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Abstract. Let S be a sequence of finite perfect transitive permutation
groups with uniformly bounded number of generators. We prove that the
infinitely iterated wreath product in product action of the groups in S is
topologically finitely generated, provided that the actions of the groups
in S are never regular. We also deduce that certain infinitely iterated
wreath products obtained by a mixture of imprimitive and product ac-
tions of groups in S are finitely generated. Finally we apply our methods
to find explicitly two generators of infinitely iterated wreath products
in product action of certain sequences S of 2-generated perfect groups.
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Notation 1. All the actions will be right actions and e will stand for the
identity element of a group. We will write n = {1, . . . , n}.

Notation 2. Let d be an integer and let {mk}n∈N be a sequence of integers.
Throughout this paper we will denote by S a sequence {Sk}k∈N where Sk is
a transitive subgroup of Sym(mk) that is perfect and at most d-generated as
an abstract group.

1. Introduction

Infinitely iterated wreath products have been widely studied in the past (see
[1, 2, 6]) and their generation properties proved to be of great interest. In
particular, [2, Theorem 1] states that an infinitely iterated permutational
wreath product of finite d-generated transitive permutation groups is finitely
generated if and only if its abelianization is finitely generated. In this paper we
prove two parallel results. We prove that an infinitely iterated exponentiation
and an infinitely iterated mixed wreath product of stride at most m of finite
d-generated perfect transitive permutation groups are topologically finitely
generated under certain conditions.
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Definition. The abstract wreath product A o B of two permutation groups
A ≤ Sym(m) and B ≤ Sym(n) can be considered as a permutation group in
two (in general inequivalent) ways. One way is to consider A o B acting on
mn with the product action: if (a1, . . . , an)b ∈ A o B and (x1, . . . , xn) ∈mn

then the product action of A oB is given by

(x1, . . . , xn)(a1,...,an) = (xa11 , . . . , x
an
n ) and (x1, . . . , xn)b

−1

= (x1b , . . . , xnb).

We will write A o©B ≤ Sym(mn) for this permutation group and we will call
it the exponentiation of A by B. The second way is to consider A oB acting
on m×n with the permutational wreath action: if (a1, . . . , an)b ∈ A oB and
(x, y) ∈m× n then the permutational wreath action of A oB is given by

(x, y)(a1,...,an)b = (xay , yb).

We will write A o B ≤ Sym(mn) for this permutation group and we will call
it the permutational wreath product of A by B.

For other properties of the exponentiation and permutational wreath
product we refer to [3] and references therein.

Definition. The iterated exponentiation S̃n ≤ Sym(m̃n) of the groups in
the sequence S is the permutation group inductively defined by: m̃1 = m1,

S̃1 = S1 ≤ Sym(m̃1) and m̃k = m
m̃k−1

k , S̃k = Sk o©S̃k−1 ≤ Sym(m̃k) for

k ≥ 2. The groups S̃k, together with the projections S̃k → S̃k−1, form an

inverse system of finite groups. We will call the profinite group lim←− S̃k the
infinitely iterated exponentiation of the groups in S.

In Section 2 we prove our main result.

Theorem 1. Let d be an integer. Let S = {Sk}k∈N be a sequence of transitive
subgroups Sk ≤ Sym(mk) such that each Sk is perfect and at most d-generated
as an abstract group. Suppose that for every k ∈ N there exist elements i, j ∈
mk such that StSk

(i) 6= StSk
(j). Then the infinitely iterated exponentiation

of the groups in S is topologically finitely generated.

As customary, we denote by d(G) the minimal number of (topological)
generators of a (topological) group G. The proof of Theorem 1 gives an

explicit set of d+d(S1) generators for lim←− S̃k and this bound is asymptotically

best possible (see Lemma 3). The groups under study here are very different
from the ones in [2]. We cannot rely on the tree-like structure of iterated
wreath products and the iterated exponentiation of permutation groups is
not associative. This is the reason why we need to ask that the groups in
the sequence S have non-regular actions. Using the same methods we can
improve our bound for a sequence S of perfect 2-generated perfect groups
(see Corollary 7).

In [6] it is proved that the infinitely iterated wreath product with arbi-
trary actions of a sequence S of finite non-abelian simple groups is two gen-
erated (in fact positively 2-generated). In particular, this implies that when S
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is a sequence of finite non-abelian simple groups the profinite groups consid-
ered in Theorem 1 are actually 2-generated. It is important to mention that
[6] relies heavily on the classification of finite simple groups and does not
provide an explicit set of generators, it is a probabilistic argument. On the
other hand the proof of Theorem 1 is purely combinatorial and it produces
an explicit set of generators for the groups considered.

In Section 3 we use [4, Theorem 3.1] to exchange the exponentiation and
the permutational wreath product to obtain the finite generation of iterated
wreath products with “mixed” action.

Definition. Let {kn}n∈N be an increasing sequence of positive integers. Define
the sequence {Gn}n∈N of perfect transitive subgroups of Sym(rn) starting
from the groups in S in the following way: G0 = {e} and for k ≥ 1

Gk =

{
Sk o©Gk−1 if k ∈ {k1, k2, . . .},
Sk oGk−1 otherwise.

The permutation groups Gn are called iterated mixed wreath product
of type (S, {kn}n∈N).

Let m be an integer, if the sequence {kn}n∈N is such that kn+1−kn ≤ m
for every n ∈ N, we say that the iterated mixed wreath product Gn of type
(S, {kn}n∈N) has stride at most m.

The groups Gn, together with the projections Gn → Gn−1, form an
inverse system of finite groups. We say that the profinite group lim←−Gn is an

infinitely iterated mixed wreath product of type (S, {kn}n∈N). If the groups
Gn have stride at most m we say that lim←−Gn has stride at most m.

We remark that an infinitely iterated exponentiation is an infinitely
iterated mixed wreath product of stride at most one.

Our second main result is the following.

Theorem 2. Let d be an integer. Let S = {Sk}k∈N be a sequence of transitive
subgroups Sk ≤ Sym(mk) such that each Sk is perfect and at most d-generated
as an abstract group. Suppose that for every k ∈ N there exist elements i, j ∈
mk such that StSk

(i) 6= StSk
(j). Let G = lim←−Gn be an infinitely iterated

mixed wreath product of type (S, {kn}n∈N) of stride at most m. Then G is
topologically finitely generated.

The hypotheses of Theorem 2 can be weakened in two ways (see Re-
mark 1). We conclude with Section 4 where we use the techniques of this
paper to find the minimal number of generators of infinitely iterated expo-
nentiations of particular sequences S (see Corollary 12).

2. Proof of Theorem 1

First we find a lower bound for the minimal number of generators of a wreath
product of perfect non-simple groups. This shows that the bound given by
Theorem 1 can be improved only by a multiplicative and an additive constant.
We will denote by

t
x the transpose of a vector x ∈ Zn.
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Lemma 3. Let N be a natural number. Let A be a finite simple group and let
B ≤ Sym(n) be a finite permutation group. Then

d(AN oB) ≥ max

{
1

n

(
d
(
AN
)
− d(A)− 1

)
,d(B)

}
.

Proof. Set G = AN oB = (AN )noB and d(G) = d. It is clear that d ≥ d(B),
since B is a quotient of G. Let

γj = ((x
(j)
11 , . . . , x

(j)
1N ), · · · , (x(j)n1 , . . . , x

(j)
nN ))σj = (γ

(j)
1 , · · · , γ(j)n )σj ∈ AN oB,

for j = 1, . . . , d, be generators for G. Form the N ×nd matrix M with entries

Ml,n(i−1)+j = x
(i)
jl for i = 1, . . . , d, j = 1, . . . , n and l = 1, . . . , N . For every

number m ∈ {1, . . . , nd} there exist unique i ∈ {1, . . . , d} and j ∈ {1, . . . , n}
such that m = n(i−1)+j and the (n(i−1)+j)-th column of M is the vector
t
γ
(i)
j :

M =
(t
γ
(1)
1 , . . . ,

t
γ(1)n , . . . . . . ,

t
γ
(d)
1 , . . . ,

t
γ(d)n

)
.

Our goal is to show that N ≤ |A|nd. Suppose by contradiction that N >

|A|nd. Then, since the x
(i)
jl are elements of A, we would have that two rows

of M are equal. Without loss of generality we can suppose that the first and

the second rows are equal, in particular it follows that x
(j)
i1 = x

(j)
i2 for every

i = 1, . . . , n and for every j = 1, . . . , d. Since the action of B swaps rigidly
the n N -tuples of (AN )n, any element ((y11, . . . , y1N ), · · · , (yn1, . . . , ynN ))τ of
the subgroup generated by the γj ’s satisfies y11 = y12. This is a contradiction
with our assumption that the γj ’s generate G.

Therefore N ≤ |A|nd and applying logarithms on both sides of the
inequality we have

d ≥ 1

n log |A|
logN =

1

n
log|A|N >

1

n

(
d
(
AN
)
− d(A)− 1

)
,

where the last inequality holds by [8, Lemma 2]. �

Before proving Theorem 1 we fix some notation.

Notation 3. We will denote an m̃k-tuple on elements in {1, . . . ,mk+1} as
(i1, . . . , im̃k

)m̃k
. This notation will be convenient in particular when we will

have to deal with m̃k-tuples where all the coordinates are equal, for example

(1, . . . , 1)m̃k
. We will denote an element of the group Sm̃k

k+1 as (σ1, . . . , σm̃k
)m̃k

.

Definition. For (i1, . . . , in), (j1, . . . , jn) ∈ mn we say that (i1, . . . , in) pre-
cedes (j1, . . . , jn), if and only if there exists 1 ≤ l ≤ n such that ik = jk for
1 ≤ k ≤ l − 1 and il < jl. The relation “precedes” defines a total order on
{1, . . . ,m}n that is called the lexicographic order.

The following straightforward lemma is one of the key tricks to prove
Theorem 1.
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Lemma 4. Let G ≤ Sym(m) and H ≤ Sym(n) be permutation groups. Then
the subgroup H of the exponentiation G o©H acts trivially on the subset

{(i, . . . , i) | i ∈m}.

Theorem 1 will now follow from an application of the next lemma.

Lemma 5. Let S = {Sk}k∈n be a sequence of transitive subgroups Sk ≤
Sym(mk) and let d be an integer. Suppose that each Sk is perfect, at most
d-generated and for every k ∈ n there exist elements i, j ∈ mk such that

StSk
(i) 6= StSk

(j). Then the iterated exponentiation S̃n of the groups Sk
satisfies d(S̃n) ≤ d+ d(S1).

Proof. Let S1 = 〈α1(1), . . . , αd(S1)(1)〉, Sk = 〈α1(k), . . . , αd(k)〉, for k =

2, . . . , n and order the elements of {1, . . . ,mk+1}m̃k with respect to the lex-
icographic order. Without loss of generality we can suppose that for every
k ∈ n we have

StSk
(1) 6= StSk

(2). (1)

We will now define d elements of S̃n that together with the generators

of S1 will generate S̃n. Define the elements β1, . . . , βd ∈ S̃n as

βj = (αj(n), e, . . . , e)m̃n−1
· (αj(n− 1), e, . . . , e)m̃n−2

· · · (αj(2), e, . . . , e)m̃1

for j = 1, . . . , d. Note that the αj(k)’s are in the first place of the m̃k−1-tuples,

which corresponds to the element (1, . . . , 1)m̃k−1
∈ {1, . . . ,mk}m̃k−1 .

Let A = 〈α1(1), . . . , αd(S1)(1), β1, . . . , βd〉 ≤ S̃n. We claim that A = S̃n.

We will prove by induction on k that S̃k ≤ A for k = 1, . . . , n. Trivially

S̃1 = S1 ≤ A. Supposing by the inductive hypothesis that S̃k ≤ A, we have

to show that we can write any element of S̃k+1 as a product of the generators

in A. Because S̃k+1 = Sm̃k

k+1 · S̃k, it will suffice to show that Sm̃k

k+1 ≤ A.

By the transitivity of Sk there is an element t ∈ Sk such that 1t = 2

and by the inductive hypothesis the element σ = (e, . . . , e, t)m̃k−1
∈ Sm̃k−1

k

belongs to A. By Lemma 4 it follows that for j = k, . . . , n

(1, . . . , 1)σm̃j
= (1, . . . , 1)m̃j

(2)

and from the definition of lexicographic order and exponentiation

(1, . . . , 1)σm̃k−1
= (1e, . . . , 1e, 1t)m̃k−1

= (1, . . . , 1, 2)m̃k−1
. (3)

We remind the reader that the element (1, . . . , 1, 2)m̃k−1
is the second el-

ement in the set {1, . . . ,mk}m̃k−1 with respect to the lexicographic order.

Moreover, since S̃k ≤ A, β′j = (αj(n), e, . . . , e)m̃n−1
· · · (αj(k+ 1), e, . . . , e)m̃k

belongs to A. Set γj = [σ, β′j ], then γj ∈ A. By (2), (αj(l), e, . . . , e)
σ
m̃l−1

=

(αj(l), e, . . . , e)m̃l−1
for l = k+ 2, . . . , n and, by (3), (αj(k+ 1), e, . . . , e)σm̃k

=

(e, αj(k+1), e, . . . , e)m̃k
. Therefore (β′j)

σ = (αj(n), e, . . . , e)m̃n−1
· · · (e, αj(k+

1), e, . . . , e)m̃k
with αj(k + 1) in second position in the last m̃k-tuple and so

γj = ((β′j)
σ)−1β′j = (αj(k + 1), αj(k + 1)−1, e, . . . , e)m̃k

.
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By inductive hypothesis S̃k ≤ A, therefore A is transitive on m
m̃k−1

k .
To conclude the proof it is sufficient to show that we can write any element

of the form (λ, e, . . . , e)m̃k
in Sm̃k

k+1 as a word in the γj ’s. We can then move

the entry λ around, using the transitive action of S̃k.
As Sk+1 is perfect it is sufficient to prove that we can write any com-

mutator ([λ1, λ2], e, . . . , e)m̃k
as a word in the γj ’s. By (1) there are s ∈ Sk

and r ∈ mk, r 6= 2, such that 1s = 1 and 2s = r. By the inductive hy-
pothesis µ = (e, . . . , e, s)m̃k−1

belongs to A. Let λ1, λ2 ∈ Sk+1. Since the
αj(k + 1)’s generate Sk+1, there exist two d-variables words w1 and w2 such
that λ1 = w1(α1(k+1), . . . , αd(k+1)) and λ2 = w2(α1(k+1), . . . , αd(k+1)).
Thus, if we set δi = wi(α1(k+1)−1, . . . , αd(k+1)−1) for i = 1, 2, the elements
w1(γ1, . . . , γd) = (λ1, δ1, e, . . . , e)m̃k

and w2(γ1, . . . , γd) = (λ2, δ2, e, . . . , e)m̃k

belong to A. The definition of µ and an easy calculation now yield[
(λ1, δ1, e, . . . , e)m̃k

, (λ2, δ2, e, . . . , e)
µ
m̃k

]
= ([λ1, λ2], e, . . . , e)m̃k

.

Thus for every λ ∈ Sk+1 the m̃k-tuple (λ, e, . . . , e)m̃k
is in A. It follows that

Sm̃k

k+1 ≤ A and S̃k+1 = Sm̃k

k+1 · S̃k ≤ A. The result follows by induction. �

We would like to point out that in the previous proof we exhibited an

explicit set of d+ d(S1) generators for S̃n. We are now ready for the proof of
Theorem 1.

Proof of Theorem 1. For every n ∈ N, Lemma 5 gives us d+d(S1) generators

of S̃n, of the form described at the beginning of the proof of Lemma 5,

α1(1), . . . , αd(S1)(1), β
(n)
1 , . . . , β

(n)
d . For n ∈ N, let πn be the inverse limit

projection from lim←− S̃k to S̃n. Let a1(1), . . . , ad(S1)(1), b1, . . . , bd be the unique

elements of lim←− S̃k such that πn(ai(1)) = αi(1) and πn(bj) = β
(n)
j for all

i ∈ d(S1), j ∈ d, n ∈ N. Then a1(1), . . . , ad(S1)(1), b1, . . . , bd generate lim←− S̃k
by [9, Proposition 4.1.1]. �

Using [7, Lemma 2] it is possible to improve the previous bound for
2-generated groups with the same method.

Lemma 6. Let S = {Sk}k∈n be a sequence of perfect 2-generated transi-
tive subgroups Sk ≤ Sym(mk) such that for every k ∈ n and all i, j ∈ mk

StSk
(i) 6= StSk

(j). Then S̃n is generated by the generators of S1 together with
another suitable element.

Proof. Let Sk = 〈α1(k), α2(k)〉. By [7, Lemma 2], for k ∈ n, there exist

σk ∈ Sk and 1 ≤ rk ≤ mk such that r
σ2
k

k 6= rk. Let

β = (. . . , α1(n), . . . , α2(n), . . .)m̃n−1
· . . . · (. . . , α1(2), . . . , α2(2), . . .)m̃1

where the element α1(2) is in position rσ1
1 , α2(2) is in position r1, α1(k + 1)

is in position (rσk

k , . . . , rσk

k )m̃k−1
, α2(k + 1) is in position (rk, . . . , rk)m̃k−1

for k = 2, . . . , n − 1 and the identity in all the unspecified positions. Set
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A = 〈α1(1), α2(1), β〉 and proceed exactly as in the proof of Lemma 5, with

β instead of βi and (σk, . . . , σk)m̃k−1
instead of σ, to show that A = S̃n. �

Using Lemma 6 in place of Lemma 5 in the proof of Theorem 1 yields
the following corollary.

Corollary 7. Let S = {Sk}k∈N be a sequence of perfect 2-generated transitive
subgroups Sk ≤ Sym(mk). Suppose that for every k ∈ N and all i, j ∈mk we

have StSk
(i) 6= StSk

(j). Then the infinitely iterated exponentiation lim←− S̃n of

the groups Sk satisfies d
(

lim←− S̃n
)
≤ 3.

Again we would like to point out that in Corollary 7 we can find an

explicit set of three generators for lim←− S̃n.

As a consequence of [6], the minimal number of generators of the in-
finitely iterated exponentiation of a sequence S of finite non-abelian simple
transitive permutation groups is two. However, perfect groups can be “far”
from simple and we conjecture that in the case of perfect non-simple groups
Lemma 6 is best possible but we do not have an explicit example to confirm
this.

3. Proof of Theorem 2

We now proceed to the proof of Theorem 2. We will use the following.

Theorem. ([4, Theorem 3.1]) Let n1, n2 and n3 be integers and let A ≤
Sym(n1), B ≤ Sym(n2) and C ≤ Sym(n3) be permutation groups. Then
A o©(B o C) and (A o©B) o©C are isomorphic as permutation groups.

The next lemma is an application of [4, Theorem 3.1] and it will be used

in the proof of Theorem 2. Remember that we denote by H̃n the iterated
exponentiation of the sequence of permutation groups {Hk}k∈n.

Lemma 8. Let S = {Sk}k∈N be a sequence of subgroups Sk ≤ Sym(mk). Let
{kn}n∈N be an increasing sequence of integers and let Gn be an iterated mixed
wreath product of type (S, {kn}n∈N). Set k0 = 0 and define the permutation

groups Ŝ
(i)
kn

for n ∈ N and i ∈ kn r kn−1 as follows: Ŝ
(kn)
kn

= Skn and

Ŝ
(i)
kn

= Ŝ
(i+1)
kn

o©Si. Define Hn = Ŝ
(kn−1+1)
kn

for n ∈ N. Then Gkn is isomorphic

to H̃n as a permutation group, for every n ∈ N.

Proof. The proof is by induction on n. If n = 1 and k1 = 1 the claim is
trivial. If k1 > 1 repeated applications of [4, Theorem 3.1] yield Gk1

∼= H1.

Suppose that Gkn−1
∼= H̃n−1. By construction Gkn

∼= Skn o©Gkn−1 and
Gi ∼= Si o Gi−1 for i ∈ kn r kn−1. Therefore repeated applications of [4,

Theorem 3.1] yield Gkn
∼= (Ŝ

(i+1)
kn

o©Si) o©Gi−1 for i ∈ kn r kn−1. Thus

Gkn
∼= Ŝ

(kn−1+1)
kn

o©Gkn−1
and, by the inductive hypothesis, we conclude

Gkn
∼= Hn o©H̃n−1 ∼= H̃n. The claim follows by induction. �
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Lemma 9. Let A ≤ Sym(m) and B ≤ Sym(n) be permutation groups and
set G = A o©B. Suppose that m,n ≥ 2 and B is transitive. Then there exist
x, y ∈mn such that StG(x) 6= StG(y).

Proof. Consider the elements x = (1, . . . , 1)n and y = (2, 1, . . . , 1)n in mn.
Because B is transitive there exists b ∈ B such that 1b = 2, so xb = x and
yb = (1, 2, 1, . . . , 1)n 6= y. So b is in the stabiliser of x but not in the stabiliser
of y. �

The following lemma follows directly from the definition of the expo-
nentiation of permutation groups.

Lemma 10. Let A ≤ Sym(m) and B ≤ Sym(n) be permutation groups and
suppose that A is transitive. Then A o©B is transitive.

Finally we use Lemma 5, Lemma 8, Lemma 9 and Lemma 10 to prove
Theorem 2.

Proof of Theorem 2. Let G = lim←−Gn be an infinitely iterated mixed wreath

product of type (S, {kn}n∈N) and of stride at most m. We will use the same

setup and notation as in Lemma 8. We have that Gkn is isomorphic to H̃n

for every n ∈ N, hence it is sufficient to show that the sequence {Hn}n∈N
satisfies the hypotheses of Lemma 5. It is clear that every Hn is perfect
and it can be generated by md elements because it is an iterated wreath
product of length at most m made of d-generated groups. Since each Sk is

transitive, the permutation group Hn = Ŝ
(kn−1+2)
kn

o©Skn−1+1 is transitive by
iterated applications of Lemma 10. Moreover, by Lemma 9, Hn satisfies the
hypothesis on the stabilisers in Lemma 5. The proof is completed by applying
Lemma 5 and [9, Proposition 4.1.1]. �

If the “inverse” iterated exponentiations Ŝn in Lemma 8 had uniformly
bounded number of generators, it would be possible to prove that infinitely
iterated mixed wreath products of arbitrarily large stride are topologically
finitely generated. We do not know if this is the case.

Remark 1. We can weaken the hypothesis of Theorem 2 in the following
ways. Let {kn}n∈N be an increasing sequence of integers and S a sequence of
finite perfect, at most d-generated, transitive permutation groups such that:

• for every kn satisfying kn = kn−1 + 1 there exist elements i, j ∈ mkn

that have different stabilisers for the action of Skn .
• m ≥ 2.

The proof of Theorem 2 with these hypotheses remains the same.

4. An application

In this section we find explicitly two generators for the infinitely iterated
exponentiation of particular sequences S. We start with a lemma.
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Lemma 11. Let S = {Sk}k∈n, be a sequence of 2-generated perfect transitive
subgroups Sk ≤ Sym(mk). Suppose that for every k ∈ n there exist two
generators ak, bk of Sk such that:

• fix(ak) and fix(bk) are non-empty,
• (|a1|, |bj |) = 1 and (|b1|, |aj |) = 1 for j = 2, . . . , n.

Then d(S̃n) = 2.

Proof. Let uk ∈ fix(ak), vk ∈ fix(bk). In the spirit of Lemma 5 define the

following elements of m
m̃i−1

i

ui = (ui, . . . , ui)m̃i−1
and vi = (vi, . . . , vi)m̃i−1

for i = 2, . . . , n−1. By the transitivity of Sk there is σ ∈ Sk such that uσk = vk
and, by Lemma 4, µ = (σ, . . . , σ)m̃k

is such that

uµj = uj and vµ
−1

j = vj (4)

for every j ≥ k + 1 and by definition of exponentiation we have

uµk = (uσk , . . . , u
σ
k)m̃k

= vk. (5)

For the rest of the proof we will write the position of an element in a tuple
below the element itself. We claim that the elements

β1 = (e, . . . , e, an
un−1

, e . . . , e)m̃n−1
· · · (e, . . . , e, a3

u2

, e . . . , e)m̃2
·

· (e, . . . , e, a2
v1
, e . . . , e)m̃1

b1

and

β2 = (e, . . . , e, bn
vn−1

, e . . . , e)m̃n−1
· · · (e, . . . , e, b3

v2

, e . . . , e)m̃2
·

· (e, . . . , e, b2
u1

, e . . . , e)m̃1
a1

generate the group S̃n. Let A = 〈β1, β2〉, we will prove by induction that

S̃k ≤ A for k = 1, . . . , n. It follows from Lemma 4 and the definition of ui
and vi that (e, . . . , e, ai, e . . . , e)m̃i

commutes with (e, . . . , e, aj , e . . . , e)m̃j
for

i 6= j. Set p =
∏n
i=2 |ai| and q =

∏n
i=2 |bi|, then βp1 = bp1 and βq2 = aq1, so

S1 ≤ A.
By inductive hypothesis the group S̃k is contained in A. Our goal is to

write any element of Sm̃k

k+1 as a word in β1, β2. Clearly the elements

β′1 = (e, . . . , e, an
un−1

, e . . . , e)m̃n−1
· · · (e, . . . , e, ak+1

uk

, e . . . , e)m̃k

and

β′2 = (e, . . . , e, bn
vn−1

, e . . . , e)m̃n−1
· · · (e, . . . , e, bk+1

vk

, e . . . , e)m̃k

belong to A.
Let us now consider the commutators γi = [µi, β

′
i] for i = 1, 2. Following

exactly the steps of Lemma 5 we can use (4), (5) (instead of (2) and (3)) and
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Lemma 4 to show Sm̃k

k+1 ≤ A. Therefore S̃k+1 = Sm̃k

k+1 · S̃k ≤ A. The result
follows by induction. �

Since none of the groups S̃k is cyclic, the proof that lim←− S̃k is topologi-
cally 2-generated is now the same as the proof of Theorem 1 using Lemma 11
instead of Lemma 5. As in Lemma 5, in the previous lemma we exhibited an
explicit set of two generators. We have proved the following.

Corollary 12. Let S = {Sk}k∈N be a sequence of 2-generated perfect transitive
subgroups Sk ≤ Sym(mk). Suppose that for every k ∈ N there exist two
generators ak, bk of Sk such that:

• fix(ak) and fix(bk) are non-empty,
• (|a1|, |bj |) = 1 and (|b1|, |aj |) = 1 for j ≥ 2.

Then the infinitely iterated exponentiation lim←− S̃k is topologically 2-generated
and we produce explicitly two generators for the group.

Remark 2. Using the Classification of Finite Simple Groups it was shown that
all finite non-abelian simple groups besides Sp4(2n), Sp4(3n), 2B2(22n+1)
with possibly finitely many further exceptions can be generated by an invo-
lution and an element of order 3; see [5, Corollary 1.3] for further references
on (2, 3)-generation of finite non-abelian simple groups. A sequence of (2, 3)-
generated non-abelian simple groups satisfies the hypotheses of Lemma 11.
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