
Principled software micro-engineering

Adrian Johnstone and Elizabeth Scott

Department of Computer Science,
Royal Holloway, University of London,

Egham, Surrey, United Kingdom

Abstract

Object oriented and pattern based metaphors for software present a solid en-
gineering base for software understanding and construction, but sometimes im-
pose a high performance overhead. We quantify this overhead for one form of
generalised parsing and propose support for implementation facets in high level
programming languages.

Keywords: Programming, performance, programming languages

1. Productivity and performance

In any form of engineering, success is primarily measured in terms of cor-
rectness, safety, price and performance, and requires an ability to predict price
and performance in advance so that trade-off decisions may be made before
and during resource commitment. This last is particularly difficult for software.
Unlike, say, mechanical systems, software displays a very wide spread of price-
performance possibilities. For instance even Formula One cars are only small
integer factors faster than road cars, and perhaps only one order of magnitude
faster than a bicycle. However, in digital electronics (and by extension soft-
ware) the playing out of Moore’s ‘Law’ has until recently delivered a doubling
in performance every 18 months. As a result, multiple generations of systems
are in the marketplace at any one time at different price points.

Performance improvements have allowed software engineers to attack com-
plexity by abstracting away from practices which are natural at machine level,
though with a concomitant loss of relative colck speed performance which is
masked by the exponential improvement in cycle time. However, there are ap-
plication areas such as gaming, scientific programming and embedded systems
where the work done per machine cycle must be maximised, so as to either
extract maximum throughput or minimum power consumption. In these areas
detailed optimised designs which we call software microengineering predominate.

Email address: a.johnstone@rhul.ac.uk, e.scott@rhul.ac.uk (Adrian Johnstone and
Elizabeth Scott)

Preprint submitted to Elsevier July 31, 2013

There are also subsystems in desktop computing that merit a microengineer-
ing approach. In this paper we present some relative performance data for one
such application — general context free parsing — and by borrowing ideas from
the field of Hardware Description Languages (HDLs) propose the use of faceted
programming languages to facilitate principled software microengineering.

2. Software engineering in computing pre-history

The inverse of Moore’s Law is that early machines were extraordinarily slow
and small, as well as rare and expensive. As a result, in the earliest years, the
emphasis was mostly on how to maximise the productivity of the machine. In
April 1948, James Wilkinson reported on the work of Turing and his collabo-
rators on the Pilot ACE, and the planned subsequent full scale ACE model [1].
This was two years before Pilot ACE ran its first real program (in May 1950),
and indeed two months before the Manchester Baby ran the world’s first stored-
program code. Even though no stored-program computers existed at the time
of Wilkinson’s report, the emphasis was already on performance. Instructions
and data were stored in mercury delay lines and read out sequentially-by-bit.
Partial computations were held in short tanks (analogous to modern registers)
and programs in long tanks, or later in a drum. Turing proposed that instruc-
tions be arranged in consecutive lock-stepped delay lines in such a way that the
next instruction would be available as soon as the last had finished processing.

The most obvious way of arranging the coded instructions in the
memory is to let each instruction comprise one word, and place suc-
cessive instructions consecutively in long tanks. This has the dis-
advantage that after the control has read one instruction it cannot
receive the next instruction until one major cycle afterwards. Since
most of the manipulation will be performed on numbers which are
being stored temporarily in short tanks this involves an unnecessary
waste of time. The alternative adopted, is to space the instructions
in such positions in the instruction tanks, that when instruction is
completed, the next is in the correct position for it to be obeyed. [1]

This approach (which required each machine instruction to carry the ad-
dress of its successor) developed into Turing’s doctrine of Optimum Program-
ming in which data and programs were laid out in storage in such a way as
to minimise fetch latencies. This required a very difficult programming style
which Christopher Strachey explicitly eschewed in the 1953-54 design of the
Ferranti PEGASUS because ‘it tended to become a time-wasting intellectual
hobby of the programmers’ [2, p.79]. Maurice Wilkes had his own reasons for
rejecting optimum programming: in his 1967 Turing Award lecture he rather
imperiously said: ‘I felt that this kind of human ingenuity was misplaced as a
long-term investment, since sooner or later we would have truly random-access
memories. We therefore did not have anything to do with optimum coding in
Cambridge’ [3]. In the modern age, though, Turing has had his revenge; the

2

techniques of optimum programming live on in the scheduling and cache man-
agement algorithms at the heart of any good optimising compiler. The difference
now is that only the compiler implementer has to be aware of the intricacies.

Turing also considered programmer productivity, but again in terms of ma-
chine throughput:

If the coding of each problem were attempted ‘ab initio’, the time
taken to prepare a problem for computation might seriously reduce
the effective speed of the machine. [1]

He proposed the pre-computation of important functions that would then be
available for lookup. This idea pre-dates the invention of the closed subroutine
by Wilkes, Wheeler and Gill [4] but Turing was perfectly aware that under-
standing problems and their solutions in software:

. . . we regard the preparation of these tables as being of real value
since we believe that the successful use of electronic computing
equipment will depend more upon the development of an efficient
method of organising routines and their integration into large scale
computing problems than any other single factor. [1, p.7]

Some 65 years later, we now work in a world in which machine cycles are
abundant yet software engineers often struggle to achieve correctness, safety
and cost goals. The discipline of software engineering has grown up as an
attempt to adapt successful practices from traditional engineering disciplines to
the complexities of software, augmenting them with discipline specific notions
of re-use and re-targetability.

3. The stratification of software engineering

These days the majority of applications are ‘fast enough’, and the focus
tends to be on programmer productivity and software correctness, rather than
on machine performance. The profession of software engineering has stratified
into a series of specialisations including analysts, software architects, project
managers, specialists such as user interface designers and, at the lowest level,
coders. The Software Engineering Body Of Knowledge is an ISO technical re-
port [5] which attempts to encapsulate the broad spread of skills possessed by
experienced software engineers. The current (third) revision defines 15 modules
of which only two (Computing Foundations and Mathematical Foundations) are
part of the core of a typical computer science undergraduate programme.

3.1. Design patterns and the OO metaphor

The emphasis on process and abstraction in SWEBOK is is familiar to other
areas of engineering, for example construction architects do not lay bricks, much
less manufacture them or dig the clay from which they are made. The building
industry has long been a fertile source of metaphors for the construction and

3

comprehension of computing systems; a prominent example being the Design
Patterns [6] movement which began with Christopher Alexander’s writings on
the pattern language of towns and buildings [7] (itself inspired by programming
language grammars) and which directly inspired work in the late 1980’s and
1990’s on software patterns at algorithmic, coordination and enterprise archi-
tecture levels [8].

Object-oriented programming styles coupled to design and architecture pat-
terns have facilitated a move to design-by-composition in which software sys-
tems may be assembled from parameterisable modules. There is no doubt that
the strict separation of concerns and controlled access to object state has been
instrumental in allowing re-use of software, although it is less clear that inheri-
tance (to some, the defining characteristic of OO design) is significant: indeed
some authors warn against over-use of inheritance since it exposes some of the
internals of a class to its derived classes.

Object orientation as a metaphor is a success, but conventional implemen-
tation techniques do not come for free. In most OO languages, objects are
created dynamically on the heap, and method despatch is largely specified at
runtime. (The obvious counter-example is C++ which retains the static core of
C.) This dynamic behaviour is certainly helpful at system level, but the reductio
ad absurdam as represented by Smalltalk-80’s everything-is-an-object doctrine
requires even a simple integer value to request heap allocation with a signif-
icant memory overhead. The associated execution overheads inevitably limit
throughput. In more pragmatic languages such as Java, C# and C++ a spec-
trum of approaches are provided: in particular the distinction between primitive
value types that map efficiently onto the underlying hardware and ‘pure’ object
primitive types. Skilled programmers can thus avoid some of the more obvious
traps, but neophytes are often caught out.

An undergraduate student recently presented us with an application that
featured a real-time graph of internal activity. Over time, the application’s per-
formance slowed to a crawl. The student had, as required, used the Java Swing
API method drawrect() to draw a 3× 3 box for each data point. The student
had created an individual Rectangle object for each data point, and passed
that to the graphics routine rather than directly supplying the coordinates.
The resultant stream of object creations crippled the application; removing the
redundant new Rectangle constructor from the parameter list to drawRect()

resulted in acceptable performance even though to the student it seemed less
object oriented.

Contemporary languages such as Java and C# further obscure runtime per-
formance because Just-In-Time (JIT) compilation and garbage collection mod-
ulate the throughput of programs over time; it is difficult to achieve general
agreement over the absolute performance of Java programs.

4. A case study: the GLL algorithm

In this section we examine the performance implications of object oriented
style of programming on implementations of generalised parsing using standard

4

Java environment.
Parsing is central to many software engineering tools; the dynamic hints, er-

ror checking and sophisticated code refactorings available within the Eclipse IDE
rely on accurate parsing of code in parallel with code editing. Most programs
which reason about programs, i.e. metaprograms, proceed from the source code
and will require parsers. Metaprogramming benefits from general parsing since
it frees the user from the hand optimisation of grammars that usually accompa-
nies the use of conventional near-deterministic parser generators such as Bison
and ANTLR.

The doyen of metaprogramming tools is ASF+SDF [9], a conditional term
rewriting environment coupled to a GLR-style generalised parser, has been used
for many applications [10]. GLR is a generalisation of Knuth’s LR parsing which
exploits Tomita’s observation that two concurrent context free parse stacks may
be merged when they have the same state on top. This reduces the (potentially
exponential) explosion of parse stacks in a general parser to a polynomial bound.
The merged stack structure is called a Graph Structured Stack (GSS). The (po-
tentially infinite) set of derivation trees resulting from a parse is represented
using a Shared Packed Parse Forest (SPPF).

More recently a generalisation of recursive descent parsing which uses a GSS
to represent the concurrent call graph has been described[11]. GLL runs in worst
case cubic time and in linear time on LL(1) grammars. The GLL parser gener-
ation algorithm comprises a declarative specification of a collection of grammar
attributes defined over a grammar ΓEBNF for extended BNF, and a series of
low level control flow templates that are parameterised by these attributes. The
grammar Γtarget for which a parser is to be generated is internally represented as
a derivation tree ∆ of Γtarget with respect to the grammar ΓEBNF; the parser
is a recursive instantiation of the control flow templates that is isomorphic with
Γtarget.

During execution, a GLL parser maintains a bipartite graph of symbol nodes
and pack nodes which represents the binarised SPPF. The out degree of a pack
node is less than three. The out degree of a symbol node is bounded by the
length of the string being parsed multiplied by the size of the grammar. The
GSS comprises nodes representing stack states and edges labelled with SPPF
nodes.

The out degree of both GSS and SPF symbol nodes may be very large,
but for normal near-deterministic grammars is usually small. To maintain the
worst case cubic runtime bound, it must be possible to locate GSS and SPPF
nodes with specific labels in unit time, and this presents a significant challenge.
One approach is to use a table of all possible elements, implemented using
sparse matrix techniques [12] in which table rows are allocated on demand.
This technique is impractical for realistic sized problems, since even with sparse
optimisations, high memory consumption leads to swapping during the parse.

The alternative is to allocate memory only for those elements that are ac-
tually used, and then use indices or hash tables to look them up. The natural
object-oriented approach to constructing these data structures defines a class for
each kind of element using k individual reference fields to represent contains k-of

5

0

10

20

30

40

50

60

70

80

0 50 100 150

JavaHP

JavaOO

Ratio

0

10

20

30

40

50

60

70

80

0 50 100 150

C++HP

JavaOO

Ratio

Figure 1: Relative performance of object oriented and HashPool GLL implementations

relationships for small k and some sort of collection class (in Java, the HashMap

generic) to represent contains many-of relationships. Each element of the data
structures then becomes a separate object, allocated on the heap. In practice,
thisapproach suffers from the same performance overhead as the undergraduate
graphics application mentioned above: there may be millions of objects created
during a parse, each of which has many bytes of memory overhead. In addition,
the intense object creation activity is likely to trigger the garbage collector,
even though there will be no memory to reclaim since all nodes created by the
algorithm have to remain in memory until the parse completes.

To minimise object creation, we directly manage memory from within the
application. In languages such as C++ this is straightforward because we may
cast structures onto arrays representing raw memory, but Java militates strongly
against such usage. Our HashPool implementation maintains a vector of refer-
ences to arrays of integers (called the pool) as the underlying memory model.
The vector is initially populated by null values except for the first entry which
is allocated an array of primitive integers sized so as to contain around 1,000
elements. Allocation simply involves incrementing an index by the size of the
allocated element, unless the end of the array has been reached in which case
a new primitive array is created in the next vector element. If the vector is
full, a new larger vector is allocated and the references copied over. Java does
not allow us to directly re-interpret the contents of these arrays as structured
types: instead we use indexed addressing and a set of symbolic constant offsets
to access individual fields. The resulting programming style is ugly and error
prone, since we have effectively removed the safety net of type checking.

Figure 1 summarises the performance of these two approaches using parsers
for the grammar S ::= b | SS | SSS, running on strings of bn, n = 10, 20, 30,
This grammar is highly ambiguous, and in fact triggers the cubic upper bound
for the GLL algorithm.

The left hand graph shows performance of the ObjectOriented Java imple-
mentation against the Java HashPool support library. The parser code itself
is identical in each case; only the management of the internal data structures
changes. Run times are in seconds; the ratio of the runtimes is between 10 and

6

20 for n > 50.
We also implemented HashPool in C++ with the results shown in the right

hand graph. The performance ratio exceeds 50 for n > 130. The C++ imple-
mentation is a clerical translation of the Java HashPool implementation without
any attempt at further optimisation; for instance, casting a C struct onto an
array of integers would allow compile-time constant offset addressing to extract
subfields which on some architectures would provide further speed up.

The runtime rations in each case exhibit structure which merits investigation.
We believe that these non-linearities arise from the re-hashing behaviour of the
Java HashMap; further experiments with pre-sized maps will allow us to test
this hypothesis.

5. Conclusions and a proposal: faceted programming languages

The declarative specification of a GLL parser lends itself to reasoning about
correctness, but any implementation requires the synthesis of data structures
and algorithms that meet the declarative specification. A näıve object oriented
implementation has the virtue of conciseness and comprehensibility, but the
runtime object creation overhead is uncomfortably high. The HashPool im-
plementation implements the same semantics, and indeed both the declarative
specification and the object oriented implementation could be viewed as more
abstract specifications for HashPool.

In software we have for a long time been able to trust the compiler to produce
correct, efficient machine level implementations of our high language specifica-
tions: so much so that assembly level programming is often no longer taught as
a primary skill at degree level. In silicon-level hardware design, engineers have
historically not been able to rely on efficient synthesis, and hardware descrip-
tion languages (HDL) such as VHDL emphasises the development of multi-level
specifications for hardware. Typically these include separate behavioural level,
register transfer level and structural level descriptions, each constituting one
facet of the overall specification. The development environment then provides
tools which attempt to establish that all of these descriptions implement the
same semantics and meet other Design Rule Checker constraints.

The object oriented software engineering required to transform our declar-
ative GLL specification into conventional Java, and the detailed software mi-
croengineering required to further transform the implementation into directly
memory managed code would have been facilitated if we had had support for
facets within Java development and tools to establish their equivalence. At a
simple level, Eclipse plugins might provide appropriate tooling and indeed our
testing regime for the ART GLL parser generator in a sense provides crude
equivalence testing. However, just as with HDLs, we believe that software en-
gineering in general and software microengineering specifically would benefit
from integrated programming language designs which allow individual classes
to be implemented using declarative set-theoretic specifications, traditional OO
metaphors and also as lower level code more redolent of systems-level C, and the
existence of clearly defined facet environments would stimulate the development

7

of checkers and synthesizers which would support the kinds of transformations
needed for performance optimisation.

References

[1] J. H. Wilkinson, Progress report on the Automatic Computing Engine,
Tech. Rep. MA/17/1024, National Physical Laboratory (April 1948).

[2] S. H. Lavington, Early British Computers, Manchester University Press,
1980.

[3] M. Wilkes, Computers then and now, Journal of the ACM 15 (1) (1968)
1–7.

[4] M. V. Wilkes, D. J. Wheeler, S. Gill, Preparation of Programs for an Elec-
tronic Digital Computer, Addison-Wesley, 1951.

[5] Software engineering – guide to the software engineering body of knowledge
(SWEBOK), Tech. Rep. ISO/IEC TR 19759:2005, International Standard
Organisation (2005).

[6] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns: Elements
of Reusable Object Oriented Software, Addison-Wesley, 1994.

[7] C. Alexander, S. Ishikawa, M. Silverstein, A Pattern Language, Oxford
University Press, 1977.

[8] G. Hohpe, Enterprise Integration Patterns: Designing, Building, and De-
ploying Messaging Solutions, Addison Wesley, 2004.

[9] M. van den Brand, J. Heering, P. Klint, P. Olivier, Compiling language
definitions: the ASF+SDF compiler, ACM Transactions on Programming
Languages and Systems 24 (4) (2002) 334–368.

[10] M. van den Brand, Applications of the ASF + SDF meta-environment, in:
R. Lämmel, J. Saraiva, J. Visser (Eds.), Generative and Transformational
Techniques in Software Engineering, International Summer School, GTTSE
2005, Braga, Portugal, July 4-8, 2005. Revised Papers, Vol. 4143 of Lecture
Notes in Computer Science, Springer, 2005, pp. 278–296.

[11] E. Scott, A. Johnstone, Gll parse-tree generation, Science of Computer
Programming.

[12] A. Johnstone, E. Scott, Modelling GLL parser implementations, in: B. Mal-
loy, S. Staab, M. van den Brand (Eds.), Software Language Engineering:
Third International Conference, SLE 2010, Eindhoven, The Netherlands,
October 12-13, 2010, Revised Selected Papers, Lecture Notes in Computer
Science, 2011, pp. 42–61.

8

