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Abstract

Yttria stabilised zirconia (YSZ) is an important oxide ion conductor with applications in solid 

oxide fuel cells (SOFCs) and oxygen sensing devices.  Doping the cubic phase of zirconia (c-

ZrO2) with yttria (Y2O3) is isoelectronic, as two Zr4+ ions are replaced by two Y3+  ions, plus a 

charge compensating oxygen vacancy (Ovac). Typical doping concentrations include 3, 8, 10 and 

12mol%.  For these concentrations, and all below 40mol%, no phase with long range order has 

been observed in either X-ray or neutron diffraction experiments. The prediction of local defect 

structure and the interaction between defects is therefore of great interest.  This has not been 

possible to date as the number of possible defect topologies is very large and to perform reliable 

total energy calculations for all of them would be prohibitively expensive. Previous theoretical 

studies  have  only  considered  a  selection  of  representative  structures.  In  this  study,  a 

comprehensive search for low energy defect structures using a combined classical modelling and 

density functional theory approach is used to identify the low energy isolated defect structures at 

the  dilute  limit,  3.2mol%. Through analysis  of  energetics  computed using the  best  available 

Born-Mayer-Huggins empirical potential model, a point charge model, DFT, and a local strain 

energy estimated in the harmonic approximation, the main chemical and physical descriptors that 

correlate to the low energy DFT structures are discussed. It is found that the empirical potential 

model reproduces a general trend of increasing DFT energetics across a series of locally strain 

relaxed structures, but is unreliable both in predicting some incorrect low energy structures, and 
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in finding some  meta-stable structures to be unstable. A better predictor of low energy defect 

structures is found to be the total electrostatic energy of a simple point charge model calculated 

at the unrelaxed geometries of the defects. In addition, the strain relaxation energy is estimated 

effectively in the harmonic approximation to the imaginary phonon modes of undoped c-ZrO2, 

but is found to be unimportant in determining the low energy defect structures. These results 

allow us to propose a set of easily computed descriptors that can be used to identify the low 

energy YSZ defect  structures,  negating  the  combinatorial  complexity  and  number  of  defect 

structures that need to be considered. 

Introduction

Yttria  stabilised  zirconia  (YSZ)  is  an  oxide  ion  conductor  at  elevated  temperatures.  The 

(Y2O3)0.1(ZrO2)0.9  composition,  conventionally  referred  to  as  10mol%  Y2O3,  has  an  ionic 

conductivity of approximately 0.03Scm-1  at 1000oC1. In addition to high anionic conductivity, it 

has other properties that make it an appropriate electrolyte for solid oxide fuel cells (SOFCs). 

These include its mechanical and chemical stability towards other SOFC components including 

nickel  (Ni)  and  lanthanum  manganese  oxide  (LaMnO3),  high  electronic  resistivity,  and  its 

relative abundance and low cost when compared to other oxide ion conducting materials2. YSZ is 

a key component of the SOFC anode where it forms an interface with a catalytic metal and a gas 

phase. The interface region is referred to as the anode triple phase boundary (TPB)3–8. There is a 

growing interest in developing predictive models of the physical and chemical properties of YSZ 

and  its  surfaces  in  order  to  model  the  chemistry  occurring  at  the  anode  TPB.  A detailed 

knowledge of the surface chemistry is, however, currently inhibited by a poor understanding of 
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the distribution of, and local atomistic structure surrounding the Y and Ovac dopants in the bulk 

crystal and at its surfaces9. 

ZrO2  exhibits three main crystal structures under standard pressure10. At room temperature it 

adopts a monoclinic (m) structure which upon heating undergoes phase transitions to tetragonal 

(t) and cubic (c) phases at 1170oC and 2370oC respectively. The cubic phase exhibits the highest 

oxide ion (O2-) conductivity making it the most technologically useful. Doping with Y2O3 is used 

to  stabilise  the  cubic  phase  and  thereby reduce  the  temperature  at  which  the  t  → c  phase 

transition occurs. Typical doping concentrations include 3, 8, 10 and 12mol%. The exact location 

of  the  phase  boundary  between  cubic  and  tetragonal  transition  as  a  function  of  Y2O3 

concentration  is  still  debated,11 however  X-ray  diffraction  data  suggests  that  8mol%  is  the 

minimum concentration at which the cubic phase is stable at room temperature12–14. At 40mol%, 

the ordered compound Zr3Y4O12 is formed 15–17.

Previous calculations of the phonon spectrum using the generalised gradient approximation 

(GGA) to density functional theory (DFT) report an imaginary mode18–21 of frequency i195cm-1 

at the X-point of the first Brillouin zone corresponding to the low-temperature instability of the 

cubic phase20. The eigenvector of this mode involves displacements of oxygen anions along the 

⟨1 0 0⟩ direction breaking the cubic symmetry which, upon full relaxation of the cell and internal 

coordinates, results in the observed tetragonal phase22. Other first principles DFT calculations, 

for some representative defect structures, have suggested that the X-point imaginary phonon is 

stabilised as the Y2O3 concentration is increased from 0 to 10.4 mol%23. 

Doping the cubic phase with Y2O3 is isoelectronic as two Zr4+ ions are replaced by two Y3+ 

ions, plus an oxygen vacancy (Ovac) to maintain charge neutrality. In Kröger-Vink notation this is:
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Y 2O3 ZrO 2
→

2Y Zr
'
+V o

..
+3Oo

X

Where Y Zr
'

 indicates a yttrium ion on a zirconium lattice site with a negative charge, V o
..

 

indicates  a  vacancy on an  oxygen lattice  site  with  +2 charge,  and  3Oo
X

 indicates  lattice 

oxygen ions.

Because the Ovac facilitates the conduction of O2- ions in the lattice, the conductivity depends 

on the Y2O3 concentration. For low concentrations the conductivity rises rapidly with the number 

of defects and reaches a maximum at 8mol%24. It has been argued that inter-defect interactions 

reduce the conductivity at higher concentrations because of the increased electrostatic interaction 

between dopant cations and vacancies1,2.

The local atomistic structure and distribution of the dopants in YSZ has therefore been the 

topic of much theoretical and experimental research. Based on diffuse neutron scattering it has 

been  reported  that  Ovacs  preferentially  associate  in  pairs  along  ⟨1  1  1⟩ directions  at  dopant 

concentrations between 10 and 24 mol%, without forming a phase with long range order15,25,26. 

Theoretical evidence for the short range ordering of vacancies in ⟨1 1 1⟩ directions has also been 

provided by DFT calculations16,17,23,27.  In addition the electron paramagnetic resonance (EPR) 

spectrum of  YSZ contains  a  prominent  trigonal  (T centre)  peak  in  samples  that  have  been 

chemically  reduced  or  exposed  to  ionizing  radiation28–31.  This  peak  has  been  assigned  to  a 

vacancy-vacancy pair lying in a ⟨1 1 1⟩ direction neighbouring a Ti3+ impurity27,32,33.

The O-coordination of metal ions within YSZ has also been studied. Early work suggested that 

a so called nearest neighbour (NN) type defect structure, with the Ovac in the first coordination 

shell  of  Y3+
, is  prevalent  on  the  basis  of  neutron  diffraction,  X-ray absorption  spectroscopy 
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(EXAFS) and a simple point charge model of the ionic interactions34–37. In this model, Ovacs and 

Y3+ ions have effective charges, relative to the lattice ions, of +2 and -1 respectively so that their 

effective interaction is attractive. Structures with the Ovac  in the first O-coordination sphere of 

yttrium will therefore have the lowest energies34–37. More recent work supports an alternative 

next nearest neighbour (NNN) model of defect structures, where the Ovac is found in the first O-

coordination sphere of Zr4+ and the second O-coordination sphere of Y3+ (examples of these 

structures  are  depicted  in  Figures  4  and  8).   EXAFS38–40 and  solid  state  89Y-MAS-NMR41 

experiments, DFT total energy calculations42 and thermodynamics based on cluster expansion43, 

have established that, in general, Y3+ ions prefer 8-fold O-coordination while Zr4+  ions have 7-

fold O-coordination. This tendency is also apparent in the low temperature monoclinic ground 

state of zirconia42.  The 89Y-MAS-NMR data is particularly clear, as the observation of an intense 

8-fold O-coordination 89Y peak establishes that the Ovac avoids the first coordination shell of Y3+ 

up to concentrations of around 12.5 mol%. This observation is inconsistent with the simple point 

charge model of the ionic interactions.

Many possible defect arrangements and orientations are consistent with the preference for Zr4+ 

to have 7-fold and Y3+  to have 8-fold O-coordination.  X-ray and neutron diffraction show that 

the defect structure of YSZ is highly disordered with multiple distinct defect clusters26
, but  the 

low  contrast  in  the  X-ray  and  neutron  scattering  powers  of  Zr4+ and  Y3+ ions  give  little 

information on the  relative positions of the Y3+ and Ovac species or the local geometry of the 

dopant structures15.

When dopant Ovacs and cations are introduced onto the ideal fluorite lattice sites of c-ZrO2 

without relaxation of the local geometry, the trend in the DFT formation energies is described 

well  by a  simple point  charge model,  and NN type defect  structures are  favoured17,23.  Upon 
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relaxation of the atomic positions within DFT, however,  the NNN type defect  structures are 

favoured  at  low defect  concentrations.  For  the  6.7  and  10.4mol% concentrations  significant 

relaxations occur as the Ovac  undergoes barrier-less migrations (reconstructions) away from its 

starting location on the ideal c-ZrO2 lattice44 (an example is pictured in Figure 8). This instability 

of  Ovac  geometries  upon relaxation in  DFT calculations  is  inconsistent  with the point  charge 

model and is also not reproduced faithfully by more sophisticated force-fields involving short 

range repulsions, Van der Waals forces, and ionic polarisation that have been fitted carefully to 

diffuse neutron scattering data44–46. The atomic positions and orientation of NNN type defects at 

low dopant concentrations appear to be governed by a combination of electrostatics and many-

body strain elastic terms that have yet to be reduced to an analytic form17,44. For high dopant 

concentrations  (>17mol%)  and  for  the  ordered  compound  Zr3Y4O12  (40  mol%),  the  relative 

importance of these effects have been established16,17
,  however at the low dopant concentrations 

of 6.7 and 10.4mol%, which are more relevant to oxide ion conductivity, the relative importance 

of these interactions is not clear, and it is not been possible to link the instability of structures to 

simple energetic or geometric parameters44.

In the absence of long range order at low dopant concentrations, identifying low energy defect 

topologies reliably is impossible without computing the total energy of every possible defect 

structure, a process that is infeasible with current implementations DFT. In the current work, we 

evaluate a set of easily computed descriptors that correlate to the final relaxed DFT energies of 

isolated defects modelled within bulk c-ZrO2, at the dilute limit of 3.2mol%. By studying the 

dilute  limit  we negate  defect-defect  interactions  and the  combinatorial  complexity of  higher 

dopant  concentrations.  At this  concentration it  is  also possible  to  compute the energies of a 

complete set of symmetry inequivalent  3.2 mol% YSZ structures using both an empirical force 
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field10,46–48 and  DFT.  We  initially  evaluate  the  ability  of  the  Born-Mayer-Huggins  (BMH) 

empirical  force  field  to  reproduce  the  trend  in  DFT energetics.  It  is  found  that  the  BMH 

empirical potential model reproduces a general trend of increasing DFT energetics across a series 

of locally strain relaxed structures, but is unreliable both in predicting some incorrect low energy 

structures, and in finding some  meta-stable structures to be unstable. We also examine the use of 

electrostatic interactions, computed using formal charges in a point charge model, and the local 

strain energy estimated in the harmonic approximation, to predict trends in DFT energetics. We 

show that the relative formation energies of the relaxed DFT defect structures are correlated to a 

simple  electrostatic  energy and a  strain  contribution  using  a  method  similar  to  that  used  to 

describe  clustering  and  relaxation  in  metallic  alloys49.  This  allows  us  to  provide  reliable 

descriptors that correlate to the low energy DFT structures at the dilute limit. Finally, we evaluate 

why the best available BMH empirical force field is unreliable. 

Computational Details

 DFT  calculations  are  performed  within  the  plane-wave  pseudopotential  formalism  as 

implemented in the  CASTEP code50. Empirical force field calculations are based on an energy 

expression of the Born-Mayer-Huggins form as implemented in the GULP code51. 

DFT calculations were performed using the Perdew-Burke-Ernzerhof (PBE) GGA exchange-

correlation  (XC)  functional52.  Atomic  cores  were  replaced  with  ultrasoft  pseudopotentials 

(USPs)53 for which a kinetic energy cut off in the plane-wave expansion of 500eV converged the 

energy of the c-ZrO2   phase to 0.3 meV per formula unit. Phonon calculations were performed 

using  density  functional  perturbation  theory54 (DFPT)  and  norm-conserving  pseudopotentials 

(NCPs)55,56 with an energy cut off of 800eV.  Brillouin zone sampling was performed using a 3 x 
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3 x 3 Monkhorst-Pack (MP) grid57 in  both the  2x2x2 supercell  of  c-ZrO2 and the  primitive 

bixbyite cell of Y2O3. The self-consistent field (SCF) iterations were considered converged when 

the energy changed by less than 5x10-9 eV per cell for total energy calculations and 1x10-10eV per 

cell for phonon calculations. Structural optimization was performed using the Broyden-Fletcher-

Goldfarb-Shanno  (BFGS)  algorithm  without  symmetry  constraints,  with  an  atomic  force 

convergence tolerance of 0.05eV/Å-1.  All  defect  structure calculations were performed at the 

zero-pressure PBE-DFT lattice constants of the parent materials to best model isolated defects at 

the dilute limit.  These values are 10.22Å for the 2x2x2 supercell of c-ZrO2 and 10.65Å for the 

conventional cell of Y2O3. We also compute the bulk-modulus of the materials through fitting the 

Birch-Murnaghan equation of state to a set of cohesive energy - unit cell volume curves. We 

obtain a bulk modulus of 234 GPa for c-ZrO2 and a bulk modulus of 144 GPa for Y2O3. Both our 

lattice constants and bulk moduli are in excellent agreement with previous all electron linearised 

augmented plane-wave (LAPW) GGA-DFT calculations58,59. The PBE functional was used in the 

current study as it has been shown to successfully describe the parent compounds c-ZrO2, and 

Y2O3 in previous studies, and as a functional without empirical parameters, provides a consistent 

method for predicting defect energies58,59.

Computed  phonon  frequencies  are  sensitive  to  numerical  approximations60 and  therefore 

rigorous  numerical  tolerances  were  used  in  those  calculations.  Electron  densities  and 

pseudopotential augmentation charges were represented on an FFT grid one and a half times 

finer than that used to represent the Kohn-Sham orbitals in total energy calculations and two and 

a half times finer in phonon calculations. The implementation restriction to NCPs for phonon 

calculations potentially introduces some additional pseudopotential error.  Comparison with the 

USPs yields an increase in the computed lattice constant of c-ZrO2 of just 0.2%, and a small 
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change in the computed phonon frequencies,  with a consequent error in calculated harmonic 

relaxation energies (plotted in Figure 5) of approximately 0.4meV. 

   A Born-Mayer-Huggins (BMH) polarisable shell model based on formal ionic charges has 

been used by several authors to model defects in zirconia10,44–46,48. The form of the potential and 

the parameters are shown in equation 1 and Tables 1 & 2. The Zr-O interaction parameters were 

determined by Dwivedi  and Cormack46 by fitting a  potential  to  the experimental  lattice  and 

dielectric constants of t-ZrO2
46. Those for Y-O and O-O were determined by Lewis and Catlow47. 

In  addition  to  t-ZrO2,  the  Zr-O  potentials  have  been  shown  to  accurately  reproduce  the 

experimental lattice constants of stabilised c-ZrO2, but not those of m-ZrO2 which is unstable 

with  respect  to  an  orthorhombic  phase10.  The  Y-O  potential  accurately  reproduces  the 

experimental  lattice  constants  of  bixbyite  Y2O3
10

.  Calculations  of  YSZ  defects  using  these 

potentials reproduce the fact that NNN type structures are more stable than NN type10,48. 

φr=
qa qb

r
+ Aexp(−r /ρ)

−
B
r6                                                                                    -equation 1    

Table 1: YSZ Born-Mayer-Huggins potential parameters. 

Short Range Interactions

Interaction A / eV ρ / Å B / eVÅ6 Cut off / Å
Zr4+....O2- 985.87 0.3760 0.0 10

O2-....O2- 22764.00 0.1490 27.88 12

Y3+....O2- 1345.10 0.3491 0.0 10

Table 2: Polarisable shell model parameters.

Shell Model
Species γ / e k / eVÅ-2

O2- -2.077 27.290
Zr4+ 1.35 169.617
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In what follows we distinguish between “unrelaxed” structures, where all ions and vacancies 

reside  on  the  ideal  fluorite  sites  of  c-ZrO2,  and  “relaxed” structures  in  which  the  internal 

coordinates of the cell have been optimised.  The structures are further split into two categories: 

 Short-range, where the Ovac resides in the first O-coordination sphere of Y3+  (The so 

called, NN structures). 

 Long-range, where the Ovac resides in the first O-coordination sphere of Zr4+ and second 

or  greater  O-coordination  sphere  of  Y3+
 (The  so  called  NNN,  NNNN  or  greater 

structures)

 The defect formation energy (∆Ef) is calculated relative to the formation energy per formula 

unit of c-ZrO2 (
EZrO 2 ) and that of the 40 atom cell of bixbyite Y2O3 (

EY 2 O3 ) as:

∆ E f=
1
n1

( Edefect−nO EZrO2
−n1 EY 2O 3)                                                                 -equation 2

Where Edefect is the total energy of the supercell, n0 the number of ZrO2 formula units, and n1 is 

the number of Y2O3 substitutions in the supercell.

The DFT formation energy of an unrelaxed Y2O3 defect cluster was converged with respect to 

dopant  concentration.  YSZ was  modelled  at  14.3,  6.7,  3.2,  and  1.6mol%  by introducing  a 

symmetry  equivalent  Y2O3  defect  cluster  into  16,  32,  64  and  128  atom  supercells  of  the 

conventional c-ZrO2 cell respectively. Table 3 shows the formation energy of the defect cluster at 

different  dopant  concentrations.  At  3.2  mol%  the  formation  energy  converges  to  10  meV, 

showing that this is the dilute limit and the point at which defect-defect interactions become 

negligible. 

Table 3: Convergence of defect formation energies with respect to dopant concentration.
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Dopant concentration of Y2O3 / mol% 14.3 6.7 3.2 1.6
DFT  formation  energy  of  unrelaxed  Y2O3 

defect / eV
4.77 5.58 5.42 5.43

A model  of  3.2mol% YSZ is  created by introducing one Y2O3  unit  into a 96 atom 2x2x2 

supercell of the conventional c-ZrO2 cell. In this supercell, the high symmetry points of the first 

Brillouin zone of c-ZrO2 X, W and L fold back onto Γ. This facilitates analysis of the imaginary 

phonon modes at the X-point of c-ZrO2 in terms of intra-cell atomic displacements. There are 

63488 possible defect structures when introducing two substitutional Y3+ ions and one Ovac onto 

the ideal  fluorite sites of the 2x2x2 c-ZrO2 supercell. Taking into account all translational and 

space-group symmetries this can be reduced to 28 symmetrically inequivalent structures61.

Correlations  between  data  sets  were  analysed  using  regression  analysis.  Correlations  are 

described by the coefficient of determination (R2), which is the square of the Pearson correlation 

coefficient.  The  coefficient  of  determination  has  a  value  between  0  and  1  where  0  is  no 

correlation and 1 is a perfect correlation. 

Born-Mayer-Huggins and Point Charge Models as Predictors of DFT Relaxation Energies

The internal coordinates of the 28 symmetry inequivalent defect structures were fully relaxed 

using both the Born-Mayer-Huggins polarizable shell model, and DFT energy expressions.   In 

Figure 1 the  resulting  relative  defect  formation  energies  are  compared by plotting against  a 

structure  number  that  increases  with  increasing  DFT  defect  formation  energy.  The  model 

energies correlate poorly with the DFT energies, yielding an R2 of 0.35.
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Figure 1: Defect formation energy relative 

to that of the lowest energy DFT structure for the 28 symmetry inequivalent structures calculated 

using the empirical BMH potential (red) and DFT (blue). The correlation between the two sets is 

low  (R2 =  0.35),  indicating  that  the  empirical  potential  reproduces  DFT energy  differences 

poorly. 

The potential is unreliable in two respects. It fails to predict the same minimum energy defect 

structure as predicted by DFT, and predicts many structures to be significantly higher or lower in 

energy than their DFT equivalents. It also predicts many meta-stable structures to be unstable 

with respect to local reconstructions. These differences will be analysed in terms of the local 

geometries  and the  barriers  to  Ovac  migration  in  the  section  titled:  Analysis  of  Born-Mayer-

Huggins Potential Model below.

The potential and DFT calculations do agree in predicting long-range NNN structures to be the 

lowest energy structures. The defect formation energy of the lowest energy structure computed 

by DFT (Figure 4)  is -1.55 eV.  In this  structure the Y3+
 - Ovac    – Y3+

 defect cluster has an 

equilateral triangle topology, which is a common feature of all low energy structures. 

Although much simpler than the Born-Mayer-Huggins potential, we also investigated an ionic 

model based on formal point charges with unrelaxed structures. Figure 2 shows the comparison 
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between it and the DFT formation energies of the equivalent relaxed structures. There are two 

disjoint clusters of points within the scatter  plot,  which correspond exactly to the subsets of 

short-range and long-range defect geometries. All short range structures have rather high DFT 

formation energies and there is essentially no correlation between the point charge model and 

DFT. For these, the point charge model gives unphysically low formation energies. For long 

range structures,  however,  the  point  charge  model  correlates  strongly to  the  DFT formation 

energies with an R2  value of 0.75. We conclude that while the simple point charge model of 

unrelaxed geometries does not provide reliable total or relative energies for the defects it does 

provide a reliable predictor of the low energy defect arrangements. 

Figure  2:  Electrostatic  formation  energies  of  the  unrelaxed  structures  plotted  against  DFT 

formation  energies  of  the  relaxed  structures.  Blue  points  show the  energetics  of  long-range 

structures, red points show the energetics of short-range structures.

Distortion along Imaginary Phonon Modes as a Predictor of DFT Relaxation Energetics

It is plausible that variation in structural relaxation around defects of different geometries is 

partly responsible for the variation in ordering energies. We investigate the relaxation energetics 

of our 28 DFT relaxed structures using a quantitative model of ab initio force constants based on 
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the unstable phonon mode of perfect, stoichiometric c-ZrO2.  As can be seen in Figure 3, c-ZrO2 

possesses two imaginary phonon modes at the X and W-point of the first Brillouin zone. The 

phonon frequencies at the X and W-points are calculated to be i217cm-1 and i65cm-1 respectively. 

The  computed  imaginary  frequency  at  the  X-point  is  similar  to  that  reported  in  previous 

calculations using LDA and PBE functionals with projector augmented wave (PAW) and NCP 

pseudopotentials18–20,23.  The  frequency  of  the  phonon  at  the  W-point  is  more  sensitive  to 

numerical approximations, and for instance, varies from i18 cm-1 to i65 cm-1 as the FFT grid scale 

is increased from x1.5 to x2.5. This frequency was reported as approximately 40 cm-1 in previous 

PAW-PBE calculations using the Quantum ESPRESSO code20. 

Figure 3:  The computed phonon dispersion 

curves  of  c-ZrO2 showing  the  imaginary 

frequency modes in the region of the X and 

W-points highlighted in red and blue.

The eigenvector of the X-point phonon corresponds to oxygen anions moving in the  ⟨1 0 0⟩ 

direction with alternate ions along the  ⟨0 1 0⟩ direction moving in antiphase (Figure 4). The 

minimum energy configuration along this mode is 2 eV / supercell lower in energy than c-ZrO2. 

In  Figure 4 this displacement is compared with the relaxation observed in the lowest energy 
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  = Zr site   = O site   = Ovac site = Y site 

defect  structure.  The visible  similarity strongly suggests  that  atomic  displacement  along this 

phonon  eigenvector  is  responsible  for  relaxing  the  local  strain  induced  by  the  dopant  and 

vacancy. 

Figure 4: Left: relaxation of the oxygen anions pure along the imaginary X-point phonon mode 

in the 2x2x2 supercell. Right: The relaxation pattern of the oxygen anions observed in the lowest 

energy defect structure. Note: the similarity of the relaxation patterns.

Relaxing the  ideal  bulk  crystal  along the  imaginary W-point  phonon eigenvector  leads  to 

displacement of the oxygen anions along a ⟨2 1 0⟩ direction. The relaxation energy of the anions 

along  the  W-point  phonon  is  negligible  compared  to  relaxation  along  the  X-point  phonon, 

typically 10 meV / supercell.

In Figure 5 the harmonic relaxation energy of the bulk X-point phonon is plotted against the 

formation energies of the relaxed structures computed using DFT. For each defect structure, i, the 

atomic displacements of relaxation are projected onto the bulk X-point phonon eigenvector to 

obtain an amplitude α i . The harmonic relaxation energy, in eV/cell, is then defined as:
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Δ E x=
1
2

a2 α i
2 λx                                                                                                         - equation 

3

where a is the lattice constant of the unit cell, and λx is the eigenvalue of the phonon mode.

Figure  5:  Relationship  between  the  DFT formation  energies  of  the  relaxed  structures  and 

harmonic relaxation along imaginary X-point phonon modes. Blue points show the energetics of 

long-range structures, red points show the energetics of short-range structures.

For low energy structures and all long-range structures, the elastic relaxation energy along 

imaginary phonon modes is weakly correlated to the DFT energy of formation. Although the 

relaxation energy along the  imaginary phonon modes is  significant,  it  does  not  discriminate 

effectively between different structures. The correlation between the final relaxed DFT energies 

and the harmonic relaxation energy is  poor  with  an R2 value of  0.38.  However  the  relative 

stability  of  high  energy,  short-range  structures  is  more  strongly  correlated  to  the  harmonic 

relaxation energy, with an R2 of 0.62. 

Relative Importance of Electrostatic and Relaxation Energies

17



The formation of 3.2mol% YSZ isolated defect structures can be usefully viewed as a two-step 

process:  firstly,  the  isolated  Y2O3  unit  is  placed  within  the  unrelaxed  c-ZrO2  structure  and 

secondly, the structure is allowed to relax. The relaxation is well described as a motion along the 

unstable  X-point  phonon  mode  with  the  unstable  W-point  mode  making  a  negligible 

contribution.  This  suggests that  relative defect  formation energies  can be predicted using an 

artificial synthesis model consisting of the unrelaxed electrostatic formation energies of the point 

charge model, and the harmonic relaxation along imaginary phonons, that is;62 

∆ E fYSZ (i ,R ) ≈ A ∆ Eelec (i , R )+B ∆ E strain (α , R )+C                                         -equation 4 

A, B and C are fitted constants and given below in Table 4, Eelec  is the electrostatic formation 

energy of an unrelaxed defect structure in configuration  i, and Estrain  is the energy change from 

atomic relaxation along X-point imaginary phonons. 

Through the synthesis model, the relative importance of electrostatics and imaginary phonons 

in determining the final energetic ordering of the relaxed DFT defect structures can be assessed. 

Figures 6 and 7 show the synthesis model energy plotted against the DFT formation energies of 

the relaxed long-range and short-range structures respectively. For long-range structures, almost 

all of the variation is accounted for by the electrostatic interaction of the defects. The coefficient 

of determination does not increase significantly when accounting for the X-phonon strain energy 

on top of the ionic energy (from 0.75 to 0.79). In contrast, the variation in short-range structures 

is described well by a combination of point charge electrostatics and relaxation along imaginary 

phonon modes. The coefficient of determination increases from 0.62, with pure relaxation along 

imaginary X-point phonon modes, to 0.79 when taking into account electrostatics. To incorporate 
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the  two  subcategories  of  structures  into  a  single  model,  an  understanding  of  a  further 

destabilising force for short-range structures needs to be established. We do not currently have 

such an understanding.

Figure 6: Long-range defect formation energies predicted by the synthesis model plotted against 

DFT formation energies of the relaxed long-range structures. The majority of the variation in the 

DFT energies is accounted for by electrostatic interactions.

Figure 7: Short-range defect formation energies predicted by the synthesis model plotted against 

DFT formation energies of the relaxed short-range structures. The majority of the variation in the 

DFT energies is accounted for by relaxation along X-point imaginary phonon modes.

19



Table 4: Fitted constants for the synthesis models presented in Figures 6 and 7.

Fitted Constant A (dimensionless) B (dimensionless) C / eV

Long-range 0.14 0.34 2.89
Short-range 0.13 0.44 3.97

Analysis of Born-Mayer-Huggins Potential Model

As discussed in the introduction, the empirical potential model and DFT have been shown to 

predict  the  instability  of  many  defect  structures  at  6.7  and  10.4mol%.  Unstable  structures 

undergo  barrier-less  reconstructions  of  the  Ovacs,  where  reconstructions predicted  by DFT are 

often not predicted by the potential and vice versa44. 

The final atomic positions of the relaxed structures are mapped back onto their  unrelaxed 

geometries by identifying the ideal fluorite O and Zr sites closest to the location of the relaxed 

Zr, O, Y, and Ovac sites. It was found that for the potential model, seven structures were unstable 

and underwent barrier-less reconstructions of the Ovac  away from its initial position on the ideal 

crystal lattice.  In contrast, DFT predicted one unstable structure with a flat energy surface with 

respect to Ovac reconstruction (pictured in Figure 8). Using DFT and a linear synchronous transit 

(LST) and quadratic synchronous transit (QST) maximisation transition state (TS) search, the 

energy barrier to reconstruction for the structure in  Figure 8 was computed as 10meV. This is 

small enough that thermally-activated reconstruction would be nearly instantaneous even at room 

temperature.
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  = Zr site   = O site   = Ovac site = Y site 

Figure 8: Ovac  reconstruction observed upon strain relaxation in DFT Left: unrelaxed NN defect 

structure with two 7-fold O-coordinated Y3+ ions. Right: final strain relaxed NNN structure. The 

Ovac can  be  seem  migrating  between  two  metal  tetrahedral  sites.  The  energy  barrier  to 

reconstruction is calculated as 10meV using a DFT LST/QST TS search. 

Through reconstructions, the majority of unstable structures predicted by the empirical potential 

relax under DFT to a geometry that  can easily be mapped back to  one of the 28 unrelaxed 

symmetry inequivalent structures. An example, with reference to Figure 1, is structure 16, which 

reconstructs  to  become  similar  to  structure  1.  These  structures  have  different  unrelaxed 

geometries, and are meta-stable upon relaxation with DFT. The exception to this is structure 6. 

When relaxed, structure 6 takes on an intermediate geometry that cannot easily be mapped back 

onto one of the unrelaxed structures, with the Ovac residing between two ideal O2- sublattice sites. 

Structure  6  is  the  lowest  energy  structure  predicted  by  the  potential  model.  When  the 

intermediate  geometry is  relaxed in  DFT,  the  Ovac  spontaneously relaxes  back to  its  original 

starting position on the O2- sublattice.
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The instability of structures within the potential model can be understood by considering anion 

migration pathways. Five of the unstable structures have an Ovac location such that a single Ovac 

migration leads to the Y3+  - Ovac  - Y3+ cluster taking on an NNN defect structure in equilateral 

triangle geometry. It must be the case that DFT predicts a barrier to Ovac migration while the 

potential  does  not.  To  estimate  the  DFT energy  barriers  to  Ovac migration,  LST/QST -  TS 

searches were performed on two structures that the potential predicts as unstable. Both structures 

are meta-stable in DFT, but can reconstruct to a more stable NNN structure through the single 

migration of an Ovac. One structure starts as a short-range NN structure (structure 6), while the 

second starts as a long-range NNNN structure (structure 16). The energies of the transition states 

between structures 6 and 4, and structures 16 and 1 are calculated and presented in Table 5.

Table 5: DFT calculated energy barriers to Ovac migration. 

Reconstruction 
path

Forward  energy 
barrier to TS / eV

Reverse  energy 
barrier to TS / eV

Total  energy  of 
reconstruction / eV

Structure 6 → 4 0.28 0.45 -0.17

Structure 16 → 1 0.41 0.92 -0.51

The defect structure starting with NN geometry has a lower energy barrier to Ovac migration 

than the structure in NNNN geometry. The NNNN structure reconstructs to a significantly more 

stable energy minimum. The existence of energy barriers within DFT but not the potential can be 

understood by considering the local strain between O2- ions and the metal sublattice. When an 

Ovac migrates, an O2- ion must pass between two Zr4+ ions. The migration causes a distortion to the 

metal sublattice as the interatomic distance between the two Zr4+ ions increases to accommodate 

the movement. The size of the energy barrier appears to be linked to the distance the Zr 4+ ions 

have to move from their ideal atomic sites. In the case of the NNNN to NNN migration, the 

22



interatomic  distance  of  the Zr4+ ions  increases  from 3.98Å to 4.02Å in the  TS state,  before 

contracting 3.98Å in the final NNN structure. In the case of the NN to NNN migration, the 

interatomic distance increases from 3.97Å to 3.98 Å in the TS state, and increases again to 4.0Å 

in the final NNN structure. 

We conclude that the connectivity between local minima on the potential energy surface is 

poorly  reproduced  by  the  potential,  suggesting  that  finite  temperature  properties  and  ion 

dynamics in particular are likely to be poorly reproduced by the potential model.

Conclusion

We have established  atomistic  geometries  for  the  low energy isolated  defect  structures  in 

3.2mol%  YSZ,  and  compared  the  accuracy  and  reliability  of  empirical  potentials,  simple 

electrostatics, and strain relaxation effects for predicting the DFT defect formation energies. We 

have  proposed  relatively  easily  computed  chemical  descriptors  that  can  identify  likely  low 

energy defect  structures  of  YSZ.  We  find  that  the  best  available  empirical  potential  poorly 

recreates the general trend of increasing DFT formation energies across a series of 28 symmetry 

inequivalent  structures.  It  also  fails  to  reliably  predict  energy  barriers  associated  with  Ovac 

reconstruction when compared with DFT. In addition, the connectivity between defect structures 

topologies on the potential energy surface is poorly described. 

Low energy defect structures have NNN type geometries where the Ovac  resides in the second 

coordination sphere of a Y3+ ion and the first coordination sphere of a Zr4+ ion. This topology is 

optimal when the Y3+ - Ovac - Y3+ defect cluster has equilateral triangle geometry.  A very good 

predictor of the likely low energy NNN structures,  and indeed of all  long-range NNNN and 

NNNNN  type  structures  is  the  total  electrostatic  energy  of  a  simple  point  charge  model 
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calculated at the unrelaxed geometries of the structures. However, the total electrostatic potential 

calculated at the unrelaxed geometries is a poor descriptor of short-range NN structures, where 

the Ovac resides in the first coordination shell of a Y3+ ion. 

Local strain relaxation effects make significant contributions to the formation energy and can 

be mapped in terms of relaxation along the imaginary X-point phonons of c-ZrO2. Local strain 

relaxation is only significant in determining the energetic ordering of high energy structures with 

short-range interactions.  All long-range structures exploit relaxation along imaginary phonon 

modes to a similar extent. The results suggest that defects can be characterised by two regimes: 

long-range structures, whose relative energetics correlate to, or can be predicted by point charge 

electrostatics;  and  short-range  structures,  whose  relative  energetics  correlate  to,  or  can  be 

predicted by a model containing point charge electrostatics plus a harmonic relaxation energy 

along the imaginary X-point phonon modes of c-ZrO2. Establishing an analytical description of a 

destabilising force at short-range will allow both regimes to be incorporated into a single model. 

Associated Content

Attached  with  the  manuscript  are  the  CASTEP cell  files  for;  c-ZrO2, Y2O3,  and  the  28 

symmetry inequivalent defect structures at their unrelaxed and DFT relaxed geometries. The files 

are titled: 

 c-ZrO2.cell

 Y2O3.cell

 YSZ_X_unrelaxed.cell

 YSZ_X_relaxed.cell
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X denotes the number of the structure and is equivalent to the structure number given in Figure 

1. For a detailed description of the cell file format, readers are directed to the CASTEP website63. 

Documents containing the energetics of the parent materials and relaxed DFT defect structures 

are included, as well as the dynamical matrix of c-ZrO2. These documents serve as a database for 

which future models can be developed. This material is available free of charge via the internet at 

http://pubs.acs.org.
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