
Open Objects
A lightweight and decentralised framework for the

Internet of Things

PhD Thesis in Computer Science

Paulo Ricca

Supervision: Kostas Stathis

Royal Holloway University of London

December, 2014

Abstract

This thesis explores the idea of how to use physical objects with digital func-

tionality to interact and communicate with each other in order to assist people

with carrying out their everyday activities. The main contribution of this thesis

is the proposition of the Open Object concept and its respective supporting

framework.

An Open Object is a physical object that is capable of network connectivity

enabling it to (a) expose and share its capabilities to the outside environment

including people and other objects; (b) request the use of capabilities from

other objects or external services when needed; and (c) allow people to modify

or introduce new functionalities, effectively changing the object’s behaviour.

This is to be contrasted with existing object or service oriented models whose

functionality, although exposed and accessible, is not normally open to changes

from the outside.

Basic Open Objects are then used as building blocks to construct assemblies

of objects that interact and communicate with each other to manage themselves

independently and work as a single entity, which we call Open Super-Object. The

key issue of Open Super-Objects is how they can be best constructed through

the specification of rules that control and coordinate their interactions. This

leads to a general approach of architecting, specifying and implementing Open

Objects in such a way that the overall coordination of more complex objects is

supported by composing the capabilities of simpler objects, regardless of their

internal implementation and structure.

Throughout the thesis, Open Objects are presented through a series of sce-

narios illustrating how the openness of simple and Open Super-Objects can

be specified and implemented. However, to investigate the practical value of

i

Open Objects, we also present and evaluate a prototype implementation of a

real-world scenario. In this scenario, an Open Super-Object situated in an office

environment notifies people of the availability of a co-worker. We also aggregate

a collection of methodologies for implementing different standard computing and

software patterns to produce a lightweight Open Object system. We conclude

the thesis with a summary of the achievements and a discussion of future work,

in particular how Open Objects can be used as a platform to support end-user

development.

ii

Acknowledgements

This work could not have been completed without the help and support of a

number of people, whom I would like to thank:

Kostas Stathis for all the help, patience and support both at an academic

and a personal level. Kostas’ knowledge, wisdom, experience and humanistic

stance were key throughout the whole study. Also, the rest of the DiceLab, for

their invaluable help and feedback.

My parents for unconditional support, friendship, love, kindness and for

being all-round good examples, for shaping who I am today. Also my sister and

my nieces for bringing me so many smiles and laughs.

José Danado for being my informal yet involuntary tutor prior to these

studies.

Eduardo Dias and Nuno Correia for the great help and support during the

PhD proposal stages.

Joana Gomes for the friendship and for that dinner where she convincing

me to start this adventure, in the first place.

Frieder Ganz who was involved in the creation of one of the case-studies —

the lucky waving cat — and for being an all-round good friend.

Ulli Schaechtle for being a great friend and for helping with reviewing part

of the thesis.

My little surrogate sister Olivia Vass for her help with English, for all the

cups of tea and for being the best cooking partner in the world.

Shahi Ghani for being my little brother, a good friend and providing a great

work environment.

Anna Downey for the support, endless patience for my occasional grumpiness

and for being the best partner in crime.

iii

And Anastasia Ushakova for all the love, motivation and general banter

during the writing of the thesis, and for laughing at my bad jokes.

Also, I would like to symbolically thank all the pasta and wine and laughs

for helping me go through any frustrating moments.

All of you, one way or another changed my life for the better during (and

beyond) the duration of this study.

iv

Contents

1 Introduction 3

1.1 Motivation . 5

1.2 Aims and Objectives . 7

1.3 Contributions . 8

1.4 Structure of the Thesis . 9

1.5 Previous Publications . 9

2 Background 11

2.1 Ubiquitous Computing . 12

2.1.1 Ambient Intelligence . 12

2.1.2 Internet of Things . 13

2.1.3 Web Of Things . 13

2.1.4 Sensor Networks . 14

2.2 Smart Objects . 14

2.2.1 Computational Capabilities or “Smart” vs “Dumb” objects 15

2.2.2 Connectivity . 15

2.2.3 Interoperability . 15

2.2.4 Autonomy . 16

2.2.5 Physical vs Virtual . 16

2.3 End-User Development on Smart Objects 16

2.3.1 Visual Programming . 17

2.3.2 Programming by Example 18

2.3.3 Sketching . 20

2.3.4 Meta-Design . 21

2.4 Internet of Things Platforms . 21

v

Contents

2.4.1 Requirements for an open development framework for IoT 22

2.5 Ad-Hoc Interactions . 25

2.6 Summary . 25

3 Open Objects 27

3.1 An Environment of Open Objects 29

3.2 Baby Monitor Scenario . 34

3.3 Open Object Architecture . 35

3.3.1 Capabilities . 35

3.3.2 Events . 37

3.3.3 Behaviours . 37

3.4 System Behaviours . 39

3.4.1 Behaviour Mapping . 39

3.4.2 Rule Execution . 40

3.4.3 Rule Repository . 40

3.4.4 Event Broker . 40

3.4.5 Behaviour Advertising . 40

3.5 An overview of the framework . 41

3.6 Interactions between System Behaviours 42

3.6.1 Event-based Interaction 43

3.6.2 Behaviour Registration 44

3.6.3 Behaviour Discovery . 44

3.6.4 Rule Composition . 45

3.6.5 Rule Execution . 45

3.7 A Complete Open Object . 46

3.8 Open Super-Objects . 47

3.9 Summary . 48

4 Open Object Description Language: Specification and Imple-

mentation 51

4.1 Our Specification Approach . 51

4.2 Open Object . 53

4.2.1 Open Super-Object . 54

4.3 Capabilities . 54

4.4 Events . 57

vi

Contents

4.5 Behaviours . 62

4.6 Rules . 64

4.7 Summary . 65

5 Implementation 67

5.1 A few notes on Methodology and Notation 68

5.2 Behaviour Advertising . 69

5.2.1 Internal State . 69

5.2.2 Events . 69

5.2.3 Capabilities . 70

5.3 Behaviour Mapping . 71

5.3.1 Internal State . 71

5.3.2 Events . 72

5.3.3 Capabilities . 72

5.4 Event Broker . 73

5.4.1 Internal State . 74

5.4.2 Capabilities . 75

5.5 Rule Repository . 75

5.5.1 Internal State . 76

5.5.2 Capabilities . 76

5.6 Rule Execution . 77

5.6.1 Events . 77

5.6.2 Capabilities . 77

5.7 A RESTful approach . 79

5.7.1 Capabilities as Resources 82

5.7.2 Web Client and Server as Actuator and Sensor 84

5.8 Experimental Implementation Platforms 84

5.9 Summary . 86

6 Case-Studies 87

6.1 Smart Lucky Waving Cat . 87

6.1.1 Methodologies . 88

6.1.2 Results and Conclusions 89

6.2 Algorithmic Test . 89

6.2.1 Methodologies . 89

vii

Contents

6.2.2 Results and Conclusions 92

6.3 Open Power Socket . 95

6.3.1 Methodologies . 96

6.3.2 Results and Conclusions 98

6.4 Resilience Test . 99

6.4.1 Methodologies . 99

6.4.2 Results and Conclusions 101

6.5 Office Availability Device . 101

6.5.1 Methodologies . 102

6.5.2 Results and Conclusions 106

6.6 Adding a new Behaviour to an Object 108

6.7 Conclusions . 113

7 Evaluation 115

7.1 Status . 115

7.2 Comparative Evaluation . 119

7.3 Summary . 123

8 Conclusions 125

8.1 Review and Discussion of the Achievements 125

8.2 Future Work . 127

8.2.1 End-User Development Tool 128

8.2.2 Maturing the Platform . 128

8.2.3 On Predicates First vs Context First when designing an

End-User Development language 128

Appendices 141

A Open Object System Behaviours: Capability Algorithms 143

viii

List of Figures

1.1 Two examples of RFID tags . 4

2.1 Service Creation Kit in m:Ciudad 18

2.2 A data flow visual programming interface. 19

2.3 Scratch Visual Programming Interface. 19

2.4 An Arduino microcontroller. 20

3.1 Objects in physical and digital Environments 28

3.2 A “smartness” scale of objects. 32

3.3 Open Object Architecture . 35

3.4 Open Object life-cycle . 36

3.5 The global Open Object Ontology. 41

3.6 The scope of the Open Objects framework. 42

3.7 The event passing process. 43

3.8 Behaviour Registration . 44

3.9 Behaviour Discovery . 44

3.10 Rule Composition . 45

3.11 Rule Execution . 45

3.12 A Complete Open-Object . 47

3.13 Incomplete object sharing System Behaviours 48

3.14 Open Super-Object diagram . 49

5.1 Bottom-up execution . 80

5.2 Top-down execution . 80

5.3 Another Top-down execution example 81

ix

List of Figures

6.1 Smart Lucky Waving Cat . 88

6.2 Open Power Socket . 95

6.3 Open Door Sign . 102

6.4 Open Cube Controller . 102

x

Glossary

AmI Ambient Intelligence. 12

ECA Event-Condition-Action Rules. 65, 116, 120

EUD End-User Development. 16, 17, 20, 22, 116, 120, 121, 126

HDL Hardware Description Language. 29

IoT Internet of Things. 11–14, 20, 22, 24

OODL Open Object Description Language. 51, 66

OOP Object-Oriented Programming. 68

OSH Open Source Hardware. 29, 30

OSS Open Source Software. 29, 30

PaaS Platform as a Service. 23

PCB Printed Circuit Board. 29

RSDL RESTful Service Description Language. 122

SMC Self-Managed Cells. 24

WoT Web of Things. 13

WSDL Web Service Description Language. 122

WSN Wireless Sensor Network. 14

xi

xii

List of Procedures

5.1 Request System Behaviour’s Capability — Expanded Procedure 69

5.2 Request System Behaviour’s Capability — Simplified Procedure . 69

5.3 Behaviour Mapping — Get Behaviour URIs 73

5.4 Event Broker — Forward Event 75

5.5 Rule Repository — Get Rules By Event 76

5.6 Rule Execution — Execute . 77

A.1 Behaviour Mapping — Register Behaviour 144

A.2 Behaviour Mapping — Deregister Behaviour 144

A.3 Behaviour Mapping — Activate Behaviour 144

A.4 Behaviour Mapping — Deactivate Behaviour 145

A.5 Behaviour Mapping — Rank . 145

A.6 Behaviour Mapping — Get Behaviour URIs 145

A.7 Rule Execution — Execute . 146

A.8 Rule Repository — Register Rule 146

A.9 Rule Repository — Deregister Rule 147

A.10 Rule Repository — Activate Rule 147

A.11 Rule Repository — Deactivate Rule 147

A.12 Rule Repository — Get Rules By Event 147

A.13 Rule Repository — Get Rule . 148

A.14 Event Broker — Forward Event 149

A.15 Event Broker — Subscribe . 150

A.16 Event Broker — Unsubscribe . 150

A.17 Behaviour Advertising — Register Behaviour URI 150

A.18 Behaviour Advertising — Register Behaviour 150

A.19 Behaviour Advertising — Advertise 150

1

2

1
Introduction

As technological advances produce smaller and cheaper electronics, more every-

day physical objects become embedded with computation, and the boundaries

of the definition of a computer start fading. RFID tags [Wan06] (pictured in

Figure 1.1), for instance, can be thought of as minuscule computers capable of

processing information, interacting with sensors and communicating wirelessly

without batteries. We are already surrounded by these small computers in our

everyday lives. They are glued to cereal boxes, tagged onto clothes, put into

books and library cards, and they are virtually free. This kind of computing was

explored by Mark Weiser, who conceptualised ubiquitous computing [Wei91], as

disposable computing. If Moore’s Law remains valid during the foreseeable

future [TP06], soon most everyday objects will contain a form of embedded

electronics capable of processing information from the environment, actuating

through the use of the object’s capabilities and communicating with each other

wirelessly.

From the point of view of an object manufacturer, at a low extra production

3

Figure 1.1: Two examples of RFID tags. On the left, the tag commonly

found in DVD boxes or books, on the right, a tag that identifies pets, com-

parable to a grain of rice in terms of size

cost, we can imagine advantageous scenarios where hardware companies produce

domestic appliances that are able to send back anonymous usage information or

malfunction reports while being used by the end-user as with computer software.

Remote assistance or firmware updates could also be made possible with an

Internet connected appliance. There are many examples [HDK08, CSDC11,

FW99] of physical objects having an increased value to the user by means of a

thin layer of computation built onto it, and the “killer applications” are probably

yet to be thought of. While we definitely see the advantages of the applications

from the object’s producers’ point of view, exactly how to make use of this

computation from the users’ point of view remains less clear.

The field of Ambient Intelligence often focuses on applications where inter-

faces and behaviour of systems adapt according to context [AM07]. A recurring

scenario [GHL05, HMF+08, DBS+01] depicts a smart kitchen that can sense,

among other things, what ingredients are present in the fridge and cupboard.

A user might look up recipes based on this information and once one is chosen,

the oven might set up itself according to the settings specified by the recipe.

Examples such as this one rely on heterogeneous objects and services working

together to achieve a common goal that fits the current user’s needs. Suitable

frameworks and protocols need to be developed to allow for scenarios such as

this to be possible.

In some cases, decentralisation and support for serendipitous collaboration

can bring interesting advantages. A wheelchair user may, for instance, configure

4

Chapter 1. Introduction

the functionality of the chair so that it requests traffic lights to stay green

for a longer time, in order to give the person extra time when crossing roads.

Another user who enjoys waking up to his favourite radio station may define

a rule on his mobile phone that turns on his radio at the time the alarm is

set to, and this rule may also carry on working if the user is in a hotel, for

instance, where the mobile phone requests the hotel tv to turn on to the same

radio station, at the right time. In a further example, a decentralised ad-hoc

connection of cars in a motorway [BHBR10] might make it possible for cars to

inform drivers of accidents ahead or ambulances behind. Decentralisation and

unpredictable opportunities for collaboration bring different opportunities but

also new challenges that foster new research around these areas.

1.1 Motivation

Our interest in these kinds of applications had previously drawn us into imag-

ining how End-User Development (EUD) could assist users modelling their own

rules that solve concrete problems, unique to their personal lives, through the

use of their existing heterogeneous physical objects. During initial research we

found that not only there were no existing software frameworks to support these

kinds of applications, but also that there were little or non-existing generic and

consistent frameworks of thought to be based on. We therefore shifted our in-

terest into producing a working framework for the class of problems that emerge

from these types of scenarios where collaborations between physical objects take

advantage of not only decentralisation and serendipitous interactions, but also

from the final user being able to specify exactly how the collaboration occurs,

and embed these specifications of new functionalities into these objects.

The theoretical framework, the technology and the standards are now at a

point where we can have truly useful ubiquitous computing environments. This

thesis envisions a near future where physical objects with a thin computational

layer have the ability to (a) expose their capabilities to the outside, sharing

them with other objects; (b) outsource certain capabilities from other objects

or external services when needed; (c) allow their users to modify and attach

functionalities, effectively changing their behaviour. This vision encompasses

several aspects of openness. We believe that sharing and openness in general

is a catalyst for innovative solutions; therefore it was our intention to design

5

1.1. Motivation

a framework with openness at its core. We envision scenarios where end-users

are able to introduce new and custom functionalities and capabilities into their

existing objects or combine multiple objects to form a more complex functional-

ity. We believe that this process should become collaborative: a crowd sourced

functionality store of open source functionalities for different objects, where

users could mix and match functionalities designed by others or modify them

to target their personal needs.

The other perspective on openness is the already mentioned outsourcing

of capabilities by the objects: instead of an object being constrained by its

capabilities it can focus on what it does best and leave other accessory tasks to

other objects or external services that may be more specialised in them.

A simple example, a kitchen oven’s main function is not time keeping, yet it

makes use of a clock, thus needing an extra hardware interface for it. Alterna-

tively, if the same oven was able to outsource this capability from a nearby clock

or a web service, it could same resources and have a more streamlined physical

user interface that focuses on the oven’s main task. This would also make the

user’s life easier during power failures or daylight saving time changes. Another

example could be a bread maker that schedules its time according to the user’s

alarm clock. There are numerous other scenarios, not only in a domestic en-

vironment but also in industrial and public ones, where objects sharing their

capabilities and letting users build a layer of functionality on top of them can

bring great advantages.

In the process of materialising this vision, a series of challenges arise. What

kind of technologies would be more suitable to make it possible to seamlessly

connect previously unrelated objects? What kind of language would be sim-

ple yet powerful enough to allow end-users to create new distributed systems

with enough complexity to fulfil their needs? What kind of framework and

architecture would suit such decentralised, pervasive, dynamic and unstable en-

vironment? How could the creation of new functionality of an object be turned

into a fun, collaborative and open development experience? There is an increas-

ing need for distributed systems frameworks that allows these types of objects

to communicate and cooperate in an effective way independently of their limi-

tations.

6

Chapter 1. Introduction

1.2 Aims and Objectives

We aim at making technology work beside us, not instead of us. We believe that

smarter everyday-life technology is more than just smarter physical objects. It’s

about creating smarter object interactions and generally making our life simpler.

It’s about sharing and connecting what already works well in order to build

something more useful and powerful.

We intend to give back control to the users over their devices by promot-

ing openness, transparency and innovation in the design and development of

functionalities and behaviours of everyday objects. We aim at releasing de-

vice owners from unwanted design decisions that compromise the best usage

of their equipment. We aim at making it possible to continue the design and

development of an object, after its purchase: Object designers create objects

in a way that allows these to be modified, expanded and connected to bet-

ter target users uniquely personal needs. This concept is often referred to as

Meta-Design [FGY+04].

One of the ways to fulfil these aims is to investigate how we can take a

computationally capable physical object and take it one step further into being

able to not only share its internal capabilities with other object’s, people or

remote services, but also to outsource capabilities that it does not possess or

even to let new capabilities be easily programmed and embedded by an end-user.

We intend to make this extra step as small as possible in order to allow minimally

thin and cheap implementations, while still supporting complex scenarios where

necessary.

Technically, when physical objects become computationally capable and are

able to connect to Internet services, it is said that we are dealing with an Internet

of Things (IoT) [AIM10] environment. Most existing approaches to the Internet

of Things take the weight off the objects and devices themselves by transferring

application logic and heavier computation to a centralised machine. This ap-

proach makes sense when heavy, real-time processes are concerned but there are

many situations when processing power, processing time and memory usage are

not critical, but other constrains such as unstable or ad-hoc communications,

security or privacy concerns make it preferable to have objects performing cer-

tain tasks internally. Furthermore, we could benefit from hybrid systems where

some tasks are carried out by small objects and other heavier tasks by exter-

7

1.3. Contributions

nal, specialised services. For such highly decentralised system to work we need

to find a minimum common denominator, a common framework that is light

enough to be implemented on very lightweight objects but flexible and powerful

enough to support a very wide range of possible applications.

With these aims in mind, we outline the following set of objectives:

• Develop an architecture for a software layer that allows physical objects

to expose their capabilities to the environment in which they are situated

as well as outsource capabilities to other objects that support them and

can provide them;

• Study the features of a rule-based framework to describe internal function-

alities and coordination of objects, which in turn can be used as a target

platform for an End-User Development Layer;

• Propose a specification for Behaviour, Capability and Rule descriptions;

• Develop a functional and reusable implementation of the architecture and

the rule-based framework.

1.3 Contributions

Throughout our work, we introduce our main contribution — the concept of

Open Objects. These are physical or emulated artefacts, whose embedded

computing allows them to share and/or outsource resources, such as sensors,

actuators or processing capabilities while also allowing the user to modify or

augment its internal functionalities. In order to support this paradigm, we de-

scribe a lightweight, distributed framework aimed at user-centric orchestration

of Open Object on ambient intelligence environments, and demonstrate an im-

plementation and a number of case-studies. One of the innovative aspects of

this framework are the methods of decentralisation that allow for partial imple-

mentation of the framework on lightweight devices, which can then be treated as

“first-class citizens”, instead of lower level components accessible through prox-

ies. Another important contribution of this work is the rule syntax and engine,

which support ad-hoc interactions and high levels of expressiveness in terms of

functionality description. Open Object Rules combine, in the same syntax and

environment, interactions between system management functionalities (System

8

Chapter 1. Introduction

Behaviours) and application level ones (Domain Dependent and Independent

Behaviours), and are also used to define new capabilities that can be added

to existing objects — thus supporting the concept of Meta-Design explored in

Chapter 2. The design of these rules was made with the intention of supporting

End-User Development by using a language that can be closely mapped into

such a tool.

1.4 Structure of the Thesis

In Chapter 2 Background of this thesis, we lay the ground for the rest of the

research, contextualising the work from the points of view of Ubiquitous Com-

puting, Distributed Computing and End-User Development. Chapter 3 Open

Objects introduces the core concepts behind the Open Objects framework and

how they contribute to answering the questions raised in the previous chapter.

In Chapter 4 Specification, we formalise the Open Objects framework and its

data formats, laying the groundwork for implementation. In Chapter 5 Im-

plementation we present our implementation of the Open Objects framework,

a number of implementation issues and the system management layer of the

framework. Chapter 6 Case-Studies presents a number of experimental proto-

types, where the previously presented implementation is evaluated in controlled

and real-world scenarios. In Chapter 7 Evaluation, we analyse and discuss the

results of the case-studies, the current state of the implementation and a sys-

tematic comparison with a number of other platforms. Finally, in Chapter 8

Conclusions we provide a summary of our contributions and lay the ground for

possible future work.

1.5 Previous Publications

Below are some of our publications that have directly contributed this thesis.

• Danado, J., Davies, M., Ricca, P., and Fensel, A. ”An authoring tool for

user generated mobile services.” In Future Internet-FIS 2010. Springer

Berlin Heidelberg, 2010. 118-127.

The participation in this project sparked the motivation behind this thesis.

• Ricca, P., Stathis, K., and Peach, N. “A lightweight service registry for

9

1.5. Previous Publications

unstable ad-hoc networks.” In Ambient Intelligence. Springer Berlin Hei-

delberg, 2011. 136-140.

This publication reflects part of our involvement with an Ambient Intelli-

gence project focused on decentralised and ad-hoc interactions in unstable

and/or unreliable networks (namely on war scenarios). This involvement

resulted partially in the implementation of the Event Broker and the Be-

haviour Mapping, important components of the framework, detailed in

Chapter 5.

• Ricca, P., and Stathis, K. “Open Objects for ambient intelligence.” In

Ambient Intelligence. Springer Berlin Heidelberg, 2012, 320–327.

In this publication we outlined the basic concepts behind the framework.

These concepts matured and originated Chapter 4.

• Ricca, P., and Stathis, K.“A RESTful and decentralised implementation

of Open Objects.” In Proceedings of the 2013 ACM Conference on Perva-

sive and Ubiquitous Computing. ACM, 2013.

Presented in this paper is an early stage of the implementation of the

framework and a brief description of one of the case-studies in Chapter 6.

10

2
Background

This thesis lies at the intersection of a range of different areas. Research under

the umbrella of Ubiquitous Computing has provided insight into how computers

and human-computer interaction will be likely to evolve and how it may shape

our life as individuals and as a society. Ubiquitous Computing is commonly

referred to as the type of computing that fades into the physical background

and becomes invisible to the user, frequently focusing on the physical aspect of

the human-computer interactions. Ambient Intelligence is a related field that

can be thought of as the branch of Ubiquitous Computing that is concerned

with intelligent physical spaces that identify users activities and adapt their

behaviour accordingly. The Internet of Things (IoT) usually offers a more tech-

nical and practical point of view on how physical objects can be designed or

transformed to be able to connect to the Internet, what implications arise from

this connection and what infrastructures and standards should be adopted to

support these ecosystems.

As often happens, similar problems are tackled from adjacent areas of re-

11

2.1. Ubiquitous Computing

search, from different perspectives — the field of Distributed Computing deals

with matters that arise when computation tasks are split between different ma-

chines, issues which also affect IoT applications frequently. The Service-Oriented

Computing field offers a work base for providing physical objects with means of

sharing their capabilities and connecting to other objects. The Web of Things

ideas suggest the use of existing Web tools and protocols to build the IoT around

physical objects with service-oriented architectures. Over the next sections, we

have a closer look over each of these areas of interest and research.

2.1 Ubiquitous Computing

Ubiquitous or Pervasive Computing was a term coined by Mark Weiser [Wei91]

from Xerox Corporation to illustrate the vision of an environment with an invis-

ible, unobtrusive, helpful and intelligent grid of small computers that surround

the user, focused on helping him on daily tasks by predicting future actions and

understanding social contexts. Ubiquitous Computing has its origins on the in-

tersection of two apparently incompatible trends. On one hand, computers and

technological gadgets that are as unobtrusive and invisible as possible are sought

after — the best user interface is the self-effacing one — and on the other hand

the amount of information available to and desired by us is exploding. This

paradigm tries to make information, intelligence and control easily accessible to

the user, without adding more entropy to its already technologically complex

everyday life.

There are several schools of thought in Ubiquitous Computing, each of them

focusing on different aspects of the same problem/environment. In the next sub-

sections, some of these points of view which are critical to the present research

are presented.

2.1.1 Ambient Intelligence

The vision of AmI [ZEBD98, SS09] is to create environments that sense, an-

ticipate and respond to people’s actions. It can be considered a point-of-view

over the Ubiquitous Computing paradigm, closer to commercial services and

industrial products, perhaps due to its industrial Philips roots. Ambient In-

telligence applications often deal with larger scenarios than the ones we are

interested in, such as smart buildings and adaptive power grids. Furthermore,

12

Chapter 2. Background

their philosophical approach is often antipodal to ours as it commonly focuses

on autonomically acting on behalf of, or supporting the user by recognising its

activities[CAJ09, STF07, DHC05]. Our approach is lower level, focused on pro-

viding the necessary tools and infrastructures to empower the user to let them

define how environments and objects should act on different circumstances.

2.1.2 Internet of Things

As a branch of the distributed computing research topic, the Internet of Things [AIM10]

is a concept which explores the broader Ubiquitous Computing paradigm in

what relates to the way small heterogenous computers and smart objects [KKFS10]

can connect to each other, coordinate, access and share information to the user

through loosely coupled services. The concept became more relevant when it

was indicated12 that the number of things (the word “things” is commonly used

to describe electronic artefacts with embedded systems that are either too sim-

ple or too small to be called computers, which are able to sense and / or actuate

on the environment) became larger than the number of people connected to the

Internet, which means that we have to rethink how the two layers can interact

and overlap in order to create meaningful and useful connections.

2.1.3 Web Of Things

The Web of Things [GT09] (WoT) concept is based on the idea that, assuming

the IoT networking challenges are already mostly solved, the research should

further move itself to the upper layers of the system, namely the messaging

protocols to be used. In other words, we can think of the WoT as a layer over

the IoT transport layer, a parallel to how the Web protocols and applications are

a layer over the Internet protocols. The WoT ideology intends to reuse as many

of the proven Web technologies as possible to suit the IoT objective, namely,

HTTP and REST [Pas12] for message handling and Atom syndication for service

discovery. As the IoT frequently deals with devices with limited processing

power and constrained connectivity, it’s useful to optimise the transmissions as

much as possible. With REST we use the actual HTTP headers as meaningful

message envelopes instead of just being generic network wrappers for another

1http://www.gartner.com/newsroom/id/2636073
2http://www.theconnectivist.com/2014/05/infographic-the-growth-of-the-internet-of-

things/

13

2.2. Smart Objects

messaging protocol, therefore minimising and simplifying the way devices share

data.

2.1.4 Sensor Networks

Wireless Sensor Networks (WSN’s) [SGAP00] are networks of specially dis-

tributed autonomous devices that sense a particular aspect of a given environ-

ments and collectively create a geographical map of data which is then processed

or interpreted by a central processing unit. Common applications of WSN’s are

sensors that monitor building’s structural integrity, agricultural fields, wastew-

ater monitoring, landslide/earthquake/forest fire detection and industrial plant

monitoring. Challenges in WSN’s are usually related to communication, trust is-

sues, spread of information through grids of sensors, ad-hoc communications and

dynamic/unstable networks [CK03, SKPB07]. Although this area of research is

not our direct interest, it can be seen as one of the possible applications of the

outcome of the project.

2.2 Smart Objects

Making physical objects “smarter” or more cooperative is hardly a novelty.

Through the last decades, several research and industrial fields have worked to-

wards that aim. Sensor Networks gather data from lower level autonomous sen-

sors to make it accessible over an aggregating centralised system (e.g. [KEW02,

GBCM11]). Embedded Electronics have evolved so that small scale electronics

can be embedded into physical objects at very low cost enabling cheap “in-

telligence” on everyday items (e.g. [FW99, NRL07]). The fields of the IoT

and Ubiquitous Computing aim at integrating physical objects into computer

networks merging the user’s digital and physical environments [KKFS10].

Despite this variety of fields (or perhaps because of it) there is, however, no

consensus over the terminology used in these contexts. A number of questions

seem to have no consistent answer: Are Things and Objects the same thing?

What does it mean to be “Smart”? Do they encompass only objects with a

physical presence? Are they a virtual representation of physical objects or the

objects themselves? Do they need to have any form of computational capabil-

ities embedded into them? Do they need to be able to connect to a computer

network?

14

Chapter 2. Background

2.2.1 Computational Capabilities or “Smart” vs “Dumb” objects

Objects that have no computational capabilities but have a barcode [QBVG08]

or an RFID [FW99] attached, for instance, are often referred to as “Dumb”

objects but are still connectable or identifiable through appropriate automated

or semi-automated scanners. When a physical object is embedded with digital

electronics (which become its computational capabilities), it is said to become

“Smart”. It is, however, unclear what kind of computation and how much

processing power is required for an object to be considered “Smart”.

2.2.2 Connectivity

An object may possess computational capabilities but no connectivity to other

objects, only being capable of interacting with its own sensors and actuators.

In that case, it is discussable if the object is to be classified as “Smart” or not,

and literature is ambiguous. One of the main issues of connectivity is power

consumption — as a general rule of thumb, the longer the distance of communi-

cation, the high the power consumption. On the lower end of the consumption

scale we have RFID and, NFC, in the middle we have bluetooth and at the top

of the scale Wi-Fi. Battery-powered devices adopt different strategies to pre-

serving power while maintaining connectivity. Some of these strategies imply

becoming disconnected for periods of time, which poses a challenge for interop-

erable systems.

There has been recent developments regarding application communication

protocols, such as CoAp [CoA12] that targets small, low-powered devices. This

protocol is characterised by having low overhead (compared to HTTP) and

support for multicast, both important for the kind of scenarios involving low-

powered smart objects.

At a lower level of the OSI model, 6LowPAN [Mul07] allows transmission

at lower data rates through a variety of physical means, and is also targeted at

small, low-powered devices.

2.2.3 Interoperability

Some objects with connectivity capabilities may be able to interact and col-

laborate with other objects. Interoperability is key in this context due to the

diversity of hardware and software platforms. Due to this diversity, we can

15

2.3. End-User Development on Smart Objects

observe a trend of Service Oriented Architectures being applied in this context

[AIM10, SKG+09, IGH+11, HKS09], due to its implementation independency

nature. It is unclear, however, whether or not interoperability is implied when

referring to a physical object as “Smart”.

A common issue regarding interoperability is how to choose the operational

semantics of the interactions, specifically on decentralised scenarios in the cases

where system nodes do not have access to global ontologies.

2.2.4 Autonomy

An object is autonomous when it is able to operate as intended on its own,

without having its actions controlled externally. Objects are not autonomous

when they behave as sensors or actuators accessed or controlled by other objects

or nodes in a network.

2.2.5 Physical vs Virtual

Another point of discordance is related to the possibility of having virtual objects

as representations of physical objects, groups of objects, or services. Concep-

tually, a Virtual Smart Object is different from a Physical Smart Object as it

is not directly attached to a physical entity, but in practice both types would

behave and interact similarly.

2.3 End-User Development on Smart Objects

We became interested in the areas of study mentioned above from the par-

ticipation in a project called m:Ciudad [DDRF10]. This project focused on

enabling both the development and the execution of small applications on mo-

bile devices. Users could modify or create these small mobile applications on

their mobile devices from scratch using a block-based EUD tool (example of

the Service Creation Kit, the EUD tool, in Figure 2.1). This project showed

it was feasible to implement the tools necessary to allow the common user to

construct powerful systems in a simple way. This conclusion, partly inspired by

[CFMD10], together with the uprise of cheap DIY electronic platforms (such as

Arduino3 or Rasperry Pi4), inspired us to think about a future world where the

3http://www.arduino.cc
4http://www.raspberrypi.org/

16

Chapter 2. Background

common user is given back control over their own physical objects. By combin-

ing their functionalities with physical mashups [HDK08], connecting them to

the Internet and modifying their behaviour, we could make the better suit the

user’s personal life.

Throughout the past decades, efforts have shifted from making systems easy

to use into making them easy to develop [LPKW06]. We believe that the Web 2.0

revolution, where content consumers became content creators, mostly happened

simply because the right tools (such as Blogging platforms and general purpose

Content Management Systems) were imagined and developed. We also believe

that the next step will be the evolution from content creators to functionality

creators. Tools (such as Yahoo Pipes5, IFTTT6, Zapier7 or Tasker8) that allow

common users to create custom functionalities and system rules are already

becoming mainstream.

End-User Development (EUD) is a field of research which focuses on devel-

oping techniques and tools that allow people without any specific programming

skills to be able to create or modify software. EUD plays an important role by

putting part of the innovation in the end-user’s hands, opening new opportu-

nities for customisation and amplification. A notable example of EUD is the

use of spreadsheets in which users may create highly complex applications with

apparently little complexity based on simple rules and mathematical formulas.

EUD makes it possible for users to closely participate in the design of the

systems they use, making them fit better to their own specific tasks, rendering

either their professional or personal lives more satisfactory by spending less time

on repetitive tasks (that are better performed by well designed computational

systems) and focus on what humans do best. In order to enable software de-

velopment by end-users several methodologies have been created and studied.

Some of the more significant and influential ones are shortly described below.

2.3.1 Visual Programming

A Visual Programming Language is one that users manipulate graphic rep-

resentations of software development components, instead of writing program

5https://pipes.yahoo.com/pipes/
6https://ifttt.com/
7https://zapier.com/
8http://tasker.dinglisch.net/

17

2.3. End-User Development on Smart Objects

Figure 2.1: Service Creation Kit in m:Ciudad. The user is able develop a

mobile app on a mobile device using the SCK. Pictured are three different

levels of increasing complexity which complement each other.

code [Mye90]. This offers several advantages to beginners and non-programmers

such as less memorisation, being less prone to syntactic errors and letting users

organise the program logic in a visual way that makes sense to them (such as

the example picture in Figure 2.2). Although there are some variations based

on similar principals, the user interfaces commonly used for these languages

are composed of functional blocks with inputs and/or outputs, and arrows or

lines connecting the blocks which represent logical sequences(or workflows), data

flows or control flows. There are also examples of hybrid approaches, such as

Scratch [RMMH+09] (Figure 2.3), a tool developed to assist young learners

when learning to programme, which wraps common procedural programming

metaphors in a graphical presentation.

2.3.2 Programming by Example

When programming by example, instead of implementing a certain functionality

directly, the user performs the action itself on one or various particular use cases

and it’s up to the underlying system to infer the generalised logic behind the

operation [Hal84]. This is a practical way of automating repetitive tasks and is

used, for example, in the field of Robotics to program robots. A clear advantage

of using this technique is that users use the same user interface to use the system

and to program it which allows them to work on a familiar environment instead

of having to learn a new one.

18

Chapter 2. Background

Figure 2.2: A data flow visual programming interface.

Figure 2.3: Scratch Visual Programming Interface.

19

2.3. End-User Development on Smart Objects

Figure 2.4: An Arduino microcontroller.

2.3.3 Sketching

Half-way between conventional programming and EUD sits Sketching, a term

used when referring to small software programs, created without taking into

account good software architecture practices or solid longevity. Sketches are

often written by non traditional programmers such as visual or sound artists

usually to be used just by themselves or a small group of interacting people. The

sketching environments, either written in a traditional programming language

or a subset of one, such as Java (Processing9) or C (Arduino10 [Gib10]), or in

a visual programming manner(such as Pure Data11 or vvvv12), usually aim at

being simple to use for beginners but still allow a great level of control and

complexity for advanced programmers. Sketching is also used when someone

wants to prototype functional systems quickly.

Arduino (pictured in Figure 2.4) is a rapid hardware prototyping platform

that is commonly used by artists and “DIYers” which allows them to create

custom, very focused ad-hoc electronic artefacts with great ease, relatively low

production costs and, perhaps more importantly, with in-depth knowledge of

electronics and/or embedded programming. For these reasons, Arduino became

a very good platform for implementing and testing IoT environments with-

9http://www.processing.org
10http://www.arduino.cc
11http://www.puredata.info
12http://www.vvvv.org

20

Chapter 2. Background

out having to study complicated electronics, while still keeping the prototyping

costs down. Technologically, the Arduino is the combination of a small and

simple to use prototyping board with an embedded micro-controller, a boot

loader software programmed into the micro-controller which makes it easy to

programme the devices, a development environment based on the Processing

environment and a vast amount of open source libraries that facilitate the usage

of the most common sensors, actuators, integrated circuits and shields (plug-

and-play boards that provide additional functionalities such as motor control,

ethernet or liquid crystal displays). Software running inside the Arduino is

usually written in the form of small Sketches, programmed in a simple to use

Processing-based IDE which compiles directly into the Arduino by connecting

to a USB port. That and the very supporting community makes it one of the

easiest electronics platforms to develop to.

2.3.4 Meta-Design

The concept of Meta-Design [FGY+04] is based on the idea that instead of the

design and functionality of a hardware or software artefact being finished and

closed when acquired by the final user, it is open allowing the user to further

improve or modify the way it operates. Typically, the end-user would have

access to an End-User Development tool that is able to interpret and rewrite

the functionalities of the artefact. A common (although not ideal in the sense

that it requires some knowledge of computer programming) example of Meta-

Design is the ability to create Macros that alter or expand the operation of

pieces of software, i.e. Visual Basic Macros in Microsoft Word.

2.4 Internet of Things Platforms

Motivated by the points explained earlier, we decided to further investigate the

existence of an appropriate technical framework to support EUD over applica-

tions compromised of a group of Smart Objects. As we are also interested in

exploring the usage of external services over the Internet, frameworks built to

support IoT applications were obvious candidates, although we also looked into

multi-agent systems platforms, which also deal with similar challenges.

21

2.4. Internet of Things Platforms

2.4.1 Requirements for an open development framework for IoT

During our investigation we defined six characteristics to look for in a possible

framework:

• EUD support from the ground-up. Arguably, the ability to support

EUD and give users control over their objects is key in the IoT, hence we

intend to find a framework that is preferably designed from the ground-up

to support it.

• Ad-hoc interactions. We do not assume that the user will predict all the

use-cases and environments where its objects may operate, or with which

other objects they are going to interact with, therefore it is important for

the framework to be able to handle ad-hoc situations.

• Decentralised architecture. Surveys have shown [SK11] (and sup-

ported by our own informal interviews) that there is a general public

concern about the risks involved with delegating the control of a house to

an external organisation over the Internet. Whether or not the concern

is based on real risks is arguable, but there are significant advantages in

having a decentralised and local (possible to implement between devices

on a local network) architecture, for instance the support for ad-hoc inter-

actions and the non dependency of an available Internet connection (i.e.

the house system does not stop if there is no Internet connection). More-

over, centralisation can be seen as a particular case of decentralisation,

therefore, if a system supports the latter, the former is also supported.

• The Lightweightness of the framework is key to support the previous

two point considering the fact that many of the devices used in the envi-

sioned interactions would be low-powered and/or have low processing and

memory capabilities.

• Interoperability with other systems. As there are many frameworks

and platforms, it is important that different systems are able to communi-

cate and interoperate between each other, preferably through established

standards.

• It is believed [FG06, Ehn08] that Meta-Design has the potential of sig-

nificantly increasing the usefulness and flexibility of objects, therefore, we

find that allowing the user to modify the functionalities and operations

22

Chapter 2. Background

of an object is an important condition to better support the envisioned

scenarios.

With these characteristics in mind, we assessed a number of platforms and

frameworks, of which we chose a selection for a brief discussion. Although this

selection is very heterogeneous and not directly comparable (in some cases they

are complimentary), there is enough overlap of functionality, hence the choice

to evaluate the platforms together. This way we cover the different aspects of

the Open Objects framework feature by feature.

Contiki13 [DGV04] is a very lightweight and highly efficient operating sys-

tem with a very small memory footprint (around 40kb), built to run on low-

powered devices. It supports several communication protocols and has ports

for many different hardware platforms, making it a good platform to support

enterprise heterogenous applications. Being an operating system, it is meant to

be used as a platform onto which other applications are developed, therefore it

is a layer below the level of framework we aim at using (which could potentially

be running over Contiki). An interesting feature of Contiki is that it allows the

developer to run the system in simulation mode, making it possible to observe

the behaviour of applications in a closed software environment.

ThingSpeak, EVRYTHNG14 and Xively are among a group of cloud

based Platform as a Service (PaaS)[Law08] providers that are specialised in

aggregating and centralising information and data from existing Internet con-

nected devices. Both ThingSpeak and EVRYTHNG seem to be directed at in-

dividual hackers and developers, and the latter also provides custom advertising

campaign solutions. Xively offers similar features but is directed at enterprise

applications. The three provide a comprehensive and standard layer for inter-

facing with applications for the IoT based on Web technologies but they do not

provide an application layer.

ioBridge provides simple to use hardware platforms for connecting existing

hardware devices to the Internet by sending data to a centralised server, which

in turn makes it accessible through a RESTful interface. ioBridge is mostly

targeted at hackers and hobbyists that want to take control or modify their

existing objects.

13http://www.contiki-os.org/
14https://evrythng.com

23

2.4. Internet of Things Platforms

HomeOS [RSL+04] is an operating system developed by Microsoft Research

targeted at home automation. It runs on a common computer and discover-

s/connects devices in a local networks. It provided to developers high-level

abstractions to orchestrate the devices in the home. An interesting feature is

the way the system handles the external devices using the familiar computer

periphericals metaphor. Lab of Things is framework (mostly targetted at re-

searchers) built on HomeOS that facilitates the creation of applications on this

system. The framework has a collaborative nature and allows researchers and

developers to easily share and reuse each other’s code.

We also reviewed a number of platforms that do not apply directly to IoT

but have similar general concepts that could easily be applied to it. These are

Multi-Agent Systems [Fer99] platforms, which focus on orchestration of agents

in distributed environments. Agents differ from the objects that we focus on, in

that they take decisions based on their perceptions of the environment. Also,

a fundamental conceptual distinction is that the agent’s “mind” — the deci-

sion processing component — is not traditionally modifiable during run-time,

as opposed to the model we are trying to achieve. The aim of Multi-Agent

Systems is to create intelligent pieces of software that act on behalf of a human.

Nonetheless, the methods used for messaging, distribution of tasks and rule def-

inition, for example, provide inspiration and potentially practical support for

our objectives.

Self-Managed Cells (SMC) [SBD+05] is an academic research work that

proposes a policy-based federation and orchestration framework. Their archi-

tecture supports self-configuring and self-managing agents. Policies are used

both for access control and for service orchestration. It is, however, a closed

system in the sense that it is not build to interoperate with other systems or

services. Also, a single cell implementation, albeit lightweight enough to run on

mobile devices, is too heavy to run on smaller electronics[DLS+05], therefore

these need to be interface through a more capable proxy device.

EVATAR [DS10] is a middleware prototype linking multiple agents with

sensor, actuators and devices including robots. We are assessing EVATAR is it

presents an alternative way of orchestrating physical objects — it is capable of

interacting with a number of different hardware platforms by treating them as

agent “bodies”, while the heavy artificial intelligence processing (the “mind” of

24

Chapter 2. Background

the agent) is done on more capable computers.

Another research framework we assess is called Super-Agents [Sta10], which

presents an architecture for orchestrating complex behaviours of self-governed

agent organisations into a higher level abstraction called a Super-Agent. Exter-

nally, a Super-Agent acts as a single agent with policies that govern the internal

behaviour. Although it is not directly applicable to our work, this framework

provides interesting ideas that can be transferred to the management of groups

of interacting objects.

2.5 Ad-Hoc Interactions

By definition, an ad-hoc interaction is one that is constituted or set up “in the

moment”, for the occasion of that concrete interaction, possibly in a scenario

that was not predicted during the creation of the system that supports it. In

the context of this thesis, interactions may be classified as ad-hoc on mainly

two different levels.

Ad-Hoc Networks [Per08, AWD04] encompass a series of technologies and

techniques that provide the means for communications between devices through

a network that is created and set up for the purpose of that communication,

not relying on pre-existing network infrastructures. Ad-Hoc networks are also

typically decentralised.

Ad-Hoc Coordination We consider Ad-Hoc Coordination to be at a higher

level than the previous kind of ad-hoc interactions. These use pre-agreed proto-

cols to communicate information and/or coordinate actions between devices and

rely on a pre-existing communication layer (not necessarily based on an ad-hoc

network). Ad-Hoc Interactions are made possible through the use of standard

application interfaces, shared ontologies and loosely-coupled services, which is

main point of relevance to this thesis.

2.6 Summary

In this chapter, we presented the underlying concepts of the subject of our re-

search. We began by introducing Ubiquitous Computing and its related research

topics, we discuss the terminology surrounding the concept of Smart Objects and

our initial aim of preparing the groundwork for a vision of Smart Objects or-

chestrated by the users using End-User Development. In order to support this

25

2.6. Summary

vision, we need a framework that supports EUD, ad-hoc and decentralised in-

teractions of physical objects, whose implementation is lightweight enough to

be integrated on low-powered devices, and that allows for interoperation with

other systems and services. Also, the concept of Meta-Design empowers the

user allowing them to further expand or modify the functionalities of objects

to better suit their personal needs, making it an interesting feature to have in

the framework. Not having found a framework with these characteristics, we

proceed to propose our own in the next chapters.

26

3
Open Objects

In this chapter we explore the concept of an Open Object, what being open

means in this context, what different kinds of openness it encompasses, what

advantages it brings and how can we define the structure an Open Object. We

then propose an architecture for a Complete Open Object, that is an object con-

taining all the necessary behaviours and capabilities to operate independently

in an application environment. As not all objects within an environment will

be complete in terms of the behaviours and capabilities they contain, we also

introduce collections of incomplete objects that can be assembled together to

share their capabilities and form Open Super-Objects with behaviours and ca-

pabilities that are complete as a whole. To exemplify the discussion of Open

Objects, we introduce throughout the chapter, a scenario that illustrates how

to use our framework in a concrete application that allows people to support an

activity at home.

27

Figure 3.1: Objects in a physical environment with a representation in the

digital environment. The vertical lines on the diagram illustrate the fact

that the same objects have two strongly-coupled representations, one on each

environment. Some entities may have only a physical (e.g. dumb objects) or

a virtual (e.g. an external service) representation. A user controls a device

that allows them to coordinate the interactions between the objects. Some

objects may communicate through the digital environment (represented in

the diagram by the dotted lines on the virtual plane)

28

Chapter 3. Open Objects

3.1 An Environment of Open Objects

We will find Open Objects in a Physical Environment (Figure 3.1). This is

a physical space that contains physical objects (for example a home or office

environment). Some of the objects may contain an electronic component (or

even some computational capabilities) whose software interacts with their sen-

sors and actuators. We consider this the virtual representation of an object,

as opposed to its physical representation. When this happens, we can assume

that there is a digital layer underneath the physical environment, in which these

physical objects are represented and through which they may communicate with

each other. On the digital layer there may be some virtual objects that do not

have a direct physical representation in the physical space, such as external

software services. Users may interact with these objects directly on the phys-

ical layer, or through the means of interfacing objects — objects who provide

a bridge interface between the two environments, such as a mobile phone or a

tablet — on the digital layer. This layer of communication and computation,

which we call the Digital Environment, allows for interactions between people

and the objects that surround them, as well as between the objects themselves,

for they can share resources and information, thus reducing redundancy, pro-

duction costs and energy. It is our vision that these virtual representations of

physical objects should have different degrees of openness to interact and adapt

to individual people’s activities.

Given this vision, we need to understand the different perspectives of open-

ness. Openness in open-source software (OSS)[P+99], for instance, implies that

developers that were not involved in the original conception of a software so-

lution are able to have access and to modify its source code in order to create

a new one that fits new needs. Similarly to OSS, we witness the uprising of

Open Source Hardware (OSH) projects (notably the Arduino project1) where

not only the firmware is made public but also the schematics for the hardware

parts (i.e. mechanical drawings, schematics, bills of material, PCB layout data,

HDL source code and integrated circuit layout data) so that physical artifacts

can be modified, upgraded and redistributed in novel ways. Due to their open

nature, OSS and OSH solutions tend to be more flexible, reliable and of higher

1http://www.arduino.cc

29

3.1. An Environment of Open Objects

quality [R+99] than their closed counterparts.

In this work, we take inspiration from OSS and OSH, in the sense that

much of the objects’ functionalities could be made open and modifiable by

developers, users and/or other objects. An object becomes more open when

parameters that control its inner workings can be changed by the end-user, and

even more so when even the inner workings can be augmented or even modified

to take over new functions. The object can then be augmented dynamically with

new computational capabilities that allow the object to adapt its behaviour in

order to become useful in situations that were not predicted at design time. A

final user being able to change an object’s internal organisation and add on to

how an object works, makes it “open” in terms of Functionality. In other

words, an object’s functionality becomes open-ended. This concept, allied by

well-designed end-user development tools, allows objects to become much more

flexible and adaptive to each user’s lifestyle.

OSS and OSH are also characterised by the frequent use of open standards

and protocols, which facilitate interoperability, something that is useful in our

context. We refer to this kind of openness as being open in terms of Standards.

The idea of interoperability brings us to another view on openness: Com-

positional, when an object shares complete or partial functionalities with other

objects in the environment, and it is able to make use of the capabilities shared

by others. As a result, the physical and conceptual boundaries of an object

become blurred: an object may not end where its functionality ends; and there

may be overlaps between different object’s boundaries when they start sharing

software and hardware components that form their functionality. We will dis-

cuss how to compose Open Objects to share functionalities later in section 3.8.

Another perspective on openness is Environmental. In order for an object

to be adapted to the user’s lifestyle and be coherent with it, it needs to be open

to the environment, be responsive to different contexts and events that happen

outside its boundaries, have knowledge of other objects in the surroundings and

be able to interact with them. In addition, an object may make itself noticeable

in the environment, by communicating its presence and sharing information.

These four perspectives on openness present the core concepts behind our

view on the fundamental element of this thesis: the Open Object. An Open

Object is any physical object with a virtual representation that is capable of

30

Chapter 3. Open Objects

observing information present in the environment (is able to receive information)

in which it is situated, process it (is able to interpret, store and process data),

and produce its own information for others to interact with it (is able to produce

and communicate information). The Open Object paradigm is motivated by the

democratisation of the object functionality creation, where the object design

doesn’t necessarily end on the object’s designer drawing board, but can be

expanded by the final user. This further development can encompass interface

improvements, new functionalities, object mash-ups or connections to remote

services and/or objects. In the next Chapter we will look at how one could use

the framework presented here to support these interactions between objects.

We are assuming an environment of Open Objects with an underlying con-

nectivity layer that the objects have access to and are capable of using with a

common communication protocol through which objects can send messages to

a list of other recipient objects. We also assume (whilst not being the aim of

this study) an access control layer through which owners of the objects are able

to set permissions regarding who and which other objects are able to access and

modify their capabilities.

We classify physical objects as “Situated” or “Non-Situated”. Situatedness

has to do with how an object is related to the physical environment and con-

text an object is. A Web service is completely non-situated meaning that it

lacks a physical presence, although it may be attached to a spatial position

(for instance, a weather information service). On the other hand, an object

that, for example, is placed on a physical location and interacts with it is fully

situated. Independently of whether an object is situated or not, it can be con-

sidered “Strongly Open”, “Weakly Open” or “Closed”. We consider objects to

be “Strongly Open” when they allow for their functionality to be accessed and

changed from the outside. On the other hand, the functionality of “Weakly

Open” objects is accessible but not modifiable from the outside. “Closed” ob-

jects are objects whose functionality is neither accessible nor changeable from

the outside, thus outside the scope of this thesis.

We consider that a physical object can be placed on a “smartness” scale

(Figure 3.2), where on the bottom of the scale we have “dumb” objects, which

do not have any representation on the virtual environment (such as a normal

rock, number 1, in the picture). Number 2 on the picture shows a mug with a

31

3.1. An Environment of Open Objects

Figure 3.2: A “smartness” scale of objects.

2D barcode [KT07] attached, which allows for objects that do not have compu-

tational capabilities, to have a simple virtual representation by being able to be

(uniquely or not) identifiable when scanned by an appropriate device. Next in

the scale (3) we have an RFID [FW99] card, which is in fact a small, although

very simple, computationally capable object, capable of simple forms of digital

communication, although still being closed according to our definitions of open-

ness above. Number 4 shows an intelligent light switch2 that can be configured

to change the colour and intensity of lights according to the user’s preferences.

Although not being fully “open”, we consider configuration a step forward in

this direction. Similarly, number 5 shows the next step towards openness, where

an internet connected robotic rabbit3 allows users to install applications and de-

velopers to create them, using their API. Number 6 and 7 are examples from

our scenario (Section 3.2) and a Case Study (Chapter 6) respectively. Both are

Strongly Open Objects, although the door sign (number 7) is a Hollow Object,

a generic use object built without a fixed purpose and meant to be included in

system developed by the user.

One of the main motivations of this thesis lies in coordination and interop-

erability of Open Objects and we approach both issues with the use of Rules.

In this context, a rule is set of explicit procedures governing the activities of

one or more objects. The activity can be internal, about the workings of an ob-

ject, or external about the interaction of the object with other objects. These

rules are typically produced and managed by users, potentially with the help of

specialised software, which we call Rule Composition Tools.

2http : //www2.meethue.com/en − gb/the − range/hue − tap/
3http : //store.karotz.com/enGB/

32

Chapter 3. Open Objects

During the development of this work, we drew inspiration from numerous

sources, namely from:

• Vlad Trifa’s thesis [Tri11] — its event-drive architecture and the adop-

tion/evaluation of the usage of REST to access device’s characteristics.

We build on top of these principles and propose a decentralised architec-

ture. We didn’t however adopt some components such as localisation as a

component of the architecture in order to minimise its footprint and intro-

duce the Behaviour abstraction as a means of facilitating standardisation

and automation, as explained further ahead in this chapter;

• Self-Managed Cells [SBD+05], in particular Alberto Filho’s thesis [SF09]

— we borrowed the pattern concepts suggested on this thesis to form

complex behaviour using simple objects. The design of the Open Object’s

rule language also borrowed ideas from this work, however, OO rules are

designed with decentralisation and partial implementation in mind — the

execution may begin on one device and continue on another, depending

on the behaviours implemented on each device;

• The work on autonomic super-agents [Sta10] — we drew inspiration from

this work for the concept of Super Open-Object, a virtual object that

behaves as one to the exterior but is composed by several incomplete

objects, and the rules that govern them.

We also assessed informally the interest and usefulness of our aims. This task

proved to be complex as it is hard to carry on successful user surveys about a

possible future scenario. In Jacob Nielson’s words (based on [NL94]): “Self-

reported claims are unreliable, as are user speculations about future behavior.

Users do not know what they want.”. We chose to take an approach similar to

the one used in [CFMD10] where instead of asking subjects which objects they

would combine to produce new functionalities/interactions or if they found the

possibility of creating inter-object interactions, we directly present the possibil-

ity of combining the functionalities of two randomly picked existing objects. In

the original experiment, the subjects were even asked to bring photos of random

objects around the house, which we did not do for convenience sake. Our small

informal experiment was conducted during a seminar where the subjects were

33

3.2. Baby Monitor Scenario

not familiar with Internet of Things and other related scenarios. We developed

a computer program to pick and show two images of physical objects, common

to most people’s lives, at random. The subjects were then asked to propose

useful interactions between the objects. It is interesting to observe that the

majority of the combinations shown spawned several ideas of how to combine

the functionalities of two randomly picked objects. Examples of such ideas are

“Heater connected to thermometer to heat until X temperature”, “Digital Pic-

ture Frame shows pictures from album X on my phone”, “Oven sets its settings

to the recommended when I open a specific packet”, “Washing machine sends

a text message to my phone when the program has ended” or “Kettle starts

boiling water 1 minute before the break on my favourite show on TV”. This

informal survey hinted at a high degree of usefulness of a possible system that

would support them and further motivated our work.

3.2 Baby Monitor Scenario

To exemplify the remaining of this chapter and the next in relation to our

envisaged use of Open Objects, we introduce a simple practical scenario based

around simplifying daily tasks of a family around the sleep time of their baby.

This is a simplified scenario, designed to better explain the different concepts

of the framework using a single example. The subject of our fictional scenario

is a family of four: the two parents Charlie and Terry, one seven year old child

called Mathew and one new born baby called Anna. As Anna is currently at a

critical point of her development, her parents want to make sure she gets the

best rest time possible. Therefore, Charlie and Terry resorted to creating a few

rules for the devices around the house: the TV, the doorbell, Charlie and Terry’s

phones, Mathew’s gaming tablet and a baby monitor. As the baby monitor is

only used when the baby is sleeping, the state of the monitor (on or off) is a

good indicator of whether or not it is the baby’s sleeping time. The objective

is to keep unnecessary noises to a minimum during this time, so the rules aim

at reducing the sound volume of the devices around the house when the baby

monitor is turned on:

Baby Monitor Scenario’s basic rules

R1 Turn the phones in the house on silent mode;

34

Chapter 3. Open Objects

Figure 3.3: An open object consisting of a set of behaviours (B*), a set

of actuators and a set of sensors. The behaviours are further defined by

capabilities (C*), while the sensors and actuators receive and send events (E*)

respectively, in order to interact with the environment in which the object is

situated. Attached to sensors, a dispatcher forwards incoming events to the

correct capabilities.

R2 The doorbell sends a text message to the phones instead of ringing;

R3 The sound volume on the TV should be limited;

R4 The sound volume on the tablet should be limited.

3.3 Open Object Architecture

To support the previously described scenario, we introduce three notions: Ca-

pabilities (C*), Events (E*), Behaviours (B*) (Figure 3.3) (explained

next). During normal operation, an Open Object follows a Sense-Dispatch-

Behave-Act cycle (Figure 3.4): An event is received (or sensed) through the

sensors, it is dispatched into the capability it is destined to, which processes it

(behave) and produces an output event (act) through the actuators.

3.3.1 Capabilities

A Capability is the inherent sensing, actuation or processing ability of an ob-

ject to perform an action or to retrieve information. A capability can be seen

as a parallel to a method in Object-Oriented Programming. A significant dis-

tinction between methods and capabilities is that capabilities can be added and

35

3.3. Open Object Architecture

Figure 3.4: Open Objects follow a Sense-Dispatch-Behave-Act cycle during

operation.

removed during runtime and they may be completely or partially implemented

on an object other than the one they belong to conceptually; in other words,

an object’s capability may be stored and executed on another objects (or even

group of objects) in order to conserve power on the first object, for instance.

An Open Object is one that is able to share its capabilities with other objects

but also to outsource capabilities when needed. A capability may be considered

atomic (lower-level in nature) or complex (composed from atomic capabilities,

coordinated at a higher level). Capabilities can also be classified according to

their origin. In this sense they can be innate, when they were hard-coded and

embedded into the object at design time, or acquired, when during the life-time

of the object a new functionality was added to it. The mechanisms that allow

a capability to be acquired are, themselves, capabilities and are described in

detail in the next chapter. New functionalities can be added by the user (or

another object) when coordinating the object’s existing capabilities to form a

new, complex one.

In our scenario, the objects have the following capabilities:

TV Phone Tablet

C1 Set Sound Volume C6 Set To Silent Mode C10 Set Sound Volume

C2 Set Max Sound Limit C7 Set To Normal Mode

C3 Change Channel C8 Send Text Message Baby Monitor

C4 Switch On C11 Switch On

C5 Switch Off Doorbell C12 Switch Off

C9 Ring

36

Chapter 3. Open Objects

3.3.2 Events

An Event is a description of a happening (along-side with other meaningful

information such as a timeframe and origin of the event) and it is said to belong

to an Event Type, which classifies the happening and allows objects to respond

to them in standard ways.

Although, in practice, all events are treated the same way throughout the

system, there are two types of events that are conceptually different as they

have slightly different purposes: Capability Requests and Inform Events. Event

requests are typically produced as part of a rule and the objective, as the name

implies, is to request an action or a value from another behaviour/object. When

an object produces an Inform event, on the other hand, it does not have any par-

ticular intention of producing an action or requesting values from other objects,

it merely serves the purpose of informing the objects in the environment of an

internal or external state change; other objects may or may not have rules that

are triggered by this event but they are independent from it and, as a result,

are part of a different “conversation” — a sequence of related events which are

responses to each other.

For example, in our scenario, the doorbell is able to produce an event “door-

bell rang” event, when someone presses its button, and the baby monitor is able

to produce the events “noise detected”, “switched on” and “switched off”.

Events are used as messages between (and within) objects when requesting

Capabilities. In fact, all communication between capabilities is done through

the exchange of events. These events may also trigger the execution of certain

rules, for example, in our scenario, the rules R1, R2, R3 and R4 are triggered

when the baby monitor produces a “switched on” event.

3.3.3 Behaviours

Objects’ capabilities are grouped together to form behaviours that the object

can display in interactions with other objects in order to serve a certain purpose.

Behaviours and purposes facilitate interactions by describing and generalising

common procedures and produce an expectation on the object. A behaviour

can be seen as a parallel to interfaces in Object-Oriented Programming. The

behaviour of an Open Object for a given purpose is the aggregation of all the

capabilities and events that the object exposes to the environment to serve that

37

3.3. Open Object Architecture

purpose. As an open object can serve different purposes, it can exhibit different

behaviours. By sharing behaviours, they also allow each object to focus on

fewer tasks, and interact more effectively. Objects can, therefore, display a

set of behaviours to the outside environment. In practice, this allows simpler,

lighter-weight objects to make use of more complex behaviours that others,

more capable, objects display and make better use of their capabilities and

avoid redundancies.

We classify behaviours into three categories:

Domain Dependent Behaviours are behaviours whose domain the user

wants to control directly, as their primary aim (e.g. the user’s television or the

baby monitor).

Domain Independent Behaviours offer generic support that the user

may use to support and reuse across his applications (e.g. mathematical, ap-

plication flow control or memory storage related behaviours). These differ from

the domain dependent behaviours in the sense that they merely provide tools

that assist the user in reaching its goal. For example, if a user wants to limit the

volume of the television after a certain time of the day, Television would be a do-

main dependent behaviour, and Time Keeping would be a domain independent

one.

System Behaviours are behaviours that manage the system itself and

include tasks such as coordination and service registration. These are explained

in greater detail in the next section.

Behaviours are one way of maintaining the lightweightness of the framework:

every system component is isolated and works independently as a distributable

system behaviour. System Behaviours form the bare minimum core set of func-

tionalities. All accessory functionalities (not fundamental to the basic structure

of the system) are encapsulated in domain independent behaviours. Any of these

behaviours can be displayed by more than one object. System behaviours, for

example, can be displayed by several different objects in order to maintain re-

silience of the system when some objects become unavailable.

In our scenario we have different objects displaying behaviours of differ-

ent kinds. A few examples of domain independent and domain dependent be-

haviours follows. Objects may display secondary behaviours, which are not

related to its main function.

38

Chapter 3. Open Objects

TV Phone Tablet

B1 Television B7 Telephone B13 Time Keeping

B2 Generic Appliance B8 Time Keeping B14 Message Displayer

B3 Radio B9 GPS B15 Web Client

B4 Time Keeping B10 Message Displayer

B5 Message Displayer B11 Web Client

Doorbell Baby Monitor

B6 Doorbell B12 Baby Monitor

3.4 System Behaviours

System Behaviours are behaviours that manage the operations and interactions

within an Open Object environment. There are five System Behaviours in the

Open Object framework: Behaviour Mapping (BM), Rule Execution (RE), Rule

Repository (RR), Event Broker (EB) and Behaviour Advertising (BA). In order

for a group of Open Objects to operate as intended, all five System Behaviours

need to be reachable by either being present in the environment or accessible

from a remote location. We describe the function of each of these next.

3.4.1 Behaviour Mapping

The Behaviour Mapping maps registered behaviours to the objects that display

them. Its purpose is to provide information about which objects are able to

perform which tasks when the respective behaviours are required. It also per-

forms an active behaviour discovery process, where it looks for and registers

new objects and their behaviours in the environment. Through either method,

an object that is registered in the behaviour mapping behaviour is also able to

query it regarding other behaviours, hence this behaviour serves as a gate to the

environment: when one object’s behaviour needs to request a capability from

another behaviour, it can query the Behaviour Mapping in order to retrieve the

object’s address which displays that behaviour.

A previously defined map of behaviours-objects may also be provided to the

Behaviour Mapping for less ad-hoc situations, when, for example, the user wants

to specify exactly which objects perform which tasks.

39

3.4. System Behaviours

3.4.2 Rule Execution

As the name implies, this behaviour is able to interpret rules and request the

right capabilities as defined per rule definition.

3.4.3 Rule Repository

The Rule Repository behaviour stores and provides rules when requested.

3.4.4 Event Broker

The Event Broker has two main tasks: maintain a registry of subscriptions for

events — which object is subscribing to which types of events — and serves

as an intermediary between senders and recipients of events according to the

subscriptions.

3.4.5 Behaviour Advertising

This behaviour advertises which behaviours objects display. Typically this be-

haviour is displayed by each object and advertises its own behaviours, but it

may also provide information about third-party objects and external services.

This behaviour may also actively register behaviours in a Behaviour Mapping

behaviour.

System Behaviours in the Scenario

In our fictional scenario some or all of the objects involved may also display

system behaviours on top of the domain specific ones referred before. If not all

five system behaviours are displayed by these objects, the system would need

to request the use of additional objects to fulfil this task (a desktop computer,

or an external server, for example). For the sake of simplicity we’re considering

that the system behaviours are displayed and distributed as follow:

• TV Rule Execution; Rule Repository; Behaviour Mapping; Behaviour

Advertising

• Baby Monitor Event Broker; Behaviour Advertising

• Phone / Tablet / Doorbell Behaviour Advertising

The reason why the TV is displaying more system behaviours than other

objects is that even if others also display some or all of these, the TV would

40

Chapter 3. Open Objects

be the preferred object due to having more extended memory/computational

capabilities and not relying on batteries. It is not compulsory that every object

displays behaviour advertising but it is a likely scenario, as it makes sense for

each object to advertise their own behaviours directly, considering that system

behaviour are the most lightweight in terms of hardware/software requirements.

Another alternative possibility would be to distribute the system behaviours as

follows:

• Baby Monitor Rule Execution; Rule Repository; Behaviour Mapping;

Event Broker; Behaviour Advertising

• Phone / Tablet / Doorbell / TV Behaviour Advertising

This alternative distribution is heavier on the Baby Monitor but it has in-

teresting possibilities: it allows the user to bring along the system embedded in

the baby monitor if they go to a friend’s house or to a hotel, so that the same

rules will apply in other spaces (assuming that the objects in the new spaces

are also Open Objects). We could also have hybrid systems with redundancy

in terms of system behaviours and rules, in order to support either scenario.

3.5 An overview of the framework

Figure 3.5: The global Open Object Ontology.

41

3.6. Interactions between System Behaviours

The concepts discussed so far form the Open Object ontology (Figure 3.5) which

provides a “big picture” perspective over the framework and shows interactions

between the different components. With this picture in mind, we consider that

the scope of the Open Objects (Chapter 3.6) places the framework between a

physical environment which is accessed through the use of sensors and actuators

and the user’s activities, which in this context are supported by rules (governed

by the system behaviours). Low-level capabilities bridge object’s hardware and

the framework by exposing functionality that uses hardware API’s to interact

with the sensors and actuators.

Figure 3.6: The scope of the Open Objects framework.

In the next section, we take a closer look over how System Behaviours in-

teract to support Open Object Systems.

3.6 Interactions between System Behaviours

We proceed with discussing the processes and interactions between system be-

haviours understood here as the implicit rules that govern the overall system be-

haviour. The diagrams in this section offer a high-level view of these interactions

where arrows show the main flux of information. On certain diagrams, “Domain

Dependent / Independent Behaviours” represent any behaviour present in the

system (including system behaviours although each of them is represented indi-

vidually).

42

Chapter 3. Open Objects

3.6.1 Event-based Interaction

Figure 3.7: The event passing process.

As mentioned previously, all messages between behaviours, including interaction

between system behaviours, are described via events. Therefore, all interactions

described further in this section are based on the one described below (and in

Figure 3.7) in order to support interactions between behaviours.

When an event is produced by a behaviour, this behaviour asks a behaviour

mapping behaviours to which it is registered to about which objects display the

Event Broker behaviour (step 1 in Figure 3.7). It then sends the event to the

event brokers (step 2). The event brokers then asks the behaviour mapping be-

haviours about which objects display the recipients’ behaviours (step 3) and also

checks if there are any subscriptions for this event. It then forwards the event to

the recipients (the objects returned by the behaviour mapping behaviours) and

to the subscribers (step 4). In the scenario, for example, the “baby monitor”

behaviour produces a “switched on” event and sends it to the Event Broker be-

haviour on the baby monitor. The Rule Repository (on the TV) had subscribed

to the baby monitor’s “switched on” event, as there is a rule that is triggered

by it, therefore it receives it as well, triggering the execution of the rule.

Steps when behaviours query the Behaviour Mapping (steps 1 and 3) for

objects may be skipped if there had been a recent (period of time to be defined

per application) query to minimise communication overhead, as in [MD88]. In

a case where these steps are skipped but the recipient behaviour is not available

anymore, these queries would then be performed.

43

3.6. Interactions between System Behaviours

3.6.2 Behaviour Registration

Figure 3.8: Behaviours are registered in the Behaviour Mapping behaviour

by the Behaviour Advertising behaviour.

A Behaviour Advertising behaviour registers a list of behaviours (step 1 on

Figure 3.8) that are displayed by a given object. During the registration process,

the Behaviour Mapping behaviour may also optionally automatically create a

subscription for events related to these behaviours, to the respective object

(step 2). When the system starts, for example, the objects in the environment

register their behaviours in the Behaviour Mapping on the TV (including the

other behaviours displayed by the TV), so that they are accessible during the

lifetime of the system.

3.6.3 Behaviour Discovery

Figure 3.9: behaviours are discovered and registered by the Behaviour Map-

ping behaviour.

During the discovery process, a Behaviour Advertising behaviour registers a list

of behaviours that are displayed by a given object (step 1 on Figure 3.9) and,

as described on the previous process, subscribes to the related events (step 2).

Objects are unregistered if they are not accessible after a period of time (defined

per application).

For example, if a new phone enters the scenario environment, it is discovered

by the Behaviour Mapping behaviour on the TV, registered, and requested to

lower its sound volume, when the rule dictates so.

44

Chapter 3. Open Objects

3.6.4 Rule Composition

Figure 3.10: A user, through a Rule Composition Tool, creates a rule.

A Rule Composition Tool requests from Behaviour Mapping a list of the be-

haviours available in the environment (step 1 on Figure 3.10) and, based on

these (but also potentially other behaviours manually specified by the user), as-

sists the user through the creation of the rule. When the user is done with this

task, the rule is then stored in the Rule Repository (step 2). When registering a

rule, the Rule Repository also subscribes to the event to which the rule applies

(step 3).

In the scenario, the user uses a Rule Composition Tool app on their phone to

create the rule. The app receives a list of the behaviours which are available in

the environment, from the Behaviour Mapping behaviour on the TV and stores

the rule on the Rule Repository behaviour, also displayed by the TV.

3.6.5 Rule Execution

Figure 3.11: Events are produced and forwarded to the correct recipients.

Rules may also be triggered by the events.

When an event is produced (typically by a Domain Dependent or Domain In-

dependent Behaviour — step 1 on Figure 3.11) it is sent to an event broker,

which checks the subscriptions for that kind of event. If one or more domain

45

3.7. A Complete Open Object

dependent or domain independent behaviour had subscribed to that event type,

the event is forwarded their way (step 2). If there is a rule that responds to this

event type (step 3), the rule is forwarded to rule execution behaviour (step 4).

During the execution of the rule, a behaviour mapping behaviour is requested

to query about which objects should be used at each step of the execution (in

other words, which objects map to each behaviour present in the rule — step 5).

Next, the respective capabilities on the correct object’s behaviours are requested

(step 6). These capabilities may request the execution of certain parts of the

rule or may request the usage of certain capabilities (a capability request is

considered an atomic component of a rule, and is also interpreted by the Rule

Execution — step 7), depending on their internal logic.

In the scenario, when the baby monitor produces a “switched on” event,

it is sent to the Event Broker behaviour (also displayed by the baby monitor

object) for broking. As there is a rule that is triggered by this event, the

rule is sent to the Rule Execution behaviour (displayed by the TV) for parsing

and execution. During execution, the rule may dictate the request of certain

capabilities from each object in the environment: for instance, the rule dictates

that the Phone should be set to silent, therefore the Rule Execution behaviour

“asks” the Behaviour Mapping which object is displaying the “Phone” behaviour

which will return the addressable phone object; once it knows this information,

the Rule Execution is able to request the “Set To Silent” capability of the Phone

behaviour, displayed by the phone object.

3.7 A Complete Open Object

We call Complete Open Object (Figure 3.12) an object that is able to function

independently, while still displaying the three kinds of openness described in

section 3.1 before. It is complete due to the fact that, in order to function

independently, it displays (and implements) all five System Behaviours. In

that sense, this kind of object is ideal but unrealistic in many cases considering

that the necessary computing power, memory and power consumption, although

trivial for a common personal device, may be too much for electronic chips

similar to those found in RFID tags, for example. Also, it can be considered

redundant and not optimal to have all System Behaviours on all objects, when

they could be shared. Due to these assumptions, sharing resources was one of

46

Chapter 3. Open Objects

Figure 3.12: A complete object, with the five System Behaviours plus Do-

main Dependent and Domain Independent Behaviours

the main concerns when designing the framework. Objects may not only share

their domain independent and domain dependent behaviours, but also their

system behaviours, as described in the next section.

3.8 Open Super-Objects

Objects that do not display all System Behaviours or require other objects’

behaviours in order to fulfil a certain task need to collaborate with objects

that display said behaviours (Figure 3.13). In order for a collaboration to be

possible, all the domain dependent and domain independent behaviours required

for the collaboration and the five system behaviours need to be displayed by the

objects participating in the collaboration. When this happens, we say we are in

the presence of a Open Super-Object (a concept borrowed from the multi-agent

systems world [Sta10]): a group of Open Objects that act independently as a

single one, with Rules that govern itself internally and its external behaviour.

We can think of these rules as the “glue” that connects and regulates the atomic

objects within an Open Super-Object (Figure 3.14). In the scenario, all the

objects work together as a single entity, regulated by the rules specified by the

47

3.9. Summary

Figure 3.13: Incomplete object sharing System Behaviours

user, towards a common goal: to facilitate and improve the baby’s sleeping time.

Therefore we can say that we are in the presence of an Open Super-Object.

3.9 Summary

In this Chapter we broke the definition of an Open Object down to its concepts

and components. We discussed different kinds of openness in this context, and

how they apply to the Open Object framework and explored the three major

building blocks of the Open Object environment: Events, Behaviours and Capa-

bilities. We also observed how System Behaviours work together to support an

Open Object environment and presented the concept of Open Super-Object, a

single independent entity composed of several objects that work towards a com-

mon goal, with rules that regulate its internal behaviour. In the next Chapter,

we propose a formal specification for each of these components.

48

Chapter 3. Open Objects

Figure 3.14: Two objects collaborate according to a rule, forming an Open

Super-Object. In the diagram Rx represent rules; Ex represent events and

Cx represent capabilities. Ra/Rule a is defined by the sequential execution

of C1, C2, C3, C4 given event E1.

49

50

4
Open Object Description Language:

Specification and Implementation

In this chapter we propose a systematic specification of the Open Object De-

scription Language (OODL) of each component and data format of the Open

Object framework, discussed in the previous chapter. This specification provides

a generic, technology independent platform onto which to build an implemen-

tation, such as the one in the next chapter. In order to specify the organisation

of each component and data format, we use a variant of Backus-Naur Form.

Alongside, we also illustrate each specification with a practical example from

the scenario using the implementation syntax.

4.1 Our Specification Approach

We aim at creating a framework that is able to support interactions of the

kind shown by the scenario in Chapter 3 on low-powered and computationally

51

4.1. Our Specification Approach

lightweight devices. Therefore, we intend to define a scalable, vertically de-

centralisable system able to work according to these limitations. By vertically

decentralisable we mean a system that is modular from the application layer to

the core system management functionalities. To pursue this aim we designed a

modular system of atomic behaviours that can be individually distributed and

a series of lightweight and cross-platform description format specifications.

In order to represent these specifications, we choose a variant of the Backus-

Naur Form [Gar05] (BNF) as a structure definition language. BNF is a language

that is usually used to specify programming languages, but it is also effective

as a small, easily readable format for specifying data structure and component

organisation textually. BNF usually has a top-down approach starting with a

root and further specifying each term as it appears in the definition. A textual

example: “A Vehicle can be Aerial, Terrestrial or Aquatic; a Aerial Vehicle can

be a Airplane or a Helicopter; a Terrestrial Vehicle can be a Car or a Bicycle;

a Car has 3 or more wheels; a Bicycle has 2 wheels; ...”.

BNF assists us with defining how each component is organised and what is

the relation between components. In our BNF variant, we use the set of symbols

in Listing 4.1. Some of the specifications ahead are not self-contained, as some

of the terms are defined on specifications described further ahead.

Listing 4.1: Symbols used in our BNF Variant.

: := − Def ined as

(space) − Conca tena t i on

<...> − Non Terminal , to be d e f i n e d

? − Opt iona l , z e r o or one o f the f o l l o w i n g component

∗ − Zero or more o f the f o l l o w i n g component

+ − One or more o f the f o l l o w i n g component

| − A l t e r n a t i o n , The p r e v i o u s component Or the next

TEXT − Terminal , t e x t i n c a p i t a l s i n d i c a t e s a term tha t

i s not d e f i n e d f u r t h e r

TYPE − A t e rm i n a l v a l u e tha t b e l ong s to the data type

i n d i c a t e d

In parallel to the specification, we exemplify each case with a translation

from the generic specification into the formats used in our implementation.

Although we could have also used a proprietary compressed binary format —

52

Chapter 4. Open Object Description Language: Specification and Implementation

particularly for rules and events, where performance is more critical — which

would arguably be a better solution for real-world applications, we decided to

use JSON1 for all the data formats in the framework. The main reason is that

JSON offers us a lightweight, cross-platform and web-friendly [Wan11] language

which makes it easy and fast to perform tests across different platforms and to

use different programming languages. JSON’s organisation lies in a structure of

labeled values, objects and arrays, using the following set of structural elements

(Listing 4.2).

Listing 4.2: Symbols used in our JSON implementation.

”KEY” : VALUE − De f i n e s a p a i r o f key−v a l u e . Keys a r e a lways

s t r i n g s .

VALUE − A va l u e can be a s t r i n g , a number , ” t r u e ” , ”

f a l s e ” , ” n u l l ” , an o b j e c t o r an a r r a y .

{ . . . } − An ob j e c t i s a s e r i e s o f key−v a l u e p a i r s

s e p a r a t e d by commas (,) and d e l im i t e d by c u r l y b r a c k e t s .

[. . .] − An a r r a y i s a c o l l e c t i o n o f v a l u e s s e p a r a t e d

by commas (,) and d e l im i t e d by squa r e b r a c k e t s .

4.2 Open Object

An Open Object is defined in Listing 4.3 below. Although this definition helps

understand the rest of the chapter, it is merely conceptual and does not have

an explicit representation in the system.

Listing 4.3: Open Object specification.

<Open Object> : := +<Behav iour> ∗ACTUATOR ∗SENSOR DISPATCHER

<Behav iour> : := ∗<Capab i l i t y> ∗<Event> STATE

<Capab i l i t y> : := <Low−Le v e l C a p a b i l i t y> |

<High−Le v e l C a p a b i l i t y>

<Low−Le v e l C a p a b i l i t y> : := <Ca p a b i l i t y De s c r i p t i o n>

MACHINE−CODE

<High−Le v e l C a p a b i l i t y> : := <Ca p a b i l i t y De s c r i p t i o n> <Rule>

As shown by the above specification, an Open Object has actuators, sensors,

1”http://json.org/”

53

4.3. Capabilities

a dispatcher and displays a set of behaviours. A behaviour has capabilities,

events and an internal state. Capabilities can be either low-level (hard-coded

in the object) or high-level (described by a rule).

4.2.1 Open Super-Object

An Open Super-Object is a group of objects that, between them, display all sys-

tem behaviours, making it capable of working independently. An Open Super-

Object behaves as a single object and is governed by a set of rules. A complete

Open Object is a specific case of an Open Super-Object, with only one object.

Alike the previous definition, the Open Super-Object specification is merely

conceptual and implicit in the framework.

From a behavioural point of view, we define an Open Super-Object in List-

ing 4.4 below.

Listing 4.4: Open Super-Object specification.

<Open Super−Object> : := +<Open Object> <System Behav iour s>

+<Domain Dependent Behav iour> +<Domain Independent

Behav iour> +<Rule>

<System Behav iour s> : := <Behav iou r Mapping> <Rule Execut ion>

<Rule Repo s i t o r y> <Event Broker>

<Domain Independent Behav iour> : := <Behav iour>

<Domain Dependent Behav iour> : := <Behav iour>

<Behav iou r Ad v e r t i s i n g> : := <Behav iour>

<Behav iou r Mapping> : := <Behav iour>

<Rule Execut ion> : := <Behav iour>

<Rule Repo s i t o r y> : := <Behav iour>

<Event Broker> : := <Behav iour>

4.3 Capabilities

The Capability Description (defined in Listing 4.5), defines and informs how to

use a capability. It is the equivalent to a method signature in object-oriented

programming. Below is the specification of the Capability Description in the

BNF variant.

54

Chapter 4. Open Object Description Language: Specification and Implementation

Listing 4.5: Capability Description specification.

<Ca p a b i l i t y De s c r i p t i o n> : := <Ca p a b i l i t y Name> ?<Des c r i p t i o n

> <Output Type> ∗<Requ i r ed Behav iour> ?<Execu t i on Mode>

∗<Parameter D e f i n i t i o n> ?<Ex t e rna l>

<Ca p a b i l i t y Name> : := STRING

<Des c r i p t i o n> : := STRING

<Output Type> : := DATATYPE | NONE

<Requ i r ed Behav iour> : := STRING

<Execu t i on Mode> : := Top−down | Bottom−up

<Parameter D e f i n i t i o n> : := <Parameter Name> <Type> ?<

Requi red>

<Parameter Name> : := STRING

<Requi red> : := TRUE | FALSE

<Type> : := STRING

<Ex t e rna l> : := STRING

This specification tells us that a capability description is identified by a string

identifier (name), may contain a human readable description and zero or more

parameters. A parameter is defined by a name, a type and a flag that states if

this parameter is required or if, otherwise, it can be omitted. Execution mode

is explained in Section 5.6 and the default value is Top-down. In the case of

an external capability (a web service, for example), the “External” parameter

defines the source. On a web environment, for instance, it states the URL of

the web service.

Below (in Listing 4.6), we demonstrate how the previous specification trans-

lates into our JSON implementation. We use an example from the scenario,

the TV behaviour’s “SetSoundVolume” Capability Description. In the exam-

ple, a Capability called“SetSoundVolume” does not have an output, requires

the “Math” Behaviour and takes one required numeric parameter “volume”.

55

4.3. Capabilities

Listing 4.6: Capability Description example.

{

” c a p a b i l i t y ” : ”SetSoundVolume ” ,

” d e s c r i p t i o n ” : ” Se t s the volume ac co r d i n g to the

p e r c e n t u a l v a l u e p r o v i d ed ” ,

” output ” : n u l l ,

” r e q u i r e d ” : [”Math ”] ,

” pa ramete r s ” : [

{

”name ” : ” volume ” ,

” type ” : ”NUMBER” ,

” r e q u i r e d ” : t rue ,

}

]

}

In order to use external capabilities (such as Web Services), from within an

Open Object environment, we need to define the “External” parameter of the

definition. In order to pass parameters to a Web Service, we use the $PARAM-

ETER syntax, as shown in Listing 4.7.

As previously explained, all communication between capabilities is done by

exchanging events, therefore capability requests are performed by events, spec-

ified in Listing 4.9, in the next section.

56

Chapter 4. Open Object Description Language: Specification and Implementation

Listing 4.7: External Capability Description example.

{

” c a p a b i l i t y ” : ” CurrentWeather ” ,

” d e s c r i p t i o n ” : ” P r o v i d e s the c u r r e n t weather i n f o rma t i o n

f o r a g i v en l o c a t i o n ” ,

” e x t e r n a l ” : ” h t tp : // ap i . openweathermap . org / data /2 .5/

weather

?q={$ l o c a t i o n }” ,

” output ” : ” Json Object ” ,

” pa ramete r s ” : [

{

”name ” : ” l o c a t i o n ” ,

” type ” : ”STRING” ,

” r e q u i r e d ” : t rue ,

}

]

}

4.4 Events

Below, in Listings 4.9 and 4.8, are the definition of an event type and the

specification of an event itself, respectively. While the former defines a generic

event “skeleton” to which events comply, the latter defined the format used for

transmitting the events themselves.

Listing 4.8: Event Type Definition.

<Event D e f i n i t i o n> : := <Behav iou r Name> <Event Name> ∗<

Proper ty>

<Behav iou r Name> : := STRING

<Event Name> : := STRING

<Proper ty> : := <Prope r t y Name> <Prope r t y Type>

<Prope r t y Name> : := STRING

<Prope r t y Type> : := TYPE

When specifying an Event Type one defined which behaviour the event is

originated from, the name of the event and it’s properties.

57

4.4. Events

Listing 4.9: Event specification.

<Event> : := <Behav iou r Name> <Event Name> ?< Id> ?<From> ∗<To

> ?<Conve r s a t i o n Id> ?<V i s i b i l i t y > ?< I n Response To> ?<

Execu t i on Mode> ?<On Er ro r> ∗<Proper ty>

<Behav iou r Name> : := STRING

<Event Name> : := STRING

<Id> : := STRING

<From> : := STRING

<To> : := STRING

<Conve r s a t i o n Id> : := STRING

<V i s i b i l i t y > : := Pub l i c | P r i v a t e

<I n Response To> : := STRING

<Execu t i on Mode> : := Top−down | Bottom−up

<On Er ro r> : := +<Event>

<Proper ty> : := <Prope r t y Name> <Prope r t y Value>

<Prope r t y Name> : := STRING

<Prope r t y Value> : := STRING | +<Event>

What the previous specification tells us is that an event is characterised by

the behaviour in which it is originated, its event name and properties. Properties

have a name and a value. Each component is explained below.

Event Id uniquely identifies the event so that it can be referenced to later

in the conversation, in the ”in response to” field, for example.

To specifies the recipient of the event (typically a URI). The recipient is not

compulsory as it may be provided by the Event Mapping (Chapter 5).

Conversation Id uniquely identifies the conversation. A conversation is

a sequence of events that are produced and shared in response of a another

previous event, just like a human conversation is a series of interactions between

a set of people in response to one another.

Visibility indicates if an event is Public: every object is able to ”see” an

event whether or not it is in the recipient list; or Private: only objects in the

recipient list receive the event.

In Response To defines which event id’s it is a response to, in case the

event is a response to a Request.

Properties - An Event may contain certain context-specific properties that

58

Chapter 4. Open Object Description Language: Specification and Implementation

describe the happening or configure the request. In the case of an request

event, typically events produced during the execution of a rule, properties can

be linked to the output of other events, creating a tree of event interactions.

Execution Mode describes the sequence in which these events are requested, and

is explained in Section 5.6 in the Rule Execution Behaviour specification. By

linking property values to the outcome of other capabilities request, we are in

fact creating a data-flow language [Hil92]. This is done with the intention of

facilitating the mapping between rules and a data-flow centric End-User Devel-

opment tool. Properties can be used in rules by referencing them either in the

rule condition or as property values of the actions (Section 4.6).

In Listing 4.11, an Inform Event, defined in Listing 4.10 is raised as a sound

is detected by the baby monitor. The event contains a property “volume” which

provides information about the intensity of the sound detected.

Due to the different nature of Inform and Capability Request Events, prop-

erties are also called parameters in the case of the latter.

Listing 4.10: A sound detected event definition example.

{

” even t ” : ”BabyMonitor . SoundDetected ” ,

” p r o p e r t i e s ” : [

{

”name ” : ” volume ” ,

” type ” : ”Number”

}

]

}

59

4.4. Events

Listing 4.11: A sound detected event example.

{

” even t ” : ”BabyMonitor . SoundDetected ” ,

” i d ” : ” e1 ” ,

” from ” : ” babymonitorA ” ,

” to ” : ” tvA ” ,

” c i d ” : ” c i d0 ” ,

” v i s i b i l i t y ” : ” p u b l i c ” ,

” volume ” : 5

}

Below, in Listing 5.7, a capability request event shows a request of the ”Set

Sound Volume” capability (in an implementation independent syntax, merely

as an example), in order to set the volume to 25.

Listing 4.12: Capability Request event example.

{

” even t ” : ” T e l e v i s i o n . SetSoundVolume ” ,

” i d ” : ” e2 ” ,

” from ” : ” babymonitorA ” ,

” to ” : ” tvA ” ,

” c i d ” : ” c i d1 ” ,

” v i s i b i l i t y ” : ” p r i v a t e ” ,

” volume ” : 25

}

In the case of an external capability request, we state the external URI in

the “to” parameter, as can be seen in Listing 4.13.

Listing 4.13: External Capability Request event example.

{

” even t ” : ”Weather . CurrentWeather ” ,

” to ” : ” h t tp : // ap i . openweathermap . org / data /2 .5/ weather ?q={$

l o c a t i o n }” ,

” l o c a t i o n ” : ”London , uk”

}

60

Chapter 4. Open Object Description Language: Specification and Implementation

As previously mentioned, requests can be chained together by specifying

further requests for the “On Error” field or for Property fields. In Listing 4.14

we show an example of request chaining. In this example we use two capabilities

— Sum and Multiply — of the Math behaviour. Both accept A and B properties

to which we provide values, except for the property B of the Sum capability,

which we chain to the response of the Multiply capability request. In this case,

Multiply responds with “10” and Sum can then calculate its own response of

“12”.

Listing 4.14: Capability Request chaining example.

{

” even t ” : ”Math . Sum” ,

”A” : 2 ,

”B” : {

” even t ” : ”Math . Mu l t i p l y ” ,

”A” : 2 ,

”B” : 5

}

}

An event belongs to an event type which classifies it and makes its usage more

predictable. Event Types are composed of two parts separated by a dot (”.”):

BEHAVIOURID.EVENTID (notation that can be observed in the examples

above). This makes it easier to uniquely identify and select an event. We can

used wildcard event selectors such as:

• doorbell.rang - selects all “rang” events from the “doorbell” behaviour;

• doorbell.* - selects all events from the “doorbell” behaviour;

• *.rang - selects all “rang” events from any behaviour;

• *.* - selects all events;

Event selectors are especially useful for event subscription as will be ex-

plained ahead, in Section 5.4.

61

4.5. Behaviours

4.5 Behaviours

A behaviour is characterised by a Behaviour Description which objects advertise

and to which they comply when implementing the behaviours components. As

an object may exhibit several different behaviours, it may comply with several

different behaviour descriptions. A behaviour description is used when compos-

ing rules and is partly user-centric, to let the user understand what to expect

from and how to use the object. The behaviour description is what the object

advertises when it wants to let other objects know which behaviours it displays

and what it provides when others inquire for it.

Listing 4.15: Behaviour Description specification.

BEHAVIOUR DESCRIPTION : := <Name> ?<Des c r i p t i o n>

∗<Ca p a b i l i t y D e f i n i t i o n> ∗<Event D e f i n i t i o n>

∗<C h a r a c t e r i s t i c D e f i n i t i o n>

<Name> : := STRING

<Des c r i p t i o n> : := STRING

<C h a r a c t e r i s t i c D e f i n i t i o n> : := <Parameter D e f i n i t i o n>

?<Des c r i p t i o n>

In the previous specification, characteristics describe properties of the ob-

jects that are useful when choosing between different objects that display the

same behaviour. For example, in Listing 4.16, a Television behaviour has a Res-

olution characteristic that can be used if a user defines a rule to show a certain

video in the highest resolution screen in the environment. Television Behaviour

Description describes how to interact with a Television object through its Tele-

vision Behaviour (The object may also exhibit other behaviours, such as Time

Keeping or Message Displayer) by describing its capabilities — how to request

information or execution — and its events — how to trigger the execution of

rules following internal happenings or state changes in this object.

62

Chapter 4. Open Object Description Language: Specification and Implementation

Listing 4.16: Behaviour Description example.

{

” behav i ou r ” : ” T e l e v i s i o n ” ,

” d e s c r i p t i o n ” : ”A g e n e r i c t e l e v i s i o n ” ,

” c a p a b i l i t i e s ” : [

{

” c a p a b i l i t y ” : ” T e l e v i s i o n . SetSoundVolume ” ,

” d e s c r i p t i o n ” : ” Se t s the volume ac co r d i n g to the

p e r c e n t u a l v a l u e p r o v i d ed ” ,

” output ” : n u l l ,

” r e q u i r e d ” : [”Math ”] ,

” pa ramete r s ” : [

{”name ” : ” volume ” ,

” type ” : ”NUMBER” ,

” r e q u i r e d ” : t r u e }

]

}

] ,

” e v en t s ” : [

{

” even t ” : ” T e l e v i s i o n . TurnedOn”

} ,

{

” even t ” : ” T e l e v i s i o n . VolumeChanged ” ,

” p r o p e r t i e s ” : [

{”name ” : ” volume ” ,

” type ” : ”Number”}

]

}

] ,

” c h a r a c t e r i s t i c s ” : [

{”name ” : ” R e s o l u t i o n ” ,

” r e q u i r e d : f a l s e ,

” type ” : ”Number”}

]

}

63

4.6. Rules

4.6 Rules

Rules are a sequence of capability requests that are triggered by one or more

event types. This sequence of capability requests are themselves events, that

may be connected to further capability requests, as shown in Listing 4.14.

We are using a specific kind of rules which falls under the Event-Conditon-

Action class of rules (ECA rules [PPW06]) whose general syntax is “on event

if condition do actions” These rules are triggered by an event, and if the

conditions apply, the actions are performed. Conditions can compare event

parameter against values or against other parameters. Our rules specification

follows, in Listing 4.17. Event parameters can also be used as parameter values

in the actions (capability requests specified in the “action” field of the rule).

Listing 4.17: Rules Specification.

<Rule> : := < I d e n t i f i e r > +<Event Name> <Cond i t i on s> <Act ions>

<Event Name> : := STRING

< I d e n t i f i e r > : := STRING

<Cond i t i on s> : := <Parameter Name> <Comparison Operator>

<Value> | <Parameter Name> ∗(< Lo g i c a l Operator>

<Cond i t i on s >)

<Comparison Operator> : := < | <= | == | != | => | >

<Lo g i c a l Operator> : := AND | OR | NOT

<Value> : := STRING

<Act ions> : := +<Event De s c r i p t i o n>

64

Chapter 4. Open Object Description Language: Specification and Implementation

Listing 4.18: Rule example.

{

” r u l e ” : ”R3” ,

” even t ” : ”BabyMonitor . soundDetected ” ,

” c o n d i t i o n s ” : ” volume > 5” ,

” a c t i o n s ” : [

{

” even t ” : ” T e l e v i s i o n . SetSoundVolume ” ,

” volume ” : 25

}

]

}

in Listing 4.18 we show an example rule from the scenario, where a sound

detected event triggers rule R3 into requesting the television to set the sound

volume to 25, if the detected sound volume exceeds 5.

4.7 Summary

Based on the concepts presented in Chapter 3, in this chapter we proposed a

generic and systematic specification of each component in the framework and

exemplified it with specific cases from the scenario, translated into the imple-

mentation language. We used a variant of BNF to explain the internal organi-

zation of each component of the framework as well as to specify the structure of

different formats of the OODL. We also explained here how we translated these

into our implementation formats, for which we used JSON. In the next Chapter

we define each System Behaviour along with their events and capabilities, and

some implementation strategies and issues.

65

66

5
Implementation

In Chapter 4 we theorised the generic and distributed Open Objects frame-

work. Having specified each component of the framework in general terms,

in this chapter we proceed to specifying the internal functionality of each sys-

tem behaviour. For each of these, we define an internal state, the associated

events, and the object-oriented pseudo-code procedure for the non trivial capa-

bilities. The pseudo-code for all system behaviours’ capabilities can be found

in Appendix A. We also discuss (Section 5.7) our web oriented approach to

the implementation of the framework in three different platforms. For this im-

plementation we chose to use Web technologies [Cos07, BLFF96] to support

communication (following the direction of the recent trends in Smart Objects

implementations [GTW10, CSDC11] and the Internet of Things [MF10, GT09]

— assuming a trend implies a higher likelihood of future technology adoption).

Web technologies and platforms are simple to implement as they are designed

to be platform independent and have widely available implementations in most

modern programming languages. Furthermore, Web security layers are a sub-

67

5.1. A few notes on Methodology and Notation

ject of extensive study and trial[ADLH+02, YWZ+04, Res01] providing a solid

ground for building secure systems. In this chapter we explain some of the

details, issues and limitations of our implementations aiming at evaluating the

framework for practical usage, and how we integrated Web technologies with

our framework concepts.

5.1 A few notes on Methodology and Notation

We use a dot notation, borrowed from OOP, to indicate a capability request:

R← B.C(P∗) meaning request of capability C, on behaviour B, with parameters

P∗ whose result is stored in R. The pseudo-code may be simplified on some cases

(by skipping simple checks or using non-optimised procedures, for instance).

When objects are registered into a behaviour mapping (manually or through

one of the discovery techniques), objects also register which other objects display

the behaviour mapping behaviours they are registered in. This is how objects

obtain the references to the behaviour mapping behaviours. The strategy of

which behaviour mapping behaviours to get the object list from, or if one or more

behaviour mapping behaviours should be requested, is defined in the internal

logic of each capability and it might vary from object to object.

When a capability from a system behaviour is requested (or any other be-

haviour, for that matter), one or several behaviour mappings behaviours are

queried in order to retrieve the list of objects which display the behaviour. Ca-

pabilities are then requested sequentially until one responds successfully. If no

response is found, the “On Error” procedure (Section 4.4) is followed. Although

this procedure (procedure 5.1, in this example, a capability C1 on behaviour B1

is requested) is followed when system behaviours communicate exchange events,

for the sake of clarity we are using a simplified version (Procedure 5.2) of the

following procedures in this chapter.

68

Chapter 5. Implementation

Procedure 5.1 Request System Behaviour’s Capability — Expanded Proce-

dure

URIs ← BehaviourManaging .GetBehaviourURIs(“B1”)

success ← false

while not success and URIs not empty do

Result ← (URIs .Pop) .C1()

if not Result = null then

success ← true . no errors

end if

end while

if success then

return Result

else

return Error . will follow the On Error Procedure

end if

Procedure 5.2 Request System Behaviour’s Capability — Simplified Proce-

dure

Result ← B1 .C1()

5.2 Behaviour Advertising

5.2.1 Internal State

• Behaviours - Holds the list of behaviours that the object is able to display,

according to the schema defined in Listing 5.1.

Listing 5.1: Behaviour Advertising Schema.

<Behav iour s> : := ∗<Behav iou r Entry>

<Behav iou r Entry> : := BEHAVIOUR NAME END−POINT URI

BEHAVIOUR DEFINITION URI

5.2.2 Events

• NewBehaviour - Raised to announce that a new behaviour is made public

by the object.

69

5.2. Behaviour Advertising

5.2.3 Capabilities

Register Behaviour (procedure A.18) registers an object’s behaviour so that

it is advertised when requested or actively when discovering Behaviour Mapping

behaviours.

Register Behaviour URI (procedure A.18) same as previous but registers

a behaviour based on a description accessible through an external URI.

Advertise (procedure A.19) provides the list of behaviours registered in the

Behaviour Adversiting behaviour.

As explained in chapter 3, in one of its modes of operation, the Behaviour

Mapping behaviour is in charge of discovering and registering objects in the

environment. We implemented a simple service discovery system where the

Behaviour Mapping splits the network address range (depending on the network

settings) in groups of a predefined size, and instantiates a discovery component

with its own thread, for each of the address groups. This component works in

three steps:

1. Ping each IP address in the group

2. If there is a response from a host, for each port configured for discovery

send an HTTP request to http://IP:PORT/behaviouradvertising/advertise

— in other words, try to request the Advertise capability of the Behaviour

Advertising behaviour on that host.

3. If the host responds with a 200 code, read the response and register the

object and the behaviours it advertises.

In this implementation, the Advertise capability responds with the list of

behaviours the object displays, the URI of each behaviour definition and the

behaviour’s end-point URI, as shown by Listing 5.2. the end-point URI may be

absent if it follows the default format described in Section 5.7.1.

70

Chapter 5. Implementation

Listing 5.2: Capability structured data response example.

{ b eha v i o u r s : [

{ ’ name ’ : ’ me s s a g ed i s p l a y e r ’ ,

’ u r i ’ : ’ h t tp : / / 1 0 . 2 . 6 1 . 2 0 1 : 9 0 9 0/ me s s ag ed i s p l a y e r ’ ,

’ d e f i n i t i o n ’ : ’ h t tp : //www. op enob j e c t s . com/ d e f s /

me s s ag ed i s p l a y e r ’}

]}

5.3 Behaviour Mapping

The Behaviour Mapping stores a map between some or all behaviour names

advertised by the objects in the environment and the corresponding object URIs,

and is in charge of registry and discovery of these. This process can be either

passive or active (or both) as it can behave passively, allowing objects to register

themselves, and actively discovering objects and querying for their behaviours.

It is also used to retrieve object URIs by behaviour name, and the list of all

registered behaviours.

Objects can be ranked according to their availability and past performance.

An object rank is a number, higher ranking meaning being preferred to be

selected. In our implementation, Behaviour Mapping checks the availability of

objects when behaviours are requested (procedure A.6), penalises (moves them

down the list) those that are not available and returns those that are. When

new behaviours are registered they are initially added to the top of the list (high

ranking).

When an object (and its behaviours) are registered, the Behaviour Mapping

may optionally request a subscription for all the events related to the behaviours

displayed, automatically on behalf of the object.

5.3.1 Internal State

• BehaviourDatabase - A map of behaviour names and a list of the URIs

of the objects that display them. The order in which the objects appear

on the list is related to their ranking. This object follows the schema

specified in Listing 5.3.

71

5.3. Behaviour Mapping

Listing 5.3: Behaviour Mapping Database Schema.

<Behav iou r Database> : := ∗<Behav iou r Entry>

<Behav iou r Entry> : := BEHAVIOUR NAME ∗<Object>

<Object> : := OBJECT URI <Act i ve> <Ranking> <Manual Ranking>

<Act i ve> : := True | Fa l s e

<Ranking> : := NUMBER

<Manual Ranking> : := True | Fa l s e

5.3.2 Events

• BehaviourActivated - Raised during the activation of a new behaviour-

object pair. Has two parameters: BehaviourID and ObjectURI;

• BehaviourDeactivated - Raised during the deactivation of a behaviour-

object pair. Has two parameters: BehaviourID and ObjectURI;

5.3.3 Capabilities

Register Behaviour capability (procedure A.1) registers a new object and

a behaviour that the object displays to the Behaviour Mapping behaviour. It

takes a BehaviourID, an ObjectURI and a SubscribeToEvents flag. Adds a new

tuple that relates the BehaviourID and a list of objects, if there is not one yet,

then adds the object to the list. If the SubscribeToEvents option flag is chosen,

it adds a subscription targeting the object for all events related to the behaviour.

Deregister Behaviour (procedure A.2) performs the opposite operations

of Register Behaviour: it deregisters the object from the list of objects that

display the given behaviour and raises a BehaviourDeactivated event.

Activate Behaviour (procedure A.3) sets an active flag for that object-

behaviour pair to true.

Deactivate Behaviour (procedure A.4) sets an active flag for that object-

behaviour pair to false.

Rank (procedure A.5) defines a manual ranking for an object in order to

force the usage of an object when requesting a behaviour, or on the other hand,

to set a low ranking for an object that is considered last resort — to be used

when there are no other available objects displaying a given behaviour.

72

Chapter 5. Implementation

Procedure 5.3 Behaviour Mapping — Get Behaviour URIs

Input: BehaviourID

Output: ObjectURIList

for all Object in BehaviourDatabase .Get(BehaviourID) sorted by descending

ranking do

ObjectURIList ← new List

if Object .Uri is not accessible then

if Object .Uri is not Object .ManualRanking then

Penalise(Object)

end if

else

ObjectURIList .Add(Object .Uri)

end if

return ObjectURIList

end for

The Get Behaviour URIs capability (procedure A.6/A.10) takes a Be-

haviour ID and responds with a List of URI’s of objects that display a specific

behaviour. Each of the URI’s are first tested to check if they are currently

available. If they are not and the object is not manually ranked, the respective

object penalised in terms of ranking (Penalise function), so that the list tends

to have the URI’s in order of the frequency of their availability. If the process of

checking availability takes too long or if objects are known to be reliable and/or

requested often, this check may be scheduled independently of the execution of

this capability.

5.4 Event Broker

An event broker is capable of receiving events and forwarding them to objects

who are targeted by the event or subscribed to it. It is also responsible to

query the rule repositories to check if there is a rule that applies to the event

and if so, request its execution from the Rule Execution. Event brokers follow a

Publish/Subscribe model[EFGK03] where objects can subscribe to events based

on Event Type selectors (as specified in Section 4.4).

73

5.4. Event Broker

5.4.1 Internal State

• Subscriptions - a map between an event selector and an object URI,

following the schema in Listing 5.4

• EventHistory - Holds a history (a plain list) of past events.

Forward Event (procedure 5.4/A.14) forwards events to its subscribers and

requests the execution of rules that are triggered by the event. The outcome of

the execution of the rule (or the execution of the last rule, in case several rules

match the same event) is returned; this allows for rules to use this behaviour to

include in their logic outcomes from other rules.

Subscribe (procedure A.15) registers an object’s subscription to events us-

ing an event selector.

Unubscribe (procedure A.16) deregisters an object’s subscription to events

using an event selector.

Listing 5.4: Event Subscriptions Schema.

<Sub s c r i p t i o n s> : := ∗<Event Entry>

<Event Entry> : := EVENT SELECTOR ∗<Object>

<Object> : := OBJECT URI

74

Chapter 5. Implementation

5.4.2 Capabilities

Procedure 5.4 Event Broker — Forward Event

Input: InEvent

Output: Outcome

. Store the Event in EventHistory (maintain max # of stored events)

if EventHistory.Length > MaximumHistoryLength then

EventHistory .Remove(0)

end if

EventHistory .Add(InEvent)

. Send Event to the Recipients

for all Recipient in InEvent .To do . External recipients may require

parameters to be inserted into the recipient URI

Replace Parameter values in Recipient

Send InEvent to Recipient

end for

. Look for subscribers of this event and forward it to them

if inEvent .Visibility is Public then

Subscribers ← Subscriptions .GetMatches(InEvent)

for all Subscriber in Subscribers do

Send InEvent to Subscriber

end for

end if

rules ← RuleStorage .GetRulesByEventType(InEvent)

. Request Rxecution of Rules

for all Rule in Rules do

Outcome ← RuleExecution .Execute(Rule)

end for

return Outcome

5.5 Rule Repository

Rule Repository is the System Behaviour in charge of storing the rules of a

system. It’s storage is based on a mapping of the event types and the rules that

respond to them. Rules can be accessed by either using the Get Rule capability

75

5.5. Rule Repository

or by appending the Rule ID to the URI of the Rule Repository (for example:

http://192.168.0.23/rulerepository/ruleid)

5.5.1 Internal State

• Rules - A map of event selectors (as specified in Section 4.4) and rules that

are triggered by them. Rules are objects containing an identifier (ID), the

rule code (code) and a boolean state indicating whether the rule is active

or not (active). This object follows the schema specified in Listing 5.5.

Listing 5.5: Rule Repository Schema.

<Rules> : := ∗<Event Entry>

<Event Entry> : := EVENT SELECTOR ∗<Rule>

<Rule> : := RULE ID RULE CODE <Act i ve>

<Act i ve> : := True | Fa l s e

5.5.2 Capabilities

Register Rule (procedure A.8) registers a new rule in the Rule map.

Deregister Rule (procedure A.11) deregisters a rule from the Rule map.

Activate Rule (procedure A.11) activates an existing rule on the Rule map.

Deactivate Rule (procedure A.11) temporarily deactivates an existing rule

from the Rule map.

Procedure 5.5 Rule Repository — Get Rules By Event

Input: Event

Output: EventRules

EventRules ← Rules .Get(Event.type)

for all rule in EventRules do

if not rule.active or ParseCondition(rule.condition, Event) is false then

EventRules .Remove(rule)

end if

end for

return EventRules

Get Rules By Event (procedure 5.5/A.12) returns a list of active rules

76

Chapter 5. Implementation

which are triggered by the provided event type and whose conditions are true.

The ParseCondition function (implementation specific, not specified here) parses

and validates the condition expression in the rule, and returns a boolean value

corresponding to the outcome of the expression. The rule is only returned if the

expression is true.

5.6 Rule Execution

Rule Execution is the behaviour in charge of interpreting rules and producing

the necessary events during execution.

5.6.1 Events

• ExecutionError - Raised during the execution in case of an error.

5.6.2 Capabilities

Procedure 5.6 Rule Execution — Execute

Input: Code

Output: Response

for all Instruction in Code do

if Instruction .Execution is Bottom-up then

for all Parameter in Instruction .Parameters do

if Parameter .Value is Instruction then . execute instructions in

parameters recursively

Parameter .SetValue(Execute(Parameter .Value))

end if

end for

end if . simplified capability request.

return Response ← Instruction .Request .Behaviour .Capability .

simplified request capability in the parameter

end for

return Response

Execute (procedure 5.6/A.7) Receives and delegates the execution of a piece

of rule code. This piece of code can be an entire rule, a single instruction (a

77

5.6. Rule Execution

capability request) or a sequence of instructions. An instruction can be in the

form of a tree, with parameters linked to a series of secondary instructions. The

event that triggers the rule may have a number of properties. These properties

can be accessed in the rule condition or as parameter values of the capability

requests, in the “actions” field of the rule. In order to access an event property,

we use the syntax below. We use the dollar sign ($) to start a property identifier

and backslash (\) as the escape character — in order to write a dollar sign inside

a string we use: \$.

$BEHAVIOUR NAME.EVENT NAME.PROPERTY NAME

Before executing a rule, Rule Execution replaces the references to properties

(in the above format) with their values defined in the event. Examples of using

event properties in rules can be seen in Chapter 6.

An instruction can be executed in either a bottom-up or top-down manners.

If the instruction is set to be executed as bottom-up, the secondary instructions

passed as values on the parameters should be executed first (in a process that

might be recursive if these are also meant to be executed bottom-up) and their

results fed to the parameters on the parent instruction and passed on to the

respective capability. If otherwise an instruction is set to be executed top-

down, the whole tree of instructions is passed on to the capability and it is up

to the capability itself to ’decide’ when, if and how many times the instructions

linked to its parameters should be executed.

As an example, the rule in Listing 5.6 indicates that, assuming the conditions

hold, the Rule Execution should request the execution of the SetSoundVolume

capability of the Television behaviour. According to the rule, the volume pa-

rameter is attached to a secondary Addition capability request whose output

feeds into the value of volume.

On a bottom-up approach (Listing 5.1), the Execution requests the sec-

ondary capability first — E1 — (thus starting at the bottom of the tree) and

then replaces its request with the output value when requesting the SetSound-

Volume capability — E2 — in a process we can parameter pre-processing.

On the other hand, on a top-down approach (Listing 5.2), the Execution

sends the whole request — E1 — to the capability, without parameters being

pre-processed. It is then up to the capability to make the secondary requests

(potentially in a recursive way). The capability may, for example, only make the

78

Chapter 5. Implementation

request if some condition applies, as in Listing 5.3. In this example, a conditional

capability (requested by E1) follows one path of execution or another, depending

on the outcome of the condition parameter.

The Open Objects framework supports both methods of execution as both

have different advantages and disadvantages. Top-down provides the capability

with finer control over the execution which makes it possible to have, for ex-

ample, capabilities that perform cycles or conditional branching. On the other

hand, bottom-up execution is less flexible but more friendly towards lighter

weight objects as by pre-processing the parameters, the Execution sends a re-

quest that is smaller and simpler to execute.

Listing 5.6: Rule example.

{

” r u l e ” : ”R3” ,

” even t ” : ”BabyMonitor . soundDetected ” ,

” c o n d i t i o n s ” : ” volume > 5” ,

” a c t i o n s ” : [

{

” even t ” : ” T e l e v i s i o n . SetSoundVolume ” ,

” volume ” :

{

” even t ” :”Math . Add i t i o n ” ,

”A” : 5 ,

”B” : 20

}

}

]

}

5.7 A RESTful approach

As the framework’s implementation follows a Service-Oriented[Erl08] approach

over Web technologies, a number of solutions is available. Most of these solutions

(notably [CDK+02]) wrap messages in custom message envelopes, which are

then wrapped in HTTP[FGM+99] and TCP/IP[FS11] envelopes, which takes

unnecessary bandwidth for our needs. On the other hand, RESTful[Cos07] ser-

79

5.7. A RESTful approach

Figure 5.1: Bottom-up execution. Events attached to parameters are pre-

processed before being sent to capabilities. (Names shortened for convenience)

Figure 5.2: Top-down execution. Capabilities are sent full events before

the parameters have been pre-processed and it is up to them to decide

if/when/how many times to request the capabilities attached to the event

parameters. (Names shortened for convenience)

80

Chapter 5. Implementation

Figure 5.3: Another example of top-down execution. In this case not all

branches are executed and it is up to the If capability to choose which capa-

bility attached to its parameters should be requested. (Names shortened for

convenience)

vices (which we chose to use for this implementation) reuse the HTTP envelope

and methods for their own purposes, making a more efficient use of bandwidth.

Alternatively the framework could be implemented using CoAp[CoA12] — a

secure communications protocol that is lightweight and efficient when compared

to HTTP, specifically designed for Machine-to-Machine and Internet of Things

applications where devices are often constrained in terms of memory and pro-

cessing power. We chose to use HTTP for our prototype implementation due to

the wider availability of software programming libraries and ease of use when

working with external we services. We are assuming that from the point of view

of a proof-of-concept, if the framework works over HTTP, it would also work

over CoAp equally well, with the addition of the security layer implemented into

the protocol.

A RESTful service is composed of a set of resources, each with a unique

URI. Each resource can be requested using an HTTP method (typically GET,

PUT, POST and DELETE), a set of parameters (usually paremeters follow the

URI and are separated by “/”) and a message body. A GET request indicates

a request for information; PUT typically updates a resource with information

on the message body; POST is usually used to add new data to a resource;

DELETE, as the name implies, removes an entry from the resource.

81

5.7. A RESTful approach

5.7.1 Capabilities as Resources

In this implementation, the system is connected to a local Ethernet[MB76] net-

work and each object is uniquely identified by its URI. We chose to use port 9090

as the default to communicate between objects (although several ports can be

specified for Behaviour Discovery). We also consider each behaviour displayed

on each object to be a single RESTful web-service, with its own end-point,

typically of the format:

http://OBJECT URI/BEHAVIOUR NAME/

and each of the behaviour’s capabilities to be a single resource on the service,

accessible through:

http://OBJECT URI/BEHAVIOUR NAME/CAPABILITY NAME/

There is a variety of possible ways of requesting and passing parameters to a

REST resource, e.g. query parameters, path parameters, HTTP headers, etc. In

this implementation we chose to define that all requests are made using a POST

method with the event (as defined in Listing 4.9) as the message body. Although

this approach isn’t standard and some might argue that it isn’t strictly speaking

RESTful, we chose it as we wanted to standardise the capability requests in order

to make the Rule Execution content and semantics agnostic.

Requesting Capabilities

A typical capability request looks like the HTTP request on Listing 5.7.

82

Chapter 5. Implementation

Listing 5.7: Capability HTTP Request event example.

POST / t e l e v i s i o n / se t soundvo lume / HTTP/1 .1

Host : 1 92 . 1 68 . 0 . 4 5 : 9 090

Content−Type : a p p l i c a t i o n / j s o n ; c h a r s e t=ut f −8

Content−Length : 150

{

” even t ” : ” T e l e v i s i o n . SetSoundVolume ” ,

” i d ” : ” e239 ” ,

” from ” : ”192 . 168 . 0 . 4 2” ,

” to ” : ”192 . 168 . 0 . 4 5” ,

” c i d ” : ”4843” ,

” volume ” : 25

}

Capabilities may respond to the request with one of the following HTTP

response codes:

200 OK - when the capability was successfully requested and executed;

400 - Bad Request when the request was not made properly, for instance

a required parameter was not provided;

404 Not Found - when the request is made to an object that does not

possess the requested capability;

500 Internal Server Error - when there is a capability execution error.

A typical capability response looks like the Listing 5.8 for single value re-

sponses or like Listing 5.9 for structured data responses.

Listing 5.8: Capability single value (number 15) response example.

HTTP/1 .1 200 OK

Content−Type : t e x t / p l a i n ; c h a r s e t=ut f −8

Content−Length : 2

15

83

5.8. Experimental Implementation Platforms

Listing 5.9: Capability structured data response example.

HTTP/1 .1 200 OK

Content−Type : a p p l i c a t i o n / j s o n ; c h a r s e t=ut f −8

Content−Length : 33

{” v a l u e s ” : [0 , 1 , 1 , 2 , 3 , 5 , 8]}

This method is, however, limited by the request timeout — the amount

of time that the client (the object that requests the capability) waits for the

server (the object where the capability is located) to respond. There is an

alternative, more flexible approach to responses: instead of returning the output

of a capability execution directly through the HTTP response following the

initial request, a capability may respond initially with a “200 OK” and respond

later with another event sent to the initial request’s sender, with the initial

event’s id in the “in response to” field defined in Listing 4.9.

5.7.2 Web Client and Server as Actuator and Sensor

In order to be able to receive and send events, objects need to implement a Web

server, a Web client and a sispatcher. The Web client, however, is not required

in the case of very simple objects that do not initiate requests. A Web server

receives the request from a client and hands it to the dispatcher. The dispatcher

then hands the event to the correct internal component or function depending

on the capability specified by the request path and based on an internal pre-

defined mapping. If the object does not implement the requested capability, the

Dispatcher tells the Web server to respond with a 404 error.

5.8 Experimental Implementation Platforms

During our evaluation and in order to produce the prototypes presented in Chap-

ter 6 three different implementations of Open Objects have been carried out,

with different levels of complexity and completeness. All three implementations

were then integrated into the same system as an example of interoperability.

We implemented a non-optimised complete Open Object in Java1 that runs

on a desktop computer. All system behaviours were instantiated in this imple-

1http://www.java.com/

84

Chapter 5. Implementation

mentation, which means it can be run independently. For data storage we used

non-persisting in-memory java object databases to support behaviour states.

Two side projects spawned from this implementation, both focused on simplic-

ity of use and lightweightness. One is called SimpleREST and contains a small,

easy to set up web server and a request dispatcher allowing for Java objects to

subscribe to URL patterns (including URL parameters). The second project is

called SimpleWebClient and, as the name implies, it makes it simple to perform

different kinds of HTTP requests.

In order to evaluate the feasibility of implementing an Open Object firmware

on a small lightweight device, we developed a C version for Arduino2 with a

stripped down web server and web client, a Behaviour Advertiser and Domain

Specific Behaviours that interact with hardware sensors and actuators. We used

a variant of an Arduino called Nanode3 that runs on a 16MHz ATmega328P

processor chip with 32Kb SRAM. The compiled code and memory needed for

runtime occupy just under 32Kb. The Arduino has a few limitations due to its

simple architecture, for instance, it’s a single threaded environment, therefore

only one request can be handled at a time. Also, due to its small memory

capacity, only relatively small rules could be sent to the Arduino. This limitation

showed us that we needed two execution modes: a top-down and a bottom-up

(as explained in chapter 4). In the bottom-up execution mode, the capability

requests connected to each request parameter are executed first so that the

parameter values are replaced with the output of each secondary capability

request, resulting in a much smaller request size, suitable for lightweight devices.

We also implemented a Python version of an equivalent object, with the

same behaviours, running on a desktop computer to test the resilience[RSP11]

of functionality in the system — maintaining functionality by handing over part

of the execution to another device when one becomes inaccessible. On this test,

the Python Open Object would take over the Arduino functionalities when the

latter was turned off.

2http://www.arduino.cc
3http://www.nanode.eu

85

5.9. Summary

5.9 Summary

In this chapter we proposed a specification for the implementation of each of the

System Behaviours and their events and capabilities by defining and explain-

ing their procedures. We also explained some implementation details, issues

and limitations that influenced the methodology adopted in the experiments

described in Chapter 6. We detailed how to connect objects in this implemen-

tation and how behaviours and capabilities are matched to web-services and

resources and how these are discovered and registered by the Behaviour Map-

ping behaviour in practice. We also gave an overview over the implementation

over three different platforms, which are shown working together in the next

chapter.

86

6
Case-Studies

In this chapter we demonstrate a number of experiments that were carried out

using the implementation described in Chapter 5. For each experiment, we dis-

cuss its aims, what the trial is testing or proving, the methods, techniques and

assets used, the results and our conclusions/outcomes. The chapter is organised

so that in each experiment a new concept or methodology is incrementally intro-

duced. We also identify certain limitations of the implementation and propose

strategies or methods to overcome them.

6.1 Smart Lucky Waving Cat

For this preliminary experiment, we developed a system to augment a chinese

lucky waving cat, pictured in Figure 6.1, during an Internet of Things hacking

event (which earned the best Nanode1 project prize). The idea behind this

prototype was to create a household object that provides useful information by

1http://www.nanode.eu

87

6.1. Smart Lucky Waving Cat

Figure 6.1: Smart Lucky Waving Cat

looking at it. We aimed at testing the practicability of exposing capabilities as

web services on a decorative object embedded with lightweight electronics.

6.1.1 Methodologies

We fitted the object with an Ethernet connected Nanode Arduino2 clone, LED

lights in its eyes, a stepper motor on its arm and an internal speaker, each of

these being a capability of the object. This was carried out with a preliminary

design of the framework, for example, the concept of behaviours, for example,

was not present. We also developed an external web service as a gateway for

information on the internet such as Twitter feeds and weather conditions. A rule

(using a preliminary rule syntax, different from the one explained in Chapter 4)

requests the external services and exposes a capability that provides digested

values, which in turn is queried by the Nanode and changes its capabilities

accordingly. The user is able to configure the Web service by scanning a 2D

barcode located on the back of the object, allowing them to choose, for example,

what Twitter search terms affect each of the object’s capabilities.

As an example of a rule, we used the arm movement to illustrate the wind

speed in the current location, the speaker to play different songs when certain

expressions were mentioned in Twitter (our account name or “royal wedding”

for example) and the LED lights on the eyes lighting up when a certain hashtag

2http://www.arduino.cc

88

Chapter 6. Case-Studies

was used on Twitter — in this example, the eyes would become more lit with

red when someone wrote the word evil on Twitter and less when someone wrote

good. The cat was also able to perform certain programmed choreographies

involving all the actuators, triggered by any of the previously mentioned event.

6.1.2 Results and Conclusions

This preliminary case study showed that it is feasible and useful to place a

Web client and Web server on a lightweight physical object and exposing its

capabilities to the outside, augmenting its purpose and allowing the user to

change its behaviour. This case study also made us understand that, although

basic event-condition-action rules can be applied to a variety of scenarios, more

algorithmically complex rules could open doors to more complex and mature

application behaviours. Over the next next case studies we introduce a number

of additions to the framework that allowed us to target more complex scenarios.

6.2 Algorithmic Test

With this short set of tests, we aim at testing whether basic algorithmic con-

structs — arithmetical and boolean operations, cycles and conditional branch-

ing — can be supported by (a) the expressiveness of the rule language, (b) the

execution strategies and (c) the System Behaviour interactions.

6.2.1 Methodologies

For this experiment we used a single complete Open Object (all system be-

haviours displayed by a single object) with a Java implementation on a desktop

computer. We wrote two rules, on Listings 6.1 and 6.2, to be triggered indepen-

dently during the tests. Note that we did not implement parsing of arithmetical

and boolean expressions directly. Instead, we developed a Math behaviour with

capabilities for each operation, e.g. in R7.1 we use Math.Addition and in R7.2

Math.GreaterThan.

89

6.2. Algorithmic Test

Listing 6.1: Algorithmical Test Rule R7.1

{

” r u l e ” : ”R7 .1”

” even t ” : ”Test . P leaseBeep ” ,

” a c t i o n s ” : [

{

” even t ” : ” F lowCont ro l . Repeat ” ,

”n ” :

{

” even t ” : ”Math . Add i t i o n ” ,

”A” : 1 ,

”B” :

{

” even t ” : ”Math . Add i t i o n ” ,

”A” : 2 ,

”B” : 1

}

} ,

”do ” :

[

{

” even t ” : ” F lowCont ro l . S l e ep ” ,

” t ” : 1000

} ,

{

” even t ” : ”Sound . Beep”

}

]

}]

}

In Listing 6.1, an event Test.PleaseBeep is produced by the test application,

which triggers rule R7.1. The rule requests the execution of FlowControl.Repeat,

which requires two parameters: “n”, which indicates how many times to repeat

the cycle; and “do” which indicates what actions are to be performed on each

cycle. Math.Addition sums the values specified in “A” and “B”, and returns

90

Chapter 6. Case-Studies

the result. In R7.1, a result of a Math.Addition capability request is fed into

another Math.Addition and the value returned by the latter is 4, hence caus-

ing the actions in specified in “do” to be repeated four times. When Flow-

Control.Repeat repeats each cycle, it requests the execution of two capabilities:

FlowControl.Sleep (with a parameter “t” of 1000 milliseconds or 1 second) which

causes the execution to stop for one second and Sound.Beep which produces an

alert sound.

Listing 6.2: Algorithmic Test Rule R7.2

{

” r u l e ” : ”R7 .2”

” even t ” : ”Weather . WeatherChanged ” ,

” a c t i o n s ” : [

{

” even t ” : ” F lowCont ro l . I f ” ,

” c o n d i t i o n ” :

{

” even t ” : ”Math . GreaterThan ” ,

”A” : $Weather . WeatherChanged . temperature ,

”B” : 20

} ,

”do ” :

{

” even t ” : ”Message . D i s p l a y ” ,

”message ” : ” I t ’ s warm”

} ,

” e l s e ” :

{

” even t ” : ”Message . D i s p l a y ” ,

”message ” : ” I t ’ s c o l d ”

}

}]

}

in Listing 6.2, an event Weather.WeatherChanged is produced by the Weather

behaviour running in the test application, which triggers rule R7.2. This rule

uses the FlowControl.If capability to compare the “temperature” parameter of

91

6.2. Algorithmic Test

the Weather.WeatherChanged event with the fixed value of “20”. As we have

not implemented parsing of boolean expressions, we used the Math.GreaterThan

capability to compare the two values and return “true” or “false” according to

the result. The FlowControl.If capability requests the execution of the “do” or

the “else” branch, according to the outcome of the “condition” parameter value.

6.2.2 Results and Conclusions

Both rules R7.1 and R7.2 were executed successfully after the events were pro-

duced. Summarised (and made more accessible to a human reader) system trace

of the rules execution follows. Certain repetitive steps are not shown here, such

as the full sequence of requesting a capability:

1. Behaviour B1 on object OBJ1 wants to request capability C1 of behaviour

B2;

2. B1 sends event B2.C1 to Event Broker through the Web Client on OBJ2

3. The Web Server on the Event Broker’s object receives event B2.C1;

4. Dispatcher forwards it to Event Broker;

5. Event Broker requests the URI of the object that displays B2, from Be-

haviour Mapping;

6. Behaviour Mapping responds with the URI of OBJ2

7. Event Broker forwards B2.C1 to OBJ2;

8. Web Server on OBJ2 receives event B2.C1;

9. Dispatcher sends the event to the behaviour B2.

10. B2 executes capability C1 and responds with its outcome, to Event Broker;

11. Event Broker forwards the response event back to B1 on OBJ1.

System trace of Rule R7.1:

1. Web Server started;

2. System, Math, FlowControl and Sound behaviours are registered in the

Behaviour Mapping;

3. Rule R7.1 is registered in Rule Repository;

4. Web Server receives event Test.PleaseBeep;

5. Dispatcher sends the event to Event Broker;

6. Event Broker requests rules that apply to event from Rule Repository;

92

Chapter 6. Case-Studies

7. Rule Repository finds rule R7.1 and responds by sending it back to Event

Broker;

8. Event Broker sends rule to Rule Execution;

9. Rule Execution reads the first action on the rule (FlowControl.Repeat);

10. Execution mode is not specified, so the default “Top-down” mode is used;

11. Execution asks Behaviour Mapping which object displays the FlowControl

behaviour and receives the URI of the object;

12. The action (the Repeat capability request) is sent to FlowControl;

13. The internal algorithm (machine code) of the Repeat capability requests

the value of “n”;

14. The internal algorithm of the Repeat capability requests execution of

FlowControl.Sleep, with the parameter “t” of 1000;

15. Sleep pauses the execution for one second by taking said time to respond

to the request;

16. Sleep responds, after one second, back to Repeat with OK (capability

execution succeeded);

17. Repeat requests the execution of the Beep capability on the Sound Be-

haviour;

18. The Beep capability produces a sound and responds back to Repeat;

19. The Repeat capability repeats the previous four steps four times;

20. The Repeat capability responds back to Execution with OK;

21. Execution of R7.1 terminates.

During the execution, we could perceive a notification sound being played

four times, with a one second interval. The experiment shows (a) interaction of

the System Behaviours on a Complete Object, (b) forwarding and dispatching

of events, (c) Top-Down execution of cycles in capabilities and (d) execution of

chains of capability requests (one output feeds into another’s input).

System trace of Rule R7.2, further simplified for clarity and economy of

space:

1. Web Server started;

2. System, Math, FlowControl and Sound behaviours are registered in the

Behaviour Mapping;

3. Rule R7.2 is registered in Rule Repository;

93

6.2. Algorithmic Test

4. Weather behaviour produces a WeatherChanged event when the weather

condition changes;

5. Event Broker receives WeatherChanged event, with parameter “tempera-

ture” set to 22;

6. Event Broker requests rule triggered by WeatherChanged from Rule Repos-

itory;

7. Event Broker received R7.2 and sends it to Rule Execution;

8. Rule Execution replaces references to event parameters in the rule with

their values (in this case it replaces Weather.WeatherChanged.temperature

with the value specified in the event: 22);

9. Rule Execution send the FlowControl.If capability request event to Flow-

Control behaviour;

10. FlowControl requests the Math.GreaterThan capability from Math be-

haviour;

11. the GreaterThan capability compares parameters “A” and “B” (in this

case 22 and 20) and responds with “true”;

12. The If capability received the outcome “true” of the GreaterThan capa-

bility execution;

13. as “condition” has the value of “true”, the “do” branch of the rule will be

requested for execution, by the If capability;

14. The Display capability of the Message behaviour is requested, with the

parameter “message” set to “It’s warm”;

15. Execution of R7.2 terminates.

The Weather behaviour is programmed to check the local weather at regular

intervals and, when there is a change, it produces a WeatherChanged event,

which triggers rule R7.2. During the execution, the Message behaviour displayed

one of the two different messages on the computer screen, according to the

current temperature. This experiment shows (a) conditional branching of the

execution — for example, a capability choosing to execute one branch over

another depending on the value of a parameter — and (b) the use of event

parameters (the use of the temperature parameter).

Both examples show the main advantage of top-down execution: giving con-

trol to the target capability over if, when and how often to request the capa-

94

Chapter 6. Case-Studies

Figure 6.2: Open Power Socket

bilities attached to its parameters which, for example, this makes it possible to

have cycles and conditional branching.

6.3 Open Power Socket

We modified a common power socket in order to control the electric appliances

connected to it (such as lamps, illustrated in Figure 6.2). The aim here was

to test the framework implementation in a real world scenario, with a physical

object that exposes a capability to the outside. As our current implementation

relies on maintaining open network connections (with a predefined maximum

time duration) throughout the execution of a rule, we wanted to develop a way

of overcoming this limitation in order to have rules running over a prolonged

period of time. Our objective for this case-study was to develop a simple rule

that switched on and off a lamp plugged into the extension, at random periods

of time, to simulate a human presence in an empty house. As an example of the

applicability and flexibility of this setup, on another instance, we wrote a rule

that turned on and off a fan depending on the local weather.

95

6.3. Open Power Socket

6.3.1 Methodologies

We augmented a power socket extensions with a relay and a network (Wi-Fi)

capable Arduino (powered by the extension), and developed a generic behaviour

called Device which shows generic capabilities present in most devices. On

this behaviour we implemented capabilities TurnOn, TurnOff and IsOn, which

switches the relay on and off, and checks if the device is on. In order to support

our objective of switching the lights on and off for random periods of time, we

wrote the rule in Listing 6.3.

Listing 6.3: Light Scheduler Rule

{

” r u l e ” : ” L i g h t S c h e du l e r ”

” even t ” : ”Test . S c h e d u l e L i s t ” ,

” a c t i o n s ” : [

{

” even t ” : ” F lowCont ro l . I f ” ,

” c o n d i t i o n ” :

{

” even t ” : ”Math . GreaterThan ” ,

”A” : { ” even t ” : ”Time .Now” } ,

”B” : { ” even t ” : ” S ta t e . Get ” , ”name ” : ” t imeout ” }

} ,

”do ” :

[

{

” even t ” : ” F lowCont ro l . I f ” ,

” c o n d i t i o n ” : {” even t ” : ”Dev ice . IsOn ”} ,

”do ” : {” even t ” : ”Dev ice . TurnOff ”} ,

” e l s e ” : {” even t ” : ”Dev ice . TurnOn”} ,

} ,

{

” even t ” : ” S ta t e . Put ” ,

”name ” : ” t imeout ” ,

” v a l u e ” :

{

96

Chapter 6. Case-Studies

” even t ” : ”Math . Add i t i o n ” ,

”A” : { ” even t ” : ”Time .Now” } ,

”B” :

{

” even t ” : ”Math . Random” ,

”min ” : 60 ,

”max ” : 6000

}

}

}

]

} ,

{

” even t ” : ” P a r a l l e l . S p l i t ” ,

”do ” :

[

{ ” even t ” : ” F lowCont ro l . S l e ep ” , ” t ” : 5000 } ,

{

” even t ” : ” EventBroker . ForwardEvent ” ,

” i nEven t ” : {” even t ” : ”Test . S c h e d u l e L i s t ”}

}

]

}]

}

This rule runs in a loop, defining a time in the future. When the time is

reached, the state of the connected device is inverted and a new future time is

set.

Given a Test.ScheduleList event, the LightScheduler rule checks if the current

time is larger than the timeout time stored in the State behaviour (which will

be true for the first run as there is no value stored). If the current time is larger,

the state of the device is inverted and a new timeout is generated based on a

random number of seconds between 60 and 6000. The last step of the rule is a

Parallel Split which creates an independent branch of execution (and effectively

terminating the main branch, as there are no more actions to be executed in it).

On this branch, a Sleep capability is requested (in order to stop the execution

97

6.3. Open Power Socket

for 5 seconds) and then a new Test.ScheduleList event is produced and sent to

the Event Broker, resulting in a new execution of the rule. If we did not use the

Split capability, the initial HTTP request for the execution of the rule would

timeout as we would be continuously requesting new capabilities recursively

(similar to a stack overflow computing error).

When developing the prototype for this experiment we implemented three

supporting domain independent behaviours:

• Time - a Now capability provides the current time (in UNIX timestamp

format);

• Parallel - with a Split capability that split the execution in order to have

an independent branch;

• State - Able to store and retrieve values in memory, accessible by a key

name, using the Get and Put capabilities.

These and the system behaviours were implemented on the desktop machine.

The Open Power Socket displays Device and Behaviour Advertising behaviours

(discovered automatically by Behaviour Mapping).

6.3.2 Results and Conclusions

Through the lifetime of the system, the rule runs continuously as expected, and

the lights are turned on and off at random intervals. This case-study showed us

that by allowing rules to be executed synchronously over an HTTP connection

brings some advantages — for instance, we can produce an event that triggers a

rule and receive the outcome of the rule as a direct response of the event request,

effectively creating a high-level capability — but also the disadvantage of being

limited by the HTTP connection timeout. In order to request a rule to be

executed asynchronously, we implemented a Parallel Split3, which we then use

to terminate the execution of the main branch (closing the HTTP connection)

and initiate a new, independent one.

We have written in the rule the basic mechanics of a scheduling system,

which we could encapsulate into a reusable Scheduling domain independent

behaviour, with a Schedule high-level capability that registers a time to which

a given custom event would be produced. For instance, we could request the

3http://www.workflowpatterns.com/patterns/control/basic/wcp2.php

98

Chapter 6. Case-Studies

Schedule capability to produce custom event X at time Y, and write a rule

that is triggered by X. The specification and development of different domain

dependent and independent behaviours are, however, outside the scope of the

framework and are presented here as building blocks developed for case studies.

Also, the mechanism we use to allow a rule to continuously run despite the

connection timeout could also be encapsulated in order to be easily reusable.

6.4 Resilience Test

In this small study we wanted to assess the ability of the framework to maintain

service resilience, with preferred objects displaying certain behaviours. Ser-

vice resilience was an important factor of a parallel project we were involved

in[RSP11] and some of the concepts developed in the context of this thesis were

inspired by it, including service resilience, the Behaviour Mapping and the Event

Broker. We developed a prototype for displaying a message to the user using

one rule and the message would be displayed on one of three Open Objects,

depending on their availability and their ranking.

6.4.1 Methodologies

For this experiment we implemented the same behaviour Message on three dif-

ferent objects and platforms: an Arduino with an LCD screen, a Java applica-

tion on a desktop computer and a Python script on a laptop computer. The

Message behaviour has one capability called Display which shows the message

event parameter, when requested.

On a side note, in our prototype implementation of the framework, we are

using IP addresses as a means of uniquely identifying objects. This is merely

a convenience and would not suit an end-product as IP’s may change between

executions.

We used the rule in Listing 6.4 used on this experiment.

99

6.4. Resilience Test

Listing 6.4: Service Resilience Rule

{

” r u l e ” : ” R e s i l i e n tMe s s a g e ”

” even t ” : ”Test . R e s i l i e n c e ” ,

” a c t i o n s ” : [

{

” even t ” : ”BehaviourMapping . Rank ” ,

” behav i ou r ” : ”Message ” ,

” ob j ec tURI ” : ” 192 . 1 68 . 0 . 2 ” ,

” rank ” :3

} ,

{

” even t ” : ”BehaviourMapping . Rank ” ,

” behav i ou r ” : ”Message ” ,

” ob j ec tURI ” : ” 192 . 168 . 0 . 1 3” ,

” rank ” :2

} ,

{

” even t ” : ”BehaviourMapping . Rank ” ,

” behav i ou r ” : ”Message ” ,

” ob j ec tURI ” : ” 192 . 168 . 0 . 4 5” ,

” rank ” :1

} ,

{

” even t ” : ”Message . D i s p l a y ” ,

”message ” : ” He l l o !”

}

}

In this rule we manually set the ranking of the three objects in regards

to the Message behaviour, so that the Arduino (identified by it’s IP address:

192.168.0.2) takes precedence over the laptop (192.168.0.13) and the laptop

over the desktop (192.168.0.45), in terms of which object should be requested

regarding that behaviour.

100

Chapter 6. Case-Studies

6.4.2 Results and Conclusions

At the start of the experiment, the objects are automatically discovered and

registered by Behaviour Mapping. In order to force the execution of the rule,

we sporadically produce the Test.Resilience (using a test HTTP request client),

plug and unplug the Arduino and the laptop from the network, and observe

the results. We observed that, as expected, when the Arduino is plugged in,

it is discovered and when the rule is executed, the Behaviour Mapping checks

that the object is available and the Message.Display is sent to it. When the

Arduino is not plugged in, the event is sent to the next object with higher rank

— the laptop, and similarly, if the laptop is not available, the event is sent to

the desktop. When we plug the Arduino back in, for example, the events are

once again sent to it, and we can see the message being displayed on its LCD

screen.

This experiment shows two things, a simple mechanism for guaranteeing

resilience of functionality, and how to manually set the ranking of an object in

regards to a given behaviour.

6.5 Office Availability Device

For this experiment we developed and implemented a real-world scenario where

the user develops a system to inform work colleagues or students of their avail-

ability in the office. The idea is to have a small electronic device at the door (the

same object used to display a message on the previous experiment and pictured

in Figure 6.3), visible from the outside, that is capable of displaying a short

message along with a small coloured light that illustrates its state. There is also

a cubic device (Figure 6.4) that allows the user to set different states related

to his availability according to the side to which it is turned. The cube has

different messages written on each side, which correspond to different “states”

of availability: “Check calendar”, “Back in 5”, “Out of the office”, “Out for

lunch”, “Busy” and “Come in”. The system should be as automatic and as

unobtrusive as possible, therefore, in the absence of exceptions, the availability

should be set accordingly to events on the user’s online calendar.

The door sign and the cube are considered Hollow Objects, in the sense that

they are merely building blocks to be used as part of a larger interaction of

objects. By default, they do not possess a particular function. Instead, they

101

6.5. Office Availability Device

Figure 6.3: Open Door Sign

Figure 6.4: Open Cube Controller

provide a number of low-level capabilities that interact with their actuators.

6.5.1 Methodologies

Due to the complexity of this setup, we will use the nomenclature below to refer

to behaviours (Bn), devices (Dn) and events (En).

System Behaviours

B1: Event Broker

B2: Rule Repository

B3: Rule Execution

B4: Behaviour Mapping

B5: Behaviour Advertising

102

Chapter 6. Case-Studies

Domain Independent Behaviours

B6: Time

B7: Flow Control

B8: Parallel

Domain Dependent Behaviours

B9: Calendar Checker (checks an online calendar for appointments)

B10: Orientation Sensor (communicates the orientation of an object, in relation

to the gravity referential)

B11: Message

B12: Traffic Light (controls a coloured light)

Equipment

Equipment-wise, there are three different devices in the system. The behaviours

displayed by each of the devices are defined between brackets:

D1: Computer (B1, B2, B3, B4, B6, B7, B8, B9)

D2: Desk Cube (B5, B10)

D3: Door Sign (B5, B11, B12)

Events and Rules

In order to coordinate the behaviours in the system, different rules were written.

Each rule is attached to an event. The events produced during the execution of

the system are the following.

E1: startup

E2: do a cycle

E3: check cube

E4: display availability from calendar

E5: check calendar

The following rules (and the events that trigger them) have been previously

written and registered in the system.

R1: start availability system, on E1 (produces E2 to start the system’s main

rule cycle)

103

6.5. Office Availability Device

R2: cycle availability, on E2 (every 5 seconds, produces two events: E3 and

E2, causing R2 and R3 to execute)

R3: cube checking, on E3 (displays a message and changes the colour of the

traffic light according to the side of which the cube is turned. If the cube

is unavailable or the side is the default one, the rule produces E4)

R4: display availability from calendar, on E4 (changes the message and colour

of the traffic light according to the state of the calendar. uses a secondary

rule, R5, to check the calendar)

R5: check calendar, on E5 (checks one particular calendar to see if there is an

event at the current time)

In Listing 6.5 we present one of the rules in this application (R3 — Cube

Checking), as an example of how to prioritise rules. In this rule we use the

Choose capability of the FlowControl behaviour to display different messages

and colours of the light signal, according to the orientation of the cube, which

is given by the Get capability of the Orientation Sensor behaviour displayed

by the cube object. For each option — or side of the cube — we send the

appropriate events to the Message and Traffic List behaviours. If the side of

the cube is number 6, we produce the event “display availability from calendar”

which triggers rule R4 (which displays a message depending on the availability

stated on the online calendar).

Our objective for this application is to show a message on the door sign de-

pending on the orientation of the cube. However, if the cube is not available (e.g.

disconnected), the message should reflect the state of the online calendar. In or-

der to achieve this, we use the onError parameter when requesting the Get capa-

bility of the Orientation Sensor to trigger the “display availability from calendar”

rule. In other words, rule R3 takes precedence over R4 — R4 is only executed

if there is an error on R3. Another way of implementing this would be to use

the onError parameter “upstream” on rule R2. In other words: R2 requests R3

and if there is an error, request R4 instead.

104

Chapter 6. Case-Studies

Listing 6.5: Rule R3 - Cube Checking

{ ” r u l e ” : ”Cube Check ing ”

” even t ” : ” O f f i c eDoo rS i gn . Check Cube ” ,

” a c t i o n s ” : [

{ ” even t ” : ” F lowCont ro l . Choose ” ,

” v a l u e ” :

{

” even t ” : ” O r i e n t a t i o n s S e n s o r . Get ” ,

” onEr ro r ” :

{

” even t ” : ” EventBroker . ForwardEvent ” ,

” i nEven t ” : {” even t ” : ”

D i s p l a y a v a i l a b i l i t y f r o m c a l e n d a r ”}

}

} , ” o p t i o n s ” : [

{

” va l u e ” : 1 ,

” a c t i o n s ” : [

{ ” even t ” : ”Message . D i s p l a y ” , ”message ” : ”Out f o r

Lunch” } ,

{ ” even t ” : ” T r a f f i c L i g h t . Set ” , ” c o l o u r ” : ” red ”}]

} ,

{ . . . o t h e r o p t i o n s f o r each s i d e o f the cube . . . }

{

” va l u e ” : 6 ,

” a c t i o n s : [

{

” even t ” : ” EventBroker . ForwardEvent ” ,

” i nEven t ” : {” even t ” : ”

D i s p l a y a v a i l a b i l i t y f r o m c a l e n d a r ”}

}]

}]

}] }

For this application we also developed a low-level capability (written in Java)

called Get State on a behaviour Calendar Checker that interacts with an on-

105

6.5. Office Availability Device

line calendar API and takes two parameters: “calendar” — the URL of the

calendar; and “date time” — the timestamp for which to check the availability.

The capability responds with one of three states: “no event”, “available” or

“busy”. We also defined a high-level capability (defined by the rule R5, show

in Listing 6.6) called Check Calendar that wraps the Get State capability and

provides the appropriate parameters.

In this case, it is more convenient to have a low-level capability because

checking an online calendar is a complex task. If, otherwise, we were dealing

with a simpler web service, we could have just used a behaviour description to

describe it, and it could have been included in a rule seamlessly.

Listing 6.6: Rule R5 - Check Calendar

{ ” r u l e ” : ”Check Ca l enda r ”

” even t ” : ” O f f i c eDoo rS i gn . Check Ca l endar ”

” a c t i o n s ” : [

{

” even t ” : ” Ca l enda rChecke r . Ge tSta te ” ,

” c a l e n d a r ” : ” h t t p s : //www. goog l e . com/ c a l e n d a r / f e e d s /

e4 f76q i k8agu . . . ” ,

” da t e t ime ” : { ” even t ” : ”Time .Now” }

}] }

6.5.2 Results and Conclusions

Steps 1 to 10 may happen interchangeably, although some rule execution cycles

may fail until D2 and D3 are discovered because not all necessary capabilities

are available in the system until then. All calls to a capability are preceeded

by a call to B4 so that the caller knows which object implements the capability

and how to reach it. Throughout the system trace, this process is omitted,

to facilitate reading and replaced by the more human-friendly and simplified

“Behaviour B1 requests the execution of B2.C1”, for example.

1. The rules are written and stored in B2;

2. B1, B2, B3, B6, B7, B8 and B9 are registered locally in B4;

3. B4 looks in the network for devices that implement B5 (D2 and D3);

4. B4 discovers D2 and the B5 on D2 communicates the implementation of

106

Chapter 6. Case-Studies

B10, which is then registered on B4;

5. B4 discovers and registers D3’s behaviours B11 and B12;

6. E1 is raised by D1 on startup;

7. B1 picks up E1 and checks if B2 has a rule registered to be executed after

E1;

8. B2 responds with R1 and B1 sends R1 to B3 for execution;

9. R1 tells the B3 to request the B1 to propagate E2, effectively starting the

system’s main loop;

10. Similarly to steps 6 to 9, E2 causes R2 to execute;

11. R2 has a sequence of two instructions: request B7 for suspending the

execution for 5 seconds, using its “sleep” capability; request B8 to create

a new branch of execution. In this branch two events are produced: E3

and E2. producing E2 causes R2 to run in a cycle;

12. E3 causes R3 to execute. R3 uses a “choose” capability which works as

a “switch” instruction in procedural languages. The objective here is to

choose between a set of actions, depending on a “value” parameter of the

“choose” capability. “value” is connected to the “get” capability of B10.

This capability responds with an integer between 1 and 6 that correspond

to which orientation the object is currently facing: X up, X down, Y up,

Y down, Z up, Z down.

13. For each possible orientation a different message and light colour is dis-

played. This is achieved by requesting the “display” capability of B11 and

the “set” capability of B12.

14. In case of failure when trying to request a capability from B10, or in

case D2 is on an orientation that is considered to be default (in this case

position 5), E4 is produced. This is a way of specifying that R3 has

precedence over R4, or in other words: R4 should apply in case R3 does

not;

15. if E4 is produced then R4 is executed. R4 says that if there is an event

on the user’s calendar, then his status is displayed as available in the door

sign, with a green light, otherwise, the sign should state that he is away,

with a red light. In order to check if there are events in the calendar, R4,

raises E5 and waits for the result of the rule execution;

107

6.6. Adding a new Behaviour to an Object

16. E5 causes R5 to execute, which uses the “is busy” capability of B9 with

the time given by the “now” capability of B6.

As expected, when the cube is in the default position — “Check calendar” —

the door sign displays a message according to the events on the online calendar.

Otherwise, when the cube is in another position, representing an exception, the

sign shows the message on the chosen side of the cube. This case study shows

how to use a rule that dictates precedence of other rules, by choosing which

events should be produced.

Also shown here, is the usage of encapsulation of functionality in rules. In

order to simplify a rule, we encapsulate specific functionality in a new, reusable

rule. By adding parameters to the event that triggers said rule, we are effectively

parametrising the rule execution itself. For instance, the check calendar rule

works as a high-level capability, by encapsulating the functionality of checking

an online calendar for an even, and responding with a value of “true” or “false”.

This is the basis of adding new capabilities to existing objects: a rule defines a

new high-level capability, a new behaviour description is written, describing that

capability (and possibly others) and the behaviour description is then registered

in the objects Behaviour Advertising behaviour.

6.6 Adding a new Behaviour to an Object

In order to generalise and encapsulate common actions, one can either create

rules that encapsulate the desired functionalities or create a new behaviour based

on high-level capabilities defined by rules. When creating a new behaviour, one

must:

1. Write the rules that describe the behaviour’s capabilities;

2. Register the rules in a Rule Repository;

3. Write the Behaviour Description;

4. Register the Behaviour Description on the target object’s Behaviour Ad-

vertising.

As discussed in Section 6.3, we arrived at the conclusion that we could

encapsulate and improve the scheduling system to make it generic and reusable.

108

Chapter 6. Case-Studies

In order to assist us in the creation of a Scheduler behaviour, we wrote the rule

in Listing 6.8 to perform the tasks described above.

Listing 6.7: Registering a Scheduler Behaviour

{

” r u l e ” : ” Reg i s t e r S c h edu l eBeha v i o u r ” ,

” even t ” : ” s t a r t u p ” ,

” a c t i o n s ” : [

{

” even t ” : ” Ru l eRepo s i t o r y . R e g i s t e rRu l e ” ,

{

” r u l e ” : ” Schedu l e ”

” even t ” : ” Schedu l e r . Schedu l e ” ,

” a c t i o n s ” : [

{

” even t ” : ” F lowCont ro l . I f ” ,

” c o n d i t i o n ” :

{

” even t ” : ”Math . GreaterThan ” ,

”A” : { ” even t ” : ”Time .Now” } ,

”B” : ”$Schedu l e r . Schedu l e . t imeout ”

} ,

”do ” : [

{

” even t ” : ” EventBroker . ForwardEvent ” ,

” i nEven t ” : {” even t ” : ”$Schedu l e r .

Schedu l e . t imeoutEvent ”}

}] ,

” e l s e ” : [

{

” even t ” : ” P a r a l l e l . S p l i t ” ,

”do ” :

[

{ ” even t ” : ” F lowCont ro l . S l e ep ” , ” t ” :

5000 } ,

{

109

6.6. Adding a new Behaviour to an Object

” even t ” : ” EventBroker .

ForwardEvent ” ,

” i nEven t ” :

{

” even t ” : ” Schedu l e r . Schedu l e

” ,

” t imeoutEvent ” : ”$Schedu l e r .

Schedu l e . t imeoutEvent ” ,

” t imeout ” : ”$Schedu l e r .

Schedu l e . t imeout ” ,

}

}

]

}]

}]

}

} ,

{

” even t ” : ” B eh a v i o u rAd v e r t i s i n g . R e g i s t e rB eh a v i o u r ” ,

” b e h a v i o u rD e s c r i p t i o n ” :

{

” behav i ou r ” : ” Schedu l e r ” ,

” d e s c r i p t i o n ” : ” Schedu l e s a even t f o r a f u t u r e

t ime ” ,

” c a p a b i l i t i e s ” : [

{

” c a p a b i l i t y ” : ” Schedu l e ” ,

” r e q u i r e d ” : [”Math” , ” F lowCont ro l ”] ,

” pa ramete r s ” : [

{

”name ” : ” t imeoutEvent ” ,

” type ” : ”Event ” ,

” r e q u i r e d ” : ” t r u e ”

} ,

{

”name ” : ” t imeout ” ,

” type ” : ”Timestamp ” ,

110

Chapter 6. Case-Studies

” r e q u i r e d ” : ” t r u e ”

}

]

}]

}

}]

}

In this rule we create and register both Schedule high-level capability rule

and the respective behaviour description. This is not a particularly efficient

implementation of a scheduler, but more of a test of how to create a high-level

capability, bundle it into a behaviour and display it on an object. This imple-

mentation of the Schedule high-level capability has a precision of five seconds

(configurable from the Sleep capability’s parameters), as it checks if the sched-

uled time has arrived with this periodicity. For this concrete behaviour (and

in this scenario) it is irrelevant which object displays the behaviour therefore

we did not need to specify a target object. We can consider then that this

behaviour is displayed by Open Super-Object as a whole. If we want to specify

exactly which object displays a new behaviour, we can specify the target of the

BehaviourAdvertising.RegisterBehaviour event.

The procedure for creating a new behaviour is repetitive and not necessar-

ily intuitive for an end-user, therefore we took an extra step of abstracting it

by creating and registering a Behaviour Creator behaviour using the rule in

Listing ??.

Listing 6.8: Registering a Scheduler Behaviour

{

” r u l e ” : ” Behav i ou rC r ea t o r ” ,

” even t ” : ” s t a r t u p ” ,

” a c t i o n s ” : [

{

” even t ” : ” Ru l eRepo s i t o r y . R e g i s t e rRu l e ” ,

” r u l e ” : {

” r u l e ” : ” Crea te Behav iou r ”

” even t ” : ” Behav i ou rC r ea to r . C r ea t eRu l e ” ,

111

6.6. Adding a new Behaviour to an Object

” a c t i o n s ” : [

{

” even t ” : ” F lowCont ro l . ForEach ” ,

” l i s t ” : $Behav i ou rC r ea t o r . C r ea t eRu l e . r u l e s ,

” e l ement ” : ” r u l e ” ,

”do ” : [

{

” even t ” : ” Ru l eRepo s i t o r y . R e g i s t e rRu l e ” ,

” r u l e ” : $ r u l e

}]

} ,

{

” even t ” : ” B eh a v i o u rAd v e r t i s i n g .

R e g i s t e rB eh a v i o u r ” ,

” to ” : $Behav i ou rC r ea t o r . C r ea t eRu l e . o b j e c t

” b e h a v i o u rD e s c r i p t i o n ” : $Behav i ou rC r ea t o r .

C r ea t eRu l e . b e h a v i o u rD e s c r i p t i o n

}]

}

} ,

{

” even t ” : ” B eh a v i o u rAd v e r t i s i n g . R e g i s t e rB eh a v i o u r ” ,

” b e h a v i o u rD e s c r i p t i o n ” :

{

” behav i ou r ” : ” Behav i ou rC r ea t o r ” ,

” d e s c r i p t i o n ” : ”Hand les the c r e a t i o n o f a new

Behav iou r ” ,

” c a p a b i l i t i e s ” : [

{

” c a p a b i l i t y ” : ” R e g i s t e r Ru l e ” ,

” r e q u i r e d ” : [” F lowCont ro l ”] ,

” pa ramete r s ” : [

{

”name ” : ” r u l e s ” ,

” type ” : ”Rule ” ,

” r e q u i r e d ” : ” t r u e ”

} ,

112

Chapter 6. Case-Studies

{

”name ” : ” b e h a v i o u rD e s c r i p t i o n ” ,

” type ” : ” Beha v i o u rDe s c r i p t i o n ” ,

” r e q u i r e d ” : ” t r u e ”

} ,

{

”name ” : ” o b j e c t ” ,

” type ” : ”URI ” ,

” r e q u i r e d ” : ” f a l s e ”

}

]

}]

}

}]

}

6.7 Conclusions

In this chapter we demonstrated a few case studies where we introduced and

tested different aspects and challenges of the framework. We showed how to:

• Distribute and orchestrate functionality across objects and platforms using

rules;

• Control the flow of execution and perform calculations and test conditions

using independent system behaviours;

• Design a rule using capability request chaining and the advantages of top-

down execution;

• Prioritise one rule over another;

• Design a system aiming at resilience of services.

While maintaining an open HTTP connection when requesting a capability

(or the execution of a rule) brings some advantages (simplifies implementation,

for example), it also brings certain disadvantages. As observed during the exper-

iments, certain systems may benefit from rules that are running continuously,

which would eventually cause a connection timeout. In this chapter we ad-

dressed this issue by proposing the strategy of branching a rule execution so

113

6.7. Conclusions

that the main branch is terminated (closing and responding to the the initial

HTTP request) while the rule may continue executing on a secondary branch.

During these experiments we developed certain reusable strategies and be-

haviours in order to tackle a number of different situations when implementing

an Open Object System. On the next chapter we propose a set of usage patterns

based on these.

114

7
Evaluation

This chapter outlines the current status and a critical review of the features,

advantages and limitations of the framework implementation. We also compare

it with other existing platforms using qualitative metrics based on the target

characteristics pointed out in Chapter 2.

7.1 Status

The current implementation supports the different components of the frame-

work described in Chapter 4 (Capabilities, Behaviours, Events and Rules) and

the System Behaviours described in Chapter 5, which were tested in a series

of experiments, the most meaningful being described in Chapter 6. All the

system behaviours communicate with each other by exchanging events in a dis-

tributed and decentralised way and the applications are orchestrated by rules.

These rules orchestrate the interactions between objects in a loose-coupled way,

through the abstraction of behaviours that the objects display. The imple-

mentation supports interactions between objects with partial implementations

115

7.1. Status

— objects that do not display some or all system behaviours as these can be

shared / outsourced. We have developed a full implementation written in Java

(for prototype development convenience) that can be run on a desktop or lap-

top computer, and two partial implementations, one written in C that runs

on an Arduino1 microcontroller and another written in Python that runs on a

computer or on a Raspberry Pi2.

We designed the framework with EUD in mind from various perspectives.

The Event Condition Action (ECA) rule based system and the behaviour ab-

stractions and descriptions, for example, make the framework a suitable candi-

date to be the target of an EUD tool such as [DDRF10], [RMMH+09] or [DP12].

It is also possible to describe some internal functionalities of the objects (namely,

high level capabilities that deal with only internal API’s indirectly, through the

use of low level capabilities) using ECA rules that can be modified by the users

in order to further adapt an object’s behaviour to their personal objectives and

routines (a concept described as Meta-design [FGY+04]).

In order to reduce complexity when dealing with external systems of groups

of Open Objects, we abstract a group of objects that is able to work indepen-

dently (displaying all system behaviours and orchestrating itself through the use

of rules) as an Open Super-Object. Open Super-Objects as a whole can display

their own behaviours and act as a single object to the outside. This concept

makes it simpler to integrate and orchestrate clusters of objects.

A further advantage of the framework is the fact that very lightweight de-

vices, more capable computers, and external services can coexist in the same

environment and are treated equality as first-class citizens of the system. Ser-

vices that objects (of any kind) provide are treated as capabilities and abstracted

with behaviours. This avoids the need for object proxies; however, there is the

possibility of using objects as proxies or wrappers of external services or objects

that do not implement a Web interface (or implement one that is incompatible

with the framework, e.g. by using a proprietary message format), and expose

their methods through the use of a custom behaviour description, as explained

in Chapter 4 and 6.

When dealing with ad-hoc scenarios and dynamic networks, failure (e.g. er-

1http://www.arduino.cc
2http://www.raspberrypi.org

116

Chapter 7. Evaluation

rors, service unavailability, unstable connections) is pervasive. Failure is an in-

tegrated part of the framework. Behaviour Mapping abstracts away behaviours

from objects allowing for functionality to be defined and to be used indepen-

dently of the availability of objects at run-time — i.e. we separate functionality

from who is providing it. Unavailability of behaviours is also handled as an

integrated part of rules and is, in fact, considered not as an exception but as

a normal condition of the execution — e.g. using the onError parameter of a

capability request to prioritise one rule over another.

The current implementation was designed with interoperability in mind by

offering Web interfaces to object’s capabilities (and even to the system’s ca-

pabilities) that are easily interfaced from other platforms, and vice-versa, by

writing behaviour descriptions that treat external web services as capabilities,

becoming usable from an Open Object environment. The interfaces are not,

however, purely RESTful. We do not, for example, make use of all the different

HTTP methods as one would in a RESTful service (see [Wil07] for instance),

which would make the objects’ interface more standard and therefore easier to

interface with from other systems.

Usability and extensibility are important concerns of user-centric systems

and in particular one that aims at EUD. Usability includes aspects such as the

ease of writing and reusing rules, adding objects to an Open Object environment,

or, from an object maker side, the simplicity of adding the necessary capabilities

to an object in order to make it compatible with the framework.

It would be relatively straightforward to develop an EUD layer over the Rules

and the Behaviour Descriptions as the metaphor used for the rules is simple

enough to be understood by a non technical person, as suggested by [DDRF10]

which uses a similar rule structure, as far as request chaining goes, although

further studies would need to be carried out to support this. A possible EUD

tool could, for example, read behaviour definitions and suggest capabilities to

attach to capability parameters based on their type, or provide access to the

different event properties when creating a rule or writing expressions in order

to avoid the need to memorise them. It is also simple to progress from very

simple rules to complex ones, and from there to encapsulating reusable actions

and creating new capabilities, as the metaphors involved in these tasks are very

similar, regardless of the complexity of the system, aiming at a smooth learning

117

7.1. Status

curve.

From the point of view of object manufactures, assuming network connec-

tivity, adapting an object (or an external Web Service, for that matter) to work

within an Open Object environment can be done at different levels:

1. External service with a Behaviour Description that describes the service

and how to interact with it. The Behaviour Description may be provided

by a third party and must be manually registered in the Behaviour Map-

ping;

2. The object displays a Behaviour Advertising behaviour and is able to

discover and/or be discovered by a Behaviour Mapping behaviour;

3. The object displays other or all system behaviour and is able to assist

with system management tasks, such as storage/execution rules or event

brokerage.

Having different levels of adaptation when augmenting an object to interact

with the Open Object framework, but still being able to be operate within it

without a proxy object, effectively lowers the development and cost barriers for

manufacturers to add Open Object support.

Extending an object with new functionalities is also extremely simple. In

order to add Parallelisation, for instance, one can use any hardware or software

platform and programming language that is found suitable for the task and then

exposing this feature as one or more web accessible capabilities These capabil-

ities are then described by a behaviour description registered on a behaviour

mapping, deployed locally or externally, making it integratable seamlessly with

the rest of the framework.

This implementation presents, however, some limitations. We did not im-

plement security, data privacy, or access control layers, being conscious that,

although these aspects are critical to the kind of applications envisioned in our

scenarios, by using Web technologies there is an extended range of tried and

tested solutions to cope with these challenges. Approaches such as those shown

in [TB06], [KZL+01], [HPJ05] or [CCS+11] could potentially be adapted to

secure the data and the access to personal objects of the users.

Scalability has also not been the main focus of this thesis, as the scenarios we

aim at are small domestic applications, simple enough to be managed by a non-

118

Chapter 7. Evaluation

technical end-user or group of end-users. However, with the number of personal

devices increasing, this issue might become increasingly significant, thus further

research should study the effects of scalability of the framework. Furthermore, as

the scenarios scale up, problems such as redundancy and inconsistency arise. For

example, some rules might contradict or undo others, particularly in cases where

several rule repositories cohabit the same OO environment or when network

connection between nodes is inconsistent. These issues are left for the user to

solve through carefully designing rules that check for and work around these

issues as these are not addressed by the framework.

7.2 Comparative Evaluation

In this section, we evaluate the framework by having a critical discussion around

a qualitative comparison of other existing platforms (of both academic and in-

dustrial nature), against features that are directly tied to the requirements pro-

posed in Chapter 2. For evaluation purposes, we have chosen a number of IoT

platforms: Contiki [DGV04], ThingSpeak3, EVRYTHNG4, Xively5, ioBridge6,

HomeOS [RSL+04], Lab of Things7. One interesting approach for building IoT

system is to look at them as resources managed by software agents in a multi-

agent system. Keeping that in mind, we also selected a few multi-agent systems

platforms as terms of comparison: EVATAR [DS10], Super-Agents [Sta10] and

Self-Managed Cells [SBD+05]. The work on Super-Agents outlines an architec-

tural framework for governing interactions between resources, which can be seen

as a parallel of Open Objects’ capabilities. The concept of Open Super-Object

was taken from this work, although our approach is not compatible with the

principles of agent computing, as the internal logic of an agent is traditionally

immutable.

All of the platforms selected were chosen based on the variety of their nature

(centralised/decentralised, academic/industrial, cloud-based/local, experimen-

tal/production), state of maturity, target audiences. We are not assessing the

performance of the current implementation of the framework as we did not fo-

3http://www.thingspeak.com
4http://www.evrythng.com
5http://www.xively.com
6http://www.iobridge.com
7http://www.lab-of-things.com/

119

7.2. Comparative Evaluation

cus on efficiency during implementation. Several components and mechanisms

could be further optimised, such as caching connectivity status of objects in

the Behaviour Mapping behaviour, or caching previously used behaviour-object

mapping on the Rule Execution behaviour. Also, for the purposes of the ex-

periments, we did not implement certain trivial tasks, such as evaluation of

mathematical expressions, and instead we used individual capabilities for each

operation, which considerably increased the number of requests per rule.

Platforms E
n

d
-U

se
r

D
ev

el
op

m
en

t

A
d

-h
o
c

in
te

ra
ct

io
n

s

D
ec

en
tr

al
is

ed

L
ig

h
tw

ei
gh

t

In
te

ro
p

er
ab

il
it

y

A
p

p
li

ca
ti

on
L

ay
er

M
et

a-
D

es
ig

n

S
ec

u
ri

ty
/

P
ri

va
cy

L
ay

er

M
at

u
re

P
la

tf
o
rm

Open Objects - + + + + + +

Contiki + + + + + +

ThingSpeak - + + +

EVRYTHNG - - + + +

Xively - + + +

ioBridge - - + - +

HomeOS - + -

Lab of Things - + -

EVATAR - +

Super-Agents +

Self-Managed Cells - + + + + +

Table 7.1: Systematic comparison between a number of platforms according

to a number of characteristics. “+”: supported; “-”: partially support; “ ”:

no evidence of support.

The metrics used in the systematic comparison (Table 7.1) are derived from

the requirements in Chapter 2. In respect to End-User Development, we are

assessing if there is an EUD tool available for the platform, or how simple it

would be to implement one. We consider the Open Objects platform to have

partial support for EUD in the sense that the ECA rules and the behaviour are

120

Chapter 7. Evaluation

designed to have metaphors close to one that would work on a EUD tool, as

discussed previously. Rules, behaviours and capabilities can easily be translated

into a block language such as [P+96], [DP12] or [DDRF10]. Some experimental

studies [Gui10] were carried out in order to adapt the visual programming tool

ClickScript [Nae09] to the Web of Things platform that later became EVRY-

THNG. Also, ioBridge has an interface for creating simple actions (such as

HTTP requests) to be triggered by events coming from devices.

While it is an inherent part of the Open Objects framework design, other

platforms also provide support for decentralised and ad-hoc interactions

between objects. Contiki is a lightweight operating system that is embedded on

each device, enabling them to interact directly with eachother and, depending on

support from the application layer, be used on ad-hoc situations. Self-Managed

Cells can also engage in ad-hoc peer-to-peer interactions as shown in [SFLD+07].

In the context of this investigation, an important aspect of decentralised

frameworks is being lightweight enough to be embedded into low-powered de-

vices with little computation and memory capabilities (such as those based on

microcontrollers), which is the case of Open Objects and Contiki. For the pur-

poses of evaluation, we considered ”partially” lightweight, frameworks that allow

lightweight objects to be used directly, without the use of custom software or

hardware proxies, which is the case of the cloud-based solutions (ThingSpeak,

EVRYTHNG, Xively, ioBridge) but also the middleware-based ones (Home-

OS/Lab of Things and EVATAR).

Being interoperable with other systems is key in the Internet of Things

as heterogeneity of platforms and protocols is the rule. In this sense, we con-

sider that a platform has a higher level of interoperability when it uses standard

or commonly used communication protocols (e.g. providing RESTful API’s)

instead of closed proprietary formats, for example. Some of the platforms as-

sessed do not include an application layer (Lab of Things can be considered

an application layer over HomeOS), which makes it a necessity to have solid

interoperability. Others, such as EVATAR, Super-Agents and Self-Managed

Cells operate in a closed environment and rely on proprietary message formats,

which does not mean they cannot interact with other systems, instead, these

require custom software proxies to do so. In the current implementation of

Open Objects, capabilities are exposed and accessible through HTTP requests,

121

7.2. Comparative Evaluation

and their API’s (the Behaviour Descriptions) are open and simple to make use

of externally. Additionally, external services can be accessed by encapsulating

them with simple Behaviour Descriptions, although common service description

languages such as RSDL [Pas12] or WSDL [CDK+02] cannot be read and used

directly at the time of writing.

Another important distinction between platforms is that Open Objects,

EVATAR, Super-Agents and Self-Managed Cells can work as closed and com-

plete systems with its own application logic (in the form of rules, policies or

agent minds) written into their application layer. The others in this analysis

are base platforms that provide access to objects’ resources for external usage,

hence not including an application layer themselves. ioBridge, however, pro-

vides a simple rule system that could be considered support for applications

based on simple interactions between objects.

We see Meta-Design in this context as applications built in such way that

give end-users ability to change the behaviour of its applications. Self-Managed

Cells, for example, have Ponder2 [TLDS08] policy-based rules that describe the

behaviour of its applications. These policies can be changed during runtime,

thus giving the end-user (with the aid of an appropriate policy editor) the

possibility to further improve or adapt their system.

When dealing with personal artefacts, data protection and access con-

trol are of utmost importance. As explained before, Open Objects (alike io-

Bridge, EVATAR, Super-Agents and Self-Managed Cells) do not offer either

security or an access control layer. As Open-Objects’ communication is done

through common web protocols, one can assume that typical security mech-

anisms can be put in place, although this requires further investigation, par-

ticularly as decentralised and ad-hoc applications present challenges related to

trust, for example.

Finally, in terms of platform maturity, some of the platforms reviewed,

namely Contiki, ThingSpeak, EVRYTHNG, Xively and ioBridge, are well es-

tablished in the industry, with a large number of applications built onto them.

The others have a more experimental nature, thus being confined to controlled

research environments such as EVATAR, Super-Agents and Self-Managed Cells,

the latter having a substantial research work [SF09, SBD+05, DLS+05, SFLD+07]

put into it. Although the Open Objects framework is still in its infancy, having

122

Chapter 7. Evaluation

some experimental prototypes, and little experimentation on real-world scenar-

ios, our empirical experience with it shows ease of use, simplicity of implemen-

tation, and potential for becoming a mature platform once security mechanisms

are implemented and an appropriate EUD tool is developed.

7.3 Summary

In Chapter 2, we discussed a number of target requirements we would be aiming

at during the development of the present study. In this chapter, we presented

a critical discussion of the current status of the framework. We have selected

an heterogeneous range of ten other academic and industrial platforms to re-

view comparatively. Our evaluation shows that, despite being in its infancy and

lacking important features (particularly related to security), the current imple-

mentation offers a significant number of characteristics that makes it unique in

the field, and appropriate to be used in the scenarios envisioned throughout this

thesis.

123

124

8
Conclusions

This chapter provides final remarks with an overview of the work carried out and

its contributions, and a discussion of future work potentiated by the case-studies

and evaluation.

8.1 Review and Discussion of the Achievements

While we witness an increasing number of cheap small computational power

that is heterogenous and more and more segmented, we wondered where this

would lead us, what our world would look like in the next years. We envisioned

a reality where people are given back control over their physical objects and over

what they do, instead of what is dictated by those who design and produce them.

We believe that in many cases — such as the examples covered in this thesis —

giving people simple ways of controlling the functionality of their devices has

the potential to be more powerful than designing highly intelligent systems that

try to predict people’s activities and desires. After all, No one enjoys having

their work interrupted by a talking paper clip that “intelligently” assumed we

125

8.1. Review and Discussion of the Achievements

were doing something else. Instead, by creating tools that make it simple for

users to control and define actions that occur with the objects that surround

them, these actions should become easier to predict and in case of errors, the

user has more control over the system and should be more able to understand

and fix the problem. Naturally, these are our speculations and need further

study.

End-User Development (EUD) is defined as a field that studies metaphors

and techniques that empower users by enabling them to develop and modify the

tools used in their everyday lives. With this objective in mind, we set off to de-

sign a framework to support EUD over computationally capable physical objects

and services provided by external sources (such as weather forecasts or cloud-

based file storage). These scenarios represent highly dynamic systems composed

of heterogeneous devices with limited capabilities. User-oriented orchestration

of functionality in these kinds of systems presents a number of challenges. Each

of these challenges and our approach to them is briefly discussed below.

In order to provide support for EUD, we define the interactions between

objects as rules that can be added and modified through the lifetime of the

system. In our implementation, these rules are specified using a custom syn-

tax that is easily mappable into a thin EUD layer, and expressive enough to

describe complex functionalities orchestrating a distributed and decentralised

system composed of domain dependent, domain independent and system be-

haviours. Complex matters such as decentralisation, distribution, message pass-

ing and behaviour to object mapping are abstracted away from the user and

handled by System Behaviours. An important aspect is that in order for the

rules to make sense to the common user, capabilities and behaviours need to be

described in a simple and clear way.

The concept of Behaviour not only simplifies and standardises the usage of

objects, but also focuses the rule creation on functionality rather than on the

objects themselves. This facilitates the creation of rules that produce ad-hoc

and/or resilient interactions. Furthermore, the fact that rules can be used to

define new capabilities and add new behaviours (or modify existing) to existing

objects, allows for the Meta-Design of objects. We further pushed the concept

of Meta-Design by introducing the concept of Hollow Object: an Open Object

that possesses low-level capabilities to interact with its sensors and actuators,

126

Chapter 8. Conclusions

but is not designed with any particular functionality in mind. Instead, it is

provided as a generic building block for the user to add functionality to, or to

be used as part of an application composed of a group of objects.

In order to achieve a high level of decentralisation while keeping all objects

treated equally as first-class citizens within the framework, we had to develop

an implementation that was lightweight enough to be installed on very hard-

ware constrained devices such as small microcontrollers. Our approach was to

consider that all components of the framework (including system management

ones) should be split into atomic, independent and distributable behaviours

without a shared memory pool. We also approached the implementation with

sharing and outsourcing of capabilities in mind. This means that (1) an object

is able to share the capabilities it possesses with other objects and (2) an ob-

ject can outsource a particular capability that it does not possess to another

object. This makes it possible to have partial implementations of the frame-

work on more lightweight objects, as long as, as a whole, the group of objects

plus any external services involved in an application can display all the System

Behaviours.

In today’s world of interconnected services and omnipresent information, in-

teroperability of systems is crucial. In our implementation, we have approached

interoperability at every level of the framework. Behaviours (and their capabil-

ities) can be accessed and requested through standard Web interfaces described

by behaviour descriptions, which are defined in an open JSON format, simple

to interpret by external systems. All system components are themselves be-

haviours, therefore, easily accessible. Furthermore, because system behaviours

are atomic and independent, one can imagine applications where some or all

of them are effortlessly replaced by custom alternatives that comply with the

same behaviour descriptions, e.g. a more advanced event broker that synchro-

nises events with other event brokers. In the current implementation, rules are

also specified in JSON and can be created or modified from outside the system.

Different rule creation tools can be developed in order to target applications

with specific needs, for example.

8.2 Future Work

This thesis lays the ground for some future work, described ahead.

127

8.2. Future Work

8.2.1 End-User Development Tool

The aim of this thesis was to produce a framework and an implementation that

offers support for End-User Development. Therefore, the main path for future

investigation is towards adapting or creating a tool that makes it easy enough

for a common user to define rules and create new capabilities and behaviours.

The rules are designed to map directly into a data-flow block based visual pro-

gramming language (such as [DDRF10, DP12]), although other kinds of tools

could also be adapted to comply with the current rule specification.

8.2.2 Maturing the Platform

In Chapter 7 we outlined some limitations of the current implementation of the

framework. These will naturally be the next steps of development. There needs

to be further research into the issues of Privacy and Trust on decentralised

and unstable networks of objects controlled by end-users. This is key when

maturing the framework as in our scenarios we envision objects that have access

to sensitive and private data. Also, it is important to address problems of

redundancy and inconsistency of rules at the framework level, to allow it to

be used on larger scale and more complex scenarios. Furthermore, there needs

to be future practical work on implementing or adapting an existing efficient

mathematical expression engine and methods for validating rules and behaviour

descriptions.

8.2.3 On Predicates First vs Context First when designing an End-User

Development language

As a side conclusion, during our work and research on the rule language we saw a

pattern emerging: when people communicate, they often provide a subject and

a predicate first, and then narrow down the context. For instance, in the phrase

“Search for The Beatles on my phone and play it on my Hi-Fi”, the context

is provided after each predicate. When an instruction is provided in such way,

it’s harder for a machine to assist the user during its formulation compared to

an instruction of the kind “Hi-Fi play phone music search The Beatles”. The

reason is that when we provide context first, the number of options is smaller:

the Hi-Fi has a relatively small number of actions that it can perform (e.g.

“play”, “stop”, “pause”, etc); the action “play” is expecting music, therefore

128

Chapter 8. Conclusions

the machine may choose to present the user options of this type next; the action

”search” expects the user to type in search terms related to music (e.g. genres,

authors, etc), therefore a suitable interface may be presented to the user. This

is one of the differences between machine languages and human languages and it

is also made obvious in object-oriented languages: we would type the sequence

of the kind “if car has petrol then turn car on” but we may think “turn on

the car if it has petrol”. As opposed to when a software developer provides

instructions to a machine, a normal user is not expected to adapt its language

to the machine language: systems should try to bridge the gap between its

language and the one of the user, not the other way round. We believe this is

an area that requires some further studying as it seems to be a fundamental gap

in the human-machine communication bridge.

129

130

Bibliography

[ADLH+02] Bob Atkinson, Giovanni Della-Libera, Satoshi Hada, Maryann

Hondo, Phillip Hallam-Baker, Johannes Klein, Brian LaMacchia,

Paul Leach, John Manferdelli, Hiroshi Maruyama, et al. Web ser-

vices security (ws-security). Specification, Microsoft Corporation,

2002.

[AIM10] Luigi Atzori, Antonio Iera, and Giacomo Morabito. The internet

of things: A survey. Computer Networks, 54(15):2787–2805, 2010.

[AM07] Juan Carlos Augusto and Paul McCullagh. Ambient intelligence:

Concepts and applications. Computer Science and Information

Systems/ComSIS, 4(1):1–26, 2007.

[AWD04] Mehran Abolhasan, Tadeusz Wysocki, and Eryk Dutkiewicz. A

review of routing protocols for mobile ad hoc networks. Ad hoc

networks, 2(1):1–22, 2004.

[BHBR10] Carl Bergenhem, Qihui Huang, Ahmed Benmimoun, and Tom

Robinson. Challenges of platooning on public motorways. In

17th World Congress on Intelligent Transport Systems, pages 1–

12, 2010.

[BLFF96] Tim Berners-Lee, Roy Fielding, and Henrik Frystyk. Hypertext

transfer protocol–http/1.0, 1996.

[CAJ09] Diane J Cook, Juan C Augusto, and Vikramaditya R Jakkula.

Ambient intelligence: Technologies, applications, and opportuni-

ties. Pervasive and Mobile Computing, 5(4):277–298, 2009.

131

Bibliography

[CCS+11] Dong Chen, Guiran Chang, Dawei Sun, Jiajia Li, Jie Jia, and

Xingwei Wang. Trm-iot: A trust management model based on

fuzzy reputation for internet of things. Computer Science and

Information Systems, 8(4):1207–1228, 2011.

[CDK+02] Francisco Curbera, Matthew Duftler, Rania Khalaf, William

Nagy, Nirmal Mukhi, and Sanjiva Weerawarana. Unraveling the

web services web: an introduction to soap, wsdl, and uddi. IEEE

Internet computing, 6(2):86–93, 2002.

[CFMD10] Joëlle Coutaz, Emeric Fontaine, Nadine Mandran, and Alexandre

Demeure. About composing our own smart home. In AVI, pages

405–406, 2010.

[CK03] Chee-Yee Chong and Srikanta P Kumar. Sensor networks: evo-

lution, opportunities, and challenges. Proceedings of the IEEE,

91(8):1247–1256, 2003.

[CoA12] Application Protocol CoAP. Coap: An application protocol for

billions of tiny internet nodes. 2012.

[Cos07] Roger L Costello. Building web services the rest way. UR L:

http://www. xfront. com/REST-Web-Services. html. Ultima Con-

sulta, 11:2007, 2007.

[CSDC11] Walter Colitti, Kris Steenhaut, and Niccolò De Caro. Integrating

wireless sensor networks with the web. Extending the Internet to

Low power and Lossy Networks (IP+ SN 2011), 2011.

[DBS+01] Ken Ducatel, Marc Bogdanowicz, Fabiana Scapolo, Jos Leijten,

and Jean-Claude Burgelman. Scenarios for ambient intelligence in

2010. Office for official publications of the European Communities,

2001.

[DDRF10] José Danado, Marcin Davies, Paulo Ricca, and Anna Fensel.

An authoring tool for user generated mobile services. In Future

Internet-FIS 2010, pages 118–127. Springer, 2010.

132

Bibliography

[DGV04] Adam Dunkels, Bjorn Gronvall, and Thiemo Voigt. Contiki-a

lightweight and flexible operating system for tiny networked sen-

sors. In Local Computer Networks, 2004. 29th Annual IEEE In-

ternational Conference on, pages 455–462. IEEE, 2004.

[DHC05] Faiyaz Doctor, Hani Hagras, and Victor Callaghan. A fuzzy em-

bedded agent-based approach for realizing ambient intelligence

in intelligent inhabited environments. Systems, Man and Cy-

bernetics, Part A: Systems and Humans, IEEE Transactions on,

35(1):55–65, 2005.

[DLS+05] Naranker Dulay, Emil Lupu, Morris Sloman, Joe Sventek, Nagwa

Badr, and Stephen Heeps. Self-managed cells for ubiquitous sys-

tems. In Computer Network Security, pages 1–6. Springer, 2005.

[DP12] José Danado and Fabio Paternò. Puzzle: a visual-based environ-

ment for end user development in touch-based mobile phones. In

Human-Centered Software Engineering, pages 199–216. Springer,

2012.

[DS10] Nikolaos Dipsis and Kostas Stathis. Evatar–a prototyping middle-

ware embodying virtual agents to autonomous robots. In Ambient

Intelligence and Future Trends-International Symposium on Am-

bient Intelligence (ISAmI 2010), pages 167–175. Springer, 2010.

[EFGK03] Patrick Th Eugster, Pascal A Felber, Rachid Guerraoui, and

Anne-Marie Kermarrec. The many faces of publish/subscribe.

ACM Computing Surveys (CSUR), 35(2):114–131, 2003.

[Ehn08] Pelle Ehn. Participation in design things. In Proceedings of

the Tenth Anniversary Conference on Participatory Design 2008,

pages 92–101. Indiana University, 2008.

[Erl08] Thomas Erl. Soa: principles of service design, volume 1. Prentice

Hall Upper Saddle River, 2008.

[Fer99] Jacques Ferber. Multi-agent systems: an introduction to dis-

tributed artificial intelligence, volume 1. Addison-Wesley Reading,

1999.

133

Bibliography

[FG06] Gerhard Fischer and Elisa Giaccardi. Meta-design: A framework

for the future of end-user development. In End user development,

pages 427–457. Springer, 2006.

[FGM+99] Roy Fielding, Jim Gettys, Jeffrey Mogul, Henrik Frystyk, Larry

Masinter, Paul Leach, and Tim Berners-Lee. Hypertext transfer

protocol–http/1.1, 1999.

[FGY+04] Gerhard Fischer, Elisa Giaccardi, Yunwen Ye, Alistair G Sutcliffe,

and Nikolay Mehandjiev. Meta-design: a manifesto for end-user

development. Communications of the ACM, 47(9):33–37, 2004.

[FS11] Kevin R Fall and W Richard Stevens. TCP/IP illustrated, volume

1: The protocols. addison-Wesley, 2011.

[FW99] Klaus Finkenzeller and Rachel Waddington. RFID handbook:

radio-frequency identification fundamentals and applications. Wi-

ley New York, 1999.

[Gar05] Lars Marius Garshol. Bnf and ebnf: What are they and how do

they work. 16, 2005.

[GBCM11] Frieder Ganz, Payam Barnaghi, Francois Carrez, and Klaus

Moessner. Context-aware management for sensor networks. In

Proceedings of the 5th International Conference on Communica-

tion System Software and Middleware, page 6. ACM, 2011.

[GHL05] Alfonso Gárate, Nati Herrasti, and Antonio López. Genio: an am-

bient intelligence application in home automation and entertain-

ment environment. In Proceedings of the 2005 joint conference on

Smart objects and ambient intelligence: innovative context-aware

services: usages and technologies, pages 241–245. ACM, 2005.

[Gib10] Alicia M Gibb. New media art, design, and the Arduino micro-

controller: A malleable tool. PhD thesis, Pratt Institute, 2010.

[GT09] Dominique Guinard and Vlad Trifa. Towards the web of things:

Web mashups for embedded devices. In Workshop on Mashups,

Enterprise Mashups and Lightweight Composition on the Web

134

Bibliography

(MEM 2009), in proceedings of WWW (International World Wide

Web Conferences), Madrid, Spain, page 15, 2009.

[GTW10] Dominique Guinard, Vlad Trifa, and Erik Wilde. A resource ori-

ented architecture for the web of things. In Internet of Things

(IOT), 2010, pages 1–8. IEEE, 2010.

[Gui10] Dominique Guinard. Mashing up your web-enabled home.

Springer, 2010.

[Hal84] Daniel Conrad Halbert. Programming by example. PhD thesis,

University of California, Berkeley, 1984.

[HDK08] Bjorn Hartmann, Scott Doorley, and Scott R Klemmer. Hacking,

mashing, gluing: Understanding opportunistic design. Pervasive

Computing, IEEE, 7(3):46–54, 2008.

[Hil92] Daniel D Hils. Visual languages and computing survey: Data

flow visual programming languages. Journal of Visual Languages

& Computing, 3(1):69–101, 1992.

[HKS09] Stephan Haller, Stamatis Karnouskos, and Christoph Schroth.

The internet of things in an enterprise context. Springer, 2009.

[HMF+08] Atsushi Hashimoto, Naoyuki Mori, Takuya Funatomi, Yoko Ya-

makata, Koh Kakusho, and Michihiko Minoh. Smart kitchen: A

user centric cooking support system. In Proceedings of IPMU,

volume 8, pages 848–854, 2008.

[HPJ05] Yih-Chun Hu, Adrian Perrig, and David B Johnson. Ariadne: A

secure on-demand routing protocol for ad hoc networks. Wireless

networks, 11(1-2):21–38, 2005.

[IGH+11] Valérie Issarny, Nikolaos Georgantas, Sara Hachem, Apostolos

Zarras, Panos Vassiliadist, Marco Autili, Marco Aurélio Gerosa,

and Amira Ben Hamida. Service-oriented middleware for the fu-

ture internet: state of the art and research directions. Journal of

Internet Services and Applications, 2(1):23–45, 2011.

135

Bibliography

[KEW02] Bhaskar Krishnamachari, Deborah Estrin, and Stephen Wicker.

The impact of data aggregation in wireless sensor networks. In

Distributed Computing Systems Workshops, 2002. Proceedings.

22nd International Conference on, pages 575–578. IEEE, 2002.

[KKFS10] Gerd Kortuem, Fahim Kawsar, Daniel Fitton, and Vasughi Sun-

dramoorthy. Smart objects as building blocks for the internet of

things. Internet Computing, IEEE, 14(1):44–51, 2010.

[KT07] Hiroko Kato and Keng T Tan. Pervasive 2d barcodes for cam-

era phone applications. Pervasive Computing, IEEE, 6(4):76–85,

2007.

[KZL+01] Jiejun Kong, Petros Zerfos, Haiyun Luo, Songwu Lu, and Lixia

Zhang. Providing robust and ubiquitous security support for mo-

bile ad hoc networks. In 2012 20th IEEE International Conference

on Network Protocols (ICNP), pages 0251–0251. IEEE Computer

Society, 2001.

[Law08] George Lawton. Developing software online with platform-as-a-

service technology. Computer, 41(6):13–15, 2008.

[LPKW06] Henry Lieberman, Fabio Paternò, Markus Klann, and Volker

Wulf. End-user development: An emerging paradigm. Springer,

2006.

[MB76] Robert M Metcalfe and David R Boggs. Ethernet: distributed

packet switching for local computer networks. Communications

of the ACM, 19(7):395–404, 1976.

[MD88] Paul Mockapetris and Kevin J Dunlap. Development of the do-

main name system, volume 18. ACM, 1988.

[MF10] Friedemann Mattern and Christian Floerkemeier. From the in-

ternet of computers to the internet of things. In From active

data management to event-based systems and more, pages 242–

259. Springer, 2010.

136

Bibliography

[Mul07] Geoff Mulligan. The 6lowpan architecture. In Proceedings of the

4th workshop on Embedded networked sensors, pages 78–82. ACM,

2007.

[Mye90] Brad A Myers. Taxonomies of visual programming and program

visualization. Journal of Visual Languages & Computing, 1(1):97–

123, 1990.

[Nae09] Lukas Naef. ClickScript a visual programming language in the

browser. PhD thesis, Master thesis, ETH Zurich, Switzerland,

2009.

[NL94] Jakob Nielsen and Jonathan Levy. Measuring usability: preference

vs. performance. Communications of the ACM, 37(4):66–75, 1994.

[NRL07] Pavel V Nikitin, KVS Rao, and Steve Lazar. An overview of near

field uhf rfid. In IEEE international Conference on RFID, volume

167. Citeseer, 2007.

[P+96] Miller Puckette et al. Pure data: another integrated computer

music environment. Proceedings of the Second Intercollege Com-

puter Music Concerts, pages 37–41, 1996.

[P+99] Bruce Perens et al. The open source definition. Open sources:

voices from the open source revolution, pages 171–85, 1999.

[Pas12] Michael Pasternak. Restful service description language, Octo-

ber 19 2012. US Patent App. 13/656,032.

[Per08] Charles E Perkins. Ad hoc networking. Addison-Wesley Profes-

sional, 2008.

[PPW06] Alexandra Poulovassilis, George Papamarkos, and Peter T Wood.

Event-condition-action rule languages for the semantic web. In

Current Trends in Database Technology–EDBT 2006, pages 855–

864. Springer, 2006.

[QBVG08] Till Quack, Herbert Bay, and Luc Van Gool. Object recognition

for the internet of things. In The Internet of Things, pages 230–

246. Springer, 2008.

137

Bibliography

[R+99] Eric S Raymond et al. The magic cauldron, 1999.

[Res01] Eric Rescorla. SSL and TLS: designing and building secure sys-

tems, volume 1. Addison-Wesley Reading, 2001.

[RMMH+09] Mitchel Resnick, John Maloney, Andrés Monroy-Hernández, Na-

talie Rusk, Evelyn Eastmond, Karen Brennan, Amon Millner, Eric

Rosenbaum, Jay Silver, Brian Silverman, et al. Scratch: program-

ming for all. Communications of the ACM, 52(11):60–67, 2009.

[RSL+04] Neal Rosen, Rizwan Sattar, Robert W Lindeman, Rahul Simha,

and Bhagirath Narahari. Homeos: Context-aware home connec-

tivity. In International Conference on Wireless Networks, pages

739–744, 2004.

[RSP11] Paulo Ricca, Kostas Stathis, and Nick Peach. A lightweight service

registry for unstable ad-hoc networks. In Ambient Intelligence,

pages 136–140. Springer, 2011.

[SBD+05] Joseph Sventek, Nagwa Badr, Naranker Dulay, Steven Heeps,

Emil Lupu, and Morris Sloman. Self-managed cells and their fed-

eration. 2005.

[SF09] Alberto E Schaeffer Filho. Supporting management interaction

and composition of self-managed cells. PhD thesis, Imperial Col-

lege London, 2009.

[SFLD+07] Alberto Schaeffer-Filho, Emil Lupu, Naranker Dulay, Sye Loong

Keoh, Kevin Twidle, Morris Sloman, Steven Heeps, Stephen

Strowes, and Joe Sventek. Towards supporting interactions be-

tween self-managed cells. In Self-Adaptive and Self-Organizing

Systems, 2007. SASO’07. First International Conference on,

pages 224–236. IEEE, 2007.

[SGAP00] Katayoun Sohrabi, Jay Gao, Vishal Ailawadhi, and Gregory J

Pottie. Protocols for self-organization of a wireless sensor network.

IEEE personal communications, 7(5):16–27, 2000.

138

Bibliography

[SK11] Subashini Subashini and V Kavitha. A survey on security issues

in service delivery models of cloud computing. Journal of Network

and Computer Applications, 34(1):1–11, 2011.

[SKG+09] Patrik Spiess, Stamatis Karnouskos, Dominique Guinard, Domnic

Savio, Oliver Baecker, LMSD Souza, and Vlad Trifa. Soa-based

integration of the internet of things in enterprise services. In Web

Services, 2009. ICWS 2009. IEEE International Conference on,

pages 968–975. IEEE, 2009.

[SKPB07] Kostas Stathis, Stella Kafetzoglou, Symeon Papavassiliou, and

Stefano Bromuri. Sensor network grids: Agent environments com-

bined with qos in wireless sensor networks. In Autonomic and

Autonomous Systems, 2007. ICAS07. Third International Con-

ference on, pages 47–47. IEEE, 2007.

[SS09] Fariba Sadri and Kostas Stathis. Ambient intelligence. Ubiquitous

and Pervasive Computing: Concepts, Methodologies, Tools, and

Applications: Concepts, Methodologies, Tools, and Applications,

page 121, 2009.

[Sta10] Kostas Stathis. Autonomic computing with self-governed super-

agents. In Self-Adaptive and Self-Organizing Systems Workshop

(SASOW), 2010 Fourth IEEE International Conference on, pages

76–79. IEEE, 2010.

[STF07] Dairazalia Sanchez, Monica Tentori, and Jesus Favela. Hidden

markov models for activity recognition in ambient intelligence en-

vironments. In Current Trends in Computer Science, 2007. ENC

2007. Eighth Mexican International Conference on, pages 33–40.

IEEE, 2007.

[TB06] George Theodorakopoulos and John S Baras. On trust models

and trust evaluation metrics for ad hoc networks. Selected Areas

in Communications, IEEE Journal on, 24(2):318–328, 2006.

[TLDS08] Kevin Twidle, Emil Lupu, Naranker Dulay, and Morris Sloman.

Ponder2-a policy environment for autonomous pervasive systems.

139

Bibliography

In Policies for Distributed Systems and Networks, 2008. POLICY

2008. IEEE Workshop on, pages 245–246. IEEE, 2008.

[TP06] Scott E Thompson and Srivatsan Parthasarathy. Moore’s law: the

future of si microelectronics. Materials Today, 9(6):20–25, 2006.

[Tri11] Vlad Mihai Trifa. Building blocks for a participatory Web of

things. PhD thesis, Diss., Eidgenössische Technische Hochschule

ETH Zürich, Nr. 19890, 2011, 2011.

[Wan06] Roy Want. An introduction to rfid technology. Pervasive Com-

puting, IEEE, 5(1):25–33, 2006.

[Wan11] Guanhua Wang. Improving data transmission in web applications

via the translation between xml and json. In Communications and

Mobile Computing (CMC), 2011 Third International Conference

on, pages 182–185. IEEE, 2011.

[Wei91] Mark Weiser. The computer for the 21st century. Scientific amer-

ican, 265(3):94–104, 1991.

[Wil07] Erik Wilde. Putting things to rest. School of Information, 2007.

[YWZ+04] Kun Yue, Xiao-Ling Wang, Ao-Ying Zhou, et al. Underlying tech-

niques for web services: A survey. Journal of software, 15(3):428–

442, 2004.

[ZEBD98] Eli Zelkha, Brian Epstein, S Birrell, and C Dodsworth. From

devices to ambient intelligence. In Digital living room conference,

volume 6, 1998.

140

Appendices

141

A
Open Object System Behaviours:

Capability Algorithms

This Appendix lists the full pseudo-code algorithms of the System Behaviours

capabilities, as explained in Chapter 5.

143

A.1. Behaviour Mapping

A.1 Behaviour Mapping

Procedure A.1 Behaviour Mapping — Register Behaviour

Input: BehaviourID; ObjectURI; SubscribeToEvents

if BehaviourDatabase does not contain BehaviourID then

BehaviourDatabase .AddToTop(BehaviourID, new List)

end if

BehaviourDatabase .Get(BehaviourID) .Add(new Tuple(ObjectURI, true))

ActivateBehaviour(BehaviourID, ObjectURI)

if SubscribeToEvents then

EventBroker .Subscribe(BehaviourID + ”.*”, ObjectURI)

end if

Procedure A.2 Behaviour Mapping — Deregister Behaviour

Input: BehaviourID; ObjectURI; UnsubscribeToEvents

if BehaviourDatabase has BehaviourID then

BehaviourDatabase .Get(BehaviourID) .Remove(ObjectURI)

Raise Event(BehaviourDeactivated(BehaviourID, ObjectURI))

if SubscribeToEvents then

EventBroker .Unsubscribe(BehaviourID + ”.*”, ObjectURI)

end if

end if

Procedure A.3 Behaviour Mapping — Activate Behaviour

Input: BehaviourID; ObjectURI

if BehaviourDatabase has BehaviourID then

BehaviourDatabase .Get(BehaviourID) .SetActive(ObjectURI, true)

end if

144

Appendix A. Open Object System Behaviours: Capability Algorithms

Procedure A.4 Behaviour Mapping — Deactivate Behaviour

Input: BehaviourID; ObjectURI

if BehaviourDatabase has BehaviourID then

BehaviourDatabase .Get(BehaviourID) .SetActive(ObjectURI, false)

end if

Procedure A.5 Behaviour Mapping — Rank

Input: BehaviourID; ObjectURI; Rank

if BehaviourDatabase has BehaviourID then

BehaviourDatabase .Get(BehaviourID) .SetRank(ObjectURI, Rank)

end if

Procedure A.6 Behaviour Mapping — Get Behaviour URIs

Input: BehaviourID

Output: ObjectURIList

for all Object in BehaviourDatabase .Get(BehaviourID) sorted by descending

Ranking do

ObjectURIList ← new List

if Object .Uri is not accessible then

if object .Uri is not Object .ManualRanking then

Penalise(Object)

end if

else

ObjectURIList .Add(Object .Uri)

end if

return ObjectURIList

end for

145

A.2. Rule Execution

A.2 Rule Execution

Procedure A.7 Rule Execution — Execute

Input: Code

Output: Response

for all Instruction in Code do

if Instruction .Execution is Bottom-up then

for all Parameter in Instruction .Parameters do

if Parameter .Value is Instruction then . execute instructions in

parameters recursively

Parameter .SetValue(Execute(Parameter .value))

end if

end for

end if . simplified capability request.

return Response ← Instruction .Request .Behaviour .Capability .

simplified request capability in the parameter

end for

return Response

A.3 Rule Repository

Procedure A.8 Rule Repository — Register Rule

Input: Rule

if Rules .Get(Rule.event) is null then

Rules .Add(Rule.event, new Map)

end if

Rules .Get(Rule.Event) .add(Rule.ID, Rule)

146

Appendix A. Open Object System Behaviours: Capability Algorithms

Procedure A.9 Rule Repository — Deregister Rule

Input: RuleID

for all Event in Rules do

event .Remove(RuleID)

end for

Procedure A.10 Rule Repository — Activate Rule

Input: RuleID

for all Event in Rules do

Event .Get(RuleID) .Active ← true

end for

Procedure A.11 Rule Repository — Deactivate Rule

Input: RuleID

for all Event in Rules do

Event .Get(RuleID) .active ← false

end for

Procedure A.12 Rule Repository — Get Rules By Event

Input: Event

Output: EventRules

EventRules ← Rules .Get(Event.Type)

for all Rule in EventRules do

if not Rule .Active or ParseCondition(rule .Condition, Event) is false then

EventRules .Remove(Rule)

end if

end for

return EventRules

147

A.3. Rule Repository

Procedure A.13 Rule Repository — Get Rule

Input: RuleID

Output: Rule

for all RulesPerEvent in Rules do

if RulesPerEvent contains RuleID then

return RulesPerEvent .Get(RuleID)

end if

end for

return EventRules

148

Appendix A. Open Object System Behaviours: Capability Algorithms

A.4 Event Broker

Procedure A.14 Event Broker — Forward Event

Input: InEvent

Output: Outcome

. Store the event in EventHistory (maintain max # of stored events)

if EventHistory .Length > MaximumHistoryLength then

EventHistory .Remove(0)

end if

EventHistory .Add(InEvent)

. Send event to the recipients

for all Recipient in inEvent .To do . External recipients may require

parameters to be inserted into the recipient URI

Replace Parameter Values in Recipient

Send InEvent to Recipient

end for

. Look for subscribers of this event and forward it to them

if InEvent .Visibility is Public then

Subscribers ← Subscriptions .GetMatches(InEvent)

for all Subscriber in Subscribers do

Send InEvent to Subscriber

end for

end if

Rules ← RuleStorage .GetRulesByEventType(InEvent)

. Request Execution of Rules

for all Rule in Rules do

Outcome ← RuleExecution .Execute(Rule)

end for

return Outcome

149

A.5. Behaviour Advertising

Procedure A.15 Event Broker — Subscribe

Input: EventSelector, Subscriber

if Subscriptions. Get(EventSelector) is null then

Subscriptions. Add(EventSelector, new Map)

end if

Subscriptions. Get(EventSelector) .Add(Subscriber)

Procedure A.16 Event Broker — Unsubscribe

Input: EventSelector, Subscriber

Subscriptions .Get(EventSelector) .Remove(Subscriber)

A.5 Behaviour Advertising

Procedure A.17 Behaviour Advertising — Register Behaviour URI

Input: BehaviourDescriptionURI

BehaviourDescriptions .Add(BehaviourDescriptionURI)

Raise Event NewBehaviour(BehaviourDescription .BehaviourID)

Procedure A.18 Behaviour Advertising — Register Behaviour

Input: BehaviourDescription

Store BehaviourDescription into InternalURI

BehaviourDescriptions .Add(InternalURI)

Raise Event NewBehaviour(BehaviourDescription .BehaviourID)

Procedure A.19 Behaviour Advertising — Advertise

return Behaviours

150

