
Modular Grammar Specification

Adrian Johnstone and Elizabeth Scott

Department of Computer Science,
Royal Holloway, University of London,

Egham, Surrey, United Kingdom

Mark van den Brand

Eindhoven University of Technology, Mathematics and Computer Science,
Den Dolech 2, NL-5612 AZ Eindhoven, The Netherlands

Abstract

We establish a semantics for building grammars from a modularised spec-
ification in which modules are able to delete productions from imported
nonterminals. Modules have import lists of nonterminals; some or all of
an imported nonterminal’s productions may be suppressed at import time.
There are two basic import mechanisms which (a) reference or (b) clone
an imported nonterminal’s productions. One of our goals is to allow a pre-
cise answer to the question: ‘what character level language does this gram-
mar generate’ in the face of difficult issues such as the mutual embedding
of languages that have different whitespace and commenting conventions.
Our technique is to automatically generate a character level grammar from
grammars written at token level in the conventional way; the grammar is
constructed from modules each of which may have its own whitespace con-
vention.

Keywords: Context Free Grammar, Modularity, Whitespace processing

This paper concerns modularity constructs and their applicability to context
free grammar specifications. We advocate principles which are intended to
provide extensibility whilst ensuring that it is easy to reason about the
effects of the composition mechanisms. We propose a mechanism in which:

1. unless otherwise specified, modular composition preserves name hy-

Email addresses: e.scott@rhul.ac.uk, a.johnstone@rhul.ac.uk (Adrian
Johnstone and Elizabeth Scott), m.g.j.v.d.brand@tue.nl (Mark van den Brand)

Preprint submitted to Elsevier August 21, 2013

giene;

2. individual productions can be suppressed on import by pattern match-
ing deleters against disallowed right-hand sides;

3. there is sophisticated support for automatic whitespace handling via
whitespace module imports.

Name hygiene implies that after import, the productions of some nonter-
minal X in module L remain distinct from the productions of nonterminal
X from module M. We provide left hand side renaming to allow controlled
merging of productions into existing or new nonterminals.

Deleters implemented via pattern matching of right hand sides allow
the user to specify ‘unwanted’ productions independently of the (possibly
complicated) chain of imports that a production may be involved in.

Localised whitespace handling allows principled language embedding and
overcomes problems with, for instance, the use of braces { } to delimit
comments in SQL being in direct conflict with the use of braces to delimit
code blocks in C family languages.

This paper is in three main parts. We first discuss the general principles
which motivated our approach, and then we describe some related work in
grammar composition and refactoring, and discuss the capabilities of some
existing tools’ modularisation facilities.

The second part concerns our proposal for a Modularised Grammar
Specification and defines formally how a context free grammar with hid-
den whitespace handling is induced from an MGS. We deliberately focus on
the semantics of the mechanism without specifying, for instance, whether
the base productions for a module are even held in the same file or syntactic
unit: our intention is to allow MGS semantics to be added to existing tools
in the style that best fits their existing practice.

The final part shows examples of the utility and of the limitations of
our present proposal using the concrete syntax from the ART GLL parser
generator tool with a series of use-case studies.

1. Motivation

Modularity and associated concepts such as inheritance and overriding
are routinely used in the software engineering domain to support (a) the
decomposition of a large application into small subsections that can be
worked on separately without disturbing the contents, and behaviour, of
other modules; (b) the facilitation of incremental builds, in which only the

2

changed module and modules dependent on those changes need to be re-
built; (c) information hiding (abstraction) that allows internal details to
be suppressed as an aid to comprehension; (d) name-space management to
allow the same identifier to be used for different purposes in different mod-
ules; and (e) reuse of pre-existing fragments with customisation, say, by
overriding internal methods.

In principle, all of these concerns arise in grammar engineering too; how-
ever grammarware does not have the complexity of general software — the
semantics of context free grammar notations are extremely simple compared
to the semantics of a programming language: grammars are essentially ex-
pressions over language constants (terminals) and variables (nonterminals)
with two operators: concatenation into a sequence (a production) and al-
ternation over productions. A thoughtful analysis of the challenges implicit
in grammar engineering and reuse has been given by Klint, Lämmel and
Verhoef [15]. In the rest of this section we examine several facets of our
proposed scheme, and their rationale.

1.1. Granularity

Modularisation schemes are mechanisms for combining fragments of spec-
ifications, and the granularity of these fragments is key: we would not nor-
mally expect a software modularisation scheme to allow one particular ex-
pression in a function to be changed; instead such schemes usually compose
over named pieces of code. In object oriented languages the units of combi-
nation are usually the class member and the class itself and it is common to
provide both inheritance at the level of members, and traditional modularity
at the level of classes. In Java, the package mechanism ensures name hy-
giene so that the name spaces of individual packages cannot interfere. Name
space management is the central topic of this paper and will be discussed in
the following sections.

We could choose to allow modularity operations over, for instance,

1. the set of all productions for a set of nonterminals;

2. the set of all productions for a given nonterminal;

3. an individual production;

4. the set of productions reachable from a given nonterminal;

5. the elements of a particular production, allowing users to specify things
like ‘replace the third element of the fourth production of nonterminal
X.

This last is clearly very unwieldy, and in any case productions themselves
are usually short compared to functions in programming languages. Thus

3

there seems to be no justification for allowing module composition at the
level of subsequences.

1.2. Name hygiene

In an earlier, limited, version of this work [14], we describe the import-
by-reference mechanism (the ‘single-arrow’ operator←); the deletion of pro-
ductions on import; and the machinery for handling whitespace in embed-
ded languages. In this paper we extend our proposal to allow mutation
of recursive sub-grammars by providing an import-by-clone mechanism (the
‘double-arrow’ operator⇐) which copies a production into the namespace of
an importing module with appropriate renaming of nonterminal instances.

As a notational convenience, we propose that any concrete syntax in-
cludes notations for importing all of the productions within a complete
module (which corresponds to option 1), importing all of the productions
reachable from a left hand side nonterminal (option 4), and importing all
of the productions in modules containing productions reachable from a left
hand side nonterminal (option 5). All of these may be viewed as macros
that expand to sets of our basic operations.

1.3. Deleters

In our theoretical treatment in Section 4 we consider the import of a sin-
gle nonterminal’s productions (corresponding to option 2 above) and deleters
(which act as filters during imports, causing some productions to be sup-
pressed) that work at the level of individual productions (option 3 above).

1.4. Whitespace handling

We aim to provide a general mechanism that allows users to build both
token level and character level tools in a way that seems natural to users
of existing tools, and in particular to describe the mutual embedding of
languages with different whitespace and commenting conventions.

Conventionally, programming language grammars are described at the
level of tokens. For free format languages (such as Java and others in the
Algol family) whitespace and comments are understood to be suppressed and
discarded before token level parsing occurs. Usually, therefore, the grammar
writer makes a global specification of a whitespace/comment pattern which
is understood to be consumed before and after each token.

Of course, the grammar writer could specify a character level context
free grammar in which the whitespace is explicitly specified by writing an
instance of a whitespace-matching nonterminal on either side of the charac-
ter level specification of the tokens. In practice, such grammars are verbose

4

and unwieldy, since the syntax of the token level language is obscured by
the whitespace details. In addition, at the level of characters (as opposed
to tokens) very few languages have grammars which are admissible by near-
deterministic parsing algorithms such as LALR(1) or LL(1). Indeed, one
view of token-level parsing is that by segmenting the input character string
into tokens we separate out different semantic concepts. Consider, for in-
stance, the Pascal substrings for x := 3 downto 1 do and for x := 3

do and a grammar with production

forStatement ::= 'for' id ':=' expression

('to' expression | 'downto' expression)?

'do' ;

At character level, the ()? optional bracket has the character d in both
its first and follow set, and so a character level grammar is not LL(1)-
deterministic. If we use a separate lexical analyser, then the first and follow
token sets are disjoint, and so the token level grammar is LL(1).

The conventional token level description of languages with global whites-
pace does not extend well to mutually embedded languages with differing
whitespace and commenting conventions. If we make a single global whites-
pace convention which describes the union of the embedded whitespace con-
ventions then the resulting language will in general be larger than strictly
necessary, and may display unnecessary ambiguities — the use of braces { }

to delimit comments in SQL being in direct conflict with the use of braces
to delimit code blocks in C family languages, for instance.

In our scheme there is a whitespace convention associated with each
module, and care is taken when combining modules with different whitespace
conventions to ensure that the resulting grammar describes the language
embedding correctly, whilst reducing the potential for ambiguity.

1.5. Separate compilation

Although in this paper we focus in composability over grammars, com-
posability over parsers is sometimes desirable and in principle modules could
be used to specify parser composition as well as grammar composition. This
becomes important when developing large grammars: if parser generation
time for a complete grammar is excessive, then separate generation and
compilation of parser components allows small fragments of grammars to be
efficiently reworked without needing to rebuild the whole parser.

The magnitude of the problem is parser technology dependent. For in-
stance, it is well known that the computation of even LR(0) parse tables

5

is exponential in the size of the grammar and although this worst case is
not usually encountered with conventional programming language gram-
mars, user experiences of LR-table based parsers is that build times can
sometimes be disappointing. In response, several authors have proposed
schemes for composing LR tables, leading to incremental LR parser gener-
ators [13, 12, 5]1. In practice, Bravenboer et al report order of magnitude
speed improvements, though Horspool notes that the addition of a single
production can introduce an exponential number of new states in an LR(0)
automaton.

Recursive Descent (RD) parsers naturally lend themselves to compos-
ability, since there is one parse function per nonterminal in the grammar,
and no co-dependencies: changing one production changes only one parse
function. In principle, each parse function could be separately compiled and
linked, though in practice RD parser generation is so fast that this is gen-
erally deemed unnecessary. The GLL algorithm [20, 21] used in our ART
tool displays similar attributes; parsers can be easily composed from pre-
compiled fragments. However, when running ART under Windows-7 on a
Toshiba Tecra R840 laptop, the generation time for a Java parser is 0.13
CPU seconds and the full compilation time of a test program incorporating
the resulting 16,289 line parser is 0.39 CPU seconds. Hence, complete re-
generation of a running Java parser after a change requires only around 0.5
seconds, and so we have not yet needed to implement separate compilation
of modules.

1.6. Approaches to modularity

Language composition, and by extension grammar composition, is an ac-
tive area of research driven by the desire to embed domain specific languages
such as SQL in more general programming languages, and to add extension
semantics to old languages without disturbing the previously defined core.

Van Wyk’s Silver system [24] provides extensible attribute grammars,
and works with a parser generator called Copper which supports language
composition. Copper is an LALR parser generator, and LALR grammars are
not closed under union. In [19], Schwerdfeger and Van Wyk describe conser-
vative constraints on composable sub-grammars that ensure an LALR com-
posed grammar; this allows Copper to reject non-composable sub-grammars
with useful error messages.

1There is a broader literature concerning incremental parsing, which concerns deriva-
tion tree rework in response to changes in a string being parsed against a fixed grammar.

6

The JastAdd modular semantics system [8] is a modular system for ex-
tending abstract syntax and attribute-based semantics. Parsing of concrete
grammars may be performed by any parser generator that allows seman-
tic actions to be executed as part of a derivation traversal; these actions
construct the base abstract syntax tree (AST) which is then transformed
and interpreted by JastAdd. Extensibility of ASTs is provided using static
aspects, but this capability naturally does not extend to the concrete parser.

The ANTLR4 [18] parser generator has an import mechanism that pro-
cesses a list of imports in a depth first fashion, adopting the first definition
of some rule X that it encounters and ignoring subsequent instances [16].
Any imported rule is then discarded in favour of locally defined rules and
there is no rule merging or renaming. This mechanism is essentially that of
inherited overloading with multiple inheritance. It has the virtue of being
easy to use and familiar for software engineers, but is essentially unable to
perform grammar composition below the level of an individual module.

Rats! is a Parsing Expression Grammar [9] (PEG) based parser gener-
ator with extensive modularisation features. The basic model is similar to
class overloading, but overridden nonterminals may be accessed using a fully
qualified name. PEG’s use ordered grammars, and so the order of individ-
ual productions in composed grammars is significant; hence when forming
the union of a production and an imported nonterminal, the insertion point
within the imported productions must be specified. The related complica-
tions of deciding on an ordering when importing nonterminal X from more
than one module (called an ambiguous import) leads to the constraint that
instances of such nonterminals must be fully qualified when used; in effect
all but simple imports require knowledge of the global name space over all
modules.

Algebraic approaches to syntax extension have been explored by Ander-
sen and Brabrand [2, 3] using their so-called Banana Algebra which provides
operators for transforming named productions within grammars; effectively
languages can be transformed by incrementally transforming their gram-
mars. This approach is powerful, and includes an analysis that allows trans-
formations that produce ‘nonsensical’ grammars to be detected.

The original SDF general context free parser generator [11] provided an
unparameterised import mechanism that merged together productions from
identically named nonterminals. SDF2 [23] has a richer import mechanism
that allows parameterisation of modules with associated renaming on im-
port, in addition to explicit renaming which may be used as part of an import
expression to rename nonterminals that have not been nominated as param-
eters on the exporting module. By renaming an imported nonterminal X to

7

some non-reachable nonterminal, the productions for X may effectively be
deleted. There is no pattern-based specification of deleters. We discuss as-
pects of the SDF2 mechanism in detail in section 8.1. A related mechanism
for SDF is discussed by de Jonge [7].

We now introduce notation, and give some informal examples of our
modularity operators before giving a formal definition of our import and
whitespace-handling mechanisms.

2. Notation

Context free grammars

A Context Free Grammar (CFG) is a 4-tuple (N,T,P, S) where N is
a finite set of nonterminal symbols, T is a finite set of terminal symbols
with T ∩ N = ∅, P is a finite set of productions of the form A ::= α where
α ∈ (N ∪ T)∗, α is an alternate of A, and S ∈ N is the start symbol.

The relation derives written ⇒ is defined as follows: if αBγ ∈ (N ∪ T)∗

and B ::= β ∈ P, then αBγ ⇒ αβγ. We write ⇒+ for the transitive closure
of ⇒, and ⇒∗ for the reflexive and transitive closure of ⇒. We say that α
is a sentential form of the grammar, Γ, if S ⇒∗ α and the language of Γ,
L(Γ), is defined as L(Γ) = {w ∈ T∗ | S ⇒∗ w}. We say that x ∈ (N ∪ T) is
reachable if x appears in some sentential form of Γ.

(We note that there may be two or more different grammar productions
with the same left hand side and right hand side, often referred to as ‘re-
peated rules’. Grammars constructed, as described below, from a modular
specification will not contain repeated rules. If we wished to permit this
then we could formally assert that each alternate had an associated integer
whose sole purpose is to allow the identification of the production and use
this in the grammar construction procedure.)

In [14] we defined the set of nonterminals in a modular grammar specifi-
cation as a partition, expressing the fact that nonterminal names in distinct
modules were distinct. In our extended modularised grammar specification
we need to have a correspondence between nonterminal names in each mod-
ule and, to achieve this, new nonterminal names may be created as part
of the grammar induction process. Thus we do not require nonterminals
in distinct modules to have distinct names, we shall create uniqueness in
the corresponding grammar by prepending module names to nonterminal
names.

8

Grammar Specification Modules (GSM)

We begin with a set M of module names, a set N of nonterminals, and
a set T of terminals. We require that the sets M, N and T are pairwise
disjoint.

A grammar specification module (GSM) over (M,N,T) consists of

1. a module name, M ∈M
2. an optional whitespace convention (WM , L.V), where L ∈ M and
V,WM ∈ N, which may be written WM ,

3. a finite set IM of import by reference expressions of the form
X ← H.Y , and import by clone expressions of the form
X ⇐ H.Y , where X,Y ∈ N H ∈M, and H 6= M ,

4. a finite set DM of deleters of the form X :/= δ,
where X ∈ N and δ ∈ (N ∪ T)∗,

5. a finite set PM of module productions of the form X ::= δ, where X ∈ N
and δ ∈ (N ∪ T)∗. (δ is an alternate of X in M .)

Where no confusion results we shall adopt the standard convention of
grouping sets of module productions (and sets of grammar productions) with
the same left hand sides together. So X ::= α|β is an abbreviation of two
productions X ::= α, X ::= β.

We shall require that there is at most one GSM for each module name
in M and thus we can, and we shall, refer to a GSM by its module name.

We say thatA ∈ N is nullable in M if (A::=ε) ∈ PM or if (A::=x1 . . . xn) ∈
PM where each xi is nullable in M , 1 ≤ i ≤ n.

A Modularised Grammar Specification (MGS) over (M,N,T) is a set Π of
grammar module specifications over (M,N,T) in which each element of M is
the module name of at most one grammar module specification, one module
M0 is specified to be the start or main module, and one nonterminal S ∈ N
is the start nonterminal.

3. Grammar induction - some examples

We now informally discuss, via examples, the basic way in which a modu-
larised grammar specification over (M,N,T) specifies a context free grammar
whose nonterminal names are of the form K.A, where K ∈ M and A ∈ N,
and whose terminals are in T. In our examples we shall assume that
MB,MF,MG,ME,MI,MW ∈M,
X,S,E,G,B ∈ N, and
&, t, f, +, -, 0, 1, while, do, until, if, id ∈ T.

9

A module which does not import anything is simply a name, say MB, and
a list of productions, PMB:

MB

X ::= X & X | t | f

This specification induces the following context free grammar whose sole
nonterminal is MB.X,

MB.X ::= MB.X & MB.X | t | f

Two or more modules together induce a set of grammar rules which are
not initially connected. For example, the following two MGSs

MF MG

X ::= X + X G ::= 0 | 1

together induce the grammar productions

MF.X ::= MF.X + MF.X

MG.G ::= 0 | 1

To use the rules from MG to complete the language generated by X we can
use the import statement X<-MG.G. With ME as main module, the modu-
larised grammar specification

ME MG

X <- MG.G G ::= 0 | 1

X ::= X + X

induces the grammar

ME.X ::= ME.X + ME.X | 0 | 1

MG.G ::= 0 | 1

The import X<-MG.G causes ME.X to acquire the right hand sides of MG.G.
One side-effect of the grammar induction process is that there will in gen-

eral be many unreachable nonterminals; in this example MG.G is unreachable.
We assume that all unreachable nonterminals which do not come from the
main module are suppressed from the final grammar.

We now discuss several small examples which illustrate the basic import
mechanisms.

Example 1 Using ←
In the module M1 below we define a language which contains a while con-
struct and an assignment statement, and uses the Boolean and expression

10

languages defined in MB and ME. Since we do not want to change the pro-
ductions defined in MB and ME we use import-by-reference ← to create
grammar rules corresponding to E and B. We write the following GSM M1

M1

E <- ME.X

B <- MB.X

S ::= while B do S | id := E

The modularised grammar specification {MG, ME, MB, M1}, with M1 as
the main module, induces, after reachability analysis and suppression of
unreachable nonterminals, the following grammar

M1.S ::= while M1.B do M1.S | id := M1.E

ME.X ::= ME.X + ME.X | 0 | 1

MB.X ::= MB.X & MB.X | t | f

M1.E ::= ME.X + ME.X | 0 | 1

M1.B ::= MB.X & MB.X | t | f

with start symbol M1.S. The module name extensions ME.X and MB.X ensure
that the different uses of the nonterminal name X are kept separate.

Note: the order in which the grammar rules, and the alternates within
a rule, are written is not significant, except for the convention that unless
otherwise stated the rule for the start nonterminal is listed first. Our ART
implementation adopts this convention.

Example 2 Modifying imported modules
Now suppose that we wish the expression sublanguage in the final grammar
also to contain a subtraction operator. For this we need to extend the lan-
guage defined in ME. In M2 below, the import-by-clone statement X<=ME.X
causes M2.X to acquire the right hand sides of ME.X but with the occurrences
of the module extension ME replaced with M2.

M2

X <= ME.X

B <- MB.X

S ::= while B do S | id := X

X ::= X - X

The modularised grammar specification {MG, ME, MB, M2}, with M2 as
the main module, then induces the following grammar

11

M2.S ::= while M2.B do M2.S | id := M2.X

M2.X ::= M2.X - M2.X | M2.X + M2.X | 0 | 1

M2.B ::= MB.X & MB.X | t | f

MB.X ::= MB.X & MB.X | t | f

The statement X <= ME.X has created a copy of the rules in ME with which
the new rule M2.X ::= M2.X - M2.X are combined. The nonterminals MG.G
and ME.X were unreachable and their productions were removed from the
final grammar, which has start symbol M2.S.

(In a concrete syntax we would expect the module extensions of nonter-
minal names to be suppressed where no name clashes result.)

Example 3 Chains of imports
Now we suppose that the modules MG, MB, ME and M2 from Examples 1
and 2 pre-exist and are not to be changed, but that we wish to add an if-
statement to the language specified by M2. This example illustrates a chain
of imports. We create a GSM M3, below, which imports M2, and as we want
the while- and if-statements to nest correctly we use ⇐. This will create
nonterminals M3.X and M3.B whose productions we also need to import.

M3

S <= M2.S

X <= M2.X

B <= M2.B

S ::= if B then S

The import X<=M2.X assigns to M3.X productions both from the module
productions in M2 and the productions created by M2’s import of ME.
With the additional imports to X and B, the grammar induced by {MG,
ME, MB, M2, M3}, with M3 as the main module, is

M3.S ::= if M3.B then M3.S | while M3.B do M3.S | id := M3.X

M3.X ::= M3.X - M3.X | M3.X + M3.X | 0 | 1

M3.B ::= MB.X & MB.X | t | f

MB.X ::= MB.X & MB.X | t | f

4. Formal definition of the grammar induced by a GSM

In this section we give a formal definition of the raw CFG induced from a
modularised grammar specification. We call this grammar the raw grammar
because it takes no account of whitespace and comment layout considera-
tions.

12

Notation For a string ρ ∈ (T∪N)∗ and M ∈M define M.ρ to be the string
obtained from ρ by replacing each nonterminal A in ρ with M.A.

Definition A set Π of grammar module specifications over (M,N,T), with
start module M0 and start symbol S, induces a raw context free grammar
Γ(Π,M0, S) with start symbol M0.S and the set of grammar productions Q
defined as follows.

First define Q′ to be the smallest set of productions for which

1. if (X::=ρ) ∈ PM , where M ∈ Π then (M.X ::= M.ρ) ∈ Q′,
2. if (Y ← K.X) ∈ IM , (K.X ::= H.ρ) ∈ Q′, and (Y :/= ρ) 6∈ DM , where
M ∈ Π, then (M.Y ::= H.ρ) ∈ Q′,

3. if (Y ⇐ K.X) ∈ IM , (K.X ::= H.ρ) ∈ Q′, where H 6= K, and
Y :/= ρ 6∈ DM , where M ∈ Π, then (M.Y ::= H.ρ) ∈ Q′.

4. if (Y ⇐ K.X) ∈ IM , (K.X ::= K.ρ) ∈ Q′, and Y :/= ρ 6∈ DM , where
M ∈ Π, then (M.Y ::= M.ρ) ∈ Q′.

The set Q is obtained from Q′ by removing all productions of the form
(H.Y ::= K.ρ) where H 6= M0 and H.Y is not reachable from M0.S.

The production set Q may be constructed using the following algorithm,
in which the set R is used to hold productions pending resolution.

1. Initialisation
Set Q′, Q and R to ∅
for each M ∈ Π and (Y ::=M.ρ) ∈ PM

add an element M.Y ::= M.ρ to R
2. Resolution

repeat
remove K.X ::= H.ρ from R and add it to Q′

for each M ∈ Π and Y ∈ N such that (Y :/= ρ) 6∈ DM

if (Y ← K.X) ∈ IM and (M.Y ::= H.ρ) 6∈ Q′

add M.Y ::= H.ρ to R
if (Y ⇐ K.X) ∈ IM

if H 6= K and (M.Y ::= H.ρ) 6∈ Q′

add M.Y ::= H.ρ to R
if H = K and (M.Y ::= M.ρ) 6∈ Q′

add M.Y ::= M.ρ to R
until R = ∅

3. Reaching
for each (M.Y ::= H.ρ) ∈ Q′

if M.Y is reachable from M0.S or if M = M0

add M.Y ::= H.ρ to Q

13

Example 4
The following example assumes that there exists a GSM module M4 which
generates a grammar including a while-do statement and an expression sub-
grammar which enforces a particular operator associativity and priority. The
aim is to use this as the basis for the specification of a related grammar in
which the while-do statement is replaced with a do-until statement and the
expression grammar is ‘flattened’, perhaps to simplify semantic specification.
A deleter is used to remove the while-do statement. As the whole expression
subgrammar is to be changed the productions for E are not imported, they
are defined anew.

M5 M4

S <= M4.S S ::= if B then S |

B <= M4.B while B do S | id := E

S :/= while B do S E ::= E + T | T

S ::= do S until B T ::= T * F | F

E ::= E + E | F ::= 0 | 1

E * E | 0 | 1 B ::= t | f

The module M5 specifies, after unreachable productions are removed, the
desired modified grammar.

M5.S ::= if M5.B then M5.S | id := M5.E | do M5.S until M5.B

M5.B ::= t | f

M5.E ::= M5.E + M5.E | M5.E * M5.E | 0 | 1

Notice that we could not have achieved the same result using import-by-
reference. The specification

M6 M4

S <- M4.S S ::= if B then S |

B <- M4.B while B do S | id := E

S :/= while B do S E ::= E + T | T

S ::= do S until B T ::= T * F | F

E ::= E + E | F ::= 0 | 1

E * E | 0 | 1 B ::= t | f

specifies the grammar

M6.S ::= if M4.B then M4.S | id := M4.E | do M6.S until M6.B

M6.B ::= t | f

M6.E ::= M6.E + M6.E | M6.E * M6.E | 0 | 1

14

M4.S ::= if M4.B then M4.S | while M4.B do M4.S | id := M4.E

M4.E ::= M4.E + M4.T | M4.T

M4.T ::= M4.T * M4.F | M4.F

M4.F ::= 0 | 1

M4.B ::= t | f

This does not have the required effect, the do-until statement does not nest
inside the if-statement and the while-do statement can still appear nested
inside a do-until or if statement.

5. Recursive import-by-clone

In general the import-by-clone mechanism will create new non-terminals,
for which grammar productions will need to be specified. The generality of
the mechanism allows the user to specify such productions. For example, in
the MGS {M5,M4} in the previous section, the productions for M5.E are
defined in M5. However, it is likely in many cases that the specifier will
want the productions for the new nonterminals to include those from the
original module, as is the case for M5.B in the above example. Of course,
the user can achieve this by explicitly writing out the required import rules,
as in nonterminal M3 in Example 3 above. However, we would expect a
concrete modularity implementation to provide an automatic import rule
creation mechanism. We now describe such a mechanism, ⇐∗.

We modify the definition of IM in a GSM M as follows:

� a finite set IM of import by reference expressions of the form
X ← H.Y , import by clone expressions of the form
X ⇐ H.Y , where X,Y ∈ N, H ∈M, and H 6= M ,
and recursive import by clone expressions of the form
X ⇐∗ H.Y , where X,Y ∈ N, H ∈M, and H 6= M ,

We extend the definition of the grammar defined by a set of GMSs so
that, conceptually, as the recursive import-by-clone expressions are dealt
with, new import-by-clone expressions are created for the nonterminals on
the right hand sides of productions.

Formally we define the set of grammar productions Q as follows.
First define Q′ and I′M to be the smallest sets of productions and import

expressions for which

1. if (X::=ρ) ∈ PM , where M ∈ Π then (M.X ::= M.ρ) ∈ Q′, and
IM ⊆ I′M , where M ∈ Π,

15

2. if (Y ← K.X) ∈ IM , (K.X ::= H.ρ) ∈ Q′, and (Y :/= ρ) 6∈ DM , where
M ∈ Π, then (M.Y ::= H.ρ) ∈ Q′,

3. if (Y ⇐ K.X) ∈ IM , (K.X ::= H.ρ) ∈ Q′, and Y :/= ρ 6∈ DM , where
M ∈ Π, then (M.Y ::= M.ρ) ∈ Q′, if H = K and (M.Y ::= H.ρ) ∈ Q′,
if H 6= K.

4. if (Y ⇐∗ K.X) ∈ I′M , (K.X ::= K.ρ) ∈ Q′, and Y :/= ρ 6∈ DM , where
M ∈ Π, then (M.Y ::= M.ρ) ∈ Q′, and (Z ⇐∗ K.Z) ∈ I′M , for each Z
in ρ.

5. if (Y ⇐∗ K.X) ∈ I′M , (K.X ::= H.ρ) ∈ Q′, where H 6= K, and
Y :/= ρ 6∈ DM , where M ∈ Π, then (M.Y ::= H.ρ) ∈ Q′.

The set Q is obtained from Q′ by removing all productions of the form
(H.Y ::= K.ρ) where H 6= M0 and H.Y is not reachable from M0.S.

The following set of modules, with main module M3, specify the same
grammar as that in Example 3 above.

M3 M2

S <=* M2.S X <= ME1.X

S ::= if B then S B <- MB.X

S ::= while B do S | id := X

X ::= X - X

ME1 MB

X ::= X + X | 0 | 1 X ::= X & X | t | f

Notice that imports of the form M.A⇐∗N.B only impact on productions of
the form N.B ::= N.γ. In the above example, the import M3.S⇐∗M2.S
creates imports M3.X⇐∗M2.X and M3.B⇐∗M2.B. However, because the
import to B in M2 is by reference, the productions form M2.B are of all
the form M2.B ::= MB.γ and so the recursive by clone import terminates
at this point.

6. Automatic whitespace insertion

As we have already mentioned in Section 1, compilers often include an
initial lexical phase in which an input sequence of characters is transformed
into a sequence of grammar terminals. Each terminal t ∈ T has an associated
set of strings of characters, its pattern. The strings in the pattern of a
terminal are called its lexemes. Typically the character set is a standard
character set such as ASCII or Unicode but in principle it could be, for

16

instance, a collection of pixels, a sequence of mouse actions, or some output
from a voice recognition system.

The patterns are usually regular languages over the set of characters
and thus are commonly specified using regular expressions. For some ap-
plications this separation between the character strings and the grammar
is too restrictive. The core problem is the situation in which the patterns
of two different terminals have lexemes in common. For example, in a lan-
guage which is the union of two languages such as Cobol and SQL, a lexeme
may belong to a keyword terminal in one part of the grammar and the
identifier terminal in the other. One solution is do away with the separate
lexical phase, make the character set the terminals of the grammar and use
grammar productions to specify the patterns. The terminals of the original
grammar become nonterminals in the new grammar, which we shall refer to
as a character level grammar. This is the approach taken in SDF [11, 22]
and a detailed discussion can be found in [23].

When a separate lexical phase is employed, it is used to resolve certain
ambiguities and to remove layout and comments. A character level gram-
mar thus has to include whitespace characters in its terminal set, and the
positions in the grammar productions where whitespace is allowed have to
have an instance of a nonterminal which generates the corresponding whites-
pace language. Adding these instances by hand is tedious and makes the
grammar hard to read. Our modularised grammar specification includes an
automatic whitespace insertion mechanism, specified by the GSM whites-
pace conventions.

6.1. Positioning whitespace nonterminals

If M has whitespace convention (WM , L.V) = WM we call WM the
whitespace nonterminal of M and L.V the imported whitespace nontermi-
nal of M . Automatic whitespace insertion is the insertion of nonterminals
M.WM into the induced grammar rules. The assumption is that WM de-
rives the desired language of whitespace elements. The instances of WM are
left out of the GSM and automatically inserted into the grammar during
the resolution process. Before formally defining our whitespace insertion
mechanism we look at some examples.

Example 7
The following simple example illustrates the basic approach. We have WM7 =
(W,MW1.X), the terminals of MW1 are enclosed in single quotes to make
them clear and comment bodies are reduced to strings of x’s and y’s for
simplicity.

17

M7

(W, MW1.X)

S ::= a S b | c

MW1

X ::= T X | ε
T ::= '\t' | '\nl' | ' ' | '/*' Z '*/'

Z ::= 'y' Z | 'x' Z | 'y' | 'x'

The grammar specified by M7 is
M7.S' ::= M7.W M7.S

M7.S ::= a M7.W M7.S b M7.W | c M7.W

M7.W ::= MW1.T MW1.X | ε
MW1.X ::= MW1.T MW1.X | ε
MW1.T ::= '\t' | '\nl' | ' ' | '/*' MW1.Z '*/'

MW1.Z ::= 'y' MW1.Z | 'x' MW1.Z | 'y' | 'x'

Here M7.S' is a new augmented start symbol introduced to permit
whitespace at the start of an input string. Notice there is no instance of
M7.W immediately to the right of M7.S in the second production. This is not
required and if inserted would create unnecessary ambiguity.

Example 8
In this example we consider a module which has an import by reference
from module M7 of Example 7 but which uses a slightly different whitespace
convention, specified in module MW2.

M8

(V, MW2.X)

S <- M7.S

A ::= d A | d | S

MW2

X ::= T X | ε
T ::= '\nl' | ' ' | '//' Z '\nl'

Z ::= 'y' Z | 'q' Z | 'y' | 'q'

The grammar specified by M8 has productions
M8.A' ::= M8.V M8.A

M8.A ::= d M8.V M8.A | d M8.V | M8.S

M8.S ::= M7.W a M7.W M7.S b M7.W M8.V | M7.W c M7.W M8.V

M8.V ::= MW2.T MW2.X | ε

18

M7.S ::= a M7.W M7.S b M7.W | c M7.W

M7.W ::= MW1.T MW1.X | ε
together with the productions for MW2.V and MW1.W, which are omitted here.

The effect is that substrings derived from M7.S will have whitespace and
commenting styles defined by M7. Instances of d in an input string can be
surrounded by whitespace and comment styles defined by MW2.

Example 9
The case of a module containing an import by clone from module M7 is
more interesting. Consider the following module M9.

M9

(V, MW2.X)

S <= M7.S

A ::= d A | d | S

The grammar specified by M9 has productions
M9.A' ::= M9.V M9.A

M9.A ::= d M9.V M9.A | d M9.V | M9.S

M9.V ::= MW2.T MW2.X | ε
M9.S ::= M9.W a M9.W M9.S b M9.W M9.V | M9.W c M9.W M9.V

together with the productions for MW2.V.
The import-by-clone creates a new nonterminal M9.W which, in this case,

has no production rules and will thus not generate any sentences. The writer
of M9 would be expected to specify these rules. If, for example, they want
the whitespace associated with the sublanguage defined by M9.S to be that
of M9 they can add a production W ::= V or the import W <- MW2.X to
M9. If they want the whitespace associated with the sublanguage defined
by M9.S to be that of M7 they can add an import W<-M7.W to M9. If they
want the union of both conventions then they can add both the production
and the import.

We now describe formally the mechanisms that we used implicitly in the
above examples.

We say that two modules K,H have equivalent whitespace conventions,
written WK ≡ WH , if they both have the same imported whitespace non-
terminal or if they both have empty whitespace import, and if WK (WH)
does not appear on the left hand side of any element in IK (IH) or PK (PH).

In general we want to allow optional whitespace, thus, if WM is not
nullable, we create a new nonterminal W ′M whose productions are W ′M ::=
ε | WM and insert W ′M . To avoid the clerical overhead of separate special

19

cases, if the whitespace convention for M is empty we define W ′M = ε and
K.W ′M = ε, for all K ∈M, and, if WM is nullable, W ′M is defined to be WM .

Näıve automatic whitespace insertion processes can generate significant
ambiguity in the grammar. In [14] we gave an extensive discussion of the
alternative approaches and their disadvantages. We shall not repeat that
discussion here, we shall simply use the approach arrived at from that dis-
cussion.

� Before any grammar rules are constructed, for each GSM, M , which
has a whitespace convention, for each module production in PM , W ′M
is inserted after each terminal instance, e.g.
M.A ::= a M.W ′M A b M.W ′M ,

� For imports A ← K.B and A ⇐ K.B in IM , if M has a whitespace
convention and the whitespace conventions of K and M are not equiv-
alent, then M.W ′M is added at the end of each alternate of M.A that
is imported from K.B.

� For imports A ← K.B in IM , if K has a whitespace convention and
WK 6≡WM , then K.W ′K is added at the start of each alternate of M.A
that is imported from K.B.

� For imports A ⇐ K.B in IM , if K has a whitespace convention and
WK 6≡ WM , then M.W ′K is added at the start of each alternate of
M.A that was imported from K.B.

� If the start module M0 has a whitespace convention, a new augmented
start rule S′ ::= W ′M0

S is created, where S is the original start symbol.

6.2. Grammar induction with whitespace insertion

We now formally define the grammar specified by a MGS with whitespace
with non-empty whitespace conventions.

Because alternates will be imported with inserted whitespace nonter-
minals cyclic import dependencies will result in the lengths of alternates
increasing without limit. Thus we place a non-cyclic condition on the mod-
ularised grammar specification.

A set Π of GSMs displays whitespace sensitive cyclic module depen-
dency if there is a sequence of elements K1, . . . ,Kn,Kn+1 = K1 from Π,
with WKj 6≡ WKp for some j, p, but for which there exists imports Xi ←
Ki+1.Xi+1 orXi ⇐ Ki+1.Xi+1 in IKi , 1 ≤ i ≤ n.

For a string τ ∈ (T ∪M.N)∗ define τ to be the string in (T ∪ N)∗ ob-
tained by replacing nonterminals of the form H.A with A and then removing

20

instances of the nonterminals W ′M from τ . Define τK/H to be the string ob-
tained by replacing each nonterminal, including whitespace nonterminals, of
the form H.A with K.A

For a string ρ ∈ (T ∪ N)∗ and K ∈ M with nonempty whitespace con-
vention, define ρK to be the string in (T ∪ N)∗ obtained by inserting an
instance of W ′K , after each instance of each element of T in ρ. If K has
empty whitespace convention, ρK = ρ. Also, as above, define K.ρ to be the
string obtained from ρ by replacing each nonterminal A in ρ, including WK ,
with K.A.

Definition A set Π of grammar module specifications over (M,N,T), with
start module M0 and start symbol S, which does not display whitespace
sensitive cyclic modular dependency, induces a whitespace expanded context
free grammar Γ(Π′,M0, S) with start symbol M0.S

′ and the set of grammar
productions Q defined as follows.

First define Q′ to be the smallest set of productions for which

1. if (X::=ρ) ∈ PM , where M ∈ Π, then (M.X ::= M.ρM) ∈ Q′,

2. if (Y ← K.X) ∈ IM , (K.X ::= τ) ∈ Q′, and (Y :/= τ) 6∈ DM , where
M ∈ Π, then
(a) (M.Y ::= τ) ∈ Q′, if WM ≡WK ,
(b) (M.Y ::= K.W ′KτM.W ′M) ∈ Q′ if WM 6≡WK ,

3. if (Y ⇐ K.X) ∈ IM , (K.X ::= τ) ∈ Q′, and (Y :/= τ) 6∈ DM , where
M ∈M, then
(a) (M.Y ::= τM/K) ∈ Q′, if WM ≡WK ,
(b) (M.Y ::= M.W ′KτM/KM.W ′M) ∈ Q′ if WM 6≡WK ,

4. for each M ∈ Π such that M has a nonempty whitespace convention
(WM , L.Y), if (L.Y ::= γ) ∈ Q′ then (M.WM ::= γ) ∈ Q′.

The set Q is obtained from Q′ by removing all productions of the form
(H.Y ::= τ) where H 6= M0 and H.Y is not reachable from M0.S, adding
W ′M ::= WM |ε for each non-nullable whitespace nonterminal WM , and fi-
nally, if WM0 is not empty, adding a new production S′ ::= W ′M0

S, where
S′ is a new nonterminal. If WM0 = ∅ then we define S′ = S.

We can give an algorithm for computing Q as follows.

1. Initialisation and whitespace after terminals
Set Q′ = Q = R = ∅
for each M ∈ Π with nonempty WM = (WM , L.V)

if WM is not nullable add W ′M ::= ε | WM to Q
for each (X → ρ) ∈ PM , where M ∈ Π

21

add M.X ::= M.ρM to R,
2. Resolution

repeat
remove K.X ::= τ from R and add it to Q′

for each M ∈ Π and (Y ← K.X) ∈ IM such that Y :/= τ 6∈ DM

if WK ≡WM and M.Y ::= τ 6∈ Q′

add M.Y ::= τ to R
else add M.Y ::= K.W ′KτM.W ′M to R

for each M ∈ Π and (Y ⇐ K.X) ∈ IM such that Y :/= τ 6∈ DM

if WK ≡WM and M.Y ::= τM/K 6∈ Q′

add M.Y ::= τM/K to R
else add M.Y ::= M.W ′KτM/KM.W ′M to R

for each nonempty whitespace convention (WM ,K.X), M ∈ Π
if (M.WM ::= τ) 6∈ Q′ add M.WM ::= τ to R

until R = ∅
3. Reaching

for each (M.Y ::= τ) ∈ Q′

if M.Y is reachable from M0.S or M = M0

add M.Y ::= τ to Q
4. Initial whitespace

if WM0 is not empty
let S′ be a new nonterminal not in
N ∪ T ∪M and add S′ ::= W ′M0

S to Q
else set S′ = S

6.3. Whitespace good practice

We have deliberately made our whitespace specification mechanism lib-
eral in order to permit a wide variety of applications. For example, it is
possible for specifiers to write module production rules whose left hand side
is the whitespace nonterminal. As written, deleters will not be applied to
whitespace productions, but this can easily be changed if experience shows
it to be desirable. It is also possible for modules from which whitespace
is imported to themselves have a whitespace convention. The theoretical
underpinnings given in this paper ensure that such uses will be robust and
their behaviours can be formally established. However, we believe that using
such features will make the specification hard to reason about in practice.

We think it is good practice that whitespace be defined in a separate
module which itself has an empty whitespace convention, and writing a
production or import statement in M whose left hand side is WM (or W ′M)

22

is deprecated. The latter is important for ease of reasoning about whitespace
equivalence.

We have noted that for import-by-clone the specifier has significant con-
trol over the associated whitespace convention. However, with import-by-
reference the whitespace convention associated with the imported produc-
tions will be that associated with the source module. It is possible to impose
a different whitespace convention in this case by using an intermediate mod-
ule.

For example, consider the MGS {M12,M11,MW3,MW4}

M12 M11

(W2, MW4.Y) (W1, MW3.Y)

E <- M11.S S ::= S + S | 1 | 0

S ::= id := E

MW3 MW4

Y ::= '\t' Y | ε Y ::= '\nl' Y | ' ' Y | ε
The sublanguage specified by M12.E has the whitespace from MW3. To
use the whitespace from MW4 but retain ← to avoid name clashing we can
use an intermediate module M13 to change the whitespace convention, then
import this to M12

M12 M13

(W2, MW4.Y) S <= M11.S

E <- M13.S W1 <=* MW4.Y

S ::= id := E

Finally we note that a user who wishes to parse a token stream gener-
ated by some external lexer can define the MGS at token level and leave
the whitespace conventions empty. In this case none of the mechanisms
described in this section will be invoked.

7. Modularity in use

In this section we consider several use cases. We take as our base ex-
amples two small languages C and P which display some of the syntac-
tic characteristics of the ANSI-C and ISO-Pascal languages, respectively.
Specifically:

1. C is completely case sensitive (including keywords like while); P is
mostly case sensitive but keywords are case-insensitive so BeGiN and
begin are equivalent. Type names in P are identifiers, not keywords,
so they are case sensitive.

23

2. C uses ; as a statement terminator whereas P uses ; as a statement
separator.

3. C comments are line oriented and introduced by //; P has nestable
comments delimited by { and }.

4. C identifiers may begin with an underscore; P identifiers may not.
Underscores are allowed within both languages’ identifiers.

We present the examples using the concrete syntax for our GLL parser
generator ART, version 2.6. ART specifications are a sequence of explicit
productions and module headers. The grammar induction process in general
creates new (non-explicit) productions.

A module header comprises an identifier, which is the module name,
followed by an optional whitespace import, a parenthesised list of import
statements and an optional parenthesized start symbol:

P w<-PLex.ws (PLex.intLiteral PLex.id)(program)

The syntax of imports is an ASCII version of the abstract syntax used in
the rest of this paper with some shorthands: a module header of the form
M(L.Y) is shorthand for M(Y<-L.Y) and a header of the form M(<=L.Y) is
shorthand for M(Y<=L.Y).

An explicit production comprises an identifier, the name of a nontermi-
nal, followed by ::= ρ where ρ is a regular expression over the terminals and
nonterminals. In this paper, we restrict our examples to simple BNF. The
basic terminal designation in ART is `a, that is a single character preceded
by a back-quote. Non-printing characters are represented using ANSI-C like
escape sequences. We also provide case-sensitive terminals 'thus' which is
a monolithic shorthand for `t`h`u`s, and case-insensitive terminals "thus"
which is a shorthand for (`t|`T)(`h|`H)(`u|`U)(`s|`S). These short-
hands are monolithic in the sense that automatic whitespace insertion only
occurs after instances; no whitespace is inserted between the individual char-
acters of a '' or "" style terminal.

The token level syntax of P is specified by:

24

P w<-PLex.ws (PLex.intLiteral PLex.id)(program)

program ::= "program" id "begin" statDecs "end" ".";

statDecs ::= statDec | statDec ';' statDec ;

statDec ::= statement | declaration ;

statement ::= "repeat" statement "until" expression |

"if" expression "then" statement |

id ':=' expression ;

declaration ::= "var" id ':' 'int' ;

expression ::= term | expression '+' term | expression '-' term ;

term ::= factor | term '*' factor | term '/' factor ;

factor ::= intLiteral | id | '(' expression ')' ;

Note the use of "" terminals for keywords, and 'int' for the type name,
which is a case-sensitive identifier. As is traditional in programming lan-
guage descriptions, the character level lexical rules are omitted at this level;
simply being imported from a separate module. The whitespace convention
is specified as P.w.

The lexical rules are as follows: ART requires no specific lexical section;
we simply use a module without a whitespace convention.

PLex()

intLiteral ::= digit | digit intLiteral ;

id ::= alpha idTail ;

idTail ::= alphaNumU | alphaNumU idTail ;

alpha ::= `a .. `z | `A .. `Z ;

digit ::= `0 .. `9;

alphaNumU ::= alpha | digit | `_;

ws ::= wsElement | wsElement ws;

wsElement ::= ` | `\t | comment;

comment ::= `{ commentBody `};

commentBody ::= / commentDelim | comment;

commentDelim ::= `{ | `};

Internally, a production whose alternates are individual characters (such
as commentDelim above) is represented as a character set and we provide
some shorthands which are valid for character level operands — the expres-
sion `a .. `z is shorthand for `a | `b | ... | `z; the | operator be-
tween character sets naturally forms a character set containing the union
of the operands; and a set-difference expression a / b forms a character
set containing those elements that are in a but not in b. The monadic set
difference expression / commentDelim specifies the set with every element
from the character-level alphabet except for those in set commentDelim.

25

The primary goal of our modularity constructs is to allow the user to
write grammar specifications in a conventional style, but for the tools to
display an exact character level context free grammar including all details
of whitespace handling. This is the grammar induced from P() and PLex():

P._program ::= P.w P.program ;

P.declaration ::= "var" P.w P.id ':' P.w 'int' P.w ;

P.expression ::= P.term | P.expression '+' P.w P.term | P.expression '-' P.w P.term;

P.factor ::= P.intLiteral | P.id | '(' P.w P.expression ')' P.w ;

P.id ::= PLex.alpha PLex.idTail P.w ;

P.intLiteral ::= PLex.digit P.w | PLex.digit PLex.intLiteral P.w ;

P.program ::= "program" P.w P.id "begin" P.w P.statDecs "end" P.w "." P.w ;

P.statDec ::= P.statement | P.declaration ;

P.statDecs ::= P.statDec | P.statDec ';' P.w P.statDec ;

P.statement ::= "repeat" P.w P.statement "until" P.w P.expression |

"if" P.w P.expression "then" P.w P.statement |

P.id ':=' P.w P.expression ;

P.term ::= P.factor | P.term '*' P.w P.factor | P.term '/' P.w P.factor ;

P.w ::= PLex.wsElement | PLex.wsElement PLex.ws | # ;

PLex.alpha ::= `a..`z | `A..`Z ;

PLex.alphaNumU ::= PLex.alpha | PLex.digit | `_ ;

PLex.comment ::= `{ PLex.commentBody `} ;

PLex.commentBody ::= / PLex.commentDelim | PLex.comment ;

PLex.commentDelim ::= `{ | `} ;

PLex.digit ::= `0..`9 ;

PLex.id ::= PLex.alpha PLex.idTail ;

PLex.idTail ::= PLex.alphaNumU | PLex.alphaNumU PLex.idTail ;

PLex.intLiteral ::= PLex.digit | PLex.digit PLex.intLiteral ;

PLex.ws ::= PLex.wsElement | PLex.wsElement PLex.ws ;

PLex.wsElement ::= ` | `\t | PLex.comment ;

The nonterminals P.w, P.id and P.intLiteral form the interface be-
tween the token level grammar and the lexical specification. Note how the
rules for P.id and P.intLiteral are appended with an instance of P.w so
that whitespace is automatically consumed by a parser whenever an iden-
tifier or literal is matched. An instance of P.w is also inserted after each
explicit token, and a new augmented start symbol is created which matches
any initial whitespace in the input string. Note also that the whitespace
nonterminal P.w has automatically had an epsilon rule added to it. (In
ART # denotes the empty string, which is denoted by ε in the theoretical
sections.)

The induced grammar makes use of the .. and / operators for concise-
ness, but PLex.alpha, PLex.digit and PLex.commentBody can be easily
rendered in expanded form if a pure BNF grammar is preferred.

The token level and lexical grammars for our example C language follow
the general pattern of that for P; in particular the expression grammars are

26

identical except for the new % operator.

C w<-CLex.ws (CLex.intLiteral CLex.id)(translationUnit)

translationUnit ::= statDecs ;

statDecs ::= statement | declaration | statement statDecs | declaration statDecs;

statement ::= 'while' '(' expression ')' statement ';' |

'if' '(' expression ')' statement |

id '=' expression ;

declaration ::= 'int' decName ;

decName ::= id | id optInitialiser ;

optInitialiser ::= '=' expression ;

expression ::= term | expression '+' term | expression '-' term ;

term ::= factor | term '*' factor | term '%' factor | term '/' factor ;

factor ::= intLiteral | id | '(' expression ')' ;

At lexical level, identifiers allow a leading underscore, and the commenting
convention is changed.

CLex()

intLiteral ::= digit | digit intLiteral ;

id ::= alphaNumU idTail ; (* Different to PLex.id *)

idTail ::= alphaNumU | alphaNumU idTail ;

alpha ::= `a .. `z | `A .. `Z ;

digit ::= `0 .. `9;

alphaNumU ::= alpha | digit | `_;

ws ::= wsElement | wsElement ws;

wsElement ::= ` | `\t | comment;

comment ::= `/ `/ commentBody `\n; (* Different to PLex.id *)

commentBody ::= / `\n | / `\n commentBody;

7.1. Embedding

Language embedding is straightforward because the automatic whites-
pace handling takes care of synchronising the lexical level tokens. Consider
the simplest case: the embedding of an entire P program at statement level
within C. If we add the import statement<-P.program to the module header
for C then one extra production is induced:

C.statement ::= P.w "program" P.w P.id "begin" P.w P.statDecs "end" P.w "." P.w C.w ;

The full grammar for C with embedded P is the concatenation of the
induced P grammar above and:

27

C._translationUnit ::= C.w C.translationUnit ;

C.decName ::= C.id | C.id C.optInitialiser ;

C.declaration ::= 'int' C.w C.decName ;

C.expression ::= C.term | C.expression '+' C.w C.term | C.expression '-' C.w C.term;

C.factor ::= C.intLiteral | C.id | '(' C.w C.expression ')' C.w ;

C.id ::= CLex.alphaNumU CLex.idTail C.w ;

C.intLiteral ::= CLex.digit C.w | CLex.digit CLex.intLiteral C.w ;

C.optInitialiser ::= '=' C.w C.expression ;

C.statDecs ::= C.statement | C.declaration |

C.statement C.statDecs | C.declaration C.statDecs ;

C.statement ::= 'while' C.w '(' C.w C.expression ')' C.w C.statement ';' C.w |

'if' C.w '(' C.w C.expression ')' C.w C.statement |

C.id '=' C.w C.expression |

P.w "program" P.w P.id "begin" P.w P.statDecs "end" P.w "." P.w C.w;

C.term ::= C.factor | C.term '*' C.w C.factor |

C.term '%' C.w C.factor | C.term '/' C.w C.factor ;

C.translationUnit ::= C.statDecs ;

C.w ::= CLex.wsElement | CLex.wsElement CLex.ws | # ;

CLex.alpha ::= `a..`z | `A..`Z ;

CLex.alphaNumU ::= CLex.alpha | CLex.digit | `_ ;

CLex.comment ::= `/ `/ CLex.commentBody `\n ;

CLex.commentBody ::= / `\n | / `\n CLex.commentBody ;

CLex.digit ::= `0..`9 ;

CLex.id ::= CLex.alphaNumU CLex.idTail ;

CLex.idTail ::= CLex.alphaNumU | CLex.alphaNumU CLex.idTail ;

CLex.intLiteral ::= CLex.digit | CLex.digit CLex.intLiteral ;

CLex.ws ::= CLex.wsElement | CLex.wsElement CLex.ws ;

CLex.wsElement ::= ` | `\t | CLex.comment ;

Of course, there will almost always be some ambiguity at the boundary be-
tween languages since nonprinting characters such as space and tab will be
in both P.w and C.w and so the consecutive instances of nullable nontermi-
nals P.w and C.w will both match any whitespace following the embedded P
program; typically lexical level ambiguities are resolved using longest match.

In practice, embedding an entire program is unlikely to be required.
More usually, the statements, declarations and expressions will all individu-
ally be intermingled with separate import expressions. As described earlier,
this problem area is also addressed by Van Wyk and co-workers in the Cop-
per parser generator [19].

7.2. Writing modules for reuse

The following module is an extract from the C module which only de-
scribes expressions at token level.

28

Expr ew<-Expr.ws ()

expression ::= term | expression '+' term | expression '-' term ;

term ::= factor | term '*' factor | term '%' factor | term '/' factor ;

factor ::= intLiteral | id | '(' expression ')' ;

The nonterminals Expr.intLiteral, Expr.id and Expr.w are all undefined.
If we import from this module using the by-clone import operator <=,

then all nonterminals will be rewritten so that their module names match the
importing module. There is a sense in which this module is ‘parameterised’
via these three undefined nonterminals which become hooks by which the
importing module can change the language of expressions insofar as factors
and whitespace are concerned.

Here is a modified version of P which imports its expression sub-language
from the above module.

P w<-PLex.ws (<=Expr.expression <=Expr.term <=Expr.factor

<=Expr.intLiteral <=Expr.id

PLex.intLiteral PLex.id)(program)

program ::= "program" id "begin" statDecs "end" ".";

statDecs ::= statDec | statDec ';' statDec ;

statDec ::= statement | declaration ;

statement ::= "repeat" statement "until" expression |

"if" expression "then" statement |

id ':=' expression ;

declaration ::= "var" id ':' 'int' ;

This induces (amongst others) the following rules

P.expression ::=

P.ew P.term P.w |

P.ew P.expression '+' P.ew P.term P.w |

P.ew P.expression '-' P.ew P.term P.w ;

P.factor ::=

P.ew P.intLiteral P.w |

P.ew P.id P.w |

P.ew '(' P.ew P.expression ')' P.ew P.w ;

P.term ::=

P.ew P.factor P.w |

P.ew P.term '*' P.ew P.factor P.w |

P.ew P.term '%' P.ew P.factor P.w |

P.ew P.term '/' P.ew P.factor P.w ;

The P.ew nonterminal has no productions defined. A unit rule P.ew ::=

P.w serves to connect the whitespace nonterminals but at the cost of some
extra ambiguity, and thus an increase in the size of parse forests.

29

7.3. Decomposition and recomposition

One area in which grammarware differs significantly from software is that
we may wish to take a monolithic grammar and extract from it reusable
portions. Of course, the traditional tool for this is the text editor, but
our goal is to use the modularity constructs to document and specify the
transformations so that we can reason about the resulting grammars and
languages.

The expression sub-grammars for C and P are quite similar. Imagine that
C pre-exists and we are building P ab initio. In the previous example we
used a pre-written expression module. If we replace that with the following
module header

Expr (<=C.expression <= C.term <=C.factor)

then the productions for Expr will be induced from the C grammar. Since
there is no whitespace convention specified for Expr we get the whitespace
from module C renamed to Expr.w.

Expr.expression ::=

Expr.w Expr.term |

Expr.w Expr.expression '+' Expr.w Expr.term |

Expr.w Expr.expression '-' Expr.w Expr.term ;

Expr.factor ::=

Expr.w Expr.intLiteral |

Expr.w Expr.id |

Expr.w '(' Expr.w Expr.expression ')' Expr.w ;

Expr.term ::=

Expr.w Expr.factor |

Expr.w Expr.term '*' Expr.w Expr.factor |

Expr.w Expr.term '%' Expr.w Expr.factor |

Expr.w Expr.term '/' Expr.w Expr.factor ;

P.expression ::=

P.w P.term P.w |

P.w P.expression '+' P.w P.term P.w |

P.w P.expression '-' P.w P.term P.w ;

P.factor ::=

P.w P.intLiteral P.w |

P.w P.id P.w |

P.w '(' P.w P.expression ')' P.w P.w ;

P.term ::=

P.w P.factor P.w |

P.w P.term '*' P.w P.factor P.w |

P.w P.term '%' P.w P.factor P.w |

P.w P.term '/' P.w P.factor P.w ;

30

The productions for term in C should not include a % operator. We can
suppress that from the Expr module by adding the deleter

term :/= term '%' factor ;

7.4. Extension

Extension of non-recursive rules using import-by-reference is straightfor-
ward. For recursive rules, we usually want to use import-by-clone so that
the right hand side instances refer to nonterminals in the importing module.

Consider this specification:

NewExpr(Expr)(expression)

term ::= term '%' factor;

Expr(Lex.intLiteral Lex.id)

expression ::= term | expression '+' term | expression '-' term ;

term ::= factor | term '*' factor | term '/' factor ;

factor ::= intLiteral | id | '(' expression ')' ;

NewExpr imports all of the nonterminals in Expr by reference, yielding
the following productions for NewExpr.term.

NewExpr.term ::=

NewExpr.term '%' NewExpr.factor |

Expr.factor |

Expr.term '*' Expr.factor |

Expr.term '/' Expr.factor ;

We see a mix of nonterminals from Expr and from NewExpr, the effect
of which is that an expression such as a * b % c is not in the language
of NewExpr.expression— as soon as we encounter one of the operators
from the Expr language, we are locked into the Expr sublanguage because
the recursive loop of productions does not include the new production for
NewExpr.term.

The solution is to clone-import the rules for Expr into NewExpr using
a module header like NewExpr(<=Expr)(expression) which yields the fol-
lowing productions for NewExpr.term.

NewExpr.term ::=

NewExpr.term '%' NewExpr.factor |

NewExpr.factor |

NewExpr.term '*' NewExpr.factor |

NewExpr.term '/' NewExpr.factor ;

Adding a new operator priority level requires a little more work. We
need some way to ‘split open’ the productions in the expression grammar so
that we can insert a new nonterminal. To insert a new operator @ of priority

31

above + and * we can use nonterminal renaming imports, and create a new
version of the rule for factor:

NewExpr(<=Expr.expression <=Expr.term <=Expr.id <= Expr.intLiteral

oldFactor<=Expr.factor)(expression)

factor ::= oldFactor | factor '@' oldFactor;

which induces the following rules:

NewExpr.expression ::=

NewExpr.term |

NewExpr.expression '+' NewExpr.term |

NewExpr.expression '-' NewExpr.term ;

NewExpr.term ::=

NewExpr.factor |

NewExpr.term '*' NewExpr.factor |

NewExpr.term '/' NewExpr.factor ;

NewExpr.factor ::=

NewExpr.oldFactor |

NewExpr.factor '@' NewExpr.oldFactor ;

NewExpr.oldFactor ::=

NewExpr.intLiteral |

NewExpr.id |

'(' NewExpr.expression ')' ;

8. Related work

In this section we look at the modularity features of some well known
grammar based tools.

Most versions of the LL parser generator ANTLR [17] do not support
modularity at the grammar level although if the target language is Java it
is possible to import other Java modules; this mechanism is not powerful
enough to facilitate grammar modularity. Since LL is not a general parsing
technique true modularity would in any case be difficult to sustain. ANTLR4
has some inheritance-oriented modularity mechanisms, as described earlier.

TXL [6] offers a very primitive grammar composition mechanism based
on the standard include mechanism. It is possible to split up the grammar
rules over multiple files, but there is only one start nonterminal: program.
On the other hand a redefine mechanism allows replacement of the alter-
nates for a specific nonterminal, or extension of the alternates of an existing
nonterminal. Automatic whitespace handling in TXL may be disabled via
a switch in which case whitespace must be explicitly handled within the
grammar.

32

As discussed above, Rats! [10] is a parser generator that generates Java
parsers based on parsing expression grammars (PEGs). PEGs are a recent
reintroduction of Aho and Ullman’s TDPL formalism [1, chapter 6]. In
Rats!, PEGs are closed under set difference, which eases the deleter problem,
although the need to take care over ordering (since the language of a PEG
is not independent of rule ordering) complicates matters. The tool allows
adding, overriding and removing of individual alternates of grammar rules.
In order to perform these modifications, Rats! provides module parameters.
Rats! provides operators to add += a new alternate before or after an existing
one, to remove -= an alternate, and to override := a specific alternate or an
entire production.

8.1. SDF2 module mechanisms

SDF2 module specifications induce grammars in which the nonterminal
names do not retain their module origins; in our terminology SDF2 imports
by clone not by reference. When processing a top level module M , SDF2
recursively constructs a set R of modules reachable via chains of import
statements. For each module Ri ∈ R, and for each nonterminal N ∈ Ri,
SDF2 performs the import M.N ⇐ Ri.N .

SDF2 allows renaming of symbols on import via renaming and parame-
terisation [11, 23]; both terminals and nonterminals may be renamed. For
example, consider a module to manipulate tables with two parameters, key
and value of the type Key and Value respectively. When importing this
generic module the type Key can be bound to the nonterminal Identifier
and the type Value can be bound to the nonterminal Type, in order to cre-
ate a type environment. The parameterised modules are mainly employed
when SDF2 is used to describe the signature of ASF functions rather than
for grammar induction, although the AspectJ grammar described in [4] uses
module parameterisation for the composition of the syntax of Java with the
syntax of aspects.

Parameterisation and renaming in SDF2 are effectively two different con-
crete syntaxes which access the same underlying semantics; when nonter-
minal P ∈ Ri is renamed to Q on import to M , SDF2 uses the import
M.Q⇐ Ri.P rather than the default import M.P ⇐ Ri.P .

The parameterisation mechanism provides named formal parameters for
modules which must be bound to symbols in the importing module; this
example would be expressed as

module Ri[P]

exports sorts P

33

...

module M

imports Ri[Q]

The renaming mechanism allows any nonterminal to be directly renamed
and thus explicit parameters are not required.

module Ri

exports sorts P

...

module M

imports Ri[P => Q]

SDF2 also provides an alias mechanism which may be used to create non-
parameterised single level macros across all inputs. The main application is
to construct single-symbol abbreviations; but since an alias defined in one
module is applied across all modules used in inducing a grammar, complex
effects can be generated. The maintenance issues with macro languages are
well understood, and although the non-recursive application of SDF2 aliases
mitigates their complexity, accidental name clashes arising from the global
scope of aliases can generate unexpected behaviours. Our modularisation
mechanisms do not extend to macro use, however where macros are desir-
able, processors such as M4 or the C preprocessor can be used to emulate
SDF2’s alias mechanism.

8.2. SDF2 whitespace management

SDF2 provides a single whitespace nonterminal which is inserted between
all symbols in context free rules; this induces additional ambiguity compared
to our mechanism.

In detail, SDF2 distinguishes three different types of syntax sections:
lexical syntax, context-free syntax, and core syntax. The lexical syntax
and context-free syntax sections are specializations of the latter one. The
grammar rules in both sections are translated to core syntax grammar rules
when the grammar is processed by the parse table generator. A number of
grammar transformations will take place, we discuss only the transformation
rules related to the processing of whitespace, new lines and comments. For
the other grammar transformation rules we refer to [23].

In the grammar rules of the core syntax the grammar developer has
to indicate explicitly where layout has to be inserted in left hand side

34

of a grammar rules (note that in SDF2 the left and right hand side are
swapped with respect to (E)BNF rules). This has to be done via the non-
terminal LAYOUT?, where the ? indicates that layout is optional. There
may be layout tokens inserted, but it is not strictly necessary. The gram-
mar transformation that takes place when translating a lexical syntax sec-
tion into a core syntax section does not insert this LAYOUT? between the
members in the left-hand side of the lexical grammar rules. For instance,
[a-z][a-zA-Z0-9]* -> Id is translated into [a-z][a-zA-Z0-9]* -> Id.
The grammar transformation that takes place when translating a context-
free syntax section into a core syntax section inserts the LAYOUT? nontermi-
nal between all members in the left-hand side of the context-free grammar
rules. For instance, "begin" Decls Stats "end" -> Program is trans-
lated into "begin" LAYOUT? Decls LAYOUT? Stats LAYOUT? "end" -> Program.
There is no LAYOUT? nonterminal inserted before the first member or ap-
pended after last member, except for the rules that have the predefined
nonterminal START in the right hand side, for instance, LAYOUT? Program

LAYOUT? -> START. If a member in the left hand side of a context-free gram-
mar rule is nullable, this may lead to ambiguities. This problem is solved
by explicitly restricting the recognition of layout characters after a LAYOUT?.
This is for instance achieved in the following way, under the assumption that
a whitespace, newline and tabular are the layout characters:

context-free restrictions

LAYOUT? -/- [\ \n\t]

SDF2 provides, like TXL, only one LAYOUT nonterminal. The layout
can be defined by the grammar writer, but holds for the entire grammar
definition so in the case of language embedding, the LAYOUT nonterminal
would normally be set to the union of the individual whitespace languages.
Module-specific whitespace conventions are an active development topic in
SDF2.

9. Conclusions

We have described a modularisation technique for context free grammars
in which productions are copied into importing modules, with deleters allow-
ing individual productions to be suppressed from the copying process. Since
removing a production from a context free grammar yields a context free
grammar, this method for removing parts of a context free language cannot
accidentally yield a context sensitive language. We have also developed a
semantics for automatic whitespace insertion which supports the traditional

35

conventions used in programming language standards but which allows ac-
curate embedding of languages with differing whitespace conventions.

There remain significant open questions concerning both the human fac-
tors and theoretical underpinnings of these techniques which we shall con-
tinue to investigate. We note that if no whitespace mechanism is defined
then we have a traditional token level grammar which would specify parsers
that operated on token streams, not characters. In such a case, we assume
that an externally generated lexical analyser mediates the parser’s access to
the input string.

There are some technical challenges in the present scheme whose signif-
icance to users can only be evaluated with experience.

1. In the current scheme an import cannot add whitespace if the imported
module has an empty whitespace convention.
One alternative proposal that we shall investigate is that import-by-
clone should suppress all whitespace from the exporting module, and
instantiate the whitespace convention of the importing module. A
less restrictive possibility could be that clone imports allow explicit
specification of the whitespace convention to use.

2. An important aspect of disambiguation in real programming languages
is the suppression of reserved words from the pattern of the identi-
fier symbol. Our scheme presently offers no special features to sup-
port this, though in a generalised parsing environment local non-
determinism can often be resolved at phrase level.

Our main goals are to allow users to write grammar specifications in
a conventional style, but for the tools to display an exact character level
context free grammar including all details of whitespace handling, and to
promote reuse. We are using the techniques described here to generate
parsers for tools which aim to provide a modular library of reusable formal
semantics components. Reusability of syntactic components would be highly
desirable, and the project provides an opportunity to evaluate our proposals
in the context of real-world general purpose languages. A particularly chal-
lenging case study has involved the lexical structure of the highly ambiguous
OCaml reference grammar in which we have used our modularity constructs
to ‘mix and match’ a variety of lexical models. This is necessary because the
obvious character level grammar generates so much ambiguity that we wish
to use longest match tokenisation as we would with conventional languages;
however OCaml allows user defined operators in which the initial character
has significance within the prioritisation scheme so a hybrid approach is re-
quired. Using ART’s modularity constructs allows alterate partitionings to

36

be simply specified.

9.1. Acknowledgements

This work was partially funded under UK EPSRC grant EP/I032509/1
PLanCompS: Programming Language Components and Specifications. We
are grateful for the helpful suggestions of the anonymous reviewers and fur-
ther comments from Ana-Maria Farcasi, Robert Walsh, Joseph Reddington
and the editors.

References

[1] A. V. Aho and J. D. Ullman. The Theory of Parsing, Translation and
Compiling, volume 1 — Parsing of Series in Automatic Computation.
Prentice-Hall, 1972.

[2] J. Andersen and C. Brabrand. Syntactic language extension via an
algebra of languages and transformations. Electr. Notes Theor. Comput.
Sci., 253(7):19–35, 2010.

[3] J. Andersen, C. Brabrand, and D. R. Christiansen:. Banana algebra:
Compositional syntactic language extension. Science of Computer Pro-
gramming, to appear, 2013.

[4] M. Bravenboer, E. Tanter, and E. Visser. Declarative, formal, and
extensible syntax definition for AspectJ. OOPSLA 2006, pages 209–
228, New York, NY, USA, 2006. ACM.

[5] M. Bravenboer and E. Visser. Parse table composition. In D. Gašević,
R. Lämmel, and E. Wyk, editors, Lecture Notes in Computer Science,
pages 74–94. Springer-Verlag, Berlin, Heidelberg, 2009.

[6] J. R. Cordy. The TXL source transformation language. Sci. Comput.
Program., 61:190–210, 2006.

[7] M. de Jonge. Reuse of ASF+SDF specifications by means of renaming.
Technical Report P9718, University of Amsterdam, 1997.

[8] T. Ekman and G. Hedin. The JastAdd system – modular extensible
compiler construction. Science of Computer Programming, 69(13):14 –
26, 2007.

37

[9] B. Ford. Parsing expression grammars: a recognition-based syntactic
foundation. In Proceedings of the 31st ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, POPL 2004, Venice,
Italy, January 14-16, 2004, pages 111–122. ACM, 2004.

[10] R. Grimm. Better extensibility through modular syntax. In Proceedings
of the 2006 ACM SIGPLAN conference on Programming language de-
sign and implementation, PLDI ’06, pages 38–51, New York, NY, USA,
2006. ACM.

[11] J. Heering, P. R. H. Hendriks, P. Klint, and J. Rekers. The syntax
definition formalism SDF reference manual. SIGPLAN Not., 24:43–75,
November 1989.

[12] J. Heering, P. Klint, and J. Rekers. Incremental generation of parsers.
IEEE Trans. Software Eng., 16(12):1344–1351, 1990.

[13] R. N. Horspool. Incremental generation of LR parsers. Comput. Lang.,
15(4):205–223, 1990.

[14] A. Johnstone, E. Scott, and M. van den Brand. LDT: a language defini-
tion technique. In C. Brabrand and E. van Wyk, editors, LDTA’11 11th
Workshop on Language Descriptions, Tools and Applications, ACM
Digital Library. ACM, 2011.

[15] P. Klint, R. Lämmel, and C. Verhoef. Toward an engineering disci-
pline for grammarware. ACM Transactions on Software Engineering
Methodology, 14(3):331–380, 2005.

[16] T. Parr. ANTLR4 grammar structure. http://www.antlr.org/wiki/
display/ANTLR4/Grammar+Structure. Accessed: June 28 2013.

[17] T. Parr. The Definitive ANTLR Reference: Building Domain-Specific
Languages. Pragmatic Programmers. Pragmatic Bookshelf, 2007.

[18] T. Parr and K. Fisher. LL(*): the foundation of the ANTLR parser
generator. In PLDI, pages 425–436, 2011.

[19] A. Schwerdfeger and E. Van Wyk. Verifiable composition of determinis-
tic grammars. In Proceedings of the 2009 ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI 2009,
Dublin, Ireland, June 15-21, 2009, pages 199–210, 2009.

38

[20] E. Scott and A. Johnstone. GLL parsing. Electr. Notes Theor. Comput.
Sci., 253(7):177–189, 2010.

[21] E. Scott and A. Johnstone. GLL parse-tree generation. Science of
Computer Programming, in press, 2012.

[22] M. van den Brand, J. Heering, P. Klint, and P. Olivier. Compiling
language definitions: the ASF+SDF compiler. ACM Transactions on
Programming Languages and Systems, 24(4):334–368, 2002.

[23] E. Visser. Syntax Definition for Language Prototyping. PhD thesis,
University of Amsterdam, September 1997.

[24] E. V. Wyk, D. Bodin, J. Gao, and L. Krishnan. Silver: An exten-
sible attribute grammar system. Science of Computer Programming,
75(1V2):39 – 54, 2010.

39

