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Abstract

The standard loss functions used in the literature on probabilistic pre-
diction are the log loss function, the Brier loss function, and the spherical
loss function; however, any computable proper loss function can be used
for comparison of prediction algorithms. This note shows that the log loss
function is most selective in that any prediction algorithm that is opti-
mal for a given data sequence (in the sense of the algorithmic theory of
randomness) under the log loss function will be optimal under any com-
putable proper mixable loss function; on the other hand, there is a data
sequence and a prediction algorithm that is optimal for that sequence
under either of the two other loss functions but not under the log loss
function.

Keywords: algorithmic theory of randomness, mixability, predictive
complexity, predictive randomness, probabilistic prediction, proper loss
functions.

1 Introduction

In his work Yuri Gurevich has emphasized practical aspects of algorithmic ran-
domness. In particular, he called for creating a formal framework allowing us to
judge whether observed events can be regarded as random or point to something
dubious going on (see, e.g., the discussion of the lottery organizer’s wife winning
the main prize in [5]). The beautiful classical theory of randomness started by
Andrey Kolmogorov and Per Martin-Löf has to be restricted in order to achieve
this goal and avoid its inherent incomputabilities and asymptotics.

This note tackles another practically-motivated question: what are the best
loss functions for evaluating probabilistic prediction algorithms? Answering this
question, however, requires extending rather than restricting the classical theory
of algorithmic randomness.
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In the empirical work on probabilistic prediction in machine learning (see,
e.g., [2]) the most standard loss functions are log loss and Brier loss, and spher-
ical loss is a viable alternative; all these loss functions will be defined later in
this note. It is important to understand which of these three loss functions is
likely to lead to better prediction algorithms. We formalize this question using
a generalization of the notion of Kolmogorov complexity called predictive com-
plexity (see, e.g., [7]; it is defined in Section 3). Our answer is that the log loss
function is likely to lead to better prediction algorithms as it is more selective: if
a prediction algorithm is optimal under the log loss function, it will be optimal
under the Brier and spherical loss functions, but the opposite implications are
not true in general.

As we discuss at the end of Section 3, the log loss function corresponds to the
classical theory of randomness. Therefore, our findings confirm once again the
importance of the classical theory and are not surprising at all from the point
of view of that theory. But from the point of view of experimental machine
learning, our recommendation to use the log loss function rather than Brier or
spherical is less trivial.

This note is, of course, not the first to argue that the log loss function is
fundamental. For example, David Dowe has argued for it since at least 2008
([3], footnote 175; see [4], Section 4.1, for further references). Another paper
supporting the use of the log loss function is Bickel’s [1].

2 Loss Functions

We are interested in the problem of binary probabilistic prediction: the task is
to predict a binary label y ∈ {0, 1} with a number p ∈ [0, 1]; intuitively, p is the
predicted probability that y = 1. The quality of the prediction p is measured
by a loss function λ : [0, 1]× {0, 1} → R ∪ {+∞}. Intuitively, λ(p, y) is the loss
suffered by a prediction algorithm that outputs a prediction p while the actual
label is y; the value +∞ (from now on abbreviated to ∞) is allowed. Following
[10], we will write λy(p) in place of λ(p, y), and so identify λ with the pair of
functions (λ0, λ1) where λ0 : [0, 1] → R ∪ {+∞} and λ1 : [0, 1] → R ∪ {+∞}.
We will assume that λ0(0) = λ1(1) = 0, that the function λ0 is increasing, that
the function λ1 is decreasing, and that λy(p) <∞ unless p ∈ {0, 1}.

A loss function λ is called η-mixable for η ∈ (0,∞) if the set{
(u, v) ∈ [0, 1]2 | ∃p ∈ [0, 1] : u ≤ e−ηλ(p,0) and v ≤ e−ηλ(p,1)

}
is convex; we say that λ is mixable if it is η-mixable for some η.

A loss function λ is called proper if, for all p, q ∈ [0, 1],

Ep λ(p, ·) ≤ Ep λ(q, ·), (1)

where Ep f := pf(1) + (1− p)f(0) for f : {0, 1} → R. It is strictly proper if the
inequality in (1) is strict whenever q 6= p.
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We will be only interested in computable loss functions (the notion of com-
putability is not defined formally in this note; see, e.g., [7]). We will refer to
the loss functions satisfying the properties listed above as CPM (computable
proper mixable) loss functions.

Besides, we will sometimes make the following smoothness assumptions:

• λ0 is infinitely differentiable over the interval [0, 1) (the derivatives at 0
being one-sided);

• λ1 is infinitely differentiable over the interval (0, 1] (the derivatives at 1
being one-sided);

• for all p ∈ (0, 1), (λ′0(p), λ′1(p)) 6= 0.

We will refer to the loss functions satisfying all the properties listed above as
CPMS (computable proper mixable smooth) loss functions.

Examples

The most popular loss functions in machine learning are the log loss function

λ1(p) := − ln p, λ0(p) := − ln(1− p)

and the Brier loss function

λ(p, y) := (y − p)2.

Somewhat less popular is the spherical loss function

λ1(p) := 1− p√
p2 + (1− p)2

, λ0(p) := 1− 1− p√
p2 + (1− p)2

.

All three loss functions are mixable, as we will see later. They are also com-
putable (obviously), strictly proper (this can be checked by differentiation), and
satisfy the smoothness conditions (obviously). Being computable and strictly
proper, these loss functions can be used to measure the quality of probabilistic
predictions.

Mixability and Propriety

Intuitively, propriety can be regarded as a way of parameterizing loss functions,
and we get it almost for free for mixable loss functions. The essence of a loss
function is its prediction set

{(λ0(p), λ1(p)) | p ∈ [0, 1]} . (2)

When given a prediction set, we can parameterize it by defining (λ0(p), λ1(p))
to be the point (x, y) of the prediction set at which inf(x,y)(py + (1 − p)x) is
attained. This will give us a proper loss function. And if the original loss
function satisfies the smoothness conditions (and so, intuitively, the prediction
set does not have corners), the new loss function will be strictly proper.
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3 Repetitive Predictions

Starting from this section we consider the situation, typical in machine learning,
where we repeatedly observe data z1, z2, . . . and each observation zt = (xt, yt) ∈
Z = X × {0, 1} consists of an object xt ∈ X and its label yt ∈ {0, 1}. Let us
assume, for simplicity, that X is a finite set, say a set of natural numbers.

A prediction algorithm is a computable function F : Z∗ ×X → [0, 1]; intu-
itively, given a data sequence σ = (z1, . . . , zT ) and a new object x, F outputs
a prediction F (σ, x) for the label of x. For any data sequence σ = (z1, . . . , zT )
and loss function λ, we define the cumulative loss that F suffers on σ as

LossλF (σ) :=

T∑
t=1

λ(F (z1, . . . , zt−1, xt), yt)

(where zt = (xt, yt) and ∞ + a is defined to be ∞ for any a ∈ R ∪ {∞}).
Functions LossλF : Z∗ → R that can be defined this way for a given λ are called
loss processes under λ. In other words, L : Z∗ → R is a loss process under λ if
and only if L(2) = 0 (where 2 is the empty sequence) and

∀σ ∈ Z∗ ∀x ∈ X∃p ∈ [0, 1]∀y ∈ {0, 1} : L(σ, x, y) = L(σ) + λ(p, y). (3)

A function L : Z∗ → R is said to be a superloss process under λ if (3) holds
with ≥ in place of =. If λ is computable and mixable, there exists a smallest,
to within an additive constant, upper semicomputable superloss process:

∃L1 ∀L2 ∃c ∈ R∀σ ∈ Z∗ : L1(σ) ≤ L2(σ) + c,

where L1 and L2 range over upper semicomputable superloss processes under
λ. (For a precise statement and proof, see [7], Theorem 1, Lemma 6, and
Corollary 3; [7] only considers the case of a trivial one-element X, but the
extension to the case of general X is easy.) For each computable mixable λ
(including the log, Brier, and spherical loss functions), fix such a smallest upper
semicomputable superloss process; it will be denoted Kλ, and Kλ(σ) will be
called the predictive complexity of σ ∈ Z∗ under λ. The intuition behind Kλ(σ)
is that this is the loss of the ideal prediction strategy whose computation is
allowed to take an infinite amount of time.

In this note we consider infinite data sequences ζ ∈ Z∞, which are ideal-
izations of long finite data sequences. If ζ = (z1, z2, . . .) ∈ Z∞ and T is a
nonnegative integer, we let ζT to stand for the prefix z1 . . . zT of ζ of length T .

The randomness deficiency of σ ∈ Z∗ with respect to a prediction algorithm
F under a computable mixable loss function λ is defined to be

Dλ
F (σ) := LossλF (σ)−Kλ(σ); (4)

since LossλF is upper semicomputable ([7], Section 3.1), the function Dλ
F : Z∗ →

R is bounded below. Notice that the indeterminacy ∞−∞ never arises in (4)
as Kλ < ∞. We will sometimes replace the upper index λ in any of the three
terms of (4) by “ln” in the case where λ is the log loss function.
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Let us say that ζ ∈ Z∞ is random with respect to F under λ if

sup
T
Dλ
F (ζT ) <∞.

The intuition is that in this case F is an optimal prediction algorithm for ζ
under λ.

Log Randomness

In the case where λ is the log loss function and X is a one-element set, the
predictive complexity of a finite data sequence σ (which is now a binary sequence
if we ignore the uninformative objects) is equal, to within an additive constant,
to − lnM(σ), where M is Levin’s a priori semimeasure. (In terms of this
note, a semimeasure can be defined as a process of the form e−L for some
superloss process L under the log loss function; Levin’s a priori semimeasure is
a largest, to within a constant factor, lower semicomputable semimeasure.) The
randomness deficiency Dln

F (σ) of σ with respect to a prediction algorithm F is
then, to within an additive constant, ln(M(σ)/P (σ)), where P is the probability
measure corresponding to F ,

P (y1, . . . , yT ) := p̄1 · · · p̄T , p̄t :=

{
F (y1, . . . , yt−1) if yt = 1

1− F (y1, . . . , yt−1) if yt = 0

(we continue to ignore the objects, which are not informative). Therefore,
Dln
F (σ) is a version of the classical randomness deficiency of σ, and ζ ∈ {0, 1}∞

is random with respect to F under the log loss function if and only if ζ is random
with respect to P in the sense of Martin-Löf.

4 A Simple Statement of Fundamentality

In this section, we consider computable proper mixable loss functions.

Theorem 1. Let λ be a CPM loss function. If a data sequence ζ ∈ Z∞ is
random under the log loss function with respect to a prediction algorithm F , it
is random under λ with respect to F .

A special case of this theorem is stated as Proposition 16 in [13].
Let us say that a CPM loss function λ is fundamental if it can be used in

place of the log loss function in Theorem 1. The proof of the theorem will in
fact demonstrate its following quantitative form: for any computable η > 0 and
any computable proper η-mixable λ there exists a constant cλ such that, for any
prediction algorithm F ,

Dln
F ≥ ηDλ

F − cλ. (5)

Let us define the mixability constant ηλ of a loss function λ as the supremum
of η such that λ is η-mixable. It is known that a mixable loss function λ is
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ηλ-mixable ([12], Lemmas 10 and 12); therefore, (5) holds for η = ηλ, provided
ηλ is computable.

If X is a one-element set (and so the objects do not play any role and can
be ignored), the notion of randomness under the log loss function coincides
with the standard Martin-Löf randomness, as discussed in the previous section.
Theorem 1 shows that other notions of randomness are either equivalent or
weaker.

A superprediction is a point in the plane that lies Northeast of the prediction
set (2) (i.e., a point (x, y) ∈ R2 such that λ0(p) ≤ x and λ1(p) ≤ y for some
p ∈ [0, 1]).

of Theorem 1. We will prove (5) for a fixed η ∈ (0,∞) such that η is computable
and λ is η-mixable. Let L be a superloss process under λ and F be a prediction
algorithm. Fix temporarily (σ, x) ∈ Z∗ ×X and set p := F (σ, x) ∈ [0, 1]; notice
that (a, b) := (L(σ, x, 0) − L(σ), L(σ, x, 1) − L(σ)) is a λ-superprediction. By
the definition of η-mixability there exists a parallel translation of the curve
e−ηx + e−ηy = 1 that passes through the point λp := (λ0(p), λ1(p)) and lies
Southeast of the prediction set of λ. Let h be the affine transformation of the
plane mapping that translation onto the curve e−x + e−y = 1; notice that h is
the composition of the scaling (x, y) 7→ η(x, y) by η and then parallel translation
moving the point ηλp to the point (− ln(1 − p),− ln p). The λ-superprediction
(a, b) is mapped by h to the ln-superprediction

(ηa+ (− ln(1− p))− ηλ0(p), ηb+ (− ln p)− ηλ1(p)) .

We can see that ηL+ Lossln
F −η LossλF is a superloss process under ln. It is clear

that this ln-superloss process is upper semicomputable if L is. Therefore, for
some constant cλ,

Kln ≤ ηKλ + Lossln
F −η LossλF +cλ,

which is equivalent to (5).

5 A Criterion of Fundamentality

In this section, we only consider computable proper mixable loss functions that
satisfy, additionally, the smoothness conditions. The main result of this section
is the following elaboration of Theorem 1 for CPMS loss functions.

Theorem 2. A CPMS loss function λ is fundamental if and only if

inf
p

(1− p)λ′0(p) > 0. (6)

Equivalently, it is fundamental if and only if

inf
p

(−p)λ′1(p) > 0. (7)
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We can classify CPMS loss functions λ by their degree

deg(λ) := inf
{
k : λ

(k)
0 (0) 6= 0 and λ

(k)
1 (1) 6= 0

}
,

where (k) stands for the kth derivative and, as usual, inf ∅ := ∞. We will see
later in this section that Theorem 2 can be restated to say that the fundamental
loss functions are exactly those of degree 1. Furthermore, we will see that for a
CPMS loss function λ of degree 1 < k <∞ there exist a data sequence ζ ∈ Z∞

and a prediction algorithm F such that ζ is random with respect to F under λ
while the randomness deficiency Dln

F (ζT ) of ζT with respect to F under the log
loss function grows almost as fast as T 1−1/k as T →∞.

Straightforward calculations show that the log loss function has degree 1 and
the Brier and spherical loss functions have degree 2.

In the proof of Theorem 2 we will need the notion of the signed curvature of
the prediction curve (λ0(p), λ1(p)) at a point p ∈ (0, 1), which can be defined as

kλ(p) :=
λ′0(p)λ′′1(p)− λ′1(p)λ′′0(p)

(λ′0(p)2 + λ′1(p)2)3/2
. (8)

The mixability constant ηλ (i.e., the largest η for which λ is η-mixable) is

ηλ = inf
p

kλ(p)

kln(p)
.

Therefore, λ is mixable if and only if

inf
p

kλ(p)

kln(p)
> 0. (9)

Lemma 1. A CPMS loss function λ is fundamental if and only if

sup
p

kλ(p)

kln(p)
<∞

(cf. (9)).

The proof the part “if” of Lemma 1 goes along the same lines as the proof
of Theorem 1, and also shows that, if λ and Λ are CPMS loss functions such
that

ηλ := inf
p

kλ(p)

kln(p)
> 0 and HΛ := sup

p

kΛ(p)

kln(p)
<∞

are computable numbers, then there exists cλ,Λ ∈ R such that, for any prediction
algorithm F ,

HΛD
Λ
F ≥ ηλDλ

F − cλ,Λ.

We will call HΛ the fundamentality constant of Λ (analogously to ηλ being called
the mixability constant of λ).

Notice that the log loss function (perhaps scaled by multiplying by a positive
constant) is the only loss function for which the mixability and fundamentality
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constants coincide, ηln = Hln. Therefore, fundamental CPMS loss functions can
be regarded as log-loss-like.

The part “only if” of Lemma 1 will be proved below, in the proof of Theo-
rem 2.

The computation of kλ for the three basic loss functions using (8) gives:

• For the log loss function, the result is

kln(p) =
p(1− p)

(p2 + (1− p)2)3/2
. (10)

• For the Brier loss function, the result is

kBrier(p) =
1

2

1

(p2 + (1− p)2)3/2
.

• For the spherical loss function, the result is

kspher(p) = 1.

We can plug the expression (10) for the signed curvature of the log loss func-
tion into Lemma 1 to obtain a more explicit statement. Because of the propriety
of λ, this statement can be simplified, which gives the following corollary.

Corollary 1. A CPMS loss function λ is fundamental if and only if

sup
p

λ′0(p)λ′′1(p)− λ′1(p)λ′′0(p)

λ′0(p)λ′1(p)(λ′1(p)− λ′0(p))
<∞. (11)

Proof. In view of the expressions (8) and (10), the condition in Lemma 1 can
be written as

sup
p

λ′0(p)λ′′1(p)− λ′1(p)λ′′0(p)

(λ′0(p)2 + λ′1(p)2)3/2

(p2 + (1− p)2)3/2

p(1− p)
<∞.

Therefore, it suffices to check that

(λ′0(p)2 + λ′1(p)2)3/2

λ′0(p)λ′1(p)(λ′1(p)− λ′0(p))
=

(p2 + (1− p)2)3/2

p(1− p)
.

The last equality follows from

λ′1(p)

λ′0(p)
=
p− 1

p
, (12)

which in turn follows from the propriety of λ.
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It is instructive to compare the criterion (11) with the well-known criterion

inf
p

λ′0(p)λ′′1(p)− λ′1(p)λ′′0(p)

λ′0(p)λ′1(p)(λ′1(p)− λ′0(p))
> 0 (13)

for λ being mixable (see, e.g., [6] or [8], Theorem 2; it goes back to [11],
Lemma 1). The criterion (13) can be derived from (9) as in the proof of Corol-
lary 1.

of Theorem 2. Differentiating (12) we obtain

λ′′1(p)λ′0(p)− λ′1(p)λ′′0(p)

λ′0(p)2
= p−2,

and the fundamentality constant (11) of λ is

sup
p

p−2λ′0(p)2

λ′0(p)λ′1(p)(λ′1(p)− λ′0(p))
= sup

p

p−2

λ′0(p)(λ′1(p)/λ′0(p))(λ′1(p)/λ′0(p)− 1)

= sup
p

p−2

λ′0(p)(1− 1/p)(−1/p)
= sup

p

1

λ′0(p)(1− p)
,

where we have used (12). This gives us (6); in combination with (12) we get (7).
Let us now prove the part “only if” of Theorem 2 (partly following the

argument given after Proposition 16 of [13]). According to (12), (6) and (7) are
equivalent. Suppose that

inf
p

(1− p)λ′0(p) = 0,

and let us check that λ is not fundamental. By the smoothness assumptions, we
have (1 − p)λ′0(p) = 0 either for p = 0 or for p = 1. Suppose, for concreteness,
that (1 − p)λ′0(p) = 0 for p = 0 (if (1 − p)λ′0(p) = 0 for p = 1, we will have
(−p)λ′1(p) = 0 for p = 1, and we can apply the same argument as below for p = 1

in place of p = 0). Let k be such that λ
(k)
0 (0) > 0 but λ

(i)
0 (0) = 0 for all i < k; we

know that k ≥ 2 (the easy case where λ
(i)
0 (0) = 0 for all i should be considered

separately). Consider any data sequence ζ = (x1, y1, x2, y2, . . .) ∈ Z∞ in which
all labels are 0: y1 = y2 = · · · = 0. We then have supT Kln(ζT ) < ∞ and
supT Kλ(ζT ) <∞. Let F be the prediction algorithm that outputs pt := t−1/k−ε

at step t, where ε ∈ (0, 1 − 1/k). Then ζ is random with respect to F under λ
since the loss of this prediction algorithm over the first T steps is

T∑
t=1

λ0(pt) ≤ 2

T∑
t=1

λ
(k)
0 (0)

k!
pkt +O(1)

(we have used Taylor’s approximation for λ0) and the series
∑
t p
k
t is convergent.

On the other hand, the randomness deficiency of ζT with respect to F under
the log loss function grows as

−
T∑
t=1

ln(1− pt) ∼
T∑
t=1

pt ∼
k

k − 1− kε
T 1−1/k−ε.
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Notice that the criterion of mixability (13) can be simplified when we
use (12): it becomes

sup
p

(1− p)λ′0(p) <∞

or, equivalently,
sup
p

(−p)λ′1(p) <∞.

The function (1− p)λ′0(p) = (−p)λ′1(p) can be computed as

• 1 in the case of the log loss function;

• 2p(1− p) in the case of the Brier loss function;

• p(1− p)(p2 + (1− p)2)−3/2 in the case of the spherical loss function.

Therefore, all three loss functions are mixable, but only the log loss function is
fundamental.

It is common in experimental machine learning to truncate allowed proba-
bilistic predictions to the interval [ε, 1− ε] for a small constant ε > 0 (this boils
down to cutting off the ends of the prediction sets corresponding to the slopes
below ε and above 1 − ε). It is easy to check that in this case all CPMS loss
functions lead to the same notion of randomness.

Corollary 2. CPMS loss functions λ and Λ restricted to p ∈ [ε, 1 − ε], where
ε > 0, lead to the same notion of randomness.

We can make the corollary more precise as follows: for prediction algorithms
F restricted to [ε, 1− ε], Dλ

F and DΛ
F coincide to within a factor of

max

(
sup

p∈[ε,1−ε]

kλ(p)

kΛ(p)
, sup
p∈[ε,1−ε]

kΛ(p)

kλ(p)

)
and an additive constant.

6 Frequently Asked Questions

This section is more discursive than the previous ones; “frequently” in its title
means “at least once” (but with a reasonable expectation that a typical reader
might well ask similar questions).

What is the role of the requirement of propriety in Theorem 1?

The theorem says that the log loss function leads to the most restrictive notion
of randomness: if a sequence is random with respect to some prediction algo-
rithm under the log loss function, then it is random with respect to the “same”
prediction algorithm under an arbitrary CPM loss function. One should ex-
plain, however, what is meant by the same prediction algorithm, because of the
freedom in parameterization (say, we can replace each prediction p by p2). The
requirement of propriety imposes a canonical parameterization.
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What is the role of the requirement of mixability in Theorem 1?

The requirement of mixability ensures the existence of predictive complexity,
which is used in the definition of predictive randomness.

Mixability is sufficient for the existence of predictive complexity (for computable
loss functions). Is it also necessary?

Yes, it is: see Theorem 1 in [9].

What is the geometric intuition behind the notions of propriety and mixability?

The intuitions behind the two notions overlap; both involve requirements of
convexity of the “superprediction set” (the area Northeast of the prediction set
(2)). Let us suppose that the loss function λ is continuous in the prediction p, so
that the prediction set is a curve. Propriety then means that the superprediction
set is strictly convex (in particular, the prediction set has no straight segments)
and that the points on the prediction set are indexed in a canonical way (namely,
each such point is indexed by 1/(1− s) where s < 0 is the slope of the tangent
line to the prediction set at that point: cf. (12)). Mixability means that the
superprediction set is convex in a stronger sense: it stays convex after being
transformed by the mapping (x, y) ∈ [0,∞]2 7→ (e−ηx, e−ηy) for some η > 0.

Why should we consider not only the log loss function (which nicely corresponds
to probability distributions) but also other loss functions? You say “the log loss
function, being most selective, should be preferred to the alternatives such as
Brier or spherical loss”. But this does not explain why these other loss functions
were interesting in the first place.

Loss functions different from the log loss function are widely used in practice;
in particular, the Brier loss function is at least as popular as (and perhaps even
more popular than) the log loss function in machine learning: see, e.g., the
extensive empirical study [2]. An important reason for the popularity of Brier
loss is that the log loss function often leads to infinite average losses on large
test sets for state-of-the-art prediction algorithms, which is considered to be
“unfair”, and some researchers even believe that any reasonable loss function
should be bounded.

7 Conclusion

This note offers an answer to the problem of choosing a loss function for evalu-
ating probabilistic prediction algorithms in experimental machine learning. Our
answer is that the log loss function, being most selective, should be preferred to
the alternatives such as Brier or spherical loss. This answer, however, remains
asymptotic (involving unspecified constants) and raises further questions. To
make it really practical, we need to restrict our generalized theory of algorithmic
randomness, as Yuri did in a different context.
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