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Abstract. We examine the production of dark matter by decaying topological defects in
the high mass region mDM � mW of the Inert Doublet Model, extended with an extra
U(1) gauge symmetry. The density of dark matter states (the neutral Higgs states of
the inert doublet) is determined by the interplay of the freeze-out mechanism and the
additional production of dark matter states from the decays of topological defects, in
this case cosmic strings. These decays increase the predicted relic abundance compared
to the standard freeze-out only case, and as a consequence the viable parameter space
of the Inert Doublet Model can be widened substantially. In particular, for a given dark
matter annihilation rate lower dark matter masses become viable. We investigate the
allowed mass range taking into account constraints on the energy injection rate from
the diffuse γ-ray background and Big Bang Nucleosynthesis, together with constraints
on the dark matter properties coming from direct and indirect detection limits. For
the Inert Doublet Model high-mass region, an inert Higgs mass as low as ∼ 200 GeV
is permitted. There is also an upper limit on string mass per unit length, and hence
the symmetry breaking scale, from the relic abundance in this scenario. Depending on
assumptions made about the string decays, the limits are in the range 1012 GeV to 1013

GeV.
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1 Introduction

The identity of dark matter remains one of the major puzzles in modern physics. With
a relic abundance of ΩDMh

2 = 0.1186± 0.0031 as measured by Planck [1], dark matter
constitutes around five times more of the energy density of the Universe than normal
baryonic matter. It is also one of the clearest signs that there is physics beyond the
Standard Model (SM). Nothing in the SM can play the role of dark matter and fully
explain the measured value for the relic abundance and so we are forced to look beyond
it for candidates.
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In extending the SM from a bottom up perspective, we need to add dark matter
states, and we may also wish to supplement the SM gauge group with additional gauge
symmetries. The simplest example is the addition of an Abelian gauge symmetry, which
we will refer to as U(1)′. The associated gauge boson can play a role in connecting the
dark matter state to the SM sector [2]. Such a connection is required in most models of
dark matter relying on the freeze-out mechanism to determine the relic abundance.

We may also expect additional Abelian gauge symmetries from a top down per-
spective. Whether one considers heterotic strings, type II string theory with D-branes
or F-theory, it is common that in attempts to recover the SM gauge group, additional
unbroken Abelian gauge symmetries are generated (see for example [3–5]).

Whatever the source of the extra symmetry, the Z ′ in these models must be suf-
ficiently massive to have escaped detection, and so the U(1)′ must be spontaneously
broken. During the resulting phase transition in the early Universe, linear topological
defects (TDs) or cosmic strings would have been formed [6]. The mass per unit length
µ of the strings is proportional to the square of the symmetry breaking scale v′.

The strings decay into either the particles of their constituent fields or gravitational
radiation (see e.g. [7]). The specific branching fractions into each are uncertain and are
usually left as an unknown parameter of the model. A number of existing works have
examined the constraints on these cosmic strings for a range of scenarios, symmetry
breaking scales and constituent fields [8–12].

The connection between dark matter and the TDs can also be exploited to find
constraints on the properties of the cosmic strings. Whether the dark matter states are
charged under the additional symmetry or not, we generically expect that the decays of
the TDs formed in these models will have a branching fraction to the dark matter states
at some level. An intriguing alternate connection between axion-like domain walls and
dark matter has been discussed in [13–15].

There are number of ways in which the connection can be realised. If the dark
matter is not charged under the U(1)′, but is a scalar state, χ, it can couple to the
complex scalar, φ, responsible for spontaneously breaking the U(1)′. It can do so via a
quartic “portal” coupling, L ⊃ |φ|2 |χ|2. This portal coupling will provide a connection
between the dark matter states and the states that will form the cosmic string.

A second example is where the additional U(1)′ kinetically mixes with the SM
gauge group U(1)Y (which could allow for a further channel for particle radiation from
the string [16]). If the dark matter is charged under the electroweak gauge group we
again have a direct connection between the U(1)′ sector and the dark matter states.

A further example, is where the dark matter state is charged under the U(1)′. In
this case the connection is straightforward with the dark matter states being produced
directly from the decays of the TDs. In all these cases it is clear that dark matter will
be produced in the decays of these TDs with some branching fraction.

In [9] this scenario was examined in a model independent way with the dark matter
injection rate from the defect decays varying as a power law with time.1

1Dark matter from decaying strings was also considered in [8] where a specific production mechanism
was assumed, in which dark matter particles were generated, in small numbers, only when the loops of
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It is clear that if we increase the injection of dark matter states from TD decays,
the annihilation cross section needs to increase in order to bring the relic abundance
down to the measured value. We can only increase the annihilation cross section up
to the unitarity limit and hence there is an upper bound on the dark matter injection
rate. For a given dark matter mass, this translates into constraints on the properties of
the cosmic string network, and specifically on the mass per unit length of the strings.
A further effect of increasing the annihilation rate is generically an enhancement of the
indirect and direct detection signals, which can further limit the model.

Conversely, the extra source of dark matter particles changes the predictions of
specific dark matter models.

Scenarios in which dark matter production by decaying TDs could play a positive
role involve weakly interacting massive particle (WIMP) models where dark matter anni-
hilation into SM particles naturally yields a relic density significantly below the observed
one. This is, for example, the case for WIMP scenarios where dark matter annihilates
dominantly via SU(2)L × U(1)Y gauge interactions, as in most of the parameter space
of the minimal dark matter [17, 18] and IDM [19–21] scenarios. These models constitute
rather minimal extensions of the SM, and are very appealing phenomenologically since
the dark matter annihilation properties can be purely dictated by its SU(2)L × U(1)Y
gauge quantum numbers. However, this same feature greatly restricts the range of dark
matter masses that yield the observed relic abundance via thermal freeze-out.

In this work we explore the impact of dark matter production by the decay of TDs
on the available parameter space for these scenarios, taking as a case study the Inert
Doublet Model (IDM) supplemented by an additional U(1)′ gauge symmetry. This model
has already been considered in [22, 23], with the different motivation of including in a
gauge group the discrete symmetry stabilising the dark matter particle. The spontaneous
breaking of this U(1)′ gauge symmetry in the early universe leads to the formation of
cosmic strings whose decay represents the extra source of dark matter production. We
will show that this greatly opens-up the allowed range of dark matter masses in the
IDM.

Before exploring this in detail, in Section 2 we review the main features of the IDM
that will be relevant for the subsequent discussion. In Section 3 we extend the IDM
by a U(1)′ gauge symmetry and analyse its implications. In Section 4 we discuss and
parameterise the injection rate of dark matter via the decay of cosmic strings. Following
this, in Section 5 we analyse the impact of the dark matter production by cosmic strings
on the parameter space of the IDM by solving the relevant Boltzmann equations, and
discuss the connection between the mass of the dark matter and the scale of U(1)′

symmetry breaking. In Section 6, we discuss observational constraints on the presence
of these TDs and finally, we conclude in Section 7.

string had shrunk to radii the same order as the string width.
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2 The Inert Doublet Model: A brief review

The SM contains a single Higgs doublet H1 whose vacuum expectation value (VEV)
breaks the SU(2)L × U(1)Y symmetry down to U(1)EM. The IDM [19–21] extends the
SM by adding a second Higgs doublet H2 which is odd under an imposed Z2 symmetry,
with all SM states even under this symmetry. The extra Higgs doublet does not couple to
fermions and does not acquire a VEV (µ2

2 > 0). The lightest neutral component of this
inert doublet, is stable and can therefore be a potentially viable dark matter candidate.
The most general scalar potential one can then write for H1, H2 is

V =− µ2
1|H1|2 + µ2

2|H2|2 + λ1|H1|4 + λ2|H2|4 + λ3|H1|2|H2|2

+ λ4|H†1H2|2 +
λ5

2

{
(H†1H2)2 + h.c.

}
,

(2.1)

with

H1 =

(
0

1√
2
(v + h)

)
, H2 =

(
H+

1√
2
(H0 + iA0)

)
, (2.2)

in the unitary gauge, where the SM Higgs VEV v = 246 GeV. The scalar sector is then
comprised of the SM Higgs boson h and four new Z2-odd particles (H±, H0 and A0),
with masses given by

m2
H0 = µ2

2 +
1

2
(λ3 + λ4 + λ5) v2, (2.3)

m2
A0 = µ2

2 +
1

2
(λ3 + λ4 − λ5) v2, (2.4)

m2
H± = µ2

2 +
1

2
λ3 v

2. (2.5)

We take H0 to be the lightest and thus our dark matter candidate, which amounts to
requiring λ4+λ5 < 0 and λ5 < 0. We also define λ3+λ4+λ5 ≡ 2λL for later convenience.
The squared mass differences among the new states are given by

∆m2
0 ≡ m2

A0 −m2
H0 = −λ5 v

2 > 0, (2.6)

∆m2
+ ≡ m2

H± −m2
H0 = −1

2
(λ4 + λ5) v2 > 0. (2.7)

From theoretical constraints we can already restrict some of the parameters of the
model. Firstly, the potential (2.1) is bounded from below if

λ1,2 > 0, λ3 > −2
√
λ1 λ2, λ3 + λ4 − |λ5| = 2λL > −2

√
λ1 λ2. (2.8)

We also have a condition for the global EW minimum to preserve the Z2 symmetry given
by

µ2
1√
λ1

<
µ2

2√
λ2
. (2.9)
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It is also possible to derive unitarity constraints on tree-level processes among the various
scalars, which read [24] (see also [25, 26])

|ei| ≤ 8π ∀i = 1, ..., 12 (2.10)

with
e1,2 = λ3 ± λ4, e3,4 = λ3 ± λ5, e5,6 = λ3 + 2λ4 ± 3λ5, (2.11)

e7,8 = −λ1 − λ2 ±
√

(λ1 − λ2)2 + λ2
4, e9,10 = −λ1 − λ2 ±

√
(λ1 − λ2)2 + λ2

5, (2.12)

e11,12 = −3λ1 − 3λ2 ±
√

9 (λ1 − λ2)2 + (2λ3 + λ4)2. (2.13)

2.1 Electroweak precision observables: S, T , U

The new states H±, A0 and H0 contribute to electroweak precision observables (EWPO)
via loop corrections to the oblique parameters S, T , and U [27, 28]. Under the assump-
tion U = 0, the best-fit values and standard deviations for S and T from the up-to-date
global analysis of EW precision observables performed by the GFitter Group [29], for a
SM reference point with mt = 173 GeV and a 125 GeV Higgs mass, are

∆S ≡ S − SSM = 0.06± 0.09, ∆T ≡ T − TSM = 0.10± 0.07. (2.14)

The IDM contribution to the S-parameter is given by

∆S =
1

2π

∫ 1

0
dxx (1− x) log

(
xm2

H0 + (1− x)m2
A0

m2
H±

)
. (2.15)

When mH± ' mA0 (as preferred by the T -parameter, see below), we have

∆S ' 1

2π

∫ 1

0
dxx (1− x) log

(
1− x a2

)
≤ 0, a2 ≡ m2

A0 −m2
H0

m2
A0

∈ [0, 1], (2.16)

where ∆S is monotonically decreasing with a2 and approaches ∆S ' −0.022 for a2 → 1,
well within the range favoured by the global fit (2.14). Thus, we can safely disregard the
S-parameter in the following discussion. The most important IDM contribution affects
the T -parameter [20]:

∆T =
[F (mH± ,mA0) + F (mH± ,mH0)− F (mA0 ,mH0)]

32π2αEMv2
, (2.17)

with

F (m1,m2) =
m2

1 +m2
2

2
− m2

1m
2
2

m2
1 −m2

2

log

(
m2

1

m2
2

)
. (2.18)

Noting that F (m2,m1) = F (m1,m2) and F (m1,m1) = 0, we immediately obtain from
(2.17) that ∆T = 0 in the IDM for either mA0 = mH± or mH0 = mH± . This can be
understood (see e.g. [30] and Appendix A for details) by recasting the potential (2.1) in
terms of the 2×2 matrices Φ1 = (iσ2H

∗
1 , H1), Φ2 = (iσ2H

∗
2 ,±H2), which then preserves

a global SU(2)L×SU(2)R symmetry in the limit λ4 = ±λ5. By virtue of (2.6) and (2.7),
this custodial symmetry translates into either ∆m2

+ = ∆m2
0 or ∆m2

+ = 0.
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3 An Inert Doublet Model with a U(1)′ gauge symmetry

As we have discussed above, we may expect there to be additional Abelian gauge sym-
metries that are broken at some scale v′ whether this is desired from a bottom up
perspective or whether these are remnants from a UV theory. In context of the IDM, we
can also motivate a U(1)′. We require a stabilising symmetry, Z2, for the stability of our
dark matter state and this can be generated as a remnant of this additional U(1)′ after
it is spontaneously broken. In any case, in order to spontaneously break this symmetry
we introduce a new complex scalar, φ, which has some charge under the U(1)′.

The phase transition associated with this breaking in the early universe gives rise to
cosmic strings, which can then couple to the inert doublet H2. This coupling is generated
from the following scalar potential

V =− µ2
1|H1|2 + µ2

2|H2|2 − µ2
φ|φ|2 + λ1|H1|4 + λ2|H2|4 + λφ|φ|4 + λ̃1|φ|2|H1|2

+ λ̃2|φ|2|H2|2 + λ3|H1|2|H2|2 + λ4|H†1H2|2 +

{
λ5

2
(H†1H2)2 + h.c.

}
.

(3.1)

The field φ gains an expectation value spontaneously breaking the U(1)′ and as usual
we expand φ about its VEV in the unitary gauge as

φ =
1√
2

(
v′ +X

)
. (3.2)

We have a choice about whether the inert doublet is charged under the U(1)′ or not.
This has a consequence for the generation of the λ5 term in Equation 3.1. If we charge
H2 (and not H1), then the λ5 term is forbidden. In the absence of this term, H0 and A0

are degenerate (see (2.6)). This allows H0N → A0N scattering (N being a nucleon) via
Z-boson exchange to occur and this leads to a direct dark matter detection signal much
larger than current experimental bounds, which rules out λ5 = 0 [20].

To avoid this issue, a λ5 term could be generated through a higher-dimensional
effective operator, e.g.

1

Λ
φ (H†1H2)2, (3.3)

where Λ parameterises some high scale physics that has been integrated out. This
operator is allowed if H2 and φ have charges 1 and −2, for example, under the U(1)′

gauge symmetry. After φ gains its VEV the U(1)′ symmetry is broken down to a remnant
Z2 symmetry that stabilises the dark matter2. At the same time, we generate the λ5

term required with λ5 ∼ v′/Λ.
An alternative is not to charge the inert doublet H2 under the new U(1)′ symmetry

and we can write down the λ5 term straight away. In this case the Z2 symmetry required
to stabilise our dark matter candidate does not have an origin in the broken gauge
symmetry, but this is no different from many other dark matter models. We remain

2This model was previously considered in [23] with the U(1)′ breaking occurring close to the TeV
scale.
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agnostic about the origin of the λ5 term, as we will see both choices lead to the same
effective potential.

After U(1)′ symmetry breaking we have two additional massive particles: a Z ′

gauge boson and a scalar X, whose masses are of the order of the symmetry breaking
scale v′. Since this is far larger than the electroweak scale, we can integrate out these
heavy states, yielding

V (H1, H2) =−
(
µ2

1 −
λ̃1v
′2

2

)
|H1|2 +

(
µ2

2 +
λ̃2v
′2

2

)
|H2|2 +

(
λ1 −

λ̃2
1

8λφ

)
|H1|4

+

(
λ2 −

λ̃2
2

8λφ

)
|H2|4 +

(
λ3 −

λ̃1λ̃2

8λφ

)
|H1|2|H2|2 + λ4|H†1H2|2

+

{
λ5

2
(H†1H2)2 + h.c.

}
.

(3.4)

This takes the form (2.1) upon the redefinitions

µ2
1 −

λ̃1v
′2

2
→ µ2

1, µ2
2 +

λ̃2v
′2

2
→ µ2

2, λ1 −
λ̃2

1

8λφ
→ λ1,

λ2 −
λ̃2

2

8λφ
→ λ2, λ3 −

λ̃1λ̃2

8λφ
→ λ3.

(3.5)

We can then consider our effective theory at the electroweak scale to be the standard
IDM, with the additional presence of cosmic strings, which couple to dark matter (and
the Higgs). This is the case regardless of whether H2 is charged or not under the U(1)′

symmetry.
We note that the first two redefinitions in (3.5) introduce a large fine-tuning in

order for µ2
1,2 to be close to the EW scale. This is of course one of a number of large

fine tunings in models of this type. One can think of this as a sensitivity to high scale
physics, which we can recognise as the gauge hierarchy problem of the SM. We do not
address this issue in this work but a possible solution is to supersymmetrise the model.
This is well beyond the scope of this work and we pragmatically regarded this work as
a case study of the possible impact of dark matter production via TDs in a simple dark
matter model.

The IDM potential (2.1) can be fully described after electroweak symmetry breaking
by the parameters v, mh, λ2, mH0 , ∆m2

0, ∆m2
+ and λL. The parameters v and mh

are fixed, while λ2 does not enter (at tree-level) any of the processes we will consider.
Furthermore, to make results more comprehensible (and to be compatible with EWPO),
we will consider the case where ∆m2

0 = ∆m2
+ ≡ ∆m2, which leaves us with three relevant

parameters for our analysis: mH0 , ∆m2 and λL. In the next section, we parameterise
the TD sector of the model.
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4 Spontaneous U(1)′ breaking and cosmic strings

Symmetry-breaking phase transitions in the early universe can give rise to TDs [6], and
in the case of a broken U(1)′, cosmic strings [7, 31, 32] are formed. The scale of the
symmetry-breaking, v′ dictates the string tension (µ ∼ v′2) and the width (∼ 1/v′). In
the core of the string there is a local false vacuum, where v′ vanishes, and if another field
couples appropriately to the field breaking the symmetry, it forms a condensate on the
string [33]. In our IDM with an additional U(1)′ gauge symmetry, the string is made
from the φ field and the U(1)′ gauge field, and can develop condensates of both Higgs
doublets, whose amplitude can be as large as v′ [10, 11, 34].

As the universe evolves, the cosmic strings decay and produce particles, with an
energy density injection rate Q(t). There is also a decay channel into gravitational
radiation, which may dominate at late times (for a discussion see [7]). We parameterise
the time-dependence by [35]

Q(t) = Qχ

(
t

tχ

)p−4

, (4.1)

where tχ is a reference time in the radiation-dominated universe, set to be when the
temperature is equal to the mass of the DM particle. The value of Qχ depends on the
model parameters λφ, λ̃1, λ̃2, and most importantly µφ: for details see Appendix B and
Ref. ([9]). As was shown in the preceding section, these parameters do not appear in
the effective EW scale theory, and are therefore very weakly constrained. We will treat
Qχ as a free parameter to be bounded by cosmological data.

We consider two decay scenarios for dark matter production [9]. The first is driven
by numerical simulations of the Abelian Higgs model [36–38] (the field theory or FT
scenario), where particle radiation is dominant, and p = 1 in this case. In the second
scenario gravitational radiation from oscillating loops dominates the energy loss, but
cusps (a section of the string which has doubled back on itself) allow subdominant
string decays into particle radiation [39] (the cusp emission or CE scenario). This gives
p = 7/6 in the radiation era. In both cases we suppose that a fraction fi of the energy
loss is into particles i = H0, A0, ..., which have an average energy of Ei.

In the IDM model, where there are condensates of both Higgs doublets, we ex-
pect the production of dark matter states to be accompanied by the production of
ordinary Higgs states. Higgs production by strings can have observable consequences
[10, 11, 34, 40], which constrains the dark matter injection rate. For example, decays
of string-produced Higgs particles can affect the light element abundances during Big-
Bang-Nucleosynthesis (BBN), and can also produce photons that will contribute to the
Diffuse Gamma-Ray Background (DGRB). Constraints on the energy injection rate into
“visible” (i.e. electromagnetically interacting) particles from strings were derived in [11]
(see also [40]). The effects of these constraints on the available parameter space of the
IDM model are discussed in more detail in Section 6.4.
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5 Increasing the relic density in the Inert Doublet Model

In this section we construct the Boltzmann equations for the production of dark matter
in our scenario. The effect of the TD decays is to introduce a source of dark matter states
with an injection rate parametrised by Equation 4.1. This type of term was incorporated
into Boltzmann equations for a single species of dark matter in [9]. In addition to the
source term, we will investigate a particular scenario of the IDM where co-annihilations
may be important in determining the final relic abundance of dark matter states. By
generalising the treatments outlined in [41, 42] to include source terms the Boltzmann
transport equations, detailing the evolution of the number density ni for any odd sector
particle, can be written as

dni
dt

=− 3Hni −
∑
j

〈σijvij〉(ninj − neq
i n

eq
j )

−
∑
j 6=i

[
〈σ′ijvij〉(ninX − neq

i n
eq
X )− 〈σ′jivij〉(njnX′ − neq

j n
eq
X′)
]

−
∑
j 6=i

[
Γij(ni − neq

i )− Γji(nj − neq
j )
]

+
fiQ(t)

Ei
,

(5.1)

where neq
i is equilibrium number density for particle species i. Here, both X and X ′

represent states that are even under the stabilising symmetry Z2, namely the SM states.
The first term on the right hand side of Equation 5.1 accounts for the dilution of the
particle number density due to cosmological expansion. The second and third terms
take into account annihilation/creation (ij ↔ X) and scattering (iX → jX ′) processes
respectively, while the fourth takes account of particle decays. The final term represents
the contribution from TD decays. The cross sections and decay rates are schematically

σij =
∑
X

σ(ij → X), σ′ij =
∑
X,X′

σ(iX → jX ′), Γij =
∑
X

Γ(i→ jX).

(5.2)
To deal with the co-annihilations we can sum the Boltzmann equations for all the odd
sector particles, the resulting expression describes the number density evolution of the
total odd sector particles (n =

∑
i ni). This procedure removes the scattering and decay

terms, as they do not change the overall number of odd particles and as a result cancel
amongst each other in the sum. Given that only the lightest of these odd particles is
stable, we expect to be left with just the Lightest Odd sector Particle (LOP) at late
times (that is, n(t0) = nLOP(t0)). The evolution of n(t) can then be written as [42]

dn

dt
= −3Hn− 〈σeffv〉(n2 − (neq)2) +

∑
i

fiQ(t)

Ei
, (5.3)

where

〈σeffv〉 ≡
∑
ij

〈σijvij〉
neq
i n

eq
j

neqneq
. (5.4)
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Performing the standard manipulations; converting from time variable t to the variable
x ≡ mH0/T and replacing the number density with n = Y s, where s is the entropy
density and Y is the yield, the resulting form of the Boltzmann equation can then be
written in the simplified form

dY

dx
= −A(x)

x2

[
Y 2 − (Y eq)2

]
+

B

x4−2p
, (5.5)

where

A(x) =

√
πg∗
45

mH0MPl〈σeffv〉(x), B =
3

4
r0q0, (5.6)

with

q0 =
∑
i

EH0

Ei

fiQχ
ρχHχ

, and r0 = mH0/EH0 . (5.7)

The equilibrium yield takes the form

Y eq =
45x2

4π4heff

∑
i

gi

(
mi

mH0

)2

K2

(
x
mi

mH0

)
. (5.8)

In the above expressions MPl = 1.22× 1019 GeV, gi is the degrees of freedom of particle
i, and ρχ and Hχ are the energy density and Hubble parameter values at tχ, respectively.
We use

√
g∗ =

heff

gρ∗

(
1 +

T

3heff

dheff

dT

)
, (5.9)

where gρ∗ and heff are the effective numbers of degrees of freedom in the bath for the
energy density and entropy respectively. We set the parameter r0 = 0.5 in the following
analysis, which is typical for strings with condensates of light fields [34]. The q0 param-
eter encodes the total energy injection rate in the form of odd sector particles from the
TD decays, its value is almost entirely set by the symmetry breaking scale, with some
weak dependence on other variables, see Appendix B. For sufficient dark matter produc-
tion q0 is typically required to be larger than ∼ 10−12, corresponding to a minimum v′

value of ∼ 1011 GeV.

5.1 Numerical evaluation of the relic abundance

Throughout our study we focus on four benchmark points for the two TD decay scenarios
of p = 1, 7/6. These four benchmarks are determined by two values of ∆m2 and two
values of the coupling λL, namely, ∆m2 = 1000, 10000 GeV2 and λL = 0, 0.1.

The two choices of mass squared splittings correspond to cases where co-annihilations
are and are not important, respectively. The value of λL = 0 is a special limiting case
for which direct detection signals are absent at leading order, as the H0H0h coupling is
proportional to λL. In addition, λL = 0 also suppresses the annihilation H0H0 → ff
which is usually the main annihilation channel in the low mass (mH0 < mW ) region.
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Figure 1. Relic abundance vs mH0 for (∆m2, λL) = (1000 GeV2, 0), (10000 GeV2, 0),
(1000 GeV2, 0.1), (10000 GeV2, 0.1). The solid-black line corresponds to standard thermal freeze-
out, while the dotted lines correspond to scenarios with contributions from defect decays with
varying − log10(q0) values (FT scenario, p = 1).

In order to solve the Boltzmann equation with these parameters we have used
micrOMEGAS [43] to evaluate 〈σeffv〉. The results are plotted in Figure 1, which shows
the variation of the predicted relic abundance as a function of dark matter mass for a
range of q0 values for the FT (p = 1) case. We have chosen a minimum mass of 70 GeV,
as below this mass the collider constraints on the model become quite restrictive.

The corresponding plots for the CE (p = 7/6) case are very similar with a slight
shift down in the value of q0 needed to attain the correct relic abundance. With a larger
power p the TD will have a larger injection rate and will therefore require a smaller q0

to generate the same relic abundance. We do not show these plots as apart from this
slight shift they are very similar to the FT plots.

Shown in each plot as solid black contours is the freeze-out only case with q0 set to
zero. This, as we would expect, generates the lowest value of the relic abundance for a
given mass within each benchmark point. As the value of q0 is increased, the predicted
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value of the relic abundance also increases. We note that in each case, the freeze-out only
scenario can generate the correct relic abundance for just one mass value. Below this
mass, the freeze-out only case predicts an abundance that is too small to account for all
of the dark matter. It is apparent that for each mass considered there is a value of q0 for
which the observed relic abundance is obtained up to the mass where standard freeze-
out is itself over-producing dark matter. All points survive the constraints imposed by
perturbativity, vacuum stability and unitarity constraints as discussed in Section 2.

As mentioned above, a consequence of small ∆m2 values is the increase of co-
annihilations in the freeze-out process. Generally, the greater the importance of co-
annihilations, the smaller the relic abundance will be. However, as we can see from
Figure 1, the opposite effect is observed in the IDM: comparing the ∆m2 = 1000 GeV2

plots with the ones for ∆m2 = 10000 GeV2 we see that in fact the smaller mass splitting
generates the larger abundance, despite the greater contribution of co-annihilations.

To understand the physical reason behind this we first note that for mH0 > mV

(V = W±, Z) dark matter annihilation into gauge bosons H0H0 → V V is the dominant
annihilation process, and generally yields a relic density significantly below the observed
one3 for mW � mH0 . 1 TeV [20, 21]. However, in the limit ∆m2 = 0 (which, together
with λL = 0, is the “pure gauge” limit discussed in [44]) there is a cancellation among
the various terms in the expansion of the annihilation amplitude in powers of m2

H0/m
2
W .

The underlying reason is gauge invariance, which ensures that the amplitude squared
remains unitary for high dark matter masses. As ∆m2 grows, this unitarity cancellation
ceases to be exact, and the net result is an increase the effective annihilation cross section
〈σeffv〉. A more detailed discussion may be found in Appendix A.2.

Note that the plots in Figure 1 do not include the experimental constraints on
the various IDM parameters coming from dark matter phenomenology. Neither do they
include constraints from cosmological bounds on q0 from BBN and DGRB. These con-
straints, and their impact on the allowed parameter space of the model, are analysed in
the next section.

6 Constraints on the Inert Doublet Model with topological defects

In this section we go through the principal observational constraints on the model, in
particular those coming from direct and indirect dark matter detection experiments, and
those coming from BBN and the DGRB.

6.1 Direct detection

The most stringent experimental bounds on dark matter direct detection for the mH0

range we consider currently come from the Large Underground Xenon (LUX) experiment
at the Sanford Underground Research Laboratory, which looks for dark matter scattering
off 118 kgs (the fiducial target mass) of Xenon. In the IDM, dark matter direct detection
can occur via a t-channel exchange of a SM Higgs between H0 and the nucleon, with

3This is a generic feature of models in which dark matter annihilates via gauge interactions, á la
Minimal Dark Matter [17].
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amplitude proportional to λL. Limits on the WIMP-nucleon cross section from 85.3
live-days of LUX data are presented in [45], which we implement in our analysis using
cross sections calculated in micrOMEGAS [43].

6.2 Indirect detection

The Large Area Telescope on the Fermi Gamma-Ray Space Telescope (Fermi-LAT)
has mapped the sky in γ-rays in the 20 MeV to 300 GeV energy range. Dark matter
annihilations can produce such γ-rays and thus Fermi-LAT data may be used to limit
the annihilation cross section. The gamma-ray flux is calculated using

Φ = ΦPP × J, (6.1)

where

ΦPP =
〈σv〉

8πm2
H0

∫ Emax

E0

dN

dE
dE, J =

∫
∆Ω(ψ)

∫
l

[ρ(l, ψ)]2dldΩ(ψ). (6.2)

Here ΦPP is referred to as the particle physics input, depending on the dark matter
annihilation cross section and the photon spectrum produced by the model, J is the
astrophysical input, which depends on the local dark matter density profile of the chosen
celestial body. There is significant uncertainty in this quantity, which produces an
uncertainty in the photon flux. We use a combined analysis of the continuum in the range
1 − 100 GeV from several dwarf spheroidal satellite galaxies (dSphs) [46] to constrain
the model. This analysis weights the dSphs by their J values and produces a 95% CL
limit of ΦPP < 5.0+4.3

−4.5 × 10−30cm3s−1GeV−2. We use micrOMEGAS to calculate the
predicted ΦPP values for points in our parameter space, then use the central value from
the combined dSphs analysis to constrain the space.

Dark matter annihilations can also affect the process of recombination via ionisation
and reheating, thus from CMB data one can extract limits on 〈σv〉 (see [47] and references
therein). We checked the constraints from WMAP 5-year data, and found that they were
weaker than the LUX limits. The projected constraints from Planck data are expected
to be competitive with LUX, and possibly superior at low mass.

6.3 Collider bounds

Collider experiments can also impose limits on the IDM in a variety of ways. We have
already considered constraints from EWPO in Section 2.1 and have shown that for our
choice of benchmarks they make no restrictions. For the range of dark matter masses
we are considering, bounds on the invisible decay width of the Higgs do not apply, and
LEP bounds on the masses mA0 and mH± as a function of mH0 [48, 49] are only relevant
for mH0 < mW , which is outside of the range we consider here. We therefore focus in
the following on limits from LHC mono-jet searches and on constraints from the Higgs
signal strengths measured in the di-photon decay channel.
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6.3.1 Mono-jet (and other) searches at LHC

The production of H0H0 j at the LHC is mediated at tree-level by a SM Higgs. Just
as for the case of dark matter direct detection, the signal is suppressed for λL → 0.
For λL 6= 0, we can extract limits on the IDM parameter space from LHC mono-jet
searches using the simplified models analysed in [50], which contain a scalar dark matter
candidate coupled to the SM Higgs. Using

√
s = 8 TeV LHC data, the analysis from [50]

finds a limit mH0 & mh/2 at 90% C.L., which is automatically satisfied in our analysis
due to our choice of mass range for H0.

In the limit ∆m2 → 0, A0H0 j production at the LHC mediated by a Z boson will
also give rise to a mono-jet signal, since the visible decay products of A0 are expected
to be very soft, below the ATLAS and CMS trigger thresholds. In this case the limits
from the simplified model in [50] with dark matter coupled to a Z boson apply, which
however only constrain a coupling gA0H0Z

<∼ 5 for mH0 > mW . These limits are then
easily avoided in our set-up.

Finally, we also comment on the case of a mass splitting ∆m2 large enough for the
visible decay products of A0 and H± to be detected by ATLAS and CMS. In this case,
the relevant LHC search is analogous to that of chargino/neutralino pair production
in supersymmetric models, leading to multilepton signatures and missing transverse
energy. We note that the latest ATLAS results using the full

√
s = 8 TeV dataset [51]

only constrain neutralino masses . 100− 120 GeV for the decay pattern relevant to us,
and moreover the LHC dark matter production cross sections for the IDM will be smaller
due to the scalar nature of H2 as opposed to SUSY charginos/neutralinos. Once more,
this does not place any relevant constraint on the IDM parameter space for mH0 > mW .

6.3.2 h→ γγ signal strengths

Recently both CMS and ATLAS released updated analyses on the Higgs decay to two
photons, measuring signal strengths of RCMS

γγ = 1.14+0.26
−0.23 [52] and RATLAS

γγ = 1.17± 0.27
[53], respectively. In the IDM the charged scalar H± gives additional contributions to
h→ γγ decays, via a triangle loop. The di-photon signal strength for a SM Higgs boson
in the IDM, Rγγ , is given by

Rγγ ≡
σ(pp→ h→ γγ)IDM

σ(pp→ h→ γγ)SM
≈ σ(gg → h)IDMBR(h→ γγ)IDM

σ(gg → h)SMBR(h→ γγ)SM
=
BR(h→ γγ)IDM

BR(h→ γγ)SM
.

(6.3)
We may approximate Rγγ as the ratio of decay rates Γ(h → γγ) in the IDM and SM,
since the difference in the total Higgs decay width will be negligible for mH0 > mh/2.
The analytic expression for Rγγ is given in [54], which we use to calculate the theoretical
signal strength within the parameter space we consider. We find at most a 10% deviation
from the SM result. Thus the predicted contribution from the IDM is consistent with
the experimentally measured values quoted above for the parameter space we consider.

6.4 Big Bang Nucleosynthesis and the diffuse γ-ray background

Considering the cosmic string side there are also cosmological bounds on q0 [11, 40, 55–
58]. Injection of high energy particles after the beginning of nucleosynthesis can alter
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the abundances of light elements and spoil the agreement of standard BBN with the
observed light element abundances, in particular 4He and D. Energy injected during
recombination produces distortions in the CMB energy spectrum, while energy injected
after recombination initiates electromagnetic cascades through collisions with the cosmic
medium, and shows up as γ-rays with energies below the threshold for e+e− pair pro-
duction from background electromagnetic radiation. These cascades also produce high
energy neutrinos, which can be detected in neutrino telescopes.

The strongest bounds on the IDM with TDs are from BBN and the DGRB [11, 40],
which constrain the injection rate into “visible” SM particles (γ, e, p and n). We denote
the corresponding energy injection rate as Qvis, with a dimensionless version qvis defined
analogously to q0 (Equation 5.7). It turns out that BBN constrains the CE scenario
(p = 7/6) most strongly, while the DGRB constraints and BBN constraints from the
deuterium abundance are about the same for the FT model (p = 1).

Let us consider the DGRB constraint on the FT model first. Fermi-LAT data
limits the energy injection into visible SM particles to being less than ωmax

cas = 5.8 ×
10−7 eV cm−3 [59, 60]. Hence∫ t0

tc

dt

(
a(t)

a(t0)

)4

Qvis . ωmax
cas , (6.4)

where tc ' 1015 s is the time at which the universe became transparent to γ-rays to
which Fermi-LAT is sensitive. For p = 1 it is straightforward to show that

qvis .

(
t0
tc

) 2
3 ωmax

cas

ρ0
, (6.5)

where ρ0 ' 5.6× 103 eV cm−3 is the energy density today. Hence

qvis . 6× 10−9

(
1015 s

tc

) 2
3

. (6.6)

BBN bounds the energy injected per unit entropy by an X particle with lifetime
τX , or EvisYX [61]. For the p = 7/6 model the bound with the best combination of
strength and robustness comes from the deuterium abundance [11], which limits the
energy injected per unit entropy to

(EvisYX)max ' 10−13 GeV, (6.7)

for τX ' 400 s. We can approximate the energy density injected at time t by tQvis, and
hence

qvis(tBBN) .
8

3

(EvisYX)max

TBBN
, (6.8)

where tBBN ' 400 s, and TBBN is the corresponding temperature.
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Figure 2. For the four benchmark (λL, ∆m2) values in the FT (left) and CE (right) scenarios,
the values of q0 required to generate the observed dark matter abundance are plotted as a
function of mH0 . Parameter values that are excluded by LUX and Fermi-LAT are represented
by the changes in line style from solid (allowed) to broken (excluded). Regions constrained by
the DGRB and BBN (see Section 6.4) are shaded grey.

We must take into account the time-dependence of qvis in the p = 7/6 model in
order to relate the BBN bound to the energy injection rate at the reference time for dark
matter freeze out, or tχ. Hence

qvis(t0) .
8

3

(EvisYX)max

TBBN

(
tχ
tBBN

) 1
6

. (6.9)

Substituting in the numerical values, and recalling that, at the reference time tχ, the
temperature is equal to the mass of the dark matter particle H0, we find

qvis(t0) . 4× 10−11

(
100 GeV

mH0

) 1
3

. (6.10)

6.5 Results

In Figure 2, we show the value of q0 required to produce the observed dark matter
abundance as a function of the dark matter mass mH0 , for the selected benchmark
values of the mass squared splitting ∆m2 and coupling parameter λL. In each case, the
region of parameter space ruled out by Fermi-LAT/LUX experimental data is indicated
with broken line styles, while the grey shaded region is ruled out by cosmological bounds
on q0 (see Section 6.4). The freeze-out only scenario is also represented in both plots by
considering that as we decrease the size of q0 the lines become vertical as they approach
the mH0 axis. To a good approximation, the point at which they cross the mass axis is
the mass value that gives the correct relic abundance for the particular benchmark in
the freeze-out only case. Put another way, for the freeze-out only case, there is one mass
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(λL,∆m
2/GeV2)

mH0/GeV q0

FT CE FT CE

(0, 1000) 220− 550 380− 550 . 2× 10−9 . 3× 10−11

(0.1, 1000) 310− 660 440− 660 . 9× 10−10 . 2× 10−11

(0, 10000) 260− 830 580− 830 . 2× 10−9 . 2× 10−11

(0.1, 10000) 320− 1040 690− 1040 . 2× 10−9 . 2× 10−11

Table 1. Listed are the allowed ranges of mH0 in both FT and CE scenarios for the chosen
benchmark λL, ∆m2 values. Also displayed are the absolute upper limits on the values of q0 in
each case (corresponding to the value of q0 required to generate the correct relic abundance for
the lowest allowed dark matter mass).

value for each benchmark point that generates the required relic abundance. Whereas
with the addition of the TD decays, there is a range of masses that can generate the
correct abundance and so the viable parameter space of the IDM can be expanded
compared to the freeze-out only case.

Looking more closely at the FT scenario in Figure 2, we can see that the leading
constraint comes from the direct and indirect detection limits rather than the DGRB
bound, where as for the CE scenario the range of possible masses is determined by the
BBN bound. The allowed range of masses in the FT case is as a result larger.

Table 1 lists the ranges of allowed dark matter mass for both FT and CE scenarios
with the upper allowed value of q0 in each of the benchmark λL and ∆m2 cases. As
indicated in Figure 2, the upper limit on q0 in the FT case comes from the constraints on
the resulting properties of the dark matter state where as in the CE case the upper limit
is derived from the properties of the TDs and their potential impact on BBN. What we
discover then, is that the dark matter phenomenology in the IDM can only limit the
size of q0 in the FT case for these values of λL. The upper limit in the mass range
corresponds to the freeze-out only case. We see clearly that the allowed mass range in
each case can be significantly increased with the inclusion of TD decays.

We can move away from the benchmark points by allowing the parameter λL to
vary whilst keeping our two choices of ∆m2. The plots in Figure 3 show the contours of
constant q0 (plotted as − log10(q0)) in the (mH0 , λL) plane yielding the observed value
of the dark matter relic density for both choices of ∆m2 in the FT and CE scenarios.
The constraints from DGRB and BBN on the maximum value of q0 have been applied in
the FT and CE scenarios respectively. The blue line in each plot indicates the maximum
value of q0 allowed by these constraints, with the red dashed lines indicating values
excluded by DGRB or BBN with the solid red line indicating allowed values. Also
shown in each plot is the freeze-out only case, which is depicted as a grey contour line.

In addition, the limits from Fermi-LAT/LUX can be applied and the excluded
regions of (mH0 , λL) parameter space is indicated by the shaded blue/green areas.
Despite these constraints we can see that by introducing the defects into the model we
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Figure 3. Parameter space plots of λL against mH0 for ∆m2 = 1000 GeV2 (left) and
10000 GeV2 (right), in the FT (top) and CE (bottom) scenarios. The green/blue shaded regions
are ruled out by LUX/Fermi-LAT. The contour lines correspond to lines of constant − log10(q0)
values required to produce the observed DM abundance. Of these the red dashed (solid) lines
are excluded (allowed) by DGRB and BBN in the FT and CE scenarios respectively, with the
blue line representing the upper limit on q0 in each case. Finally, the grey dashed lines represent
the limiting case of standard thermal freeze-out.

can now generate the correct relic density in regions well beyond the freeze-out only
line. In particular, we note that we can move to lighter dark matter states with possible
values down to ∼ 200 GeV.

In addition, we note that when we increase the value of λL in the small mass
splitting case in the CE scenario (bottom left plot of the Figure 3) the origin of the
leading limit on q0 changes from BBN to the direct detection experiment LUX.

Given our limits on q0, one can derive limits on the string tension parameter Gµ,
(see Appendix B for the details of this conversion in the FT and CE cases) for our
four benchmark points, these are shown in Table 2. We highlight that the dark matter
phenomenological limits we can now impose on Gµ (by incorporating dark matter freeze-
out with defect decays) are stronger than the usual experimental constraints on cosmic
strings with large Higgs condensates in the FT scenario. In the CE scenario BBN Higgs
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(λL,∆m
2/GeV2)

Gµ

FT CE

(0, 1000) . 6× 10−12P−1
FT . 1× 10−15P−1

CE

(0.1, 1000) . 3× 10−12P−1
FT . 1× 10−15P−1

CE

(0, 10000) . 7× 10−12P−1
FT . 1× 10−15P−1

CE

(0.1, 10000) . 7× 10−12P−1
FT . 1× 10−15P−1

CE

Table 2. Limits on Gµ for the chosen benchmark λL, ∆m2 values in the FT and CE scenarios.
PFT and PCE are defined in Appendix B.

condensate constraints are larger than the Fermi-LAT and LUX bounds.

7 Conclusion

In this paper we have studied the effect on the IDM of a new mechanism for the pro-
duction of dark matter from TD decays [9]. The defects in question are cosmic strings,
produced when an additional U(1)′ local symmetry is spontaneously broken in the early
universe. Such a U(1) can be a natural extension of the IDM, neatly accommodating
the discrete symmetry needed to stabilise the lightest inert CP-even Higgs H0, which
plays the role of the dark matter in this model. Alternatively, we may expect additional
Abelian gauge symmetries from a top down perspective. It is common in theories that
are derived from string theory to predict additional light U(1)s. These in general must
be spontaneously broken and during the resulting phase transition we may expect the
formation of cosmic strings. The decay of these TDs can modify the generation of the
dark matter relic abundance and it is this effect that we have investigated in the context
of a test case scenario, the IDM.

The parameters of the IDM are tightly constrained by the requirement to achieve
the observed relic density. However, with the new source of dark matter states, parame-
terised by a dimensionless energy injection rate q0, regions of the parameter space which
normally under-produce dark matter states can be brought into agreement with the data
by an appropriate value of q0.

Our detailed study of the IDM characterised it with three parameters to allow a
comprehensive view; the mass of the dark matter particle mH0 , a certain combination
of the inert doublet’s quartic couplings λL, and the mass squared splitting between the
CP-even the CP-odd inert doublet states ∆m2. Additionally we have assumed that the
CP-odd and charged inert doublet states were degenerate. Within the context of four
benchmark points, we took into account bounds on the remaining parameters of the
model from direct and indirect detection, from mono-jet searches and the h→ γγ signal
strength, and bounds on the energy injection rate from strings in the early universe from
big bang nucleosynthesis and the diffuse γ-ray background. It was found that the IDM
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can accommodate values for the mass of the dark matter particle as low as 220 GeV,
more than twice lower than the freeze-out only case.

At the same time, we found tight constraints on the dimensionless string tension
parameterGµ in the IDM model with strings. If particles are the dominant decay channel
of the strings, the limits on Gµ are in the range 3 – 7 ×10−12, corresponding to an upper
bound on the U(1)′ symmetry breaking scale of around 1013 GeV. If gravitational waves
are the dominant decay channel, about Gµ . 10−15, corresponding to an upper bound
on the symmetry-breaking scale of about 1012 GeV. The stronger limits in this case are
due to the higher length density of string.

Dark matter production by decays of topological defects is relevant for many dark
matter models that under-predict the value of the relic abundance. One of the immediate
implications of such scenarios is that the predicted rates in direct and indirect detection
are generically enhanced. This can be a useful in explaining anomalies in experimental
data, but it can also place restrictions on the viable parameter space, as we have seen
in this work. In any case, it is clear is that spontaneous symmetry breaking of an extra
U(1) in the early Universe, can have significant effects in the dark matter sector.
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A Special features of the Inert Doublet Model

A.1 Custodial symmetry and the T parameter

In Section 2.1, it was noted that the corrections to the electroweak T parameter vanishes
in the limits either mA0 = mH± or mH0 = mH± . In this section of the appendix, we
show has this can be understood in terms of a custodial symmetry.

As discussed in Section 2.1, instead of expressing the scalar potential (2.1) in terms
of H1, H2, we can introduce the 2 × 2 matrices Φ1 = (iσ2H

∗
1 , H1), Φ2 = (iσ2H

∗
2 , H2).

The scalar potential for the Inert Doublet Model then reads

V =− µ2
1

2
Tr
[
Φ†1Φ1

]
+
µ2

2

2
Tr
[
Φ†2Φ2

]
+
λ1

4

(
Tr
[
Φ†1Φ1

])2
+
λ2

4

(
Tr
[
Φ†2Φ2

])2

+
λ3

4
Tr
[
Φ†1Φ1

]
Tr
[
Φ†2Φ2

]
+
λ4 + λ5

16

(
Tr
[
Φ†1Φ2

]
+ Tr

[
Φ†2Φ1

])2

− λ4 − λ5

16

(
Tr
[
Φ†1Φ2σ3

]
− Tr

[
σ3Φ

†
2Φ1

])2
.

(A.1)

Both Φ1,2 transform as bi-doublets of a global symmetry SU(2)L × SU(2)R: Φi →
LΦiR (with L ∈ SU(2)L and R ∈ SU(2)R). The potential (A.1) is invariant under
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SU(2)L × SU(2)R in the absence of its last term (λ4 = λ5), which would then yield
∆m2

+ = ∆m2
0.

Moreover, we can define Φ̃2 = Φ2σ3, which also transforms as a bi-doublet under
SU(2)L × SU(2)R. By recasting the potential (A.1) in terms of Φ̃2 and Φ1, we see that
the SU(2)L×SU(2)R global symmetry is also preserved for λ4 = −λ5, which would yield
∆m2

+ = 0. Then both cases λ4 = ±λ5 preserve a custodial SU(2)L × SU(2)R symmetry
and yield a vanishing T parameter: ∆T = 0.

A.2 The annihilation cross section 〈σeffv〉 in the pure gauge limit

In Section 5, it was noted that smaller mass splittings between the Inert Doublet states
generates larger relic abundances, despite the greater contribution of co-annihilations. In
this section we demonstrate in detail how this can be understood in terms of a unitarity-
like cancellation in the H0 annihilation cross-section.

For mH0 > mV , the region of interest to us, the main contributions to H0H0

annihilations are (see e.g. [44]):

� Contact, s-channel (Higgs-mediated) and t, u-channels (via A0/H±) annihilation
into massive gauge bosons H0H0 → V V .

� For mH0 > mh: contact, s-channel and t, u-channels (via H0) annihilation into
Higgs bosons H0H0 → hh.

� For mH0 > mt: s-channel (Higgs-mediated) annihilation into top-quark pairs
H0H0 → t t (annihilation into other fermions is suppressed by the small Yukawa
couplings).

In the limit ∆m2 � m2
H0 (where ∆m2 is defined in Section 3), the contributions from

co-annihilations with A0/H± become important. These are, annihilation into gauge
bosons H0A0 →W±W∓, H0H± → ZW±, H0H± → γ W±, annihilation into fermion
pairs H0A0 → f f , H0H± → f f ′, and annihilation into Higgs and gauge bosons
H0A0 → Z h, H0H± →W± h.

We focus on the dominant dark matter annihilation into massive gauge bosons
H0H0 → V V . The respective amplitudes read

iMc = i
g2
V

2
gµνε∗µ(p3)ε∗ν(p4), iMs = i

λLv
2 g2

V

s−m2
h

gµνε∗µ(p3)ε∗ν(p4), (A.2)

iMt = i
g2
V p

µ
1 p

ν
2

t−∆m2 −m2
H0

ε∗µ(p3)ε∗ν(p4), iMu = i
g2
V p

µ
2 p

ν
1

u−∆m2 −m2
H0

ε∗µ(p3)ε∗ν(p4),

(A.3)
with gV = g (g/cos θW) for V = W± (Z). For λL = 0, the amplitude Ms vanishes,
as well as those for the annihilations H0H0 → hh and H0H0 → f f . In the relevant
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s-wave limit, s = 4m2
H0 , t = u = m2

V −m2
H0 , the squared amplitude in this case reads,

|iMc + iMt + iMu|2 = g4
V

[
4m4

H0(
2m2

H0 + ∆m2 −m2
W

)2 (1− 2
m2
H0

m2
W
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m4
H0

m4
W

)
− 2m2
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2m2
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W

(
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m2
W

+ 2
m4
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m4
W
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+

3

4
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H0

m2
W
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m4
W

]
=
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V
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2
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1
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− 1(

1 + y
2 − x

2

) (1− 3

x
+

2

x2

)
+

3

4
− 1

x
+

1

x2

]
,

(A.4)

with x ≡ m2
W /m

2
H0 and y ≡ ∆m2/m2

H0 . As is apparent from (A.4), for ∆m2 = 0
a unitarity cancellation occurs which makes (A.4) finite in the limit x → 0 yielding a
well-behaved squared amplitude

∣∣M(H0H0 → V V )
∣∣2
∆m2=0

→ g4
V

2
. (A.5)

For ∆m2 > 0, the contribution from t and u-channels gets suppressed compared to the
contact interaction, and the cancellation is only recovered in the limit that m2

H0 � ∆m2

(y → 0). In the regime m2
H0 � ∆m2 > m2

W , (A.4) then reads

|iMc + iMt + iMu|2 −→ g4
V

[
(∆m2)2

4m4
W

+
1

2
+O(x, y)

]
, (A.6)

which may result in a very large annihilation cross section for ∆m2 � m2
W despite the

fact that co-annihilations are very suppressed in this case. Setting λL > 0 reinforces this
picture, while for λL < 0 and ∆m2 � m2

H0 the squared amplitude in the s-wave limit
s = 4m2

H0 reads

|iMc + iMs|2 =
g4
V

4

(
2 +

(
4m2

H0 − 2m2
V

)2
4m4

V

) (
4m2

H0 −m2
h − 2 |λL| v2

)2(
4m2

H0 −m2
h

)2 , (A.7)

and the interplay between the contact and s-channel contributions can give rise to a
destructive interference, and thus a reduced annihilation cross section [62].

B Energy injection rates from cosmic strings

In this appendix, we summarise useful formulae for the dark matter energy injection
rate from decaying topological defects in the two main cosmic string evolution scenarios.
These are the field theory (FT) scenario, in which all energy goes into particles, and the
cusp emission (CE) scenario, where particles are emitted only at cusps. More details
can be found in Ref. [9].
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In the FT scenario, covariant energy conservation dictates that a network of topo-
logical defects with energy density ρd will inject energy at a rate per unit volume Q
given by

Q = 3H(w − wd)Ωdρ, (B.1)

where H is the Hubble parameter, ρ is the total energy density, Ωd = ρd/ρ, w is the total
average equation of state and wd is the defect’s average equation of state parameter. For
strings with energy per unit length µ, we can define a length scale ξ =

√
µ/ρd, which can

be interpreted as the average distance between strings. We take ξ ' 0.25dh in accordance
with numerical simulations [37, 63], where dh is the horizon distance. Applying this one
finds that the dimensionless energy injection rate into H0 particles, defined by dividing
the energy density injection rate by ρH, is

q0 =
8πGµ

ξ2H2

(∑
i

EH0

Ei
fi

)
(w − wd), (B.2)

where a fraction fi goes into particles of species i with average energy Ei. The decays
of each of these particles is assumed to produce one H0.

Taking ξH ' 0.25 and wd & −1/3, one may rewrite this as

q0 =
256π

3
GµPFT, (B.3)

where PFT is an O(1) parameter given by

PFT ≡
(∑

i

EH0

Ei
fi

)(
1− 3wd

2

)(
0.25

ξH

)2

. (B.4)

In the CE scenario, the energy density injection rate in the radiation dominated era is
given by

Q(r)
c =

νβce

β1/2

µ

t
C

(
t

tce

)
, (B.5)

where4

C(τ) '
{

1.0 τ
1
6 , for τ � 1,

4
3τ
− 1

2 , for τ � 1.
(B.6)

If t < tce cusp emission is more important, as loops have passed a critical size. The
parameter βce contains numerical factors and couplings, β = ΓGµ and ν is an O(1)
parameter. Evaluating further one finds

q0 =
64

3
π(Gµβ2/3

ce ν)

(
45m2

Pl

16π3

)1/2
(∑

i

EH0

Ei
fi

)(
1

mH0
√
g∗

)1/6

' (2.01× 104)GµPce,

(B.7)

4Note that there is an error in [9], where the function C(τ) is incorrectly given as 3.0τ
1
6 for τ � 1.
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where again Pce is an O(1) parameter defined as

Pce ≡ β2/3
ce ν

(∑
i

EH0

Ei
fi

)(
500 GeV

mH0

)1/6(100

g∗

)1/12

. (B.8)

The dependence on mH0 is weak enough here to be neglected.
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