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Abstract In this paper we propose a way to deal with Natural Language
Inference (NLI) by implementing Modern Type Theoretical Semantics in the
proof assistant Coq. The paper is a first attempt to deal with NLI and Natural
Language reasoning in general by using the proof assistant technology. Valid
NLIs are treated as theorems and as such the adequacy of our account is
tested by trying to prove them. We use Luo’s Modern Type Theory with
coercive subtyping as the formal language into which we translate Natural
Language semantics, and we further implement these semantics in the Coq
proof assistant. It is shown that the use of a Modern Type Theory with an
adequate subtyping mechanism can give us a number of promising results as
regards NLI. Specifically, it is shown that a number of inference cases, i.e.
quantifiers, adjectives, conjoined Noun Phrases and temporal reference among
other things can be successfully dealt with. It is then shown, that even though
Coq is an interactive and not an automated theorem prover, automation of all
of the test examples is possible by introducing user-defined automated tactics.
Lastly, the paper offers a number of innovative approaches to NL phenomena
like adjectives, collective predication, comparatives and factive verbs among
other things, contributing in this respect to the theoretical study of formal
semantics using Modern Type Theories.
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1 Introduction

Natural Language Inference (NLI), i.e. the task of determining whether an NL
hypothesis can be inferred from an NL premise, has been an active research
theme in computational semantics in which various approaches have been pro-
posed (see, for example [33] and some of the references therein). In this paper,
we study NLI based on formal semantics in modern type theories with coercive
subtyping [31] and its implementation in the proof assistant Coq [14].

A Modern Type Theory (MTT) is a dependent type theory consisting of
an internal logic, which follows the propositions-as-types principle. This latter
feature along with the availability of powerful type structures make MTTs
very useful for formal semantics. Research on MTTs has been extremely fruit-
ful in analyzing NL semantics and a number of problematic phenomena in
NL semantics have been managed to be tackled. Earlier work by Sundholm
[46] and Ranta [44], among others, have managed to deal in a rather adequate
way with a number of semantic phenomena like e.g quantifiers, anaphora and
donkey sentences among other things. The second author of the current paper
has further developed MTT-based semantics via employing the impredicative
type theory UTT [26] enriched by an adequate subtyping mechanism, i.e. co-
ercive subtyping [27,32]. MTT semantics has now gradually become a serious
alternative to Montague semantics [38] as regards formal semantics.

A proof assistant is a computer system that assists the users to develop
proofs of mathematical theorems. A number of proof assistants implement
MTTs. For instance, the proof assistant Coq [14] implements pCIC, the pred-
icative Calculus of Inductive Constructions,1 and supports some very useful
tactics that can be used to help the users to automate (parts of) their proofs.
Proof assistants have been used in various applications in computer science
(e.g., program verification) and formalised mathematics (e.g., formalisation of
the proof of the 4-colour theorem in Coq).

The above two developments, the use of the MTT semantics on the one
hand and the implementation of MTTs in proof assistants on the other, has
opened a new research avenue: the use of existing proof assistants in dealing
with NLI. In this paper, we present our work as regards NLI by implementing
MTT semantics for NL in Coq. The purpose is to show how an interactive proof
assistant such as Coq can help deal with NLI. In particular, we implement
MTT semantics in Coq and then use Coq to reason about these semantics by
dealing with various examples from the FraCas test suite [13]. What we would
like to show is that a large class of NLI cases can be straightforwardly dealt
with under this approach, which basically treats NLIs as valid theorems in Coq.
Also, we believe that in many cases we have given satisfactory and innovative
semantic treatments of various semantic phenomena like e.g. the generalization
of Σ types not only to adjectives but to VP adverbs, comparatives and factive

1 pCIC is a type theory that is rather similar to Luo’s UTT, especially after its universe
Set became predicative since Coq 8.0. A main difference is that UTT does not have co-
inductive types. The interested reader is directed to Goguen’s PhD thesis [20] as regards
the meta-theory of UTT.
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verbs, which we believe are useful in themselves.2 Furthermore, it is shown
that many NLI cases, in fact all of the NLI cases we have dealt with, can be
automatedly performed by an automated combination of Coq’s in-built proof
tactics.

The paper is structured as follows: in §2 we present an introduction to
formal semantics based on MTTs. Specifically, we concentrate on how to use
type theory, in particular the Unified Theory of dependent Types (UTT) with
the addition of coercive subtyping, to represent NL formal semantics. In §3, we
present a very short introduction to the way the Coq proof assistant works. In
§4, we discuss the implementation of MTT semantics in Coq, in order to deal
with various examples from the FraCas test suite. Lastly, the issue of doing
automated theorem proving in interactive theorem provers is discussed in the
final section, together with some informal comparison with other relevant work
as well as some directions for future work.

2 Formal Semantics in Modern Type Theories

In this section, we give a brief introduction to the formal semantics based on
Modern Type Theories (MTTs) [44,28,31]. A Modern Type Theory (MTT) is
a variant of a class of type theories in the tradition initiated by the work of
Martin-Löf [35,36], which have dependent types and inductive types, among
other things. We choose to call them Modern Type Theories in order to distin-
guish them from Church’s simple type theory [12] that is commonly employed
within the Montagovian tradition in formal semantics.

Among the variants of MTTs, we are going to employ the Unified Theory
of dependent Types (UTT) [26] with the addition of the coercive subtyping
mechanism (see, for example, [27,32] and below). UTT is an impredicative type
theory in which a type Prop of all logical propositions exists.3 This stands as
part of the study of linguistic semantics using MTTs rather than simply typed
ones, including the early studies such as [46,44] inter alia.

2.1 Formal Semantics Based on MTTs: the Basics

In semantics based on MTTs, the basic ways to interpret various linguistic
categories are as follows, with basic examples shown in Figure 1, where we
also compare them to those in Montague semantics:

– A sentence (S) is interpreted as a proposition of type Prop.
– A common noun (CN) can be interpreted as a type.
– A verb (IV) can be interpreted as a predicate over the type D that inter-

prets the domain of the verb (i.e., a function of type D → Prop).
– An adjective (ADJ) can be interpreted as a predicate over the type that

interprets the domain of the adjective (i.e., a function of type D → Prop).

2 See next section for the definition of Σ types.
3 This is similar to simple type theory where a type t of truth values exists.
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Example Montague semantics MTT-based semantics
CN man, human [[man]], [[human]] : e → t [[man]], [[human]] : Type
IV talk [[talk]] : e → t [[talk]] : [[human]] → Prop
ADJ handsome [[handsome]] : (e → t) → (e → t) [[handsome]] : [[man]] → Prop
MCN handsome man [[handsome]]([[man]]) Σm : [[man]]. [[handsome]](m) : Type
S A man talks ∃m : e. [[man]](m)&[[talk]](m) ∃m : [[man]]. [[talk]](m) : Prop

Fig. 1 Examples in formal semantics.

– Modified common nouns (MCNs) can be interpreted by means of Σ-types
(see below).

In what follows, we shall give further explanations of various aspects of
MTT-based semantics, explicating along the way the basic features of MTTs
and coercive subtyping. We try to bring out the linguistic relevance of the
system used rather than being meticulous as regards the formal details in
each case.

2.2 Common Nouns as Types and Many-sortedness of MTTs

A key difference between formal semantics based on MTTs and Montague
semantics lies in the interpretation of common nouns (CNs) which is in turn
based on the fact that MTTs are essentially ‘many-sorted’ logical systems.

In Montague semantics [38], the underlying logic (Church’s simple type
theory [12]) can be seen as ‘single-sorted’ in the sense that there is only one
type e of all entities. The other types such as t of truth values and the function
types generated from e and t do not stand for types of entities. In this respect,
there are no fine-grained distinctions between the elements of type e and as
such all individuals are interpreted using the same type. For example, John
and Mary have the same type in simple type theories, the type e of individu-
als. An MTT, on the other hand, can be regarded as a ‘many-sorted’ logical
system in that it contains many types and as such one can make fine-grained
distinctions between individuals and further use those different types to inter-
pret subclasses of individuals. For example, one can have John : [[man]] and
Mary : [[woman]], where [[man]] and [[woman]] are different types.4

An important trait of MTT-based semantics is the interpretation of com-
mon nouns (CNs) as types [44] rather than sets or predicates (i.e., objects of
type e → t) as it is the case within the Montagovian tradition. The CNs man,
human, table and book are interpreted as types [[man]], [[human]], [[table]] and
[[book]], respectively. Then, individuals are interpreted as being of one of the
types used to interpret CNs. Modified common nouns (MCNs in Figure 1) can

4 Of course, the need for type fine-grainedness is not an uncontroversial claim. As one
of the reviewers notes, there is considerable literature claiming that this type of ‘sortal’
incorrectness is due to pragmatic factors. However, there is a huge literature claiming to the
contrary. This paper takes the stance that type fine-grainedness is indeed needed, following
in this respect researchers like Lappin, Ranta, Asher, Retoré and Pustejovsky [43,1,44,18,
3] among many others.
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be interpreted by means of Σ-types, types of dependent pairs.5 For instance,
‘handsome man’ can be interpreted as the type Σm : [[man]]. [[handsome]](m),
the type of pairs of a man and a proof that the man is handsome.

This many-sortedness (i.e., the fact that there are many types in an MTT)
has the welcoming result that a number of semantically infelicitous sentences
like the ham sandwich walks, which are however syntactically well-formed, can
be explained easily given that a verb like walk will be specified as being of
type animal → Prop while the type for the ham sandwich will be [[food]] or
[[sandwich]], which is not compatible with the typing for walk :

(1) the ham sandwich : [[food]]

(2) walk : [[animal]] → Prop

The idea of common nouns being interpreted as types rather than pred-
icates has been argued in [30] on philosophical grounds as well. There, the
second author argues that Geach’s observation that common nouns in con-
trast to other categories have criteria of identity that enable common nouns
to be compared, counted or quantified, has an interesting link with the con-
structive notion of set/type: in constructive mathematics, sets (types) are not
constructed only by specifying their objects but they additionally involve an
equality relation. The argument is then that the interpretation of CNs as types
in MTTs is explained and justified to a certain extent.6

Interpreting CNs as types rather than predicates has also a significant
methodological implication: the various subtyping relations one may consider
in formal semantics become compatible. For instance, in representing NL se-
mantics, one may introduce various subtyping relations by postulating a col-
lection of subtypes (physical objects, informational objects, eventualities, etc.)
of the type of entities [1]. It is clear that, if CNs are interpreted as predicates as
in the traditional Montagovian setting, introducing such subtyping relations
would cause major problems: even some basic semantic interpretations would
go wrong and it is very difficult to deal with some linguistic phenomena like
e.g. copredication satisfactorily. Instead, if CNs are interpreted as types, as
in Type Theoretical semantics based on MTTs, copredication can be given a
straightforward and satisfactory treatment [28].

Remark 1 An anonymous reviewer notes (correctly) that there are cases where
the ham sandwich : [[food]] might be interpreted as referring to an animate
entity, e.g. in the case where ham sandwich is interpreted as the man who
ordered the ham sandwich. In this instance local coercions can be introduced,
an issue discussed in [28]. Other cases like John thinks a ham sandwich can
walk are not difficult to treat either. Assuming that John’s belief context (in
the constructive sense) might have different type declarations than the default
context (roughly the current world), one can get a straightforward solution to
these cases as well. In effect, John’s belief context might involve different type

5 See the discussion in 2.4 for details w.r.t Σ types.
6 See [30] for more details on this.
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declarations e.g. the ham sandwich : [[human]] or walk : [[object]] → Prop.7

The reviewer further asks how cases like ham sandwiches do not walk will
be treated in such a framework. There are a number of ways to do that.
The first one is to assume a generic operator (widely used in Montagovian
frameworks), that besides turning the predicate into a generic predicate, will
further introduce the most general type possible to the predicate, i.e. its typing
will be: Gen : ΠA : CN, (A → Prop) → ([[object]] → Prop). In case one
considers other negative sentences like the ham sandwich does not walk or a
ham sandwich does not walk to be semantically meaningful, s/he can even
define VP negation to be not of type ΠA : CN, (A → Prop) → (A → Prop)
but of type ΠA : CN, (A → Prop) → ([[object]] → Prop). This will solve the
problem. Thus, a number of solutions to this problem exist within MTTs.8

2.3 Subtyping in Formal Semantics

As briefly explained above, because of many-sortedness of MTTs, CNs can be
interpreted as types. For instance, in a Montagovian setting, all of the verbs
below are given the same type e → t, but in an MTT, we can have

(3) drive : [[human]] → Prop

(4) eat : [[animal]] → Prop

(5) disappear : [[object]] → Prop

which have different domain types. This has the advantage of disallowing in-
terpretations of some infelicitous examples like the ham sandwich walks.

However, interpreting CNs by means of different types could lead to serious
undergeneralizations without a subtyping mechanism. For instance, consider
the interpretation of the sentence ‘A man talks’ in Figure 1: for m of type
[[man]] and [[talk]] of type [[human]] → Prop, the function application [[talk]](m)
is only well-typed because we have that [[man]] is a subtype of [[human]].

Coercive subtyping [27,32] provides an adequate framework to be employed
for MTT-based formal semantics [28,31].9 It can be seen as an abbreviation
mechanism: A is a (proper) subtype of B (A < B) if there is a unique implicit
coercion c from type A to type B and, if so, an object a of type A can be

7 For the notion of belief using MTT semantics, see [44,11] among others.
8 Another anonymous reviewer asks what we do in cases of words like work, where an in-

dication of two different senses exists, i.e. work : [[human]] → Prop and work : [[method]] →
Prop. Even though we have not looked at the problem at its full scale, the second author
has proposed the use of overloading with Unit types for these cases, encoding the different
senses of the same verb [29]. Furthermore, on the level of CNs there is considerable work by
the authors and colleagues on dot.types. The interested reader should consult [29,10,49,2]
for more details.

9 It is worth mentioning that subsumptive subtyping, i.e. the traditional notion of sub-
typing that adopts the subsumption rule (if A ≤ B, then every object of type A is also
of type B), is inadequate for MTTs in the sense that it would destroy some important
metatheoretical properties of MTTs (see, for example, §4 of [32] for details).
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used in any context CB [ ] that expects an object of type B: CB[a] is legal
(well-typed) and equal to CB [c(a)].

As an example, in the case that both [[man]] and [[human]] are base types,
one may introduce the following as a basic subtyping relation:

(6) [[man]] < [[human]]

In case that [[man]] is defined as a compositeΣ-type (see §2.4 below for details),
where male : [[human]] → Prop:

(7) [[man]] = Σh : [[human]]. male(h)

we have that (6) is the case because the above Σ-type is a subtype of [[human]]
via the first projection π1:

(8) (Σh : [[human]]. male(h)) <π1 [[human]]

Equipped with this coercive subtyping mechanism, the undergeneration
problems can be straightforwardly solved while still retaining the ability to rule
out semantically infelicitous cases like the ham sandwich walks. In effect, many-
sortedness in MTTs turns out to be superior to single sortedness in the simple
type theories, at least in this respect. Furthermore, many inferences involving
monotonicity on the first argument in generalized quantifiers can be directly
captured using the subtyping mechanism. An inference of the sort exemplified
in example (13) below, can be captured given that [[man]] < [[human]]:

(9) Some man runs ⇒ Some human runs

Thus, an x : [[man]] can be used as an x : [[human]], and as such the inference
goes through for ‘free’ in a way.10 Another case where the subtyping along with
type many-sortedness has welcoming results concerns dot-types, i.e. complex
types for common nouns encoding more than one semantic aspect. A classic
example is book, which has been assumed to have both an informational and
a physical aspect. Consider the following sentence:

(10)John picked up and mastered the book.

In the first conjunct, the physical aspect is used, while in the second the
informational aspect. We assume the following types for pick up and master :

[[pick up]] : [[human]] → Phy → Prop

[[master]] : [[human]] → Info → Prop

Given the subtyping relationship (∗) as well as contravariance of subtyping for
the function types, we get, both of the conjuncts can be interpreted satisfac-
torily.11

10 This kind of inferences can be straightforwardly proven in Coq by using a standard
analysis for quantifier some plus the subtyping relation [[man]] < [[human]].
11 See [29] for more details on this proposal as well as [49] for an implementation of dot-
types in the proof assistant Plastic.
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2.4 Some Type Constructions in MTTs

In this subsection, we shall discuss several type constructors as well as some
more advanced features of MTTs (like for example universes) focusing on the
way these can be used in formal semantics.

Dependent Σ-types. One of the basic features of MTTs is the use of Dependent
Types. A dependent type is a family of types depending on some values. Here
we explain two basic constructors for dependent types, Σ and Π, both highly
relevant for the study of linguistic semantics.

The constructor/operator Σ is a generalization of the Cartesian product
of two sets that allows the second set to depend on values of the first. For
instance, if [[human]] is a type and male : [[human]] → Prop, then the Σ-type
Σh : [[human]]. male(h) is intuitively the type of humans who are male.

More formally, if A is a type and B is an A-indexed family of types, then
Σ(A,B), or sometimes written as Σx : A.B(x), is a type, consisting of pairs
(a, b) such that a is of type A and b is of type B(a). When B(x) is a constant
type (i.e., always the same type no matter what x is), the Σ-type degener-
ates into product type A × B of non-dependent pairs. Σ-types (and product
types) are associated projection operations π1 and π2 so that π1(a, b) = a and
π2(a, b) = b, for every (a, b) of type Σ(A,B) or A×B.

The linguistic relevance of Σ-types can be directly appreciated once we un-
derstand that in its dependent case, Σ-types can be used to interpret linguis-
tic phenomena of central importance, like for example adjectival modification
[44].12 For example, handsome man is interpreted as a Σ-type (85), the type
of handsome men (or more precisely, of those men together with proofs that
they are handsome):

(11)Σm : [[man]]. [[handsome]](m)

where [[handsome]](m) is a family of propositions/types that depends on the
man m.

Adjectival modification is however notoriously difficult to deal with, given
that besides examples of adjectives like carnivorous or handsome, there exists
a number of other more difficult categories, i.e. privative adjectives like fake
or non-committal adjectives like alleged. Within the Montagovian tradition,
these different adjectival categories have been dealt with by using a number
of meaning postulates in each case. The authors [11] have proposed a way
of dealing with all adjectival categories using the framework presented in this
paper. In particular, it was shown that meaning postulates were not needed for
most of the cases, the exception being cases of non-committal adjectives. The
idea in this paper is to use typing alone to capture what in the Montagovian
tradition is done via meaning postulates. We consider capturing inference via
typing alone rather via the use of meaning postulates an advantage of MTTs

12 Σ-types can also provide the tools for the proper semantic interpretation of the so-called
‘Donkey-sentences’ [46].
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compared to simple typed ones. Also, Σ types have been successfully used
in order to provide an adequate account of anaphora, [44]. Such a proposal
is based on the expresiveness of dependent typing and cannot be maintained
in a system where dependent typing is not an option (e.g. in a Montagovian
setting).13

Dependent Π-types The other basic constructor for dependent types is Π.
Π-types can be seen as a generalization of the normal function space where
the second type is a family of types that might be dependent on the values
of the first. A Π-type degenerates to the function type A → B in the non-
dependent case. In more detail, when A is a type and P is a predicate over
A, Πx : A.P (x) is the dependent function type that, in the embedded logic,
stands for the universally quantified proposition ∀x : A.P (x). For example,
the following sentence (12) is interpreted as (13):

(12)Every man walks.

(13)Πx : [[man]].[[walk]](x)

Π-types are very useful in formulating the typings for a number of lin-
guistic categories like VP adverbs or quantifiers. The idea is that adverbs and
quantifiers range over the universe of (the interpretations of) CNs and as such
we need a way to represent this fact. For this reason, Π-types can be used,
universally quantifying over the universe cn. (14) the type for VP adverbs14

while (15) is the type for quantifiers:

(14)ΠA : cn. (A → Prop) → (A → Prop)

(15)ΠA : cn. (A → Prop) → Prop

Further explanations of the above types will be given after we have introduced
the concept of type universe below.

Note that the above types are polymorphic in nature. In general, MTTs
support polymorphism, a mechanism which has been argued by researchers like
[18,24] to be needed for NL semantics. Type polymorphism is not available in
simple type theories.

Type Universes. An advanced feature of MTTs, which will be shown to be
very relevant in interpreting NL semantics, is that of universes. Informally,
a universe is a collection of (the names of) types put into a type [36].15 For

13 For a recent approach to anaphora using dependent typing see [22].
14 This was proposed for the first time in [29].
15 There is quite a long discussion on how these universes should be like. In particular, the
debate is largely concentrated on whether a universe should be predicative or impredicative.
A strongly impredicative universe U of all types (with U : U and Π-types) is shown to be
paradoxical [19] and as such logically inconsistent. The theory UTT we use here has only
one impredicative universe Prop (representing the world of logical formulas) together with
infinitely many predicative universes which as such avoids Girard’s paradox (see [26] for
more details).
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example, one may want to collect all the names of the types that interpret
common nouns into a universe cn : Type. The idea is that for each type A
that interprets a common noun, there is a name A in cn. For example,

[[man]] : cn and Tcn([[man]]) = [[man]].

In practice, we do not distinguish a type in cn and its name by omitting the
overlines and the operator Tcn by simply writing, for instance, [[man]] : cn.
Thus, the universe includes the collection of the names that interpret common
nouns. For example, in cn, we shall find the following types:

(16)[[man]], [[woman]], [[book]], ...

(17)Σm : [[man]].[[handsome]](m)

(18)GR +GF

where the Σ-type in (20 is the proposed interpretation of ‘handsome man’ and
the disjoint sum type in (18) is that of ‘gun’ (the sum of real guns and fake
guns – see above).

Having introduced the universe cn, it is now possible to explain (14) and
(15). The type in (15) says that for all elements A of type CN, one gets the
function type (A → Prop) → Prop. The idea is that the element A becomes
the type used. To illustrate how this works let us imagine the case of quantifier
some which has the typing in (15). The first argument needed, has to be of
type cn. Thus some human is of type ([[human]] → Prop) → Prop given that
the A here is [[human]] : cn (A becomes the type [[human]] in ([[human]] →
Prop) → Prop). Then given a predicate like walk : [[human]] → Prop, we can
apply some human to get [[some human]]([[walk]]) : Prop.

The idea of universes has been proved useful in giving an account of NL
coordination in an MTT. Specifically, in [10], we have introduced a universe
of Linguistic Types, LType to capture the flexibility associated with NL coor-
dination. 16

3 NL Semantics and Inference in Coq: an Introduction

Coq is a dependently typed interactive theorem prover, implementing the cal-
culus of Inductive Constructions (pCiC, see [14]). Coq, and in general proof
assistants, provide assistance in the development of formal proofs. Specifically,
the use of Coq has been extremely fruitful and a number of exciting results
have been produced via its use, notably the proof of the four-colour theorem

16 An anonymous reviewer was questioning the use of MTTs, and their advantages against
other systems for formal semantics, i.e. Montague Grammar, DRT, Davidsonian. In this
paper, we argue for rich type theories instead for simply type ones. DRT, Davidsonian
semantics as well as other systems for formal semantics are not typed systems. However,
fusions of DRT with simple type theory have been attempted successfully [39]. In principle,
fusions of MTTs with DRT are possible. A discussion on whether MTTs consistute a better
alternative than any preceding formal semantics system is we are afraid out of the scope of
this paper.
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(see [21]) and CompCert, a formally verifiable compiler for C (see [5]) among
others. The idea is simple: you use Coq in order to see whether statements as
regards anything that has been either pre-defined or user-defined (definitions,
parameters, variables) can be proven or not. In order to see how this works,
imagine the following three variables . One may want to check whether the
following statement involving these variables is a theorem:

(19)(P → Q) → (Q → R) → (P → R)

First, we define P Q and R to be of type Prop. Then we “inform” Coq that
we want to prove this as a theorem. The command Theorem is used for this
reason:

(20)Theorem Propositional : (P → Q) → (Q → R) → (P → R)

The above will put Coq into proof-mode, where the user is asked to inter-
actively guide the assistant to the proof. In order to do this, the user has a
number of proof-tactics that s/he can use. More complicated tactics can be
further defined and a number of libraries with complementary tactics exist.
For the case interested, using the intro tactic three times will result in the
introduction of (P → Q), (Q → R) and P as assumptions. We can now use
these assumptions to see whether we can construct a proof for the conclusion.
The result will be:
1 subgoal

H : P -> Q

H0 : Q -> R

H1 : P

============================

R

Now, the tactic apply can be used. This tactic takes an argument which
can be decomposed into a premise and a conclusion (e.g. Q → R), with the
conclusion matching the goal to be proven (R), and creates a new goal for the
premise. Thus, applyH0 will create the new goal Q:
1 subgoal

H : P -> Q

H0 : Q -> R

H1 : P

============================

Q

We can do the same with H, thus apply H0 will P as the goal:
1 subgoal

H : P -> Q
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H0 : Q -> R

H1 : P

============================

P

At this point, the command assumption can be used, which matches the
conclusion with an identical premise, i.e. H1. With this, Coq notifies us that
a proof has been found:

1 subgoal

H : P -> Q

H0 : Q -> R1

H1 : P

============================

P

Propositional < assumption.

Proof completed.

But how can such an assistant be used in order to reason about NL seman-
tics? As already said, Coq implements an MTT (pCiC). For this reason it is
highly suitable to implement our MTT semantics, given that this is quite close
to UTT with coercive subtyping, i.e. the MTT used in this paper. Indeed, this
has been already noted by Luo and colleagues and some first attempts at im-
plementing MTT semantics in Coq have been made [28,29,10]. However, this
is not all that Coq has to offer. Given that Coq is a powerful theorem prover,
it can further reason about the implemented semantics. In fact, one may very
well use Coq’s proving ability to prove valid NL inferences, in the same sense it
is used for proving valid mathematical or logical theorems. Given that seman-
tic entailment corresponds to an implication relation between two different
semantic structures, entailment relations can be translated into constructed
theorems that need to be proven. In such a context, a valid semantic entail-
ment will very simply mean the implication relation between the two semantic
structures is a valid theorem. A very simple case of semantic entailment, that
of example (21), will therefore be formulated as the following theorem (named
ex) in Coq (22):

(21)John walks ⇒ some man walks

(22)Theorem ex: John walks → some man walks

Then depending on the semantics of the individual lexical items one may or
may not prove the theorem that needs to be proven in each case. Inferences like
the one shown in (22) are easy cases in Coq. Assuming the semantics of some
which specify that given any A of type CN and a predicate of type A → Prop,
there exists an x : A such that P (x) : Prop, such cases are straightforwardly
proven.
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A few notes about the lexical entries. We use Coq’s Prop type, correspond-
ing roughly to the type of truth-values (t) in Montague Semantics. We define
CN to be Coq’s Set Universe and interpret CNs like man, human as being of
type CN (thus we have for example man, human : CN).17 Verbs are defined
as predicates requiring arguments of type A : CN . The exact type of this A
argument depends on the verb itself. For example, walk is defined as being of
type Animal → Prop. Subtyping relations are supported by Coq’s coercion
mechanism and thus all the relevant subtyping relations can be declared.18

Adjectives are defined as predicates, and adjectival modification as Σ types
(see the discussion in section 2). Quantifiers and VP adverbs are defined as
types ranging over the universe CN (see (14) and (15)). For the example at
hand, the following are declared:
CN:=Set.

Parameter Man Human Animal: CN.

Parameter John: Man.

Axiom mh: Man->Human. Coercion mh: Man>->Human.

Axiom ha: Human->Animal. Coercion mh:Human>->Animal.

Definition some:= fun A:CN, fun P:A->Prop=> exists x:A, P(x).

Definition walk: Animal->Prop

We have introduced CN as being Coq’s Set type, declared Man,Human
and Animal to be of type CN , further introduced the relevant subtyping
relations and lastly introduced walk. With walk as being of type [[human]] →
Prop and John as being of type [[man]] with [[man]] < [[human]], we can prove
the theorem in (22) quite easily. We first use the proof tactic intro to move the
implicans to the hypotheses. Then, we apply unfold to some (unfold some).
Unfold does what it says: it unfolds the definition associated with a lexical
entry (if there is a definition).:
ex < unfold some.

1 subgoal

============================

walk John -> exists x : Man, walk x

We use intro to move the antecedent as a premise. Then, we can existentially
instantiate x : Man with John : Man:
ex < intro.

1 subgoal

H : walk John

============================

exists x : Man, walk x

ex < exists John.

1 subgoal

17 In Luo’s MTT, cn is the universe containing the names that interpret CNs. Since the
possiblity of introducing new universes is not an option we approximate this idea by having
CN being of type set.
18 Note that ambiguous paths are not allowed and as such given two types A and B (with
A,B : CN), there is no possiblity of defining both A < B and B < A.
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H : walk John

============================

walk John

The tactic assumption finishes the proof. This example as well as all of
the examples discussed in this paper can also be proven automatically by
using Coq’s predefined automation tactics or via using user-defined automation
tactics.19

4 NL Inference with FraCas Examples in Coq

The FraCas Test Suite [13] arose out of the FraCas Consortium, a huge collab-
oration with the aim to develop a range of resources related to computational
semantics. The FraCas test suite is specifically designed to reflect what an
adequate theory of NL inference should be able to capture. It comprises NLI
examples formulated in the form of a premise (or premises) followed by a
question and an answer. For instance,

(23)Smith, Jones and Anderson signed the contract.
Did Jones sign the contract? [Yes]

(24)No delegate finished the report.
Did any delegate finished the report on time? [No]

The examples are quite simple in format but are designed to cover a very
wide spectrum of semantic phenomena, e.g. generalized quantifiers, conjoined
plurals, tense and aspect related phenomena, adjectives and ellipsis, among
others.

In this section, we use a number of these examples in FraCas (except
the last subsection §4.8 on collective predicates) to exemplify the way MTT-
semantics implemented in Coq can effectively deal with a number of NLI cases.
The formulation we are going to follow will transform the question in each ex-
ample of the FraCas test suite into a declarative hypothesis that needs to be
proven.20 All of these examples are formalised in Coq21; the Coq code and
proof for the first example, as described in §4.1 below, can be found in Ap-
pendix A.2. In the last part of the section, the results of an evaluation against
a subset of the FraCas test suite is shown, highlighting the most important
cases.

Remark 2 The current paper deals with quite a lot of semantic phenomena
that each of them deserve a discussion and thorough analysis on their own
right. Thus, the paper deals with a number of diverse semantic issues ranging

19 See the discussion on automation in section 5.
20 The same modification can be also found in [33]). In general, if one uses a theorem
prover to deal with NL inference (e.g. analyses in the style of [4,6,7]) such modifications are
necessary.
21 The source codes can be obtained by sending an email request to the first author:
stergios.chatzikyriakidis@cs.rhul.ac.uk.
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from adjectives and quantifiers to adverbs, factive complements and reasoning
with tense and aspect. The reader should have in mind that all these issues are
far from solved in the formal semantics literature. For the needs of this paper,
we cannot go into a thorough analysis for each and every issue separately. As
such, some of the proposals might not be able to cover the whole range of
phenomena associated with these constructions. For example, the account we
have presented here for adverbs is restricted to what we call veridical adverbs,
given these type of adverbs are the ones involved in the FraCas test suite. There
is a vast number of complexities associated with the semantics of adverbs and
the non-homogeneity of the specific class is notorious. [34].22 The reader is
advised to have these remarks in mind in reading the main core of the paper.

4.1 Quantifiers and Monotonicity

A great deal of the FraCas examples are cases of inference that result from
the monotone properties of quantifiers. Examples concerning monotonicity on
the first argument are very easily treated in a system encoding an MTT with
coercive subtyping, by employing the subtyping relations between CNs (c.f.,
§2.3).

To put this claim in context, let us look at the following example (3.55)
from the FraCas test suite:

(25)Some Irish delegates finished the survey on time.
Did any delegate finish the report on time [Yes]

In an MTT-based semantics, the sentences in the above example become:23

(26)∃s : [[Irishdelegate]], [[on time]][[finish]](s, (the report))
Let Q =∃s : [[delegate]], [[ontime]][[finish]](s, (the report)) . Is Q true?

where [[finish]] : [[object]] → [[human]] → Prop, [[on time]] : forallA : CN, (A →
Prop) → (A → Prop)24, [[Irishdelegate]] < [[delegate]] < [[human]] and
[[report]] < [[object]]. Some notes of explanation on the subtyping relation
[[Irishdelegate]] < [[delegate]]: we follow the second author’s implementation
of Σ-types as the Coq record types [29], and we interpret the modified CN
Irish delegate as the following record type:

(27) Record Irishdelegate : CN := mkIrishdelegate [ d :> delegate; : Irish d ]

It is a well-known fact that dependent record types are equivalent to Σ types,
so without having to get into details on the specific Coq syntax, this is just

22 See however [9] for a more thorough look at adverbs from an MTT perspective.
23 For this first example, we shall detail its formal semantics in a type theory. You can also
find the Coq implementation of this in Appendix A.2. For the examples later on, we shall
omit such details.
24 This is the type for VP adverbs used in [29]. We will see later on that a slightly modified
type will be used for VP adverbs. For the moment, we keep this type given that it does not
play any role whatsoever in proving the inference.
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equivalent to Σd : [[delegate]].[[Irish]](d). Given the subtyping relation between
Irish delegate and delegate (reflected by means of the syntactical notation :>
in Coq), (25) is correctly captured.

It is straightforward to prove the above formula Q, using pretty much the
same tactics as these are discussed in §3, namely intro, apply and exists. The
exact way this is done, is shown in the Appendix A.2.

Similar considerations apply to the examples like the one shown below
(FraCas example 3.49):

(28)A Swede won a Nobel Prize.
Every Swede is a Scandinavian.
Did a Scandinavian win a Nobel Prize? [Yes]

Given the subtyping relation Swede < Scandinavian < human the above
inference is correctly predicted. Note that the second premise is expressed via
means of the subtyping relation Swede < Scandinavian. Specifically, we have
[[win]] : [[object → [[human]] → Prop. and prize < object. The subtyping rela-
tion [[Nobel Prize]] < [[prize]] is true because [[Nobel Prize]] may be defined
as Σp : [[prize]]. Nobel(p) which is a subtype of [[prize]] via the first projection
(c.f., §2.3).

Adverbial Modifications: a Digression. We now move to cases involving mono-
tonicity on the second rather than the first argument. Such an example with
upwards monotonicity is shown below:

(29)Some delegates finished the survey on time.
Did any delegate finish the survey? [Yes]

Monotonicity on the second argument can be treated in a similar way as above.
However, the above example (29) is a little bit trickier since an adjunct, i.e.
the PP on time, is involved. As mentioned in §2.4, VP adverbs such as on time
are given the following type (to repeat (14) here):

(30)ΠA : cn. (A → Prop) → (A → Prop)

In order to consider such adverbial phrases in inference, we make use of an
auxiliary object ADV :

(31)ADV : ΠA : cnΠv : A → Prop. Σp : A → Prop.∀x : A.p(x) ⊃ v(x)

For any common noun A and any predicate v over A, ADV (A, v) is a pair
(p,m) such that for any x : A, p(x) implies v(x). Taking the sentence (29) as
an example, for the CN delegate and predicate [[finish]]25, we define

(32)on time = λA : cn.λv : A → Prop. π1(ADV (A, v))

which is of type (30). As a consequence, for instance, any delegate who finished
the survey on time did finish the survey.

25 Note that [[finish]] : [[human]] → Prop < [[delegate]] → Prop.
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Note that the Σ-type in (31) might be considered as a general form of
conjunction and, thinking in this way, it is not difficult to see that the above
analysis is intuitively compatible with a Davidsonian analysis of VP adverbs
where the adverb modifies an event argument [16].

A similar example involving downward monotonicity on the second argu-
ment is shown below:

(33)No delegate finished the report.
Did any delegate finish the report on time [No]

In the above case, the only thing we need to do is turn the hypothesis into its
negation and then try to prove it, as we did in Coq.

4.2 Conjoined Noun Phrases

In the section of the FraCas test suite involving inferences with conjoined NPs,
one can find the following example:

(34)Smith, Jones and Anderson signed the contract.
Did Jones sign the contract? [Yes]

In [10], we have proposed a polymorphic type for binary coordinators that
extends over the constructed universe LType, the universe of linguistic types.
This can be extended to n-ary coordinators. For example, the coordinator and
may take three arguments, as in the premise of (34). In such cases, the type
of the coordinator, denoted as and3 in semantics, is:

(35)and3 : ΠA : LType. A → A → A → A.

Intuitively, we may write this type as ΠA : LType. A3 → A. For instance, the
semantics of (34) is (36), where c is ‘the contract’:

(36)[[sign]](and3(s, j, a), c)

In order to consider such coordinators in reasoning, we consider the following
auxiliary object (similarly as in the last subsection when we consider adverbial
phrases) and define and3 as follows:

(37)AND3 : ΠA : LType. Πx, y, z : A. Σa : A. ∀p : A → Prop. p(a) ⊃
p(x) ∧ p(y) ∧ p(z).

(38)and3 = λA : LType.λx, y, z : A. π1(AND3(A, x, y, z))

Having defined the coordinators such as and in such a way, we shall have
the desired inference as expected. For example, from the semantics (36), we
can infer that ‘Jones signed the contract’, the hypothesis in (34).26

26 A note about Coq is in order here: building new universes is not an option in Coq (or,
put in another way, Coq does not support us to build a new universe). Instead, we shall use
an existing universe in Coq in conducting our examples for coordination.
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Coordinators such as or can be defined in a similar way. More complex
examples like the one shown below can be also proven:

(39)Either Smith, Jones or Anderson signed the contract.
If Smith and Anderson did not sign the contract, did Jones sign the con-
tract? [Yes]

Remark 3 It’s worth remarking that a general definition of a logical conjunc-
tion And for arbitrary n-ary arguments is possible. We start with the typing:

(40)And : Πn : Nat.ΠA : LType.Πv : (V ec(A,n+ 2)) → Prop.

We can define And by induction on Nat:

(41)And((2, A)[a, b]) = a ∧ b
And(n+ 1, concV (a, v)) = a ∧ (And (n v))

Based on the above, a general auxiliary AND can be defined as follows:

(42)AND : Πn : Nat.ΠA : LType.Πv : (V ec(A,n + 2)).Σa : A. ∀p : A →
Prop. p(a) ⊃ (And (n+ 2)A (mapV v))
wheremapV : (n : Nat)(A,B : Type)(f : A → B)V ect(A,n) → V ect(B,n)
is defined as follows:
mapV (0, A,B, f, nilA) = nilB
mapV (n+ 1, A,B, f, consV (a, v)) = consV (f(a),mapV (n,A,B, f, v))

4.3 Adjectives

Inferences involving adjectives pose a number of difficulties given the semantic
asymmetries associated with different classes of adjectives. The semantics of
adjectives is a notoriously difficult issue in theoretical semantics and a number
of approaches have been put forth, particularly in a classical Montagovian
setting (see, for example, [37,23,40,41]). In Modern Type Theories, Σ-types
have been proposed for intersective adjectives [44] and, recently, the current
authors have studied adjectives more systematically using the framework used
in this paper [11]]].

The FraCas test suite uses different terminology than those usually found
in the literature on the formal semantics of adjectives. The basic classification
is between affirmative and non-affirmative adjectives:

(43)Affirmative: Adj(N) ⇒ (N)

(44)Non-affirmative: Adj(N) ⇏ (N)

We shall follow this latter terminology in this paper.
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4.3.1 Affirmative and Non-affirmative Adjectives

Cases of affirmative adjectives are handled well with the existing record mech-
anism already used for adjectives. The following inference as well as similar
inferences are correctly captured, given that a CN modified by an intersective
adjective is interpreted as a Σ-type which is a subtype of the CN via means
of the first projection:

(45)John has a genuine diamond ⇒ John has a diamond.

Non-affirmative adjectives involve cases like former. The problem with
these types of adjectives is that they do not give rise to categorical intu-
itions as regards inference. Thus, the following inference is valid for some but
non-valid for some others:27

(46)John is a former president ⇒ John is not a president

The same goes for adjectives like fake.28 We leave the discussion concerning
adjectives like former until temporal inference is going to be discussed. We
will then propose an account, assuming that former is indeed non-affirmative.

4.3.2 No Comparison Class adjectives

Adjectives like four-legged do not need reference to a comparison class (FraCas
3.202):

(47)Every mammal is an animal.
Is every four-legged mammal a four-legged animal? [Yes]

Assuming that four legged is of typeAnimal → Prop and given thatMammal <
Animal, the above inference is correctly predicted.

4.3.3 Opposites

This section deals with adjectives of the same comparison class which are
opposites of one another like e.g. large and small. For these adjectives, the
following inferences hold:

(48)Small(N) ⇒ ¬ Large(N).

(49)Large(N) ⇒ ¬ Small(N)

(50)¬ Small(N) ⇏ Large(N).

(51)¬ Large(N) ⇏ Small(N)

27 This is something that has been noted in the literature, see [40]. Note that in the FraCas
test suite, the inference in (46) is valid.
28 In the case of fake, [41] tried to provide an account where fake is treated as a subsective
adjective, i.e. affirmative in the classification given in the FraCas test suite, via using the
disjoint union type.
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What is the most difficult part here is the avoidance of the inferences (50)
and (51). Something which is not small might not be large, given that sizes do
not come in the form of a binary opposition. Thus, a way to treat this is to
introduce another size, let us say normalsized, and have small hold in case the
negation of both large and normalsized hold:29. We introduce the following:

(52)Definition Small:= fun A:CN,fun x: A=> ∼Large x ∧ ∼Normalsized x.

This approach is successful in getting the inferences as regards opposites
right.30

4.3.4 Extensional Comparison Classes

Adjectives like large and small are only relevant for the comparison class they
refer to. Thus, inferences like the following are found:

(53)All mice are small animals.
Mickey is a large mouse.
Is Mickey a large animal? [No]

In order to deal with these cases, we introduce a polymorphic type for
adjectives like these ranging over the universe cn.31 The type for large is
shown in (54), which is (55) in Coq’s notation:

(54)large : ΠA : cn. A → Prop

(55)Parameter large : forall A:CN, A→Prop

Using the above type, we have many instances of large depending on the
choice of A. If A = Man then we get large(Man) : Man → Prop; if A =
Animal, we get large(Animal) : Animal → Prop, and so on. In this respect,
we get different ‘larges’ as such for different As. With this, one can capture
the meaning of subsective adjectives, i.e. that if something is A (where A an
adjective), it is only large for its class denoted by the CN (a large mouse is thus
only large as a mouse, but not as an elephant). This way of treating subsective
adjectives will correctly account for the inferences like that in (53).32

29 Of course, depending on context more fine grained distinctions might be needed but the
idea is applicable to these cases as well.
30 Small is defined after Large has been declared. The opposite is also possible, i.e. defining
Large after Small has been declared first. This might seem strange from a theoretical point
of view, but for implementation purposes it is not.
31 This is based on the authors’ analysis of subsective adjectives [11].
32 The interested reader is directed to [11] for more information on the treatment of sub-
sective as well as the other types of adjectives in MTT with coercive subtyping.
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4.3.5 A note on intersective adjectives

Intersective adjectives comprise a class of adjectives in the theoretical literature
on adjectives which can be characterized by the following inferential schema:

(56) Affirmative: Adj(N)(x) ⇒ Adj(x) ∧ N(x)

Thus, carnivorous man means something that is carnivorous and a man. With
intersective adjectives, one should be able to get inferences like the following:

(57)Adjinter man ⇒ Adjinter human

A concrete example would be carnivorous man implying carnivorous human.
Given that coercions according to Luo’s MTT propagate via the various type
constructors, we have: Σ([[man]], carnivorous < Σ([[human]], carnivorous).33

4.4 Comparatives

Comparatives such as shorter than can be given semantics either directly or
by means of an explicit measure. We shall consider both alternatives.

Comparatives without Measures. We shall consider shorter than as a typical
example. Intuitively, shorter than should be of type Human → Human →
Prop as in the following example:

(58)Mary is shorter than John.

We assume that there be a predicate short : Human → Prop, expressing that
a human is short. Intuitively, if Mary is shorter than John and John is short,
then so is Mary. Furthermore, one should be able to take care of the transitive
properties of comparatives. Thus, if A is COMP than B and B is COMP than
C, then A is also COMP than C. All these can be captured by considering
SHORTER THAN of the following Σ-type and define shorter than to be its
first projection:

(59) SHORTER THAN : Σp : Human → Human → Prop. ∀h1, h2, h3 :
Human. p(h1, h2) ∧ p(h2, h3) ⊃ p(h1, h3) ∧ ∀h1, h2 : Human.p(h1, h2) ⊃
short(h2) ⊃ short(h1).

(60)[[shorter than]] = π1(SHORTER THAN)

With the above, we can easily show that the inferences like (61) can be obtained
as expected.

(61)John is shorter than George.
George is shorter than Stergios.
Is John shorter than Stergios? [Yes]

33 In Coq, we cannot have the first projection as a general coercion. Instead, we have to
declare it for the instances we need. This is a weakness of Coq that does not allow us to
implement the more general treatment. Such a general coercion is possible to get declared in
Plastic, an interactive theorem prover that implements Luo’s UTT and coercive subtyping
[8].
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Comparatives with Measures. In giving an analysis of compratives, one may
consider measures, taking into consideration different degrees of the measure
used in each case, e.g height in the case of comparatives like short, weight in
the case of adjectives like heavy or speed in the case of adjectives like fast.
For example, we can analyze shorter than as a relation between nouns that do
come with implicit measures, in which the first noun has less height than the
second.

Such measures can be taken care of explicitly by extending the above treat-
ment by dependent typing over measures. Let’s consider shorter than as an
example, taking heights to be measured by the type Height of numbers such
as 1.70.34 We are then led to consider the family of types Human : Height →
Type indexed by heights: Human(n) is the type of humans of height n. Then,
shorter than is defined as follows:35

(62) SHORTER THAN : Πi, j : Height. Σp : Human(i) → Human(j) →
Prop. ∀h1 : Human(i)∀h2 : Human(j). p(h1, h2) ↔ i < j.

36

(63) [[shorter than]](i, j) = π1(SHORTER THAN(i, j)) : Human(i) →
Human(j) → Prop

We can now take care of the inferences like (64) as expected:

(64)John is shorter than George.
George is 1.70.
Is John less than 1.70 tall? [Yes]

To see the details, the semantics of the above sentences are given in (67), where
J and G are the semantics of John and George, involving height parameters:

(65)J,G : Σx : height.HUMAN(x)

We can further define j and g as the second projection of J and G respec-
tively:

(66)j, g : π2(J,G)

With these at hand, (64) can be formulated as follows:

(67)[[shorter than]](J,G).
g = 1.70.
Is Q true, where Q = j < 1.70?

34 Here we do not spell out the type Height. One might take Height to be the type of
natural numbers and use 170 to stand for 1.70, etc.
35 The transitive properties of comparatives are not encoded in this example for reasons of
simplicity. One may very well do so having as a guide the previous entry without measures.
36 This is a bi-implcation, given that if the height of human x is less than the height of
another human y, then it is also the case that x is shorter than y. The definition also works
as an implication.
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It is easy to show that the above inference (67) can be proven in Coq.
It may be worth remarking that superlatives can be defined once compar-

atives are: for example, for any x : Human, shortest(x) if and only if x is
shorter than or equal to any y : Human. A similar treatment can account for
the rest of the examples involving comparatives in the FraCas test suite.

Remark 4 It is of course highly desirable to generalize the account of compar-
atives to other similar adjectives. This is not difficult. For example, in the case
with measures one can define a general auxiliary object COMP that will, be-
sides height, deal with other quantities expressed as natural numbers as well,
e.g. weight, speed etc. Similarly to the type Height, we can accordingly define
the types of Weight, Speed to be the type of natural numbers. Then, a general
COMP auxiliary will be possible:

(68) COMP : Πi, j : nat. Σp : Human(i) → Human(j) → Prop. ∀h1 :
Human(i)∀h2 : Human(j). p(h1, h2) ↔ i < j.

Then comparatives like smaller than, thinner than, slower than can all
of them be defined as:

(69)[[comp]](i, j) = π1(COMP (i, j)) : Human(i) → Human(j) → Prop

4.5 Temporal Reference

A way to deal with temporal reference without employing a temporal logic
of some sort, is to introduce a type Time of times to deal with the extra
parameter of Time (see e.g. [44] for such a view).

With such a type Time, one provides a very simple model of tense and,
over Time, we have a precedence relation ≤ and a specific object now : Time,
standing for ‘the current time’ or ‘the default time’. Simple tenses like the
simple present or the simple past can then be easily captured.37 Also, in this
model, verbs are assumed to involve a Time argument as well.38 Thus a verb
like walk is not simply of type [[human]] → Prop anymore, but rather of
[[human]] → Time → Prop.

The type Time can be specified as an inductive type in an MTT, where
one may consider the following as one of its constructors:39

(70)date : DATE → Time

37 One may even employ this model to capture composite tenses like the past perfect, but
we do not discuss this here. See [44] for an idea of how this can be done within such a
framework.
38 The assumption that verbs involve an event/situation argument goes back at least to
Davidson [16]. See [17] and reference therein, for a history of events/situations in linguistic
theory.
39 An inductive type is specified by a number of constructors whose types must be strictly
positive (see, for example, Chapter 9 of [26] for formal details.) Time as an inductive type
may have other constructors but we only detail date here.
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where DATE consists of the triples (y,m, d) where y ranges over integers to
represent years, m over Jan to Dec to represent months, and d over the days
1, 2, ... to represent days.40 For example, date(1970, Oct, 5) stands for the time
‘Oct 5, 1970’.

Now, consider the inferences like the following example:

(71)Last year John signed the contact.
Today is June 18, 2013.
Did John sign the contract in 2012? [Yes]

With the above, the above sentences in (71) are interpreted as those in (72),
where c = [[the contract]]:

(72)∃t : Time, ∃m : month,∃d : day.date(year(now)− 1,m, d)∧m ≤ 12∧ d ≤
30 ∧ sign(j, c, t).
now = date(2013, June, 18).
Is Q true, where ∃t : Time, ∃m : month,∃d : day.date(2012,m, d) ∧ m ≤
12 ∧ d ≤ 30 ∧ sign(j, c, t)?

This can now be shown to be valid inference in Coq. Cases involving temporal
adverbs like yesterday, today or PPs like next month, next year can be treated
accordingly.

Similarly examples like the following can be accounted for, assuming that
currently identifies the time of the proposition to be equal with the default
time. The Time argument of the proposition has already been identified as
being the default time via means of the present tense verb and as such, exam-
ples like the one below are very easily proven to be valid inferences:

(73)ITEL has a factory in Birmingham.
Does ITEL currently have a factory in Birmingham? [Yes]

The sections in the FraCas test suite that deal with in and for adverbials
need a solid account of lexical aspect as well as a fuller account of tense which
at the present we do not have to offer. We leave these sections unresolved
until such an account is provided. However, some of the inferences can be
effectively dealt with in pretty much the same way as the monotone on the
second argument examples. One such example is shown below:

(74)Smith lived in Birmingham for two years.
Did Smith live in Birmingham? [Yes]

Defining for two years in the same sense as a veridical VP adverb like on
time, can provide us with a correct prediction for the above example. Again,
we should stress that a full account of for and in adverbials needs a solid
account of aspect that we at the moment do not have, so we leave this as an
issue for future research.

40 Note that,in detail, the range of days depends on the year and month. This can be
represented by means of dependent types: the type Day(y,m) depends on y : Y ear and
m : Month: for example, because there are only 28 days in Feb of 1970, Day(1970, F eb) =
{1, 2, ..., 28}, the enumeration type consisting of 1, 2, ..., 28 only. Formally, DATE can be
defined as Σy : Y ear.Σm : Month. Day(y,m).
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4.5.1 The Case of former

Adjectives such as former or past may be treated in the temporal model
we have considered.41 We assume that some CNs are indexed by the time
parameter. For example, instead of being interpreted just as a type, a CN like
president is interpreted as a family of types indexed by t : Time:

(75)president(t) : cn.

For example, as now : Time stands for the ‘current time’, president(now) is
the president at the current time.

With the above mechanisms available, we can now interpret CNs modified
by former as follows:,42

(76) [[former president]] = ¬president(now) ∧ ∃t : Time. t < now ∧
president(t).

In general, we have [[former]] : (Time → cn) → cn,43 obtained by abstracting
president in the above definition: for any p : Time → cn,

(77)[[former]](p) = ¬p(now) ∧ ∃t : Time. t < now ∧ p(t).

With president : Time → cn, we have [[former president]] = [[former]]([[president]]).
This kind of analysis will predict that former president entails a past pres-

ident but not a current president.

4.6 Epistemic, Intensional and Reportive Attitudes

This section involves verbs taking a sentential argument. The difference is
between verbs that presuppose the truth of their complements and verbs that
do not:

(78)Smith knew that Itel had won the contract 1991.
Did Itel win the contract in 1991? [Yes]

(79)Smith believed that Itel had won the contract 1991.
Did Itel win the contract in 1991? [Don’t know]

Again, we will not dwell on a discussion on how suitable semantics for atti-
tude verbs should be given. There are so many issues to take into consideration

41 Another approach to dealing with such adjectives is to follow Partee [40] and assume
that former behaves similarly to privative adjectives like fake or imaginary. If so, one may
follow the proposed MTT-interpretation by the authors to use the disjoint union type to
interpret former. See [11] for details.
42 For understandability of the readers who are unfamiliar with MTTs, we abuse the nota-
tion here, using ¬A to stand for A → ∅, ∧ for × and ∃ for Σ. One may ignore these formal
details.
43 In Coq this is translated as (Time → cn) → Prop given that definitions always end in
Prop.
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in this respect, starting with questions as general as ’what is belief’, that such
a discussion cannot be carried out here. However, we can provide an account
of these types of inferences without necessarily solving the issues associated
with the semantics of Attitude verbs.

What we need is to encode that some epistemic verbs presuppose their
argument’s truth while others do not. For instance, know belongs to the former
class and its semantics is given as follows:

(80) KNOW = Σp : Human → Prop → Prop. ∀h : Human∀P :
Prop. p(h, P ) ⊃ P

(81)[[know]] = π1(KNOW )

With this, the inference (78) can be obtained as expected. Intensional verbs
like believe on the other hand do not imply their arguments and inferences like
(79) cannot be shown to be valid inferences.

In the FraCas test suite there are also examples concerning ‘veridicality’;
this is basically the property that verbs like know show – ‘know P’ ⇒ P, so
we do not need to discuss these cases again.

4.7 Substitution and Existential Instantiation

Substitution refers to the ability of substituting two equivalent terms and
retaining the meaning after substitution, as (82) shows:

(82)Smith saw Jones sign the contract.
Jones is the chairman of ITEL
Did Smith see the chairman of ITEL sign the contract?[Yes]

Substitutions like those in the second premise above can be easily done in Coq
via the replace tactic. Thus, cases like these are easy to capture.

There are also examples where existential quantifiers and their instantia-
tions are involved. For example,

(83)Smith knows that Jones signed the contract.
Jones is a person.
There is a person such that Smith knows he signed the contractn [Yes]

Existential quantification is introduced to the semantics because of the second
sentence; this becomes clear if we spell out the semantic interpretations of the
sentences in (83) as those in (84) below, where c = [[the contract]]:

(84)[[know]](s, sign(j, c)).
∃x : Person. j = x.
∃x : Person. [[know]](s, sign(x, c)).

It is easy to see that the first two imply the third.
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4.8 Collective predication

We want to be able to get the following inferences (note that these cases are
not part of the FraCas test suite):

(85)Stergios and Zhaohui met ⇒ Stergios met Zhaohui and Zhaohui met Ster-
gios

(86)Stergios and Zhaohui hit each other ⇒ Stergios hit Zhaohui and Zhaohui
hit Stergios

(87)Stergios and Zhaohui are Greek and Chinese respectively ⇒ Stergios is
Greek

For such collective predicates, we use the Vector-analysis proposed by the au-
thors in [10]. Verbs like meet in their collective guise take a vector argument
with at least two elements (i.e., an object of type V ec(Human, n + 2)), as
given in (88).44 Thus, reciprocal predicates like meet take one vector argu-
ment (with n at least 2).45 This account can also give us a natural treatment
of reflexives like each other. The idea is that each other in English turns a
transitive predicate into an intransitive one whose sole argument is a vector
whose length is at least 2, as in (89). Thus, the two arguments of a transitive
verb like kill, say John and Mary in John killed Mary, are put together into a
single vector argument, with the verb turning into an intransitive verb. Lastly,
respectively can be seen as a big functor which takes two vector arguments
and returns a proposition, as in (90).

(88)[[meet]] : Πn : Nat. V ec([[human]], n+ 2) → Prop

(89)[[each other]] : ΠA : cn,Πn : Nat. (A → A → Prop) → V ec(A,n + 2) →
Prop

(90)[[respectively]] : ΠA : cn.Πn : Nat. V ec(A,n+2) → V ec((A → Prop), n+
2) → Prop

With the above typings, in order to get expected inferences, we need to assume
more information concerning these words. For example, for each other, we
assume that the following be true: for any A : cn, n : nat, P : A → A → Prop
and v : V ec(A,n+ 2),

(91) [[each other]](A,n, P, v) ⊃ ∀i, j : nat. i ≤ n + 1 ∧ j ≤ n + 2 ∧ i ̸= j ⊃
P (vi, vj) ∧ P (vj , vi),

where if v = (a1, ..., an+2) then vi = ai and vj = vj .
The above says that given an A : CN , an n : nat, a P : A → A → Prop,

the type V ec((A → Prop), n + 2) → Prop is returned and for any two nat

44 V ec(A,n) can be seen as a collection of elements of type A with an explicit nat argument
counting the elements.
45 Note that reciprocal predicates can be seen as cases after the functor each other has been
applied. In a sense, the semantics of reciprocals are similar to regular transitive predicates
after each other has been applied. See the following discussion on each other.
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arguments i, j that are smaller than or equal to n+2, we get both P (vi, vj)∧
P (vj , vi). With this, it is straightforward to get the expected inference in
(86). Similar lexical entries can be given for meet and respectively, covering
inferences (85) and (87) as well.46

Remark 5 A promising aspect of using vector types is that they can poten-
tially be used for the proper semantic treatment of some of the non-classical
quantifiers including, for example, exactly three or most.47 We do not know
how far one can go with vector types as regards a general way of dealing with
plurals. We have not yet explored the possibilities as well as the consequences
of this proposal with respect to a general theory of plurals. This is a topic
which we will pursue in future work. However, one can already see a way to
treat cases of negated plurals like the ones shown below:

(92)Just one accountant attended the meeting
Did no accountant(s) attend the meeting? [No]

(93)Just one accountant attended the meeting
Did any accountant(s) attend the meeting? [Yes]

We can assume that plural CNs are in the plural part of cn, cnpl, with
cnpl < cn. Now, we can consider typings of quantifiers with vectors for plural
CNs, something along the line of the following type:

(94)Πn : Nat.ΠA : cnpl.(V ec([[human]], n) → Prop) → Prop

The above typing works as follows: first it takes two arguments, one of
type nat and one of type CNpl. Then, this is followed by a predicate of type
(V ec(A,n) → Prop). This would presumably be the typing for a plural predi-
cate, like e.g. walk.48 For example, a quantifier like three can have the following
type:

(95)[[three]] : (ΠA : CNpl.((V ec(A, 3) → Prop) → Prop)

Three men will be defined as:

(96)[[three men]] : (((V ec(Man, 3) → Prop) → Prop)

Then, given the explicit nat argument one can deal with cases like exactly
three by further specifying that only vectors with n = 3 will make the propo-
sition true, and all other vectors of n < 3 or n > 3 will make the proposition
false. This will for example be needed for cases like the following:

46 On the assumption that meet and respectively are also assumed to involve extra infor-
mation in the same vein with each other.
47 Also, this does not mean that the Vector-treatments are superior as compared to some
existing constructive semantic accounts of these quantifiers (see, for example, [47]).
48 There are a number of details as to how the regular entry for something like walk
(Animal → Prop) and its plural version (Πn : nat, vectorAnimaln → Prop) are related
but this is something that we cannot discuss here. See however the discussion in [10].
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(97)Exactly two people came ⇏ three people came

Again more work is needed in order to see how using vector types can
develop into a viable alternative on dealing with quantifiers. We leave the
issue open for the moment.49

4.9 Evaluating against a subset of the FraCas test examples

In this section we have evaluated our approach against a subset of examples
from the FraCas test suite. For the needs of this paper, we have used exam-
ples from these 4 sections: quantifiers, adjectives, comparatives and conjoined
NPs. Overall, the system was evaluated against 77 examples from 4 sections.
72/77 examples were correctly captured (approx. 93.5%). What is more im-
portant, all of the examples were managed to be proven automatically (see the
discussion in the next section).

4.9.1 Quantifier section

For this section, we evaluate against 35 examples, 7 from each subsection
of §3.1 in the FraCas test suite. We follow the following tactic in choosing
the examples: we either take the first 7 examples from each subsection, or if
a number of consecutive examples are similar in terms of the way they are
proven, some of these are skipped to the next one.50 We used the modified
GF parser as this was designed to deal with the FraCas examples in [25]. For
the moment we do not have an automatic translation between a well-formed
grammatical input and the syntax of the proof assistant, so this process cannot
be done automatically at the moment. After parsing, we formulate the FraCas
examples as theorems. We get the correct results in all examples in this case
(35/35). Some notes are at hand as regards the actual translation to the logical
language. In some instances, we introduced non-compositional entries, e.g.
right to live in Europe : CN as a simple token. We did that for reasons of
brevity and only in cases these did not affect the outcome of the proof in any
way. With this note, let us see some representative examples, starting with the
first section:

(98)An Italian became the world’s greatest tenor.
Was there an Italian that became the world’s greatest tenor [Yes]

Here we define world′s greatest tenor non-compositionally as CN, but
only for reasons of brevity.51 The example is easily proven, given that the

49 However, look at a first way this can be used in order to deal with inferences involving
this kind of quantifiers in §4.9.1
50 For example we have skipped examples 3.68 and 3.69 in the FraCas test suite given the
similarity with 3.67.
51 It can be defined compositionally as a Σ type.
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existential requirement of the hypothesis is given by the quantifier an in the
premise. A further example from the second subsection (3.17 in the FraCas
test suite):

(99)An Irishman won the Nobel prize for literature.
Did an Irishman win a Nobel prize [Yes]

In this example, for literature is treated in the same sense as on time.
In particular, it has an identical lexical entry, i.e. it is defined as the first
projection of the auxiliary object ADV . This suffices to prove the example.
One last example from the same section (3.69 in the FraCas test suite):

(100)Every resident of the North American continent can travel freely within
Europe
Every Canadian is a resident of a North American continent
Can every Canadian travel freely within Europe [Yes]

In the above example, we treat resident of the north american continent
non-compositionally. The second premise is encoded as a subtype relation
between Canadian resident and resident of the north american continent.
This suffices to prove the example.

4.9.2 Section on adjectives

For the adjectival section, we have tested our account against 16 examples
spanning across four subsections: §3.5.2 to §3.5.5 in the FraCas test suite.
In this section, correct results were obtained for 14/16 examples. Two of the
examples were predicted to produce yes as an answer where the desired result
was do not know. One of these is shown below:52

(101)All legal authorities are law lecturers
All law lecturers are legal authorities
Are all competent legal authorities competent law lecturers? [Don’t know]

The prover finds a proof for the above, given the two premises. Note that
in the cases which are called extensional comparison classes in the FraCas test
suite, the account makes the correct predictions, e.g. cases like the following:

(102)All legal authorities are law lecturers
All law lecturers are legal authorities
Are all fat legal authorities fat law lecturers? [Yes]

Other interesting cases involve examples like the following (3.208 in the
FraCas test suite):

52 This is in fact the only case of those tested where the prover finds a proof where it
should not have.
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(103)Mickey is a small animal
Dumbo is a large animal
Is Micky smaller than Dumbo? [Yes]

In order to deal with this example, one has to relate small with its com-
parative. In effect, what we did is introduce a condition which says that for
all elements that are of a bigger size than small (e.g. normalsize or large),
the smaller than relation holds between these elements and the small element.
This suffices to prove such examples. Similar considerations apply to other
comparatives.

All the other examples in the relevant sections can be straightforwardly
proven.

4.9.3 Section on conjoined NPs and bare plurals

We evaluate the system against §3.2.1 (conjoined NPs and conjoined N bars)
and §3.2.3 (bare plurals), 15 examples in total. The first five examples are
similar to (34), and are thus proven in a similar way. More advanced examples
include the following:

(104)Exactly three lawyers and three accountants signed the contract
Did six lawyers signed the contract?

In order to prove examples like these, we use vector types to define quanti-
fiers. Exactly three involves a vector of n = 3 and any other vector with n > 3 or
n < 3 will make the proposition false. Thus, [[finish]](the contract)(V ec(Lawyer, 3)
⇏ [[finish]](the contract)(V ec(Lawyer, 6).

The system gives a correct answer to 12/15 examples (80%). Problematic
cases include examples like the ones shown below:

(105)Every representative or client was at the meeting
Was every representative and client at the meeting?

The semantics provided for coordinators are not able to capture this case
and should be revisited. Lastly, we treated bare plurals as involving an exis-
tential reading, so examples with universal readings like the one shown below,
were not captured:

(106) Clients at the demonstration were impressed by the system’s perfor-
mance.
Smith was a client at the demonstration
Was Smith impressed by the system’s performance? [Yes]
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4.9.4 Section on Attitudes

The system was evaluated against §3.9 of the FraCas test suite, a total of 11
examples. All of the examples were correctly dealt with. §3.9.1 involves dif-
ferent kind of attitude verbs, some of them presupposing the truth of their
complement (know) and some of them not (e.g. believe). The analysis as pro-
posed in §4.6 suffices. Also, examples like the one shown below are correctly
captured (no proof can be found):

(107)Smith saw Jones sign the contract
If Smith signed the contract, his heart was beating
Did Smith see Jones’ heart beating? [Do not know]

Lastly, existential instantiation and substitution cases like examples (3.343)
and (3.344) in the FraCas test suite are also correctly captured. E.g. in the
example below, introducing an equality relation between Jones : Man and
the chairman of Itel : Human, will suffice:

(108)Smith saw Jones sign the contract
John is the chairman of ITEL
Did Smith see the chairman of ITEL sign the contract? [Yes]

5 NLI: Discussion on different approaches and automation

5.1 Informal comparison with other relevant approaches

The most obvious difference between the system presented here and deep ap-
proaches to NLI that use first-order logic as their translation language like e.g.
[6,7], is the use of a many-sorted typed system rather than an untyped one.
This, in conjunction with the coercive subtyping mechanism, takes care of a
number of inferences via typing only (e.g. monotone on the first argument or
adjectival inferences). In systems translating to first-order logic, this informa-
tion must be added separately as axioms .53 Furthermore, dependent typing
offers a number of welcome results. One such result was developed in this
paper and concerns the employment of Σ types not only in dealing with exis-
tential54 or adjectival modification but to interpret adverbial modification as
well as the semantics of factive verbs. Again, the advantage in this case is the
ability of using dependent types in order to take care of the desired inferences
without resorting to meaning postulates. Abstracting away from the details of
each line of approach, like for example the phenomena that are treated in one

53 For example, the Montagovian meaning postulates for the different kinds of adjectives
have to be defined as axioms (see e.g. [42]). In our case, and at least for intersective and
subsective adjectives, their inferential properties are derived via typing only (see [11] for
more information).
54 Even though we do not use Σ types to represent existential quantification.
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of the approaches but not in the other,55 the basic difference seems to boil
down to the use of two rather different logical languages in interpreting NL
semantics, first-order logic on the one hand and an MTT on the other.

However, and as already mentioned, the system presented in this paper is
not yet a full-blown system, given that only the part of the inferential process is
shown and not any of the other components of a successful NLI system, namely
a wide-coverage parser recognizing grammatical strings of text as well as var-
ious components that perform some kind of pre-processing of the goal before
the latter is handed to the prover. For example, in [7] a wide coverage CCG
parser is used, while Background Knowledge is encoded via translating any
relations found in WordNet (e.g. hyponymy relations) to first-order logic. The
same is done for generic knowledge (e.g. passives, spatial information). Fur-
thermore, deep approaches usually involve a shallow approach component as it
is the case for example in [6] where some form of relation between the premise
and the hypothesis are derived. This is done via searching for word overlaps
between the premise and hypothesis by taking into consideration WordNet re-
lations. This process results in the assignment of a similarity measure between
the premise and hypothesis.56 Such hybrid approach will be interesting to use
once a more complete version of the system presented here is ready. Another
idea we would like to use is that that of entailment approximation discussed
in [6]. The intuition behind it is simple and is based on the informal observa-
tion that when the prover has almost found a proof, the relation is usually an
entailment. Of course, this is very difficult to formalize in practice for obvious
reasons. In [6], a model builder is used for this reason. Again the idea is simple:
in case we are dealing with an entailment, the entities of the model are the
same in both the premise and hypothesis. In case we are not dealing with an
entailment, the domain size is different. Domain size is then used to approxi-
mate entailment: larger distances in the domain size point to non-entailment,
smaller distances to entailment. Thus, a possible future direction is to try and
see how can the concept of entailment approximation be translated within our
system. Obviously, we will not be using any kind of model builder57 but how-
ever, one can measure the domain size via the number of entities or relations
between the entities that are needed in the local context of the proof in order
for the premise or the hypothesis to be true. Then the same idea used in [6],
based on the distance in the domain size of the entities plus relations between
the premise and hypothesis, can be used.

It is clear from the above that the next step for us will have to be the devel-
opment of a full-blown NLI system. This will ideally involve the development
of a parser using Ranta’s Grammatical Framework (GF, [45]), its purpose

55 E.g. treatment of anaphora that is lacking in our account or the treatment of collective
predication temporal reference lacking in deep approaches like [6,7,42].
56 The account proposed in [33], as already mentioned, is a kind of hybrid approach with
both a shallow and a deep component. It is out of the scope of this paper to look at the
state-of-the-art shallow approaches to NLI. However, the interested reader is directed to [33]
and references therein for more information on this type of approaches.
57 It is in itself contradictory to use model-theoretic semantics in a constructive framework!
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being twofold: a) parse grammatical Engish sentences and b) linearize this
parsed input into the syntax of Coq. In effect, Coq syntax is treated like an
ordinary language. The system will involve an abstract syntax but two con-
crete syntaxes, one for English and one for the Coq language.58 Additional
information like BK or generic knowledge can be expressed via means of ax-
ioms or even typing (e.g. hyponymy relations) drawn from WordNet or similar
sources (VerbNet, ConceptNet) . The same holds for generic knowledge. These
all remain part of our future work and are in our opinion feasible.

Furthermore, and even though we have covered a number of issues in this
paper, there are sections in the FraCas test suite that we have not tried yet. For
example the section (or subsections) discussing issues relevant to the aspectual
system have not yet been properly tried out. It is our intention to attempt a
proper formalization as well as implementation of aspect in Coq and extend the
preliminary implementation of tense as shown in this paper as well. Similar
considerations apply to other sections of the FraCas test suite like e.g. the
section dealing with inference in elliptical environments.59 Lastly, if such a
system is to have broader practical applications one needs to test against
real text and not examples constructed ad hoc for the sake of testing various
categories of inference as the FraCas test suite is basically doing. The next step
will thus be to test the proposed account against the RTE challenge suites [15].
This, along with what we have mentioned already, consists the basis of what
our future work is directed towards.

5.2 Interaction and automation

Coq is an interactive theorem prover. As such, theorems, in our case NLIs,
are proven interactively and not automatically. One may argue, that such a
system is not really helpful for NLI, since what we want is a way to prove
these inferences automatically. This is a valid point and of course we do agree.
However, the idea of using an interactive theorem prover has a number of
advantages. One of them is that by using an interactive theorem prover one is
able to see the reason a given theorem cannot be proven. This last fact alone
can be quite helpful in designing automated tactics for NLI. Furthermore,
Coq itself has a number of built-in tactics that are designed to automate trivial
parts of proofs. For example, some of our examples can be solved with intuition
or jauto once the cbv delta tactic has been executed. Cbv delta replaces the
occurrences of a defined notion by the definition itself in the current goal (or
in any of the hypotheses) while intuition just looks for first-order intuitionistic
logic tautologies. We can thus define a new tactic which first calls cbv delta,

58 This is one of the core ideas of GF parsers, i.e defining one abstract syntax that corre-
sponds to multiple concrete ones.
59 Dealing with ellipsis successfully is of course largely dependent on the adequacy of
the parser, given that if the parser succeeds in parsing elliptical constructions it will then
linearize these structures into the Coq language where the elided information will be present.
From this stage on, inferences are easy to be proven. However, this issue is left for future
work.
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followed by intuition and jauto in order to automate a number of example
cases.60 We have introduced such a tactic (AUTO in the source code) and
indeed a number of example cases can be automatically be proven by using this
tactic (e.g. 25, 103, 45). For more advanced cases, one can use more elaborate
proof-techniques in order to achieve automation. For example in cases where
a Σ type analysis is used, like e.g. in the case of VP adverbs, one needs
to use destruct specifically for the auxiliary objects (e.g. ADV for ontime).
One can thus devise an automatic tactic which is however context dependent,
depending on the example. In the same case one might need to instruct Coq
to apply a specific premise. One tactic that does both the aforementioned is
shown below:

(109) Ltac AUTO1 a b:= cbv; destruct a; eapply b; AUTO.

The above tactic can take care of the Σ type cases (note the use of AUTO
within AUTO1). A similar more advanced automated tactic has been defined
for cases of collective predication. These three tactics are then all we need
to automate all our proof-examples. In order to achieve full automation, we
can further use one composite tactic which tries one of the three tactics and
succeeds in case one of them does. Assuming we have three tactics a, b and c,
one can define the following tactic, say d:

(110)Ltac d:= solve[a|b|c].

Using this technique, one can actually automate all the examples discussed
in this paper. Most of the cases can receive total automation while some of
them, even though automatically proven, will need some extra guidance to
the prover, for example instructing the prover to apply part of the automated
tactic to specific elements. For example in the case of auxiliary objects, one
has to instruct the prover to destruct these objects. Thus instead of just typing
AUTO, one will have to type something like AUTO d, where d is the specific
item we want to unfold. Currently, we are looking for ways to eliminate this
as well, so automation does not need this kind of user aid in all cases. It will
be very interesting to see how far one can go with automation, in particu-
lar whether automation is still possible when the examples are comprised of
bigger texts, like e.g. some examples from the RTE challenges. In fact, proof-
automation in Coq is an on-going research topic within the community and a
number of researchers have provided interesting results like for example work
by [48] on inductive proof-automation. Further work is needed on the feasibil-
ity of automation as regards NLI but the first results seem promising. We hope
that this paper will be the start of a new research direction, in which MTT
semantics (or in general formal semantics) and proof assistant technology work
on a par in order to deal with NL reasoning.

60 Jauto is part of the LibTactics library, containing extra tactics beyond the standard
ones.
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6 Conclusion

In this paper we have presented the first attempt to use proof assistant tech-
nology in order to deal with NLI. Furthermore, this paper proposed the use of
MTTs as the logical language for dealing with NLI. We provided an account
of a number of cases from the FraCas test suite using Luo’s TT with coer-
cive subtyping. It was shown that using a considerably richer language than
first-order logic, can give us a number of welcome results as regards NLI. In
particular, the coercive subtyping mechanism as well as the use of dependent
typing have been shown to be very helpful in dealing with various NLI cases.
The account was then tested in Coq where the FraCas test suite examples
were encoded as Coq theorems. Lastly, it was shown that one cannot only use
Coq in order to reason about NL semantics, but to further automate the proof
process by developing used-defined tactics.
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3. Bassac, C., M.B., Retoré, C.: Towards a type-theoretical account of lexical semantics.
Journal of Logic Language and Information 19, 229–245 (2010)

4. Blackburn, P., Bos, J.: Representation and Inference for Natural Language. CSLI Pub-
lications (2005)

5. Blazy, S., Dargaye, Z., Leroy, X.: Formal verification of a C compiler front-end. In: FM
2006: Int. Symp. on Formal Methods. Lecture Notes in Computer Science, vol. 4085,
pp. 460–475. Springer (2006), http://gallium.inria.fr/ xleroy/publi/cfront.pdf

6. Bos, J., Markert, K.: Recognising textual entailment with logical inference. In: Proc. of
the 2005 Conference on Empirical Methods in Natural Language Processing (EMNLP),.
pp. 98–103 (2005)

7. Bos, J., Markert, K.: When logical inference helps determining textual entailment (and
when it doesn’t). In: Proceedings of the Second PASCAL Challenges Workshop on
Recognising Textual Entailment (2006)

8. Callaghan, P., Luo, Z.: An implementation of LF with coercive subtyping and universes.
Journal of Automated Reasoning 27(1), 3–27 (2001)

9. Chatzikyriakidis, S.: Adverbs in a modern type theory. In: Asherl, N., Soloviev, S. (eds.)
Proceedings of LACL2014. LNCS 8535. pp. 44–56 (2014)

10. Chatzikyriakidis, S., Luo, Z.: An account of natural language coordination in type theory
with coercive subtyping. In: Parmentier, Y., Duchier, D. (eds.) Proc. of Constraint
Solving and Language Processing (CSLP12). LNCS 8114. pp. 31–51. Orleans (2012)

11. Chatzikyriakidis, S., Luo, Z.: Adjectives in a modern type-theoretical setting. In: Morrill,
G., Nederhof, J. (eds.) Proceedings of Formal Grammar 2013. LNCS 8036. pp. 159–174
(2013)

12. Church, A.: A formulation of the simple theory of types. J. Symbolic Logic 5(1) (1940)



Natural Language Inference in Coq 37

13. Cooper, R., Crouch, D., van Eijck, J., Fox, C., van Genabith, J., Jaspars, J., Kamp,
H., Milward, D., Pinkal, M., Poesio, M., Pulman, S.: Using the framework. Technical
Report LRE 62-051r (1996), http://www.cogsci.ed.ac.uk/ fracas/.

14. The Coq Development Team: The Coq Proof Assistant Reference Manual (Version 8.1),
INRIA (2007)

15. Dagan, I., Glickman, D., Magnini, B.: The PASCAL recognising textual entailment
challenge. In: Quionero-Candela, J., Dagan, I., Magnini, B.and d’Alch-Buc, F. (eds.)
Machine Learning Challenges. LNCS 3944. pp. 177–190 (2006)

16. Davidson, D.: Compositionality and coercion in semantics: The semantics of adjective
meaning. In: Rescher, N. (ed.) The Logical Form of Action Sentences, pp. 81–95. Uni-
versity of Pittsburgh Press (1967)

17. Davidson, D.: The logical form of action sentences. In: Rescher, N. (ed.) The Logic of
Decision and Action. University of Pittsburgh Press (1967)

18. Fox, C., Lappin, S.: Foundations of Intensional Semantics. Oxford University Press
(1990)

19. Girard, J.Y.: Une extension de l’interpretation fonctionelle de Gödel à l’analyse et son
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A Coq Code of Examples

All of the examples in this paper have been tried in the Coq proof assistant. The source codes
can be obtained by sending an email request to stergios.chatzikyriakidis@cs.rhul.ac.uk. Here,
we shall give an example with Coq tactics (Appendix A.1) and some examples in linguistic
semantics (Appendix A.2).

A.1 A more advanced example - Proving Peirce’s law

We want to prove that if the law of the excluded middle holds then so does Peirce’s law.

Definition lem:= A \/ ~ A.

Definition Peirce:= ((A->B)->A)->A.

Theorem lemP: lem -> Peirce.

unfold Peirce. unfold LEM.unfold Peirce. intros. elim H.intros.

assumption.intros.apply H0.intros.absurd A.assumption. assumption.

We unfold the definitions, apply intros and elim H :

lemP < elim H.

2 subgoals

H : A \/ ~ A

H0 : (A -> B) -> A

============================

A -> A

subgoal 2 is:

~ A -> A

Then, intro, assumption and intro again:
lemP < intros.

1 subgoal

H : A \/ ~ A

H0 : (A -> B) -> A

H1 : ~ A

============================

A



Natural Language Inference in Coq 39

We use apply H0 and now we have to prove A → B. We apply intro:
lemP < intro.

1 subgoal

H : A \/ ~ A

H0 : (A -> B) -> A

H1 : ~ A

H2 : A

============================

B

We use absurd A and now we need to prove A and A, which can be done via two
applications of assumption.

The above can be proved automatically as well, using automated user-defined tactics.
For this case, we can define a tactic which unfolds all the definitions and then applies tauto,
which tries intuitionistic propositional tautologies:
Ltac AUTO:= cbv delta;tauto

This suffices to prove our example automatically.

A.2 An Example from the FraCas Test Suite

FraCas example 3.55

(111)Some Irish delegates finished the report on time.
Did any delegate finish the report on time [Yes]

Parameter delegate report: CN

Record Irishdelegate : CN := mkIrishdelegate { c :> delegate; _ : Irish c }.

Parameter on_time: forall A:CN, (A -> Prop) -> (A->Prop).

Parameter finish: Object -> Human -> Prop.

Axiom so:survey->Object. Coercion so: survey>->Object. *subtyping*

Axiom dh:delegate->Human. Coercion dh: delegate>->Human. *subtyping*

Theorem IRISH: (some Irishdelegate)(On_time(finish(the report)))->(some delegate)

(On_time (finish(the report))).

We unfold the definitions for a and move the premise to the assumptions via intro and
we apply the elimination tactic elim:

IRISH < elim H.

1 subgoal

H : exists x : Irishdelegate, On_time (finish (the report)) x

============================

forall x : Irishdelegate,

On_time (finish (the report)) x ->

exists x0 : delegate, On_time (finish (the report)) x0

We apply intros:
IRISH < intro.

1 subgoal

H : exists x : Irishdelegate, On_time (finish (the report)) x

x : Irishdelegate

H0 : On_time (finish (the report)) x

============================

exists x0 : delegate, On_time (finish (the report)) x0

With x : Irishdelegate as an assumption, we can now substitute x0 in the conclusion
with x thanks to the subtyping mechanism:



40 Stergios Chatzikyriakidis, Zhaohui Luo

IRISH < exists x.

1 subgoal

H : exists x : Irishdelegate, On_time (finish (the report)) x

x : Irishdelegate

H0 : On_time (finish (the report)) x

============================

On_time (finish (the report)) x

We apply assumption and the proof is over. The above can be proved using automated
tactics as well. For the purposes of this paper the following tactic has been defined:
Ltac AUTO:= cbv delta;intuition;try repeat congruence; jauto;intuition.

The above unfolds all definitions, then tries all intuitionistic first-order tautologies (in-
tuition). Then, congruence deals with any equalities (for the example in question there are
no equalities). Then jauto is applied, which is basically Coq’s predefined auto tactic along
with some pre-processing of the goal. Then again intuition is applied. This automated tactic
can prove what we want (and much more).


