Modelling GLL parser implementations

Adrian Johnstone and Elizabeth Scott!

Royal Holloway, University of London, Egham, Surrey, TW20 0EX, UK
{a.johnstone,e.scott}@rhul.ac.uk

Abstract. We describe the development of space-efficient implementa-
tions of GLL parsers, and the process by which we refine a set-theoretic
model of the algorithm into a practical parser generator that creates prac-
tical parsers. GLL parsers are recursive descent-like, in that the structure
of the parser’s code closely mirrors the grammar rules, and so grammars
(and their parsers) may be debugged by tracing the running parser in
a debugger. While GLL recognisers are straightforward to describe, full
GLL parsers present technical traps and challenges for the unwary. In
particular, naive implementations based closely on the theoretical de-
scription of GLL can result in data structures that are not practical for
grammars for real programming language grammars such as ANSI-C.
We develop an equivalent formulation of the algorithm as a high-level
set-theoretic model supported by table-based indices, in order to then
explore a set of alternative implementations which trade space for time
in ways which preserve the cubic bound.

Keywords: GLL parsing, general context-free parsing, implementation
spaces, time-space tradeoffs

1 The interaction between theory and engineering

In Computer Science, the theoretician is mostly concerned with the correct-
ness and asymptotic performance of algorithms whereas the software engineer
demands ‘adequate’ time complexity on typical data coupled to memory re-
quirements that do not cause excessive swapping. The theoretician’s concerns
are independent of implementation but the engineer’s concerns are dominated
by it and so the two communities do not always communicate well. As a result,
our discipline has not yet achieved the comfortable symbiosis displayed by, for
example, theoretical and experimental physicists.

The dominant characteristic of theoretically-oriented presentations of algo-
rithms is under specification. It is fundamental practice for a theoretician to
specify only as much as is required to prove the correctness of the results because
this gives those results the widest possible generality, and thus applicability.

For the software engineer, under specification can be daunting: they must
choose data structures that preserve the asymptotic performance demonstrated
by the theoretical algorithm, and sometimes the performance expectations are
only implicit in the theoretician’s presentation. For instance, theoretical algo-
rithms will often use sets as a fundamental data type. To achieve the lowest

asymptotic bounds on performance the algorithm may need sets that have con-
stant lookup time (which suggests an array based implementation) or sets whose
contents may be iterated over in time proportional to their cardinality (which
suggests a linked list style of organisation). The engineer may in fact be less
concerned by the asymptotic performance than the average case performance on
typical cases, and so a hash-table based approach might be appropriate. These
implementation issues may critically determine the take up of a new technique
because in reworking the algorithm to accommodate different data representa-
tions, the implementer may introduce effects that make the algorithm incorrect,
slow or impractically memory intensive in subtle cases.

This paper is motivated by our direct experience of the difficulties encoun-
tered when migrating a theoretically attractive algorithm to a practical imple-
mentation even within our own research group, and then the further difficulties
of communicating the results and rationale for that engineering process to col-
laborators and users.

The main focus of this paper is a modelling case study of our GLL generalised
parsing algorithm [6] which yields cubic time parsers for all context free gram-
mars. Elsewhere we have presented proofs of correctness and asymptotic bounds
on performance along with preliminary results that show excellent average case
performance on programming language grammars. It is clear, however, that the
theoretical presentations have proved somewhat difficult for software engineers,
who may find the notation opaque or some of the notions alien, and who may
miss some of the critical assumptions concerning data structures which are re-
quired to have constant lookup time. Direct implementation of these structures
consumes cubic memory and thus more subtle alternatives are required. In this
paper we shall explicitly address the motivation for our choice of high level data
structures, and explain how we migrate a naive version to a production version
by successive refinement. Our goal is to describe at the meta-level the process
by which we refine algorithm implementations.

We view this as a modelling process. Much of the model-driven engineering
literature is concerned with programming in the large, that is the composition of
complete systems from specifications at a level of abstraction well away from the
implementation platform, potentially allowing significant interworking and reuse
of disparate programming resources. This paper is focused on programming in
the small. We use a specification language that avoids implementation details of
the main data structures, and then use application specific measures to refine
the specification into an implementation with optimal space-time tradeoff. We
do this in a way that lends itself to automation, holding out the prospect of
(semi-)automatic exploration of the implementation space. It is worth investing
this effort because we are optimising a meta-program: our GLL parser generator
generates GLL parsers, and every parser user will benefit from optimisations
that we identify.

Our models are written in LC, a small object-oriented language with an ex-
tremely simple type system based on enumerations and tables. Our goal is to
develop a notation that is comfortable for theoretical work from which imple-

mentations may be directly generated, and which also allows tight specification
of memory idioms so that the generated implementations can be tuned using the
same techniques that we presently implement manually, but with much reduced
clerical overhead.

We begin with a discursive overview of GLL and then describe some aspects
of the LC language. We give an example GLL parser written in LC and explain
its operation. We then show how memory consumption may be significantly
reduced without incurring heavy performance penalties. We finish by discussing
the potential to semi-automatically explore the space of refined implementations
in search of a good time-space trade off for particular kinds of inputs.

2 General Context Free Parsing and the GLL algorithm

Parsing is possibly one of the most well studied problems in computer science
because of the very broad applicability of parsers, and because formal language
theory offers deep insights onto the nature of the computational process. Trans-
lators such as compilers take a program written in a source (high level) language
and output a program with the same meaning written in a target (machine) lan-
guage. The syntax of the source language is typically specified using a context
free grammar and the meaning, or semantic specification, of a language is typi-
cally built on the syntax. Thus the first stage of compilation is, given an input
program, to establish its syntactic structure. This process is well understood and
there exist linear algorithms for large classes of grammars and cubic algorithms
that are applicable to all context free grammars.

Formally, a contezt free grammar (CFG) consists of a set N of non-terminal
symbols, a set T of terminal symbols, an element S € N called the start symbol,
and a set of grammar rules of the form A ::= a where A € N and « is a string in
(T UN)*. The symbol € denotes the empty string, and in our implementations
we will use # to denote e. We often compose rules with the same left hand sides
into a single rule using the alternation symbol, A ::=ay | ... | az. We refer to
the strings «; as the alternates of A.

We use a grammar I' to define a language which is a set of strings of
terminals. We do this by starting with the start symbol and repeatedly re-
placing a nonterminal with one of its alternates until a string containing no
nonterminals is obtained. A derivation step is an expansion yAB=y«a where
7,8 € (TUN)* and A ::= « is a grammar rule. A derivation of 7 from o is a

sequence 0=01=Fo= ... =n_1=7, also written o=>7 or, if n > 0, o=57. The
language defined by a CFG I is the set of all strings u of terminals which can
be derived from the start symbol, S, of I'. Parsing is the process of determining,
given a string u, some or all of the derivations S=>u.

Of the linear parsing techniques perhaps the most widely used is the LR-table
driven stack based parser [3]. For the class of grammars which admit LR-parsers
the technique is straightforward to implement. However, the class of grammars
does not include any grammars for ‘real’ programming languages and as a result
implementations ‘modify’ the technique to extend its applicability. It can be

hard to reason about the correctness or the subtle behaviour of the resulting
implementation.

An alternative is to use a general technique such as Earley[2], CYK]10] or
GLR[8], [5]. In worst case Earley algorithms are cubic, CYK requires the gram-
mar to be rewritten in 2-form and standard GLR algorithms are unbounded poly-
nomial order, although the typical performance of GLR algorithms approaches
linear and a cubic version has been developed [7]. These general algorithms are
used in the natural language community but have had relatively limited take up
within mainstream computer science. This is, at least to some extent, because
they are hard for many implementers to understand and their implementation
needs to be done with a great deal of care to get acceptable space and runtime
performance. For example, ASF+SDF [9] uses Farshi’s version of GLR [4] which
achieves correctness in a rather brute force way and hence acquires a perfor-
mance cost, and Bison includes a GLR mode [1] which does not employ the full
details of the GLR approach and hence cannot parse an input of length 20 for
some highly ambiguous grammars.

Recently we have introduced the general GLL parsing technique [6], which
is based on the linear recursive descent paradigm. Recursive descent (RD) is
an attractive technique because the parser’s source program bears a close rela-
tionship to the grammar of the language and hence is easy to reason about, for
instance by tracing the code in a debugger. However, the class of grammars to
which RD can be applied is very limited and many extensions have been im-
plemented which use either full or limited backtracking. Full backtracking can
result in exponential runtime and space requirements on some grammars and
limited backtracking will fail to parse some grammars correctly. GLL models
full backtracking by maintaining multiple process threads. The worst-case cubic
complexity is achieved by using a Tomita-style graph structured stack (GSS) to
handle the function call stacks and left recursion (a fundamental problem for RD
parsers) is handled with loops in this graph. (A non-terminal A is left recursive

if there is a string p such that A=Ay, and a grammar is left recursive if it has
a left recursive nonterminal.)

The GLL technique is based on the idea of traversing the grammar, I', using
an input string, v, and we have two pointers one into I' and one into u. We
define a grammar slot to be a position immediately before or after any symbol
in any alternate. These slots closely resemble LR(0) items and we use similar
notation, X 1= x;...%; - Tj41...24 denotes the slot before the symbol ;4.
The grammar pointer points to a grammar slot. The input pointer points to a
position immediately before a symbol in the input string. For u = z1...xp, ¢ is
the position immediately before x;4; and p is the position immediately before
the end-of-string symbol, which we denote by $.

A grammar is traversed by moving the grammar pointer through the gram-
mar. At each stage the grammar pointer will be a slot of the form X 1=« - 20
or X ::= «- and the input pointer will be an input position, ¢. There are then
four possible cases: (i) If * = a;41 the grammar pointer is moved to the slot
X ::= ax - § and the input pointer is moved to i + 1. (ii) If = is a nonterminal A

then the ‘return’ slot, X ::= ax - § is pushed onto a stack, the grammar pointer
is moved to some slot of the form A ::= -y and the input pointer is unchanged.
(iii) If the grammar pointer is X ::= a- and the stack is nonempty, the slot
Y ::=6X - u which will be on the top of the stack is popped and this becomes
the grammar pointer. (iv) Otherwise if grammar pointer is of the form S ::= 7
and the input pointer is at the end of the input a successful traversal is recorded,
else the traversal is terminated in failure. Initially the grammar pointer is posi-
tioned at a slot S ::= -«, where S is the start symbol, and the input pointer is
0.

Of course we have not said how the slot A ::= -y in case (ii) is selected.
In the most general case this choice is fully nondeterministic and there can be
infinitely many different traversals for a given input string. We can reduce the
nondeterminism significantly using what we call selector sets. For a string o and
start symbol S we define FIRSTT () = {t|a=>ta’}, and FIRST(a) = FIRST () U
{e} if a=¢ and FIRST () = FIRSTT () otherwise. We also define FOLLOW () =
{t|S=Tatu} if a # S and FoLLOW(S) = {t|S=>7Stu} U {$}.

Then for any slot X ::= «- 8 we define select(X ::= «-) to be the union of
the sets FIRST(fx), for each € FOLLOW(X), and we can modify the traversal
case (ii) above to say (ii) If = is a nonterminal A and there is a grammar slot
A ::= -y where a; € select(y) then the ‘return’ slot, X ::= ax - 8 is pushed onto
a stack, the grammar pointer is moved to the slot A ::= -y and the input pointer
is unchanged. The initial grammar pointer is also set to a slot S ::= -a where
ag € select(A == -a).

Whilst the use of selector sets can significantly reduce the number of possible
choices at step (ii), in general there will still be more than one qualifying slot
A = -y and, in some cases, infinitely many traversals. GLL is a technique
designed to cope with this in worst-case cubic time and space.

At step (ii), instead of continuing the traversal each possible continuation
path is recorded in a context descriptor and ultimately pursued. We would expect
a descriptor to contain a slot, an input position and a stack. Then, at step (ii), for
each slot A ::= -y such that a; € select(A ::= -y) a descriptor is created with that
slot, the current stack onto which the return slot is pushed and input position i.
A descriptor (L, s, 1) is ‘processed’ by restarting the traversal with the grammar
pointer at the slot L, s as the stack and input pointer at ¢. There are potentially
infinitely many descriptors for a given input string because there are potentially
infinitely many stacks. The solution, introduced by Tomita for his initial version
of the GLR technique, is to combine all the stacks into a single graph structure,
merging the lower portions of stacks where they are identical and recombining
stack tops when possible. At the heart of the GLL technique are functions for
building this graph of merged stacks, which we call the GSS. Instead of a full
stack, descriptors then contain a node of the GSS which corresponds to the top
of its associated stack(s), thus one descriptor can record several partial traversals
provided they restart at the same grammar and input positions.

So far we have addressed only the recognition of a string; we want to capture
the syntactic structure to pass on to later stages in the translation process. A

common method for displaying syntactic structure is to use a derivation tree: an
ordered tree whose root is labelled with the start symbol, leaf nodes are labelled
with a terminal or ¢ and interior nodes are labelled with a non-terminal, A say,
and have a sequence of children corresponding to the symbols in an alternate of
A. This is a derivation tree for a ... a, if the leaf nodes are labelled, from left to
right, with the symbols a1, ..., a, or €. The problem is that for ambiguous gram-
mars one string may have very many different syntactic structures and so any
efficient parsing technique must use an efficient method for representing these.
The method used by GLR parsers is to build a shared packed parse forest (SPPF)
from the set of derivation trees. In an SPPF, nodes from different derivation trees
which have the same tree below them are shared and nodes which correspond
to different derivations of the same substring from the same non-terminal are
combined by creating a packed node for each family of children. The size of such
an SPPF is worst-case unbounded polynomial, thus any parsing technique which
produces this type of output will have at least unbounded polynomial space and
time requirements. The GLL technique uses SPPF building functions that con-
struct a binarised form of SPPF which contains additional intermediate nodes.
These nodes group the children of packed nodes in pairs from the left so that
the out degree of a packed node is at most two. This is sufficient to guarantee
the SPPF is worst-case cubic size. In detail, a binarised SPPF has three types
of nodes: symbol nodes, with labels of the form (z,j,i) where z is a terminal,
nonterminal or € and 0 < j <4 < n; intermediate nodes, with labels of the form
(t,4,1); and packed nodes, with labels for the form (¢, k), where 0 < k < n and
t is a grammar slot. We shall call (j,7) the extent (j, ¢ are the left and right
extents respectively) of the SPPF symbol or intermediate node and k the pivot
of the packed node.

3 The LC specification language

LC is a small object oriented language which provides only a single primitive data
type (the enumeration) and a single data structuring mechanism (the table). LC
is designed to allow high-level descriptions of set-theory based algorithms whilst
also allowing quite fine grained specification of the implementation in terms of
the way the algorithm’s objects are to be represented in memory. In this respect,
LC is an unusual language with elements of both high level specification lan-
guages and very low level assembler-like languages. At present, LC is a (mostly)
paper notation which we use here to describe data structure refinements. Our
intention is that an LC processor will be constructed which can generate exe-
cutable programs written in C++, Java and so on as well as ITEX renderings
of our algorithms in the style of [6]. (We note in passing that LC’s syntax is
hard to parse with traditional deterministic parsers, so in fact LC itself needs a
GLL or other general parser). In this section we describe the type system of LC
along with a few examples of sugared operations and control flow sufficient to
understand the description of the GLL parser below.

Lexical conventions An LC program is a sequence of tags and reserved symbols,
notionally separated by white space. A tag is analogous to an identifier in a
conventional programming language except that any printable character other
than the nine reserved characters () [] , | : " and comments delimited
by (* *) may appear in a tag. Hence , and are all valid
tags. Where no ambiguity results, the whitespace between tags may be omitted.
Character strings are delimited by " and may include most of the ANSI-C escape
sequences.

Primitive types The LC primitive data type generator is the enumeration which
maps a sequence of symbols onto the natural numbers and thus into internal ma-
chine integers. The enumeration is a |-delimited list with a prepended tag which
is the type name. A boolean type might be defined as Bool (false | true).
Literals of this type are written Bool: :false and Bool: :true. Where no ambi-
guity results, the tag may be written simply as the tag true or false. Methods
may be defined by enumerating the appropriate finite map from the set of input
parameters to the output values, so to define a boolean type that contains a
logical AND operation we write:

Bool (false | true
Bool &(Bool, Bool) := ((false, false),
(false, true)))

Where no ambiguity results, methods may be invoked using infix notation.
Every primitive type has an extra value () read as empty. Newly declared
variables are initialised to () and variables may be ‘emptied’ by assigning () to
them.
We can declare some integer types as

Int3 (-4 | -3 -2|-1]0111]21]3)
Unsigned3 (O | 1 |1 231 51617)

We shall assume the existence of a type Int which has been defined in this
way and which contains sufficient values to allow our computations to proceed
without overflow and the usual arithmetic operations.

For each enumeration, the first element maps to 0, the second to 1 and
so on. We use |z| to denote the cardinality of set z and ||z|| to represent the
memory space required to represent an element of x. If |T| is the number of
explicitly declared enumeration elements then there are |T'| + 1 elements in the
type (allowing for the extra value) and so a value of type T occupies at
least ||t|| = [logy(|T] + 1)] binary digits in memory.

Enumerations may be composed: BothBoolAndUnsigned3 (Bool | Unsigned3)
is a shorthand for

BothBoolAndUnsigned3 (false | true | 0 | 1 | 2 | 3| 5|61 7)

It is an error to compose enumerations which share tag values.

Tables Each variable in LC is a table with zero or more dimensions each of
which has an index set defined by an L.C enumeration. So, Bool x(Int3) (Bool)
declares a two dimensional array of 16 boolean variables, called x(-3) (false),
x(=3) (true), x(-2) (false), ..., x(3) (true). We may write Bool x(Int3,
Bool) as a shorthand declaration.

Representing types with LC tables Since LC’s type system is so simple, it is rea-
sonable to wonder whether it is sufficient. It clearly is complete in fundamental
engineering terms because nearly all modern computers use a single virtual ad-
dress space of binary memory locations corresponding to a one dimensional LC
table. All data structures ultimately are mapped to this representation. Hoare’s
classic survey of datastructuring techniques listed five mechanisms by which
primitive types are combined: Cartesian product, discriminated union, map,
powerset and recursive data type. LC provides each of these: a comma-delimited
list of type and field names, for example CartProd (Int3 i, Bool b), denotes
a Cartesian product and corresponds to a record structure in Pascal or a struct
in C named CartProd with two fields named i and b; a |-delimited list of
type and field names, for example DiscUnion (Int3 i | Bool b), denotes a
discriminated union and plays a similar role to a C union; maps are directly
represented by tables of functions; powersets are represented by tables indexed
by the type of the powerset whose cells are either empty or contain the element
of the unusual enumeration type Set (isMember); and recursive types by (im-
practically) large tables: for instance the edges of a graph of nodes containing
a CartProd field is specified as Set g(CartProd, CartProd). The process by
which such extensive tables is implemented is described in a later section.

Assignments In LC, assignment is central. Simple assignment is written x :=
2. Structurally type compatible assignments may be done is a single statement
as in (Int3 x, Bool y, Unsigned3 z) := (3, true, 3). We provide some
higher level assignment operations which are used as hints by the datastructure
refinement stage:

x addTo s is shorthand for s(x) := isMember

x deleteFrom s is shorthand for s(x) := ()

y selectDelete s is shorthand for: nondeterministically select an index i
of an occupied cell in s then execute y := s(i) s(i) := ().

y selectNewestDelete s is like selectDelete except that the most re-
cently assigned cell is guaranteed to be selected (leading to stack-like be-
haviour)

y selectOldestDelete s is like selectDelete except that the occupied
cell whose contents has been unchanged the longest is guaranteed to be
selected, leading to queue-like behaviour.

Control flow An LC label may appear before expressions or statements, labels
are denoted by a tag followed by a colon. Labels may be assigned to variables and
passed as parameters; their type is CodeLabel and there is an implicit definition

of an enumeration comprising all of the labels in a program in the order in which
they are declared. Control may be transferred to a literal label or the contents
of a CodeLabel variable with the goto statement. LC also includes the usual if
and while statements. LC provides some syntactically sugared predicates such
as x in s which is shorthand for s(x) != (), i.e. that the cell in s indexed by
X is non-empty.

The for statement provides a variety of higher level iteration idioms.

for x in T and for x in Y each execute once for each member of the
enumeration in type T or non-empty member of table Y respectively; on
each iteration x will have a different element but there is no guarantee of the
order in which elements are used.

for x over T and for x over Y each execute once for each member of
the enumeration in type T or non-empty member of table Y respectively,
with the elements being used in the order in which they are declared in T
or, respectively, Y. In the case of a table, where the index is a tuple, the
rightmost element varies most rapidly.

Text strings and output LC strings are delimited by " and accept most ANSI-
C escape sequences. An LC program can produce textual output via a method
write () which, by analogy with ANSI-C’s printf () function takes a string with
embedded place holders %. No type need be supplied, since LC values carry their
class with them, but most ANSI-C formatting conventions are supported.

4 An example GLL parser

In this section we discuss an LC GLL parser for the grammar
Su=ASb]|e At=a

In the listing below, data types are declared in lines 1-19 and variables in lines
20-30. The GLL parser body is in lines 42-71 and the support routines (which
are grammar independent) are appended in lines 73-111. The dispatcher, which
dictates the order in which contexts are computed is at lines 35—40.

There are primitive types GSSLabel, SPPFLabel and ContextLabel whose
elements are certain grammar slots together with, in the case of SPPFLabel, the
grammar terminals and nonterminals, and # (epsilon). There are explicit maps
contextlLabel, codelLabel, and sppflabel from GSSLabel to contextLabel
and from contextLabel to CodeLabel and sppflLabel. We also define the se-
lector sets for each grammar slot, and abort sets which are the complements of
the selector sets. The maps isSlot1NotEnd and isSlotEnd take a ContexLabel
and return a Boolean. The former returns true if the corresponding slot is of
the form X ::= = - a where z is a terminal or nonterminal and a # €, and the
latter returns true if the corresponding slot is of the form X ::= ~-. The map
lhsSlot takes a ContextLabel and returns the left hand side nonterminal of

the corresponding slot. For readability we have left the explicit definitions of all
these types out of the listing.

The methods findSPPFSymbolNode, findSPPFPackNode and findGGSNode
return a node with the specified input attributes, making one if it does not
already exist. Their definitions have also been omitted so as not to pre-empt the
data structure implementation discussion presented in the later sections of this
paper.

1 Set (isMember)

2 N(CA | S)

3 T (a | b)

4 Lexeme (T | EndOfString)
5 GSSLabel (...)

6 SPPFLabel (...)

7 ContextLabel (...)

s CodeLabel codeLabel(ContextLabel) := (...)

o ContextLabel contextLabel(GSSLabel) := (...)
10 SPPFLabel sppflabel(ContextLabel) := (...)
11 Set abortSet... := (...)

12 Set selectorSet... := (...)

13 GSSNode (GSSLabel s, Int i)

14 GSS (Set GSSEdge (GSSNode src, SPPFSymbolNode w, GSSNode dst))
15 SPPFSymbolNode (SPPFLabel s, Int leftExtent, Int rightExtent)
16 SPPFPackNode (SPPFLabel s, Int pivot)

17 SPPF (SPPFSymbolNode symbolNode, SPPFPackNode packNode,

18 SPPFSymbolNode left, SPPFSymbolNode right)

19 Context (Int i, ContextLabel s, GSSNode u, SPPFSymbolNode w)

20 GSS gss

21 SPPF sppf

22 Context c_C (* Current context x*)

23 Int c_I (* Current input pointer *)

24 GSSNode c_U (* Current GSS node *)

25 SPPFSymbolNode c_N (* Current SPPF node *)

26 SPPFSymbolNode c_R (* Current right sibling SPPF nodex*)

27 GSSnode u_0 (* GSS base node *)

28 Set U(Context) (x Set of contexts encountered so far *)
29 Set R(Context) (* Set of contexts awaiting execution *)

30 Set P(GSSNode g SPPFSymbolNode p) (* Set of potentially unfinished pops *)
31 gll_S(

32 SPPF parse(Lexeme I(Int))(
33 goto L_S

34

35 L_Dispatch:

36 c_C selectDelete R

37 if ¢_.C = () return sppf
38 c_I := c_C(i)

39 c_N := c_C(w)

40 goto codeLabel(c_C(s))

41

42 L_A:

43

44

45

46

47

48

49

50

60

61

62

63

64

65

66

67

68

70

71

72

73

74

76

77

78

79

80

81

82

83

84

86

87

88

89

90

91

if I(i) in selectorSet_A_1 addContext(A_1, c_U, c_I, ()
goto L_Dispatch

L_A_1:
c_R := (a, c_I, c_.I + 1) c_N := getSPPFNodeP(A_1_1, c_N, c_R) c_.I :=c_I + 1
pop
goto L_Dispatch

L_S:
if I(i) in selectorSet_S_1 addContext(S_1, c_U, c_I, ()
if I(i) in selectorSet_S_2 addContext(S_2, c_U, c_I,)
goto L_Dispatch

L

:= updateGSS(S_1_1) goto L_A
1:
if I(c_I) in abortSetS_1_2 goto L_Dispatch
c_U := updateGSS(S_1_2) goto L_S
L_S_1_2:
if I(c_I) in abortSetS_1_3 goto L_Dispatch
c_R := (b, c_I, c_I + 1) c_N := getSPPFNodeP(S_1_3, c_N, c_R) c_I := c_.I + 1
pop
goto L_Dispatch

w0 n
=

L

L_S_2:
c_R := (#, c_I, c_I) c_N := getSPPFNodeP(S_2_1, c_N, c_R)
pop
goto L_Dispatch

Void addContext(ContextLabel s, GSSNode u, Int i, SPPFSymbolNode w)
if (s, u, w) not in U(i) (
(s, u, w) addto U(i)
(s, u, w) addto R(i)

Void pop() (
if ¢_U = u_0 return
(c_U, c_N) addto P
for (w, u) in gss(c_U)
addContext (contextLabel(c_U(s)), u, c_I,
getSPPFNodeP (contextLabel (c_U(s)), w, c_N))

GSSNode updateGSS(ContextLabel s) (
w := c_N
v := findGSSNode(s, c_I)
if (v, w, c_U) not in gss (
(v , w, c_U) addto gss
for z in P(v) addContext(s, c_U, z(rightExtent), getSPPFNodeP(s, w, z))

93)
94 return v

95)

o7 SPPFSymbolNode getSPPFNodeP(ContextLabel s, SPPFSymbolNode z, SPPFSymbolNode w) (

08 if isSlotiNotEnd(s) return w

99 SPPFLabel t

100 if isEndSlot(s) t := lhsSlot(s) else t := sppflabel(s)
101 (,k, 1) :=w

102 if z != SPPFSymbolNode::() (

103 y := findSPPFSymbolNode(t, z(leftExtent), i)
104 findSPPFPackNode(y, s, k, z, w)

105)

106 else (

107 y := findSPPFSymbolNode(t, k, i)

108 findSPPFPackNode(y, s, k, O, w)

109)

110 return y

111)

112)

5 The impact of language size

Programming languages can vary by factor of seven or more in the cardinality
of key enumerations for GLL parsers. Table 1 shows the size of the GSSLabel,
SPPFLabel and ContextLabel enumerations for a range of languages. In each
case we have used the most authoritative available grammar: language stan-
dards for ANSI-C, Pascal and C++; the original report for Oberon and the VS
COBOL II grammar recovered from IBM documentation by Ralf Lammel and
Chris Verhoef.

We also show the grammar’s ring length. This is the longest sequence of ter-
minals present in any alternate in the grammar. It turns out that the dimensions
of some tables in a GLL parser may be reduced in size from O(the length of the
input string) to O(ring length).

Finally, we show the effect of set merging. The number of defined sets is the
number of unique sets referenced by a GLL parser: that is the selector sets and
the abort sets. It turns out that many of these sets have the same contents, so
we can alias names together and only store one table of isMember for two or
more set names.

6 Process management in GLL

The description of the GLL technique in Section 2 is essentially declarative. Here
we focus on possible implementations of the control-flow in GLL parsing. The
heart of GLL parsing from an operational point of view is the task scheduler. GLL
contexts (line 11) comprise a CodeLabel L, at which to resume execution, and

Table 1. GLL measures for programming languages

Grammar Enumeration extents| Ring Sets
GSS SPPF context|length|Defined Unique Saving

Oberon 1990 240 645 481 3 442 204 54%
C ANSI X3.159-1989 277 665 505| 5 507 176 65%
Pascal: ISO/IEC 7185:1990| 393 918 755 3 626 234 63%
Java JLS1.0 1996 384 949 755 4 668 227 66%
C++ ISO/IEC 14882:1998 | 722 1619 1287 4 1351 294 78%
COBOL (SDF) 1767 4530 3702] 5 3502 863 75%

the input pointer, GSS and SPPF nodes that were current at the time the context
is created. Each of these specifies an instance of the parser process. Whenever a
GLL parser encounters potential multiple control flow paths it creates a process
context for each path and then terminates the current process. This happens in
two places: (i) whilst processing a nonterminal when the selected productions
are added as new processes and (ii) when rules which called a nonterminal are
restarted after a pop action (in either the pop or updateGSS functions).

Now, what is to stop the number of processes growing without limit? The
key observation is that our parsing process is context free, and this means that
all instances of a nonterminal matching a particular substring are equivalent, or
to put it another way, if a nonterminal A has already been matched against a
particular substring a then we do not have to rerun the parse function. Instead,
we merely need to locate the relevant piece of SPPF and connect the SPPF node
currently under construction to it. As result, each GLL context created within
a run of the parser need execute only once. To ensure this, we maintain a set of
contexts that have been seen on a parse U along with a set R which holds the
subset of U which currently awaits processing.

Whenever a process terminates, either because it reached the end of a produc-
tion or because the current input lexeme is invalid, control returns to L_Dispatch
where a new process is scheduled for execution. In our example, processes are
removed non-deterministically (line 36). If we force stack removal by changing
the selectDelete operator to selectNewestDelete then we can simulate the
behaviour of a traditional depth-first RD parser except that GLL accepts left
recursive grammars. This can be very useful for debugging grammars. It turns
out that if we force queue removal using selectOldestDelete then we can make
significant memory savings, and reduce the maximum size of R.

7 Modelling GLL data structure refinement

So far, our LC programs have been based on the notion of a flexible tables
which can change their size and even their dimensionality as required. From the
theoretician’s point of view, we assume that the tables are ‘large enough’. Table
elements may be accessed in unit time, and on the occasions that we need to
iterate over the contents of a table in time proportional to the number of used

elements, we assume that a parallel linked list has been constructed in tandem
with the table. This model (which we call Big-Fast-Simple or BFS) is sufficient
to reason about the asymptotic space and time performance of an algorithm,
but is likely to be over-simplistic for real problems, and indeed that is the case
for GLL. It turns out that directly implementing GLL data structures such as
the SPPF and GSS as arrays is practical for small examples, and is in fact very
useful for experimenting with pathological highly ambiguous grammars because
we get maximum speed that way, but for realistic inputs to parsers for even small
languages such as ANSI-C the direct implementation requires huge memory.

We shall now describe the procedure we use to optimise the space required
by our data structures with compromising asymptotic behaviour.

7.1 Address calculation and pointer hopping

We might attempt to implement an LC table as a straightforward multi-dimensional
array, or as a sparse array made up of a tree of lists, or as some sort of hybrid.
An LC table, like any other kind of data structure, is a container for other data
structures and primitive data types; any instance of a type is ultimately just a
collection of filled cells along with access paths to each cell, expressed in LC’s
case as tuples of indexing expressions.

There are essentially only two mechanisms from which to construct access
paths: pointer hopping (i.e. linked data structures based on cells which contain
the names of other cells) and direct address calculation in which the access path is
a computation over the index expressions and some constants. The distinguishing
feature, then, is that with address calculation, a data cell’s address is a function
of its index expression only, but with linking a data cell’s address is a function of
its index expression and the contents of at least one other cell in the data type.

Multi-dimensional arrays are the most common example of data structures
accessed solely by address calculation, but we include hash tables in this category
too. Space precludes consideration of hash tables in this paper although we shall
introduce our notation for refining LC tables to hash table implementations.

We can characterise the two styles of implementation in terms of their impact
on (i) space, (ii) access time for a particular index value, and (iii) iteration time,
i.e. the time taken to access all elements.

Consider a one dimensional table = of type Y indexed by type T in which
d < |T| elements are utilised, the others being set to (). So, for example, this
LC declaration Y x(T) := ((), ul, ul) creates a table in which d is 2 since
only the second and third elements are in use.

— For a linked implementation, the space required is O(d), the time to access
a particular element indexed by ¢t € T' is O(d) and the time taken to iterate
over all elements is also O(d).

— For an implementation based on address calculation, the space required is
O(|T|), a particular element indexed by ¢ € T can be accessed in constant
time and the time taken to iterate over all elements is O(|T).

We refine an LC table definition by annotating the dimensions to specify
either linking (indicated by parentheses) or address calculation indicated by
square brackets. We call these possibilities the dimension modes.

For a two dimensional table U x(T,S) indexed by types T'(1|2|3|4) and S(a|b|c|d)
we might choose

U x((T), (8)) a fully linked representation (using a list of lists),
U x([T, S]) a two dimensional address calculation,

U x([T], [S]) two one-dimensional (vector) address calculations
U x(C [T], (8)) a vector of linked lists, or

U x(C (T), [S]) a linked lists of vectors.

G o=

These cases are illustrated in Figure 1 for the case of an 2D array indexed by
unsigned two-bit integers containing the following ordered pairs: (1,a), (1,b), (1,¢), (1,d), (2,b), (4, a)
and (4,d).

O~~~
(1), () ([s)

ae
2 [()

=N W

Fig. 1. Table refinement for 2-D structures

For multi-dimensional tables implemented as anything other than a full array,
the dimension modes of a table are not the only things that affect performance
since both the size of a table and its access time for particular elements can be
dependent on the ordering of the dimensions. We should emphasise that this is
purely an implementation matter: the semantics of a table do not change if one
permutes the indices in its declaration as long as the indices in accesses to that
table are changed to match. This means that we have an opportunity to improve
performance through refinement without affecting the analysis of the algorithm
as specified in its original, unrefined, form.

Consider the set of ordered pairs (1,a), (3,a),(4,a) and (4,b). The leftmost
dimension uses three distinct values, but the rightmost dimension uses only two.
If we use the list-of-lists organisation, indexing as ((T), (8)) we can have two
structures, one listing the leftmost dimension first and the other the rightmost:

The leftmost-first table requires more space than the rightmost. The driver for
this is the wtilisation count for a dimension of a table. If we can order a table so
that, on average, the dimensions with the lowest utilisation counts are used first,
then we will on average reduce the size of the table. This effect, in which using the
dimension with the highest utilisation count first increases the overall size of the
structure can have a very significant effect on memory consumption. Consider the
case of a table x([Unsigned16], [Unsigned16]). This will comprise vectors of
length 2'6 elements. Let us imagine an extreme case in which only one row of this
table is in use, i.e. that we are using cells x(0,0), x(1,0), ...x(65535, 0).If
we use the leftmost dimension as the first (column) index, then we need 65 536
row vectors within which only one element is in use. If, on the other hand, we
use the rightmost dimension for the column vector then we need only one row
vector, all elements of which are in use. We can see that the space allocation for
a table indexed as ([T], [T]) can vary between 2|T'| and |T|?.

Access time can be affected too: if we use a ([Int], (Int)) indexing style
then the arrangement with the shortest average row list is fastest. This militates
in favour of placing the dimension with the highest utilisation rate first. These
two effects are occasionally in tension with each other, but for sparse tables it
turns out that the best organisation is to move all of the [] dimensions to the
left, and then sort the [] left-to-right by reducing utilisation counts and then to
sort the () dimensions left-to-right by reducing utilisation count.

8 The modelling process

Having looked at notation for, and effects of, different organisations we shall now
look at a real example drawn from the GLL algorithm.
Consider the declaration of the GSS:

GSSNode (GSSLabel s, Int i)

SPPFSymbolNode (SPPFLabel s, Int leftExtent, Int rightExtent)
GSS (Set GSSEdge (GSSNode src, SPPFSymbolNode w, GSSNode dst))
GSS gss

We begin by flattening the declarations into a signature for table gss by
substitution:

Set gss ((xsrcx) GSSLabel, Int,
(*w*) SPPFLabel, Int, Int,
(*dst*) GSSLabel, Int
)

This is discouraging: on the face of it the signature for gss demands a seven
dimensional table, of which four dimensions are indexed by Int. We can reduce
the extent of those dimensions to Natural(n) (a natural number in the range 1
to n) since we know that extents and indices are bounded by the length of the
parser’s input string. Extents for the other dimensions may be found in Table 1:
for ANSI-C there are 277 elements in the GSSLabel enumeration and 665 in
the SPPFLabel enumeration. It is not unreasonable to expect a C compiler to
process a string of 10,000 (10%) tokens: our GSS table would then require at least
1016 x 2772 x 665 ~ 5.1 x 1022 bits, which is clearly absurd.

Now, the signature for a data structure may contain dependent indices. For
instance, in the GSS we can show that the left extent of a GSS edge label
w(leftExtent) is the same as the index of the destination GSS node, and the
rightExtent is the same as the index of the source node. These repeated dimen-
sions can be removed, at which point our signature is reduced to

Set gss ((*srcx) GSSLabel, Int,
(kw*) SPPFLabel,
(*dst*) GSSLabel, Int
)

We must now identify dimensions that are candidates for implementation
with address calculation. If we have sufficient runtime profile information, we
may choose to ignore asymptotic behaviour and use hash tables tuned to the
behaviour of our parser on real examples. In this paper, we restrict ourselves to
array-style address mapping only.

For dimensions that require constant time lookup we must use address map-
ping. For other dimensions, we may use address mapping if the improvement in
performance merits the extra space required.

To find out if an indexing operation must be done in constant time, we must
analyse the behaviour of our gl1() function. The outer loop is governed by the
removal of contexts from R at line 36. From our analysis in [6], we know that
there are quadratically many unique contexts in worst case so the outer loop is
O(n?). We also know that there are O(n) GSS nodes, and thus each node has
O(n) out-edges (since the number of edge labels is the number of SPPF labels
which is constant).

The parser function itself has no further loops: after each context is ex-
tracted from R we execute linear code and then jump back to L_Dispatch. Only
the pop() and updateGSS() functions have inner loops: in pop() we iterate
over the O(n) out-edges of a GSS node performing calls to addContext () and
getSPPFNode () and in updateGSS() we iterate over the O(n) edges in the unfin-
ished pop set, P, again performing calls to addContext () and getSPPFNode ().

Clearly, addContext () and getSPPFNode () are executed O(n?) times, and so
must themselves execute in constant time. addContext () involves only set tests
and insertions which will execute in constant time if we use address calculation.
getSPPFNode () looks up an SPPF symbol node, and then examines its child
pack nodes: these operations must execute in constant time and they turn out
to be the most space demanding parts of the implementation.

We are presently concerned only with the GSS implementation so we re-
turn to function updateGSS(). Lines 81-91 implement the updating of the GSS
structure: at line 89 we look for a particular GSS node which will be the source
node for an edge, and in lines 90 and 91 we conditionally add an edge to the
destination node. This operation is done O(n?) times, so the whole update can
take linear time without undermining the asymptotic performance. We choose
to implement the initial lookup (line 89) in constant time and allow linear time
for the edge update. By this reasoning, we reach a GSS implementation of

Set gss ((*srcx) (GSSLabel), [Int],
(*wx) (SPPFLabel),
(*dst*) (GSSLabel), (Int)
)

Finally, we consider ordering of dimensions. We need an estimate of the utili-
sation counts for each dimension. For long strings, utilisation counts of the Int
dimensions will be greater than the others, because the extent of the GSSLabel
and SPPFLabel enumerations is constant and quite small (277 and 665 for ANSI-
C). It is hard to reason about the utilisation rates for the GSS and SPPF labels:
experimentation is required (and some initial results are given below). We note,
though, that there are more SPPF labels than GSS labels.

We also need to take account of the two-stage access to the GSS table. We
first need to find a particular source node, and then subsequently we use the
other indices to check for an edge to the destination node. This means that the
indices used in the first-stage query must be grouped together at the left.

On this basis, a good candidate for implementation is

Set gss ((xsrc(i)*) [Int], (*src(s)*) (GSSLabel),
(*dst(i)*) (Int),
(xw(s)*) (SPPFLabel),
(xdst(s)*) (GSSLabel)
)

This refinement process has given us a compact representation where we have
done a lot to save space without destroying the asymptotic behaviour implied by
the original unrefined specification. Depending on the results of experimentation,
we may wish to relax the constraints a little so as to increase performance at the
expense of space. For instance, what would be the impact of changing to this
implementation?

Set gss ((xsrc(i)#*) [Int], (*src(s)*) [GSSLabell,
(*dst(i)*) (Int),
(*w(s)*) (SPPFLabel),
(*dst(s)*) (GSSLabel)
)

This proposes an array of arrays to access the source GSS node label rather than
an array of lists. We can only investigate these kinds of engineering tradeoff in
the context of particular grammars, and particular sets of input strings. By

profiling the behaviour of our parser on typical applications we can extract real
utilisation counts.

We ran a GLL parser for ANSI-C on the source code for bool, a Quine-
McCluskey minimiser for Boolean equations, and measured the number of GSS
labels used at each input index. The first 50 indices yielded these utilisation
factors:

11, 18, 13, 10, 0, 1, 61, 11, 47, 0, 0, 19, 23, 0, 10, 3, 18, 0, 10, 18, 0, 44, 0, 0,

4, 7,0, 45,0, 10, 0, 44, 0, 0, 10, 0, 44, 0, 0, 46, 0, 14, 2, 0, 6, 16, 3, 45, 0, 10

s0, there are 11 GSS nodes with labels of the form (0,l, € GSSLabel), 18 of the
form (1,14) and so on. The total number of GSS nodes here is 623. The mean
number of GSS labels used per index position is 12.46, but 38% of the indices
have no GSS nodes at all. This might seem initially surprising, but recall that
a GSS node is only created when an input position has an associated grammar
slot which is immediately before a nonterminal.

Now, linked list table nodes require three integer words of memory (one for
the index, and two for the pointers). If these statistics are typical, for every
100 index positions we would expect 38 to be unpopulated, which means that
there would be 62 second level vectors of length 277 (the GSSLabel extent for
ANSI-C), to a total of 17 174 words. In the linked version, we would expect 1246
nodes altogether, and that would require 3738 words, so the ([1, [1, ...)
representation requires 4.6 times as much memory as the ¢ O, (), ...) ver-
sion, which may not be too onerous. The performance advantages are clear: the
mean list length would be 12.46, leading to an expected lookup time 6-10 times
slower than directly indexing the vectors even without taking into account cache
effects. There are also several lists which would be greater than 40 elements long,
leading to substantial loss of performance.

9 Conclusion: prospects for automatic refinement

In this paper we have given some details of our implementation of the GLL
technique using an approach that separates high level reasoning about algo-
rithm complexity from details of implementation, and a modelling process that
allows us to produce compact implementations which achieve the theoretically
predicted performance. We summarise our procedure as follows.

1. Flatten declarations to signatures by substitution.

2. Establish upper bounds on dimensions.

3. Remove dimensions that may be mapped from other dimensions and create
maps.

4. Remove repeated dimensions.

5. Identify dimensions that govern the time asymptote — these are the critical
dimensions.

6. For each dimension, compute, measure or guess the average number of ele-
ments of the index type T' that are used in typical applications: this is the
dimension’s Likely Utilisation Count (LUC). The ratio (|T|/LUC) is called
the dimension’s load factor (LF).

7. Implement critical dimensions as one dimensional tables.
8. Implement dimensions whose LF is greater than 33% as one dimensional
tables.
9. Group dimensions by query level, with outer queries to the left of inner
queries.
10. Within query groups, arrange dimensions so that [] indices are always to
the left of () indices.
11. Within query groups and index modes, sort dimensions from left to right so
that load factors increase from left to right.

For a given data structure, the available index modes and orderings define a
space of potential implementations. As we have shown, the basic procedure min-
imises space, but nearby points in the implementation space may have better
performance, and as long as the application fits into available memory, most
users would like to have the faster version.

In the future we propose that semi-automatic systems be constructed to
automatically explore these spaces in much the same way that hardware-software
co-design systems have successfully attacked the exploration of implementation
spaces for hardware oriented specifications. We have in mind the annotation
of critical dimensions by the theoretician, allied to a profiling system which will
collect statistics from sets of test inputs so as to measure or estimate load factors.
We believe that a notation similar to LC’s will be suitable for such an optimiser.

References

1. Gnu Bison home page. http://www.gnu.org/software/bison, 2003.

2. J Earley. An efficient context-free parsing algorithm. Communications of the ACM,
13(2):94-102, February 1970.

3. Donald E Knuth. On the translation of languages from left to right. Information
and Control, 8(6):607-639, 1965.

4. Rahman Nozohoor-Farshi. GLR parsing for e-grammars. In Masaru Tomita, editor,
Generalized LR Parsing, pages 60-75. Kluwer Academic Publishers, The Nether-
lands, 1991.

5. Elizabeth Scott and Adrian Johnstone. Generalised bottom up parsers with re-
duced stack activity. The Computer Journal, 48(5):565-587, 2005.

6. Elizabeth Scott and Adrian Johnstone. GLL parsing. Electronic Notes in Theo-
retical Computer Science, 2009.

7. Elizabeth Scott, Adrian Johnstone, and Giorgios Economopoulos. A cubic Tomita
style GLR parsing algorithm. Acta Informatica, 44:427-461, 2007.

8. Masaru Tomita. Efficient parsing for natural language. Kluwer Academic Publish-
ers, Boston, 1986.

9. M.G.J. van den Brand, J. Heering, P. Klint, and P.A. Olivier. Compiling lan-
guage definitions: the ASF+SDF compiler. ACM Transactions on Programming
Languages and Systems, 24(4):334-368, 2002.

10. D H Younger. Recognition of context-free languages in time n3. Inform. Control,
10(2):189-208, February 1967.

