second S points to (S ::= b·, 2) and the other in which the second S
points to (S ::= SS·, 1). This would cause correct derivations to be generated,
but it also effectively embeds all the derivation trees in the construction and,
as reported by Johnson, the size cannot be bounded by O(np) for any fixed
integer p. For example, using such a method for input bn to the grammar Γ3

S ::= SSS | SS | b

the set Ei constructed by the parser will contain Ω(i3) items and hence the
complete structure contains Ω(n4) elements. Thus this version of Earley’s
method does not result in a cubic parser. To see this note first that, when
constructed by the recogniser, the Earley set Ei is the union of the sets

U0 = {(S ::= b·, i− 1), (S ::= ·SSS, i), (S ::= ·SS, i), (S ::= ·b, i)}
U1 = {(S ::= S · SS, k) | i− 1 ≥ k ≥ 0}
U2 = {(S ::= S · S, k) | i− 1 ≥ k ≥ 0}
U3 = {(S ::= SS·, k) | i− 1 ≥ k ≥ 0}
U4 = {(S ::= SS · S, k) | i− 2 ≥ k ≥ 0}
U5 = {(S ::= SSS·, k) | i− 3 ≥ k ≥ 0}.

If we add pointers then, since there are i elements (S ::= SS·, q) in Ei, 0 ≤
q ≤ (i − 1), and (S ::= ·SSS, q) ∈ Eq, we will add i elements of the form

7

(S ::= S·SS, q) toEi. ThenEq will have q elements of the form (S ::= S·SS, p),
0 ≤ p ≤ (q−1), so we will add i(i−1)/2 elements of the form (S ::= SS ·S, r)
to Ei, 0 ≤ r ≤ (i − 1). Finally, Eq will have q(q − 1)/2 elements of the form
(S ::= SS · S, p), 0 ≤ p ≤ (q − 1), so we will add i(i− 1)(i− 3)/6 elements of
the form (S ::= SSS·, r) to Ei.

Grune [11] has described a method which exploits an Unger style parser to con-
struct the derivations of a string from the sets produced by Earley’s recogniser.
However, as noted by Grune, in the case where the number of derivations is
exponential the resulting parser will also be of at least unbounded polynomial
order in worst-case.

4 A cubic Earley parsing algorithm

We could turn Earley’s algorithm into a correct parser by labelling the point-
ers, and allowing binarised SPPFs to be constructed by adding pointers be-
tween items rather than instances of non-terminals. We need two types of
pointer, predecessor and reduction. As the Ei are constructed, for each item
t = (B ::= τ ·, k) ∈ Ei, and each pair of corresponding items q = (D ::=
τ · Bµ, h) ∈ Ek and p = (D ::= τB · µ, h) ∈ Ei, add a reduction pointer
labelled k from p to t and, if τ 6= ǫ, a predecessor pointer labelled k from p to
q. For each q = (A ::= α · aiβ, j) ∈ Ei−1, if α 6= ǫ, add a predecessor pointer
labelled i− 1 from q to p.

For Γ2, above, and the string bbb we get the following structure.

(S ::= ·b, 0)

(S ::= ·SS, 1)

(S ::= ·SS, 0)

(S ::= ·b, 1)

(S ::= b·, 0)

(S ::= S · S, 1)(S ::= S · S, 0)

(S ::= ·SS, 2) (S ::= S · S, 2)

(S ::= SS·, 1)

(S ::= ·b, 3)
(S ::= S · S, 0) (S ::= SS·, 0)

E0 E1 E3E2

(S ::= SS·, 0) (S ::= S · S, 1)

(S ::= ·SS, 3)
(S ::= S · S, 0)(S ::= ·b, 2)

(S ::= b·, 1) (S ::= b·, 2)
✕

✕

✕✕0 1

0

2

1
1

1

2❨

⑥
✛

✛ 2

✍

❨

■
2

1

(For ease of reading pointers from nodes not reachable from the node in E3

labelled (S ::= SS·, 0) have been left off the diagram).

For the grammar, Γ4, below and the string aaba we get the following structure.

S ::= a A b B A ::= a B ::= A | a

8

(S ::= ·aAbB, 0)

(S ::= a ·AbB, 0)

(S ::= aA · bB, 0)

(A ::= ·a, 1)

(B ::= ·a, 3)

(A ::= a·, 3)

(B ::= ·A, 3)

(B ::= a·, 3)

E0 E1 E3 E4E2

(A ::= ·a, 3)

(B ::= A·, 3)

(A ::= a·, 1) (S ::= aAb ·B, 0)

(S ::= aAbB·, 0)

✕ ✕

❑

1 3

3 3

1

2

3

✮

❂ ❖

❑

In [20] we present a post-parse function that walks the pointer-annotated
Earley sets and outputs a binary SPPF. We shall not give this function here
but it is useful to have the concept of the pointer-annotated Earley sets as it
underpins the parser we now describe that constructs the SPPF as it proceeds.
This parser is based on the techniques developed in [23] for constructing cubic
GLR parsers, and avoids the need to actually construct the item pointers.

The SPPF constructed is similar to the binarised SPPF constructed by the
BRNGLR algorithm but the additional nodes are the left hand rather than
right hand children, reflecting the fact that Earley’s recogniser is essentially
top down rather than bottom up. An interior node, u, of the SPPF is either
a symbol node labelled (B, j, i) or an intermediate node labelled (B ::= γx ·
δ, j, i). A family of children of u will consist of two nodes, or possibly just one
node if u is a symbol node. If a node has more than one family of children
then each family will be grouped under its own packed node.

The algorithm itself is in a form that is similar to that in which GLR algorithms
are traditionally presented. There is a step in the algorithm for each element
of the input string and at step i the Earley set Ei is constructed, along with
all the SPPF nodes with labels of the form (s, j, i), j ≤ i.

In order to construct the SPPF as the Earley sets are built, we record with
an Earley item the SPPF node that corresponds to it. Thus Earley items in
Ei are triples (s, j, w). If s is of the form X ::= α· then w = (X, j, i), if β 6= ǫ
and s is X ::= x · β then w = (x, j, i), otherwise w = (s, j, i). The subtree
below w will correspond to the derivation of the substring aj+1 . . . ai. Earley
items of the form (A ::= ·β, j) do not have associated SPPF nodes, so we use
the dummy node null in this case.

The items in each Ei have to be ‘processed’ either to add more elements to
Ei or to form the basis of the next set Ei+1. Thus when an item is added to
Ei it is also added to a set Q, if it is of the form (A ::= α · ai+1β, h, w), or to
a set R otherwise. Elements are removed from R as they are processed and
when R is empty the items in Q are processed to initialise Ei+1.

There is a special case when an item of the form (A ::= α·, i, w) is in Ei, this
happens if A⇒α

∗
⇒ǫ. When this item is processed items of the form (X ::=

τ ·Aδ, i, v) ∈ Ei have to be considered and it is possible that such an item may

9

be created after the item (A ::= α·, i, w) has been processed. Thus we use a
set H and, when (A ::= α·, i, w) is processed, the pair (A, (A, i, i)) is added to
H. Then when (X ::= τ · Aδ, i, v) is processed elements of H are checked and
appropriate action is taken.

When an SPPF node is needed we first check to see if one with the required
label already exists. To facilitate this checking the SPPF nodes constructed
at the current step are added to a set V .

In the following algorithm ΣN denotes the set of all strings of terminals and
non-terminals that begin with a non-terminal, together with the empty string.

Input: a grammar Γ = (N,T, S,P) and a string a1a2 . . . an

EARLEY PARSER {

E0, . . . ,En, R, Q′, V = ∅
for all (S ::= α) ∈ P { if α ∈ ΣN add (S ::= ·α, 0, null) to E0

if α = a1α
′ add (S ::= ·α, 0, null) to Q′ }

for 0 ≤ i ≤ n {
H = ∅, R = Ei, Q = Q′

Q′ = ∅
while R 6= ∅ {
remove an element, Λ say, from R
if Λ = (B ::= α · Cβ, h, w) {
for all (C ::= δ) ∈ P {

if δ ∈ ΣN and (C ::= ·δ, i, null) 6∈ Ei {
add (C ::= ·δ, i, null) to Ei and R }

if δ = ai+1δ
′ { add (C ::= ·δ, i, null) to Q } }

if ((C, v) ∈ H) {
let y = MAKE NODE(B ::= αC · β, h, i, w, v,V)
if β ∈ ΣN and (B ::= αC · β, h, y) 6∈ Ei {

add (B ::= αC · β, h, y) to Ei and R }
if β = ai+1β

′ { add (B ::= αC · β, h, y) to Q } } }
if Λ = (D ::= α·, h, w) {
if w = null {

if there is no node v ∈ V labelled (D, i, i) create one
set w = v
if w does not have family (ǫ) add one }

if h = i { add (D,w) to H }
for all (A ::= τ ·Dδ, k, z) in Eh {

let y = MAKE NODE(A ::= τD · δ, k, i, z, w,V)
if δ ∈ ΣN and (A ::= τD · δ, k, y) 6∈ Ei {

add (A ::= τD · δ, k, y) to Ei and R }
if δ = ai+1δ

′ { add (A ::= τD · δ, k, y) to Q } } }
}
V = ∅

10

create an SPPF node v labelled (ai+1, i, i+ 1)
while Q 6= ∅ {
remove an element, Λ = (B ::= α · ai+1β, h, w) say, from Q
let y = MAKE NODE(B ::= αai+1 · β, h, i+ 1, w, v,V)
if β ∈ ΣN { add (B ::= αai+1 · β, h, y) to Ei+1 }
if β = ai+2β

′ { add (B ::= αai+1 · β, h, y) to Q′ }
}

}
if (S ::= τ ·, 0, w) ∈ En return w
else return failure

}

MAKE NODE(B ::= αx · β, j, i, w, v,V) {
if β = ǫ { let s = B } else { let s = (B ::= αx · β) }
if α = ǫ and β 6= ǫ { let y = v }
else {
if there is no node y ∈ V labelled (s, j, i) create one and add it to V
if w = null and y does not have a family of children (v) add one
if w 6= null and y does not have a family of children (w, v) add one }

return y
}

Example 4 For Γ2 and input bbb the Earley parser constructs the SPPF

☛✡ ✟✠
☛✡ ✟✠
☛✡ ✟✠☛✡ ✟✠☛✡ ✟✠ ☛✡ ✟✠☛✡ ✟✠ ☛✡ ✟✠ ☛✡ ✟✠

S, 0, 3

S, 2, 3

S, 1, 3S, 0, 2

S, 0, 1 S, 1, 2

b, 0, 1 b, 1, 2 b, 2, 3

❡ ❡❅❅✘✘✘✘✘✾

��✠

❄ ❄❄

q

❲ ✇ ✇
②

✰

For Γ3 and input aaba the Earley parser constructs the SPPF

☛✡ ✟✠
☛✡ ✟✠

☛✡ ✟✠☛✡ ✟✠☛✡ ✟✠☛✡ ✟✠ ☛✡ ✟✠☛✡ ✟✠

B, 3, 4

S, 0, 4

b, 2, 3 A, 3, 4A, 1, 2

a, 0, 1
a, 3, 4a, 1, 2

❡ ❡
S ::= aA · bB, 0, 2

S ::= aAb ·B, 0, 3
❅❅

✌

❥

❄❄

✮

✇

✾ q

❄

❂

☛✡ ✟✠
☛✡ ✟✠

11

5 The order of the parser

(As we have done throughout the paper, in this section we use n to denote
the length of the input to the parser.)

A formal proof that the binarised SPPFs constructed by the BRNGLR algo-
rithm contain at most O(n3) nodes and at most O(n3) edges is given in [23].
The proof that the binarised SPPFs constructed by the parsers described in
this paper are of at most cubic size is the same, and we do not give it here.
Intuitively however, the non-packed nodes are characterised by an LR(0)-item
and two integers, 0 ≤ j ≤ i ≤ n, and thus there are at most O(n2) of them.
Packed nodes are children of some non-packed node, labelled (s, j, i) say, and
for a given non-packed node the packed node children are characterised by an
LR(0)-item and an integer l which lies between j and i. Thus each non-packed
node has at most O(n) packed node children and there are at most O(n3)
packed nodes in a binarised SPPF. As non-packed nodes are the source of at
most O(n) edges and packed nodes are the source of at most two edges, there
are also at most O(n3) edges in a binarised SPPF.

For the Earley parser given in Section 4, the while-loop that processes the
elements in R executes once for each element added to Ei. For each triple
(s, j, i) there is at most one SPPF node labelled with this triple, and thus there
are at most O(n) items in Ei. So the while-loop executes at most O(n) times.
As we have already remarked, it is possible to implement the SPPF to allow
n-independent look-up time for a given node and family of children. Thus,
within the while-loop forR, the only case that triggers potentially n-dependent
behaviour is the case when the item chosen is of the form (D ::= α·, h, w). In
this case the set Eh must be searched. This is a worst-case O(n) operation. The
while-loop that processes Q is not n-dependent, thus the integrated parser is
worst-case O(n3).

6 Experimental results

In this section we (i) look at the practicality of Earley parsing for program-
ming language style grammars, illustrating the relative costs of the parser and
recogniser versions of the algorithm and (ii) compare the performance of our
cubic Earley parser against the BRNGLR cubic GLR parsing algorithm. For
(ii) we add lookahead to our Earley parser.

We have described elsewhere our GTB tool [14] which provides a framework
for implementing and experimenting on parsing algorithms. The cubic Earley
parser described in Section 4, and a recogniser-only variant, have been added

12

to GTB, and experiments performed using the following grammars and test
strings.

• The ANSI C standard grammar and the source code for (a) a Quine Mc-
Cluskey minimiser (4,291 tokens) and (b) the source code for an earlier
version of GTB (36,827 tokens).

• The ISO PASCAL grammar and the source code for a tree visualisation
application (4,425 tokens).

• The example grammar Γ2 for which Earley’s own proposed parser is incor-
rect.

• The example grammar Γ3 which has O(n4) derivation trees for strings of
the form bn.

In all cases, the input is pre-tokenised and held in memory as an array of un-
signed integers; thus the parse-time overhead of fetching lexemes is negligible.

Timing data was generated using an Intel Core Duo T7300 processor clocked
at 2GHz with 2GByte of physical memory running MS Windows Vista. We do
not make strong claims for the absolute performance of this implementation.
In particular, the data structures used to implement the SPPF and Earley sets
are drawn from GTB’s prototyping library: these are engineered to support
debugging and tracing and we typically see improvements by factors of 5-12
when GTB’s prototype algorithms are re-implemented for performance.

6.1 The practicality and relative costs of Earley recognition and parsing

Although our Earley parser is worst-case O(n3), in general it will be slower
than the corresponding recogniser. Both the recogniser and the parser are
worst-case cubic, but the cardinality of the recogniser Earley sets is quadratic,
whereas the SPPF is worst-case cubic in size. The time taken to allocate
SPPF nodes is therefore worst-case cubic, and this impacts the constants of
proportionality.

In principle, we might imagine that the cardinality of the parser Earley sets
would be higher than that of the recogniser, because Earley parser items in-
clude SPPF nodes. In fact each recogniser item corresponds to a unique SPPF
node, which is only added to the parser item so that it can be found without
searching.

Some care is required when implementing the algorithm because of the need
to search the SPPF for a particular node, and the need to check a node to see
if it has a particular family. Our implementation performs both of these steps
in unit time.

13

Table 1
Earley recogniser and parser comparison

Grammar Input |E| Recogniser/CPU s Parser/CPU s

C 4,291 279,601 0.14 0.19

C 36,827 2,422,300 1.23 1.93

Pascal 4,425 133,076 0.11 0.14

Γ2 b300 90,902 3.43 12.79

Γ3 b200 100,504 3.59 10.70

We implemented unit time lookup for SPPF nodes and families by exploiting
the fact that a family of (s, j, i) is determined by an item t = (X ::= αx · β)
and the left index, k, of its right child, (x, k, i). (So s will be either t or X.)
We create a two dimensional array, indexed by j and s, whose entries are
triples (L, N , K). When an SPPF node w = (s, j, i) node is created, the
corresponding cell’s L-field is set to i, and the N -field is set to point to w.
When a second family is added to w, a vector of possible k values is created,
and pointed to by the cell’s K-field. As each subsequent family is created, the
vector’s k-th element is set to i.

Table 1 reports the total number, |E|, of Earley items constructed and the
run-time in CPU seconds, for each test case. The numbers of Earley items for
Γ2 and Γ3 should be compared with the number of packed nodes shown in
Table 2.

Compiler writers and users of traditional parser generators want to know
how the new generalised techniques compare with their favourite deterministic
technique. Scott McPeak [17] has reported on the performance of the C++
parser in versions 2.95.3 and 3.3.2 of gcc processing a selection of modules
from the Mozilla 1.0 source code on an unspecified processor. He found that
gcc 2.95.2 parsed between 43.4 and 158.9 thousand lines per second (kLPS)
of pre-processed input, and gcc 3.3.2 between 22.8 and 119.2 kLPS. These
times are clearly not critical within the overall time taken to compile and link
applications: the parser’s performance drops by as much as 55% when moving
from version 2 to 3 which was presumably acceptable to the implementers.
This is not a very formal analysis, but we can perhaps conclude that parse
times of around 25kLPS are adequate for compiler front ends.

Our prototype implementations achieve speeds of between 5.6 and 5.7kLPS for
recognition and 3.5-4.2 kLPS for parsing. Through hand-crafted data struc-
tures and control flow, it should be possible to make significant speed improve-
ments that result in performance comparable to gcc’s parser for C.”

Some caveats are required: McPeak’s figures quote lines of pre-processed in-

14

put: we have assumed that whitespace and comment lines are suppressed by
the preprocessor. More significantly, a better measure of parser performance
is the total number of tokens being processed per second, since different pro-
gramming styles yield different numbers of token per line.

Of course, deterministic and general parsers are incommensurate in that de-
terministic parsers will not admit many interesting grammars, so performance
comparisons are rather artificial. Nevertheless, we believe that were practi-
cal general parsers available in the 1970’s, programming languages would be
more comfortable to use and note that some Eiffel compilers do indeed use
conventional Earley parsers.

6.2 Cubic lookahead Earley parsing and BRNGLR parsing

We have previously reported some experimental results comparing the recog-
niser versions of BRNGLR and Earley’s algorithm [15]. Here we present results
comparing the parser versions of these algorithms.

The BRNGLR algorithm can be run on LR(0), SLR(1) or LR(1) tables, while
the Earley parser described above is essentially not using any lookahead. Thus
we have implemented both the algorithm given in Section 4 and a version,
Earley(1), that uses a form of lookahead that essentially corresponds to an
SLR(1) parser. We define

SL(B ::= α · β) =

{

(first(β)\{ǫ}) ∪ follow(B) if β
∗
⇒ǫ

first(β) otherwise

where first(β) and follow(B) are the standard sets as defined, for example,
in [1]. Earley(1) checks the current input symbol against SL(B ::= α·β) before
creating an item of the form (B ::= α · β, h, w). Correspondingly, we used
BRNGLR running on SLR(1) tables. We report, in Table 2, the numbers of
symbol, intermediate and packed SPPF nodes (s-nodes, i-nodes and p-nodes
respectively) and the run-time in CPU seconds.

The numbers of symbol nodes in the Earley(1) SPPF for ǫ-grammars can be
higher than those in the corresponding BRNGLR SPPF because the latter
handles right nullable rules, rules of the form X ::= αβ where β

∗
⇒ǫ, in a

special way. A library of SPPFs for the derivations β
∗
⇒ǫ is built with the

compiler, and when the parser encounters a right nullable rule it truncates
its search and simply inserts the preconstructed tree from the library. For
example, for the grammar S ::= SaB | a B ::= b | ǫ and the string a7,
the Earley(1) SPPF will contain six nodes labelled (B, i, i), 2 ≤ i ≤ 7, whereas
the BRNGLR SPPF will contain one node labelled B.

15

Table 2
Earley, Earley(1) and BRNGLR SPPF comparison

Input s-nodes i-nodes p-nodes secs

Earley C 4,291 38,733 4,126 82 0.19

Earley(1) C 4,291 27,997 2,312 58 0.12

BRNGLR C 4,291 27,997 2,062 58 0.11

Earley C 36,827 349,518 38,870 1,101 1.91

Earley(1) C 36,827 257,012 21,234 674 1.23

BRNGLR C 36,827 257,012 20,289 674 1.45

Earley Pascal 4,425 31,015 4,830 6 0.14

Earley(1) Pascal 4,425 21,258 2,690 2 0.11

BRNGLR Pascal 4,425 16,983 2,568 2 0.07

Earley Γ2 b300 45,150 0 4,499,651 12.79

Earley(1) Γ2 b300 45,150 0 4,499,651 13.03

BRNGLR Γ2 b300 45,150 0 4,499,651 10.09

Earley Γ3 b200 20,300 19,900 3,979,602 10.70

Earley(1) Γ3 b200 20,300 19,701 3,959,703 10.98

BRNGLR Γ3 b200 20,300 19,701 3,959,703 17.06

The Earley parser can also construct more intermediate nodes than the cor-
responding BRNGLR parser. This is because it is a top-down parser and it
it creates an intermediate node when a left hand portion of a rule has been
matched. BRNGLR parsers are bottom-up and only create the intermediate
nodes when the whole rule has been matched and a reduction is performed. For
example, for the grammar S ::= Aaab | aaac A ::= a and the string aaab,
the Earley parser will create an intermediate node labelled (S ::= aa · ac, 0, 2)
but the BRNGLR parser will not. Of course, in all cases nodes that are not
reachable from the start node can be removed by a single pass, post parse
SPPF tree walk.

7 The RIGLR recogniser

RIGLR parsers [21] are based on an approach originated in [2], whose aim was
to improve the efficiency of GLR parsers by reducing parse stack activity.

LR parsers traverse an underlying DFA, recording the path taken on an asso-
ciated stack. When an accepting (reduction) state is reached the path taken

16

is effectively retraced, by popping states off the stack which correspond to the
right hand side of the reduction, and the traversal continues from the state
reached. For the RIGLR algorithm, the underlying DFA is expanded out, so
that different instances of non-terminals on the right hand side of grammar
rules generate different DFA states, and then explicit reduction transitions are
added from each accepting state to the state from which the traversal should
continue. This avoids the need to record the path taken on a stack. However,
reduction transitions cannot be added at places in the DFA which correspond
to recursion in the grammar. Thus at these points a call is made to a sub-
DFA and a recursion call stack is used to manage these calls. In general, the
automaton traversal will not be deterministic. The RIGLR algorithm takes a
GLR approach in that at points of nondeterminism all possible actions are
pursued in parallel, and the corresponding call stacks are combined into a
Tomita-style graph structured stack (GSS).

In this section we give an overview of the RIGLR recognition technique and
show that it has worst-case cubic order. In Section 8 we shall show how to
modify the algorithm to construct binary SPPFs.

The RIGLR algorithm takes as input a push down automaton (PDA), RCA(Γ)
and a string u and determines whether or not the string is in the language of
the PDA. A formal definition of RCA(Γ) is given in [21]. Informally, RCA(Γ)
is defined as follows. We begin by augmenting Γ with a new start rule S ′ ::= S,
if it is not already augmented. Next we terminalise the grammar as follows. If

there exists a nonterminal, Y say, such that Y
+
⇒αY β or such that Y

+
⇒αY

+
⇒Y ,

where α, β 6= ǫ, then choose such a derivation and replace an instance of Y on
the right hand side of a grammar rule with a special terminal of the form Y ⊥,
so that the derivation is no longer possible. Continue modifying the grammar
in this way until there are no such derivations. We shall refer to the new
grammar as ΓS.

For example we use the following grammar, Γ5, and its terminalisation

1. S ::= S B a 2. S ::= a B 3. B ::= ǫ 4. B ::= b B b

1. S ::= S B a 2. S ::= a B 3. B ::= ǫ 4. B ::= b B⊥ b

We construct a finite state automaton IRIA(Γ) whose states are labelled with
items of the formX ::= α·β. The start state is labelled with the item S ′ ::= ·S.
The remaining states are constructed recursively as follows. A state with a
label of the form X ::= α · aβ, where a is a terminal, has a transition labelled
a to a new state labelled X ::= αa · β. For each grammar rule A ::= γ, a
state h with a label of the form X ::= α · Aβ has a transition labelled ǫ to
a new state labelled A ::= ·γ unless h already has an ancestor k with this
label, in which case it has an ǫ-labelled transition to k. For a state h with
label A ::= γ·, where A ::= γ is rule i, suppose that g is the closest ancestor

17

of h labelled A ::= ·γ and that k is the sibling of g with a label of the form
X ::= αA ·β. Then we add a transition labelled Ri from h to k. The accepting
state of IRIA(ΓS) is the state labelled S ′ ::= S·.

✎✍ ☞✌✓✒
✏
✑S′ ::= S·

✎✍ ☞✌S′ ::= ·S

❄

S ❄

❄

❄

❄

❄

❄

❄

❄

❄

ǫ
ǫ

ǫ

ǫ

ǫ

ǫ

ǫ

ǫ

ǫ

ǫ

S ::= ·SBa

S ::= ·aB

S ::= ·aB

B ::= ·bB⊥b

B ::= ·bB⊥b

B ::= ·bB⊥b

S ::= S ·Ba

S ::= a ·B

S ::= a ·B

B ::= b ·B⊥b

B ::= b ·B⊥b

B ::= b ·B⊥b

❄

❄

❄

❄

❄

❄

S

a

a

b

b

b

R1

R1

S ::= SBa·

B ::= bB⊥b·

B ::= bB⊥b·

B ::= bB⊥b·

S ::= SB · a

S ::= aB·

S ::= aB·

B ::= bB⊥ · b

B ::= bB⊥ · b

B ::= bB⊥ · b

❄

❄

❄

❄

❄

❄

❄

❄

❄

❄

a

b

b

b

B

B

B

B⊥

B⊥

B⊥

✎✍ ☞✌ ✎✍ ☞✌
✎✍ ☞✌

✎✍ ☞✌ ✎✍ ☞✌
✎✍ ☞✌

✎✍ ☞✌ ✎✍ ☞✌
✎✍ ☞✌

✎✍ ☞✌ ✎✍ ☞✌
✎✍ ☞✌

✎✍ ☞✌ ✎✍ ☞✌
✎✍ ☞✌

✎✍ ☞✌ ✎✍ ☞✌
✎✍ ☞✌

✎✍ ☞✌

✎✍ ☞✌ ✎✍ ☞✌
✎✍ ☞✌

B ::= ·

B ::= ·

B ::= ·

R2

R3

R3

R3

R4

R4

R4

❄

✣

✎✍ ☞✌ ✎✍ ☞✌
✎✍ ☞✌

❪

❪

❪
✾

✾

✾

✎
✾

We then form RIA(ΓS) from IRIA(Γ) by removing transitions labelled with
nonterminals and then running the standard subset construction. (The states
of RIA(Γ) are labelled with the items from the component IRIAstates, with
the terminalisation notation removed.)

S′ ::= ·S S′ ::= S·

S ::= a ·B

S ::= ·SBa S ::= S ·Ba

B ::= ·bBb

S ::= ·aB

B ::= ·

B ::= ·bBb
B ::= b ·Bb

B ::= b ·Bb

B ::= bB · b

B ::= bB · b

B ::= bBb·

B ::= bBb·

S ::= BS · a

S ::= aB·

S ::= BSa·

❄a

✎✍ ☞✌
✎✍ ☞✌

✎✍ ☞✌✎✍ ☞✌
✎✍ ☞✌

✎✍ ☞✌
✎✍ ☞✌

✎✍ ☞✌
✎✍ ☞✌

B ::= ·

★
✧
✥
✦★

✧
✥
✦

✬
✫
✩
✪

✲

✲

✲

✲

✲

✲

✲

R3

R3

a

B⊥

B⊥

b

b

b

b

✛
R1

R4

R4

R2

✐

✐

✬
✫
✩
✪✲

♦

s

For each nonterminal Y 6= S with a terminalisation we create a grammar ΓY

from ΓS by adding a new start rule SY ::= Y , and construct RIA(ΓY).

Finally we create a PDA, RCA(Γ), from the automata by replacing transitions
labelled Y ⊥ with a push action that pushes the target of the transition onto
the stack and goes to the start state of RIA(ΓY). The pop states of the PDA
are the accepting states of the RIA(ΓY), where Y has a terminalisation, and

18

the accepting states are the accepting states of RIA(ΓS). Below is RCA(Γ5).

❄a

✲
✲

✲
✲

✲
R3

R3

R3

R3

p(5)

p(8)

b

b

b

b
b

b

R4

R4

R4

R1

R2

♦

s
s

✍✌✎☞
✍✌✎☞ ✍✌✎☞✍✌✎☞ ✍✌✎☞

✍✌✎☞ ✍✌
✎☞

✍✌✎☞

✍✌✎☞ ✍✌✎☞
✍✌✎☞

✍✌✎☞ ✍✌✎☞
✍✌✎☞

✍✌✎☞ ✍✌✎☞
✍✌✎☞0

2

12
3

pop

10
11

1

4

14

7

5

15

8

6

16

9✖✕
✗✔

✛
✛

✛

③

✿ ✿✴

q

✒❃

p(15)

The RCAis represented as a table T (Γ) whose rows are labelled with the states
and whose columns are labelled with the terminals of Γ and the special end-
of-string symbol $. An entry T (Γ)(l, a) in the table is a finite set of actions.
The actions are each of the form sh, p(k, h), R(i, h) or pop, where h and k are
states and i is a grammar rule number. The first row of T (Γ) is labelled with
0, the start state, and if l is an accepting state then acc is added to T (Γ)(l, $).
We traverse T (Γ) with a given input string, consuming input symbols and
pushing and popping elements from the stack in the usual fashion for a push
down automaton. A string u is accepted by RCA(Γ) if there is a traversal of
the table that reads all the input and terminates in an accepting state with
an empty stack. The following result is proved in [21].

Theorem 1 A string, u, of terminals is in the language generated by Γ if and

only if u is accepted by RCA(Γ).

RIGLR recognition algorithm

In order to use Theorem 1 to determine whether a given string u is a sentence in
Γ we need an algorithm which determines whether or not there is an execution
path through T (Γ) on u. It is proved in [21] that the following algorithm
terminates and reports success if u ∈ L(Γ) and terminates and reports failure
otherwise.

The algorithm operates by maintaining at step i a set Ui of descriptors of
the form (h, q). The descriptor (h, q) lies in Ui if there is traversal on a1 . . . ai
that ends at state h with q on the top of the stack. The potential number of
stacks is exponential, so these stacks are combined into a Tomita style graph
structured stack, called the recursion call graph (RCG).

A set A is used to hold the descriptors, for the current step, that have not
yet been processed, and sets Pi hold the RCG nodes constructed at step i
and a flag to indicate if the node has been popped. This is required so that if
additional edges are created from nodes that have already been popped then
the pop action can be retrospectively applied down the new edge.

19

input: an RCA written as a table T , and a string a1 . . . an
define an+1 = $, and set U0, . . . , Un and P0, . . . , Pn to ∅
create a base node, q0, in the RCG and add (q0, 0) to P0

create an element, u0 = (0, q0), in U0

for i = 0 to n do {
add all the elements of Ui to A

while A 6= ∅ {
remove u = (h, q) from A
if sk ∈ T (h, ai+1) { if (k, q) 6∈ Ui+1 add (k, q) to Ui+1 }
for each R(j, k) ∈ T (h, ai+1) { if (k, q) 6∈ Ui add (k, q) to A and Ui }
if pop ∈ T (h, ai+1) {

let k be the label of q and Z be the set of successors of q
if (q, 0) ∈ Pi remove (q, 0) and add (q, 1) to Pi

for each p ∈ Z { if (k, p) 6∈ Ui add (k, p) to A and Ui } }
for each p(l, k) ∈ T (h, ai+1) {

if there is (t, F) ∈ Pi such that t has label l {
if there is no edge from t to q {

add an edge from t to q
if F = 1 { if (l, q) 6∈ Ui { add (l, q) to A and to Ui } } } }

else { create a node t with label l
make q a successor of t
add (k, t) to A and Ui and add (t, 0) to Pi } } } }

if Un contains (l, q0) where l is an accept state of the RCA { report success }
else { report failure }

Theorem 2 The RIGLR recognition algorithm is worst-case cubic.

Proof Let M be the number of rows in T (Γ). The only place where nodes in
the RCG are created is when processing an action p(l, k), and a new node is
only created if one labelled l has not already been created at this step. Thus
there are at most (i + 1)M nodes and (i + 2)(i + 1)M2/2 edges in the RCG
at step i, and Ui contains at most (i + 1)M2 elements. So the while loop is
executed at most O(i) times at Step i of the algorithm.

The number of actions R(j, k) in an entry T (Γ)(h, ai+1) is bounded by the
number of non-terminal instances in the grammar rules, as is the number of
actions p(l, k). Thus, provided that the data structures are implemented so
that sets can have constant look-up time (this can be done, see Section 6.1,
as the sets are of size at most O(n2)), the only part of the while loop whose
execution size is not bounded by a constant is the for loop associated with
pop actions. This loop iterates over a set Z that contains the successors of
some RCG node q. Since at Step i there are at most O(i) RCG nodes, Z has
size at most O(n). Thus the order of the algorithm is at most O(n3).

20

8 A cubic RIGLR parser

It is in the nature of RIGLR recognisers that non-recursive instances of non-
terminals are effectively substituted by the right hand sides of their grammar
rules. Thus some of the hierarchical structure embodied in the grammar is flat-
tened. Furthermore, if right recursion is not removed then the RCAcontains
a loop labelled with the corresponding reduction, and the recogniser traverses
this loop only once, regardless of the actual number of recursive reductions
performed in the corresponding derivation. (See [21] more specific details of
this.) For these reasons the construction of a parser version of the RIGLR
algorithm is not straightforward. We have given an RIGLR parser which can
be correctly applied to all context free grammars and which produces Tomita
style SPPFs [21]. However, as implied by Johnson’s observation [13], the pars-
ing algorithm has unbounded polynomial order. In fact, to create the parser
the corresponding SPPF contexts are attached to each element of Ui, substan-
tially increasing the sizes of these sets.

In this section we give a different method for constructing derivations which
results in a parser which is worst-case cubic. To efficiently identify when a
nonterminal node in the SPPF should be constructed we require that RCA(Γ)
has been constructed using a terminalised version of Γ in which all nonterminal
instances are terminalised. We call RCA(Γ) maximally terminalised if ΓS has
no non-terminalised right hand side nonterminal instances.

Recall from Section 2 that SPPF nodes can have families of children, each
family corresponding to a different sub-SPPF but deriving the same potion
of the input string. In the case where a node w has more than one family
of children then each family has a parent packed node which is a child of w.
As for the Earley parser described above, the RIGLR parser will construct
binarised SPPFs in which intermediate nodes are used, so that packed nodes
have at most two children, a right hand symbol node and, possibly, a left hand
symbol or intermediate node.

We assume that the RCAis given in the form of a table, as described in Sec-
tion 7. However, we only need the left hand sides of reductions so these are
stored in the form R(A, k).

When an input symbol is read or a reduction is performed then a correspond-
ing SPPF node is constructed. Each descriptor (h, q, w) ∈ Ui contains a cur-

rent context SPPF node w. When two or more symbols, x1 . . . xfx say, of a
rule have been recognised then an intermediate SPPF node is constructed. If
(x1 . . . xf , j, k) is the label of the current context node and (x, k, i) labels the
node just constructed then the intermediate node is labelled (x1 . . . xfx, j, i)
and becomes the current context node for the new descriptor.

21

As discussed in detail in [21], we need to be careful when performing push
actions in the parser. In an RIGLR recogniser, when two descriptors have the
same RCG node then their call stacks are recombined, to prevent the size of
the RCG from exploding. However, if there are two different SPPF context
nodes associated with these descriptors then the information about which node
belongs to which descriptor will be lost, resulting in the incorrect combination
of the first half of one derivation with the second half of the other. (It is this
effect that, as mentioned in Section 1, causes the outline parser given in [3]
to fail in some cases and is analogous to the problem with Earley’s original
parser.) To avoid this problem, when a push action is performed the RCG edge
created is labelled with the current context SPPF node, and then the current
context node is set to null. When the RCG node is subsequently popped, the
corresponding SPPF context node is retrieved.

Before giving the formal RIGLR cubic parsing algorithm we give two examples,
the first illustrating the basic process and the second illustrating the subtlety
of the application of pop actions.

Example 5 Consider the string aba and the grammar Γ6

S ::= a B B a | c B ::= b | ǫ

which has maximally terminalised RCA

☛✡ ✟✠✎✍ ☞✌S′ ::= S·

S ::= ·aBBa

S ::= aBBa·S ::= c·

SB ::= ·B

B ::= ·b
B ::= ·

B ::= b·
SB ::= B·

S ::= a ·BBa S ::= aB ·Ba S ::= aBB · a

S′ ::= ·S

S ::= ·c

pop

☛✡ ✟✠ ☛✡ ✟✠ ☛✡ ✟✠
✓
✒
✏
✑

✲

③ ❄

a

c
a

p(4)
p(5)

b

0

1

3 4 5

2 6

7
9

8

✛
✚
✘
✙
☛✡ ✟✠✲ ✲✲

RB

RB

❥

RS

RS

☛✡ ✟✠ ☛✡ ✟✠
❄✛

✚
✘
✙✾
✾

We begin by creating an RCG node q0 labelled −1 and a descriptor (0, qo, null)
that we add to U0. The first input symbol is a and the RCAstate 0 has an
a-transition to state 3. Thus we create an SPPF node w1 labelled (a, 0, 1) and
add (3, q0, w1) to U1. All the descriptors in U0 have now been processed so
Step 0 is complete.

Next we process (3, q0, w1). State 3 has a transition labelled p(4) to state 7,
thus we create an RCG node q1 labelled 4 and an edge (q1, w1, q0) from q1
to q0 labelled w1, and add the descriptor (7, q1, null) to U1. Next we process
(7, q1, null), applying the action RB. Since the SPPF context is null we create
an SPPF node w2 labelled (B, 1, 1) with family (ǫ) and add the descriptor
(8, q1, w2) to U1. We also apply the b-transition from state 7, creating an SPPF
node w3 labelled (b, 1, 2) and adding the descriptor (9, q1, w3) to U2.

22

From (8, q1, w2) we apply the pop action. The node q1 has an edge to q0
which is labelled w1, indicating that the ‘cached’ SPPF context was w1. Thus
we create a new SPPF intermediate node w4 labelled (aB, 0, 1) with family
(w1, w2). The node w4 is the new SPPF context and we create the descriptor
(4, q0, w4), because 4 is the label of q1.

Processing (4, q0, w4) we create a new RCG node q2 labelled 5 and an edge
(q2, w4, q0), and add (7, q2, null) to U1. Processing this descriptor, for the b-
transition we find that there is already a node w3 labelled (b, 1, 2) and so we
add (9, q2, w3) to U2. For RB we already have the node w2 labelled (B, 1, 1)
so we create the descriptor (8, q2, w2). From the pop action for this descriptor
we create a new intermediate SPPF node w5 labelled (aBB, 0, 1) with family
(w4, w2), and add (5, q0, w5) to U1. This descriptor has no applicable actions
so Step 1 is complete.

5
q2
☛✡ ✟✠

−1 4
q0 q1
☛✡ ✟✠ ☛✡ ✟✠ a,0,1

B,1,1

b,1,2

aB,0,1

w1

w2

w3

w4

☛✡ ✟✠
☛✡ ✟✠☛✡ ✟✠✛

w1

❂

w4

❄

PPPq

aBB, 0, 1

✓✓✴

❄

✍✌✎☞❄ǫ

w5

U1 = {(3, q0, w1), (7, q1, null), (8, q1, w2), (4, q0, w4), (7, q2, null), (8, q2, w2), (5, q0, w5)}

U2 = {(9, q1, w3), (9, q2, w3)}

Processing (9, q1, w3) we apply the RB action, creating an SPPF node w6 la-
belled (B, 1, 2) with family (w3) and descriptor (8, q1, w6). From (9, q2, w3) we
create (8, q2, w6). From (8, q1, w6) we create an intermediate node w7, labelled
(aB, 0, 2) with family (w1, w6) and add the descriptor (4, q0, w7) to U2. Simi-
larly, from (8, q3, w6) we create an intermediate node w8 labelled (aBB, 0, 2)
with family (w4, w6), and a descriptor (5, q0, w8).

From (4, q0, w7) we create an RCG node q3 labelled 5, an edge (q3, w7, q0)
and a descriptor (7, q3, null). From (5, q0, w8) we create an SPPF node w10 la-
belled (a, 2, 3) and an intermediate node w11 labelled (aBBa, 0, 3) with family
(w8, w10), and add (6, q0, w11) to U3.

From (7, q3, null) we create an SPPF node w9 labelled (B, 2, 2) with family ǫ
and a descriptor (8, q3, w9). There is already an intermediate node w8 labelled
(aBB, 0, 2) so we add the family (w7, w9) to w8. The descriptor (5, q0, w8)
already exists, so Step 2 is complete.

U2 = {(9, q1, w3), (9, q2, w3), (8, q1, w6), (8, q2, w6), (4, q0, w7), (5, q0, w8), (7, q3, null), (8, q3, w9)}

U3 = {(6, q0, w11)}

23

Finally we process (6, q0, w11) and apply the RS action, creating an SPPF
node w12 labelled (S, 0, 3) with family (w11) and the descriptor (1, q0, w12).
Step 3 is now complete and, since U3 contains the descriptor (1, q0, w12) and
1 is the RCAaccepting state, the algorithm reports success.

5

5

q2

q3

☛✡ ✟✠
☛✡ ✟✠

−1 4
q0 q1
☛✡ ✟✠ ☛✡ ✟✠

a,0,1

B,1,1

b, 1, 2

B, 1, 2

S, 0, 3

B, 2, 2

a, 2, 3

aB,0,1

aB,0,2

w1

w2

w3

w6

w12

w9

w10

w4

w7

☛✡ ✟✠
☛✡ ✟✠ ☛✡ ✟✠

☛✡ ✟✠

☛✡ ✟✠

☛✡ ✟✠

☛✡ ✟✠
✛

w1

❂

w4

w7

❄

PPPq

aBB, 0, 1

aBB, 0, 2

aBBa, 0, 3

✓✓✴

❄

✍✌✎☞❄ǫ

w5

w8

w11

✌ ❝ ❝
❯

✎

✎

✁✁☛

❄

✏✏✏✮ ❆
❆
❆
❆
❆❯

♠ǫ

❩❩⑦

❄

❄

❏
❏
❏
❏
❏
❏❫

Example 6 Consider the string bc and the grammar Γ7

S ::= B S | c B ::= b | ǫ

which has maximally terminalised RCA

S′ ::= S·

S ::= ·BS S ::= BS·

S ::= c·

SB ::= ·B

B ::= ·b
B ::= ·

B ::= b· SB ::= B·

S ::= B · S

S′ ::= ·S

S ::= ·c

popS

popB☛✡ ✟✠

✓
✒
✏
✑

③c p(4)

p(3)
b

0

1

3

2

4

5

✛

7✤
✣
✜
✢

☛✡ ✟✠

☛✡ ✟✠
☛✡ ✟✠

✲✶ ✲ RB

RB

✓
✒
✏
✑

✛
✚
✘
✙

✙
✲

RS

RS

8
✛
✚
✘
✙ ✿

Recall that the RIGLR recogniser uses sets Pi to record RCG nodes, con-
structed at the current step, that have been popped. In the parser version we
need the SPPF contexts associated with the pops in order to construct the
new SPPF node. Thus Pi is a set of pairs (q, L) where q is an RCG node and
L is a set of SPPF nodes which are the contexts in which q has been popped.

We begin, as before, by creating an RCG node q0 labelled −1 and a descriptor
(0, qo, null). We then apply the action p(3), creating an RCG node q1 labelled
3, edge (q1, null, q0) and descriptor (5, q1, null). From the RB action we create
an SPPF node w1 labelled (B, 0, 0) with family (ǫ) and a descriptor (7, q1, w1).

We then apply the pop action from (7, q1, w1). Since the edge (q1, q0) is labelled

24

null, we create the descriptor (3, q0, w1). Since q1 was created at this step
we record that it has been popped with SPPF context node w1 by adding
(q1, {w1}) to P0. Since state 5 also has a b-transition we create w2 labelled
(b, 0, 1) and add (8, q1, w2) to U1.

Processing (3, q0, w1) we create q2 labelled 4, an edge (q2, w1, q0) and a descrip-
tor (0, q2, null). There already exists an RCG node q1 labelled 3, so we add
an edge (q1, null, q2). The descriptor (5, q1, null) already exists but we have
added an edge to q1. Since (q1, {w1}) ∈ P0 we create the descriptor (3, q2, w1).
From (3, q2, w1) we add an edge (q2, w1, q3), and Step 0 is complete.

3
q1

q2

☛✡ ✟✠
4

−1
q0

☛✡ ✟✠

☛✡ ✟✠
✻null

null

b,0,1

B,0,0

w2

w1

☛✡ ✟✠
☛✡ ✟✠♠❄❄

ǫ✐w1

w1

✯

U0 = {(0, q0, null), (5, q1, null), (7, q1, w1), (3, q0, w1), (0, q2, null), (3, q2, w1)}

P0 = {(q1, w1)} U1 = {(8, q1, w2)}

From (8, q1, w2) we apply RB, creating w3, labelled (B, 0, 1) with family
(w2), and (7, q1, w3). We then apply the pop action and create (3, q0, w3) and
(3, q2, w3). Applying p(4) from state 3, we create q3 labelled 4, edges (q3, w3, q0)
and (q3, w3, q2) and descriptor (0, q3, null). We then create q4 labelled 3, the
edge (q4, null, q3) and the descriptor (5, q4, null). Applying the c-transition we
create an SPPF node w4 labelled (c, 1, 2) and add (2, q3, w4) to U2.

From (5, q4, null) we create w5 labelled (B, 1, 1) with family (ǫ) and the de-
scriptor (7, q4, w5). The pop action results in (3, q3, w5) and then p(4) results
in an edge (q3, w5, q3).

3 3
q1 q4
☛✡ ✟✠ ☛✡ ✟✠

4

−1 4

q2

q0 q3

☛✡ ✟✠

☛✡ ✟✠ ☛✡ ✟✠
✻ ✻null

null

null

b,0,1 c,1,2

B,0,0 B,1,1B,0,1

w2 w4

w1 w5
w3

☛✡ ✟✠ ☛✡ ✟✠
☛✡ ✟✠ ☛✡ ✟✠☛✡ ✟✠
♠ ♠❄ ❄❄
ǫ ǫ✐

✐

w1

w1

w5

✛ w3

w3

❄

✯

✠

U1 = {(8, q1, w2), (7, q0, w3), (3, q0, w3), (3, q1, w1), (0, q3, null), (5, q4, null), (7, q4, w5), (3, q3, w5)}

P1 = {(q4, w5)} U2 = {(2, q3, w4)}

Finally, from (2, q3, w4) we create w6 labelled (S, 1, 2) with family (w4) and
(1, q3, w6), and then the intermediate nodes w7 labelled (BS, 1, 2) with fam-
ily (w5, w6) and w8 labelled (BS, 0, 2) with family (w3, w6). This generates
descriptors (4, q3, w7), (4, q0, w8) and (4, q2, w8).

From (4, q3, w7) we add a new family (w7) to the SPPF node w6, but the
descriptor (1, q3, w6) is already in U2. From (4, q0, w8) we create an SPPF node

25

w9 labelled (S, 0, 2) with family (w8) and add (1, q0, w9) to U2. From (4, q2, w8)
we add (1, q2, w9) to U2 and from this descriptor we add a new family (w1, w9)
to w8, but no new descriptors are created. Then Step 2 is complete and, since
(1, q0, w9) ∈ U2, the algorithm reports success.

b, 0, 1 c, 1, 2

B, 0, 0 B, 1, 1B, 0, 1

S, 0, 2

S, 1, 2

w2 w4

w1 w5
w3

w9

w6

w7

w8

☛✡ ✟✠ ☛✡ ✟✠
☛✡ ✟✠ ☛✡ ✟✠☛✡ ✟✠

☛✡ ✟✠

☛✡ ✟✠
♠ ♠❄ ❄
ǫ ǫ

❄

BS, 1, 2

BS, 0, 2

❄

✑
✑

✑
✑✰

❝
✄
✄✎ s

✡✡

❝ ❝PPq

✙

✏✏✏✏✮

❝
☛

❨

◗◗

An RIGLR parser

input: a maximally terminalised RCA written as a table T , and a string
a1 . . . an
define an+1 = $, and set U0, . . . , Un and P0, . . . , Pn to ∅
create a base node, q0, in the RCG and add (q0, ∅) to P0

create an element, u0 = (0, q0, null), in U0

for i = 0 to n do {
create an SPPF node yi labelled (ai, i, i+ 1)
add all the elements of Ui to A

while A 6= ∅ {
remove u = (h, q, w) from A
if sk ∈ T (h, ai+1) { y := createT (w, i)

add (k, q, y) to Ui+1 }
if R(X, k) ∈ T (h, ai+1) { y := createN(w,X)

add (k, q, y) to Ui+1 }
if pop ∈ T (h, ai+1) {

let k be the label of q
Z be the set of edge labels and successors of q
if (q, null) ∈ Pi replace it with (q, w)
for each (z, p) ∈ Z {
y := createI(z, w)
if (k, p, y) 6∈ Ui add (k, p, y) to A and Ui } }

for each p(l, k) ∈ T (h, ai+1) {
if there is (t, z) ∈ Pi such that t has label l {
if there is no edge from t to q labelled w {
add an edge from t to q labelled w
if z 6= null {

y := createI(w, z)

26

if (k, p, y) 6∈ Ui add (k, p, y) to A and Ui } } }
else {
create an RCG node t with label l
create an edge from t to q labelled w
add (k, t, null) to A and Ui and add (t, null) to Pi } } }

}

if Un contains (l, q0, w) where l is an accept state of the RCA {
remove each intermediate node with no siblings by copying its out-edges

to its parents
report success }

else { report failure }

createT (w, i) {
if (w = null) { let y := yi }
else {
suppose that w has label (µ, j, i)
if there does not exist an SPPF node y labelled (µai+1, j, i+ 1) create one
if y does not have the family (w, yi) add the family (w, yi) to y }

return y }

createN(w,X) {
if (w = null) { let k := i and w := ǫ }
else { suppose that w has label (µ, k, i) }
if there does not exist an SPPF node y labelled (X, k, i) create one
if y does not have a family (w) add one }
return y }

createI(w, z) {
suppose that z has label (X, k, i)
if w = null { let y := z }
else { suppose that w has label (ν, j, k)

if there does not exist an SPPF node y labelled (νX, j, i) create one
if y does not have a family (w,z) add one }

return y }

9 Summary and conclusions

In this paper we have given a correct, worst-case cubic, parser based on Ear-
ley’s recognition algorithm, a proof that the RIGLR recognisers are worst-case
cubic, and a worst-case cubic RIGLR parser. Both parsers construct a bina-
rised SPPF that represents all possible derivations of the given input string.
The approach is based on the approach taken in BRNGLR, a cubic version

27

of Tomita’s algorithm, and the SPPFs constructed are equivalent to those
constructed by BRNGLR.

This paper has two goals, to present a correct general Earley parser and to
highlight the fact that constructing a parsing algorithm can be more a difficult
and subtle process than constructing the corresponding recogniser. The parser
extensions of the Earley and RIGLR algorithms discussed in [7] and [3], respec-
tively, construct spurious derivations. Tomita’s GLR recogniser, constructed
explicity as a first step to a parser and thus effectively embedding an SPPF,
was not general and the Farshi [18] and RNGLR [22] corrections both have
unbounded polynomial order.

We can modify Earley’s proposed parser so that it does produce correct deriva-
tions by labelling the pointers he introduces, see [20] for more details. However,
this does not result in a cubic parser. To achieve this we have effectively intro-
duced item pointers to the underlying recogniser, reflected in the SPPF nodes
associated with the Earley items.

For an efficient RIGLR parser, we have had to require that RCA(Γ) be con-
structed using a maximally terminalised version of Γ. Thus in order to con-
struct a cubic parser we have had to modify the underlying recogniser, which
would normally have fewer push actions. This mirrors the situation for GLR
parsers in which the cubic BRNGLR recogniser creates more GSS states than
the corresponding RNGLR recogniser. However, in both cases the cubic ver-
sions require less searching effort and this is how the asymptotic improvement
is obtained.

References

[1] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: principles,
techniques, and tools. Addison-Wesley, 1986.

[2] John Aycock and Nigel Horspool. Faster generalised LR parsing. In Compiler
Construction, 8th Intnl. Conf, CC’99, volume 1575 of Lecture Notes in
Computer Science, pages 32 – 46. Springer-Verlag, 1999.

[3] John Aycock, R. Nigel Horspool, Jan Janousek, and Borivo Melichar. Even
faster generalised LR parsing. Acta Informatica, 37(8):633–651, 2001.

[4] Claus Brabrand. Grambiguity.
http://www.brics.dk/ brabrand/grambiguity/, 2006.

[5] Frank L DeRemer and Thomas J. Pennello. Efficient computation of LALR(1)
look-ahead sets. ACM Trans. Progam. Lang. Syst., 4(4):615–649, October 1982.

[6] Franklin L DeRemer. Practical translators for LR(k) languages. PhD thesis,
Massachussetts Institute of Technology, 1969.

28

[7] J Earley. An efficient context-free parsing algorithm. Communications of the
ACM, 13(2):94–102, February 1970.

[8] James Gosling, Bill Joy, and Guy Steele. The Java Language Specification.
Addison-Wesley, 1996.

[9] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java Language
Specification Third Edition. Addison-Wesley, 2005.

[10] Susan L. Graham and Michael A. Harrison. Parsing of general context-free
languages. Advances in Computing, 14:77–185, 1976.

[11] Dick Grune and Ceriel J. H. Jacobs. Parsing Techniques: A Practical Guide.
Monographs in Computer Science. Springer, Berlin, 2008.

[12] John E Hopcroft and Jeffrey D. Ullman. Introduction to Automata Theory,
Languages, and Computation. Series in Computer Science. Addison-Wesley,
1979.

[13] Mark Johnson. The computational complexity of GLR parsing. In Masaru
Tomita, editor, Generalized LR parsing, pages 35–42. Kluwer Academic
Publishers, The Netherlands, 1991.

[14] Adrian Johnstone and Elizabeth Scott. Proofs and pedagogy; science and
systems: the Grammar Tool Box. 69:76–85, 2007.

[15] Adrian Johnstone, Elizabeth Scott, and Giorgios Economopoulos. Generalised
parsing: some costs. In Evelyn Duesterwald, editor, Compiler Construction,
13th Intnl. Conf, CC’04, volume 2985 of Lecture Notes in Computer Science,
pages 89–103. Springer-Verlag, Berlin, 2004.

[16] Donald E Knuth. On the translation of languages from left to right. Information
and Control, 8(6):607–639, 1965.

[17] Scott McPeak and George Necula. Elkhound: a fast, practical GLR parser
generator. In Evelyn Duesterwald, editor, Compiler Construction, 13th Intnl.
Conf, CC’04, Lecture Notes in Computer Science. Springer-Verlag, Berlin, 2004.

[18] Rahman Nozohoor-Farshi. GLR parsing for ǫ-grammars. In Masaru Tomita,
editor, Generalized LR Parsing, pages 60–75. Kluwer Academic Publishers, The
Netherlands, 1991.

[19] Jan G. Rekers. Parser generation for interactive environments. PhD thesis,
University of Amsterdam, 1992.

[20] Elizabeth Scott. SPPF-style parsing from Earley recognisers. Electronic Notes
in Theoretical Computer Science, pages 53–67, 2007.

[21] Elizabeth Scott and Adrian Johnstone. Generalised bottom up parsers with
reduced stack activity. The Computer Journal, 48(5):565–587, 2005.

[22] Elizabeth Scott and Adrian Johnstone. Right nulled GLR parsers. ACM
Transactions on Programming Languages and Systems, 28(4):577–618, July
2006.

29

[23] Elizabeth Scott, Adrian Johnstone, and Giorgios Economopoulos. A cubic
Tomita style GLR parsing algorithm. Acta Informatica, 44(6):427–461, 2007.

[24] Masaru Tomita. Efficient parsing for natural language. Kluwer Academic
Publishers, Boston, 1986.

[25] D H Younger. Recognition of context-free languages in time n3. Inform. Control,
10(2):189–208, February 1967.

30

