
Comment on ‘‘Unified Formalism of Andreev Reflection
at a Ferromagnet/Superconductor Interface’’

Recently, a ‘‘unified’’ Andreev reflection (AR) formal-
ism, claimed to be ‘‘the most general to date,’’ was sug-
gested [1]. Here, we show that while there are numerous
works [2–7] correctly solving the problem formulated in
Ref. [1] for arbitrary spin polarization P, Ref. [1] fails to
correctly incorporate P � 0 effects and is incompatible
with basic physical laws.

At P ¼ 0, the approach [1] is identical to the nonmag-
netic 1D Blonder-Tinkham-Klapwijk (BTK) model [8].
For P � 0, they postulate an AR wave function
with an additional evanescent wave at x < 0: c AR¼
af01gexp½ð�þ iÞqþx� and �¼2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P=ð1�PÞp

. This is com-

pletely unsubstantiated, and the proposed wave function
violates charge conservation [9]: its current density is
jARðxÞ / Im½c �

ARrc AR� / qþjaj2 exp½2�qþx�. For any

0<�<1, i.e., 0<P< 1, the divergence of the total
current is finite for �1=2�qþ & x and the total charge is
not conserved, signaling that c AR is unphysical. This is
such a fundamental error that none of the results that follow
can be trusted.

Even for a half-metal (HM,P ¼ 1), where this expression
correctly gives jAR ¼ 0, it remains false. Reference [1]
postulates an infinitesimally small decay length of the AR
electron into a HM, while, in fact, it decays with a finite
length, depending on the electronic structure, primarily the
gap in the nonmetallic spin channel [10].

The rationale for introducing a new c AR [1] was that (a)
allegedly, the result in Ref. [3] only applies to HM with
~c AR ¼ af01g expð�xÞ and a nonmagnetic metal with ~c AR ¼
af01g expðikxÞ, while the current for an intermediate P is

assumed to be a linear combination of these cases, (b) no
prior work had treated the 0<P< 1 case, and (c) one can
define P for an individual electron. Regarding (a) and (b),
the derivation in Ref. [3] and in other works [4–7] is rigorous
for any P. Regarding (c), one cannot define a single channel
BTKmodel with an arbitrary P [11]: any given electron in a
metal Andreev reflects into either a propagating or evanes-
cent wave. Finite Pmeans that while some current-carrying
electrons propagate, others evanesce; one can only define
spin polarization in a multielectron system, where the
numbers of states at the Fermi surface (FS) (conductivity
channels) for the two spin directions differ. If the 2D wave
vector kk, parallel to the interface, is conserved [12], then

after quantization of kk, the total number of conductivity

channels in the x direction for a given spin is proportional
to the area of the FS projection on the interface n ¼
hNðEFÞvFxiFS [3]. After summation over all states, the total
current is a linear combination (with the weights defined
by P) of the solutions of the BTK model with P ¼ 0 and
P ¼ 1. This was derived in numerous papers (see Ref. [7]).

In contrast to the ‘‘universal’’ P in Ref. [1], independent
of electronic mass, kF’s, or any band structure at all, the

real transport spin polarization in AR depends on the over-
all FS properties. Moreover, there is no unique spin polar-
ization; it depends on an experimental probe. In fact, the
definition used in Ref. [1] (neglecting the velocities) does
not correspond to the AR but rather to spin-polarized
photoemission [13].
Reference [1] has overlooked the previous works where

the posed problem has been correctly solved for an arbi-
trary P and has replaced this solution with an incorrect
formula, postulating an unphysical wave function that does
not conserve charge and has an incorrect HM limit. They
calculated the current due to c AR at x ¼ 0, but the actual
current is measured far away from the interface (where
they would predict zero jAR for any P). They erroneously
assumed that the decay length for an electron inside the
band gap is uniquely defined by the spin polarization (these
two quantities are unrelated). While the formula postulated
in Ref. [1] provides a fit for their experimental data, which
is essentially identical to using Ref. [3], this does not
constitute an argument for the validity of this approach,
particularly considering unphysical predictions of this for-
malism in the finite Z case (kinks at zero bias and notches
near the gap; see Fig. 2(c) of Ref. [1]). The inclusion of
inelastic scattering by adding broadening, another claimed
novelty, was done previously [6,14].
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