
SERVICE-ORIENTED LOGIC PROGRAMMING

IONUŢ ŢUŢU AND JOSÉ LUIZ FIADEIRO

Department of Computer Science, Royal Holloway University of London
Institute of Mathematics of the Romanian Academy, Research group of the project ID-3-0439
e-mail address: ittutu@gmail.com

Department of Computer Science, Royal Holloway University of London
e-mail address: jose.fiadeiro@rhul.ac.uk

Abstract. We develop formal foundations for notions and mechanisms needed to support
service-oriented computing. Our work builds on recent theoretical advancements in the
algebraic structures that capture the way services are orchestrated and in the processes
that formalize the discovery and binding of services to given client applications by means
of logical representations of required and provided services. We show how the denotational
and the operational semantics specific to conventional logic programming can be generalized
using the theory of institutions to address both static and dynamic aspects of service-
oriented computing. Our results rely upon a strong analogy between the discovery of a
service that can be bound to an application and the search for a clause that can be used for
computing an answer to a query; they explore the manner in which requests for external
services can be described as service queries, and explain how the computation of their
answers can be performed through service-oriented derivatives of unification and resolution,
which characterize the binding of services and the reconfiguration of applications.

1. Introduction

Service-Oriented Computing. Service-oriented computing is a modern computational
paradigm that deals with the execution of programs over distributed information-processing
infrastructures in which software applications can discover and bind dynamically, at run
time, to services offered by providers. Whereas the paradigm has been effectively in use for
a more than a decade in the form of Web services [ACKM04] or Grid computing [FK04],
research into its formal foundations has lagged somewhat behind, partly because of our lack
of understanding of (or agreement on) what is really new about the paradigm, especially in
relation to distributed computing in general (see, for example, [Vog03]).

2012 ACM CCS: [Theory of computation]: Logic — Constraint and logic programming; Semantics
and reasoning — Program reasoning — Program specifications; [Information systems]: World Wide Web

— Web services — Service discovery and interfaces.
Key words and phrases: Logic programming, Institution theory, Service-oriented computing, Orchestration

schemes, Service discovery and binding.
A preliminary version of this work was presented at CALCO 2013 [ŢF13].

LOGICAL METHODS
IN COMPUTER SCIENCE DOI:10.2168/LMCS-???

c© I. Ţuţu and J. L. Fiadeiro
Creative Commons

1

2 I. ŢUŢU AND J. L. FIADEIRO

It is fair to say that significant advances have been made towards formalizing new forms
of distributed computation that have arisen around the notion of service (e.g. choreogra-
phy [SBFZ07]), notably through several variants of the π-calculus. However, service-oriented
computing raises more profound challenges at the level of the structure of systems due to their
ability to discover and bind dynamically, in a non-programmed manner, to other systems.
The structure of the systems that we are now creating in the virtual space of computational
networks is intrinsically dynamic, a phenomenon hitherto unknown. Formalisms such as the
π-calculus do not address these structural properties of systems. This prevents us from fully
controlling and developing trust in the systems that are now operating in cyberspace, and
also from exploiting the power of the paradigm beyond the way it is currently deployed.

Towards that end, we have investigated algebraic structures that account for modu-
larity (e.g. [FLB07, FS07]) – referring to the way services are orchestrated as composite
structures of components and how binding is performed through interaction protocols – and
the mechanisms through which discovery can be formalized in terms of logical specifica-
tions of required/provided services and constraint optimisation for service-level agreements
(e.g. [FLB11, FL13b]). In the present paper, we take further this research to address the
operational aspects behind dynamic discovery and binding, i.e. the mechanisms through
which applications discover and bind, at run time, to services. Our aim is to develop an
abstract, foundational setting – independent of the specific technologies that are currently
deployed, such as soap for message-exchange protocols and uddi for description, discovery,
and integration – that combines both the denotational and the operational semantics of
services. The challenge here is to define an integrated algebraic framework that accounts
for (a) logical specifications of services, (b) the way models of those specifications capture
orchestrations of components that may depend on externally provided services to be discov-
ered, and (c) the way the discovery of services and the binding of their orchestrations to
client applications can be expressed in logical/algebraic terms.

Logic Programming. The approach that we propose to develop to meet this challenge
builds on the relational variant of (Horn-clause) logic programming – the paradigm that
epitomizes the integration of declarative and operational aspects of logic. In conventional logic
programming, clauses have a declarative semantics as universally quantified implications that
express relationships over a domain (the Herbrand universe), and an operational semantics
that derives from resolution and term unification: definite clauses (provided by a given logic
program) are used to resolve logic-programming queries (expressed as existentially quantified
conjunctions) by generating new queries and, through term unification, computing partial
answers as substitutions for the variables of the original query.

In a nutshell, the analogy between service-oriented computing and conventional logic
programming that we propose to systematically examine in this paper unfolds as follows:

• The Herbrand universe consists of those service orchestrations that have no depen-
dencies on external services – what we refer to as ground orchestrations.
• Variables and terms correspond to dependencies on external services that need to be

discovered and to the actual services that are made available by orchestrations.
• Service clauses express conditional properties of services required or provided by

orchestrations, thus capturing the notion of service module described in [FLB11].
Their declarative semantics is that, when bound to the orchestrations of other service
clauses that ensure the required properties, they deliver, through their orchestration,
services that satisfy the specified properties.

SERVICE-ORIENTED LOGIC PROGRAMMING 3

• Service queries express properties of orchestrations of services that an application
requires in order to fulfil its goal – what we describe in [FLB11] as activity modules.
• Logic programs define service repositories as collections of service modules.
• Resolution and term unification account for service discovery by matching required

properties with provided ones and the binding of required with provided services.

The structure of the paper. Our research into the logic-programming semantics of
service-oriented computing is organized in two parts. In Section 2 we present a new
categorical model of service orchestrations, called orchestration scheme, that enables us
to treat orchestrations as fully abstract entities required to satisfy only a few elementary
properties. This framework is flexible enough to accommodate, for example, orchestrations
in the form of program expressions, as considered in [Fia12], or as asynchronous relational
networks similar to those defined in [FL13a]. In our study, such schemes play an essential
role in managing the inherent complexity of orchestrations whilst making available, at
the same time, the fundamental building blocks of service-oriented logic programming. In
Section 3, we define a logical system of orchestration schemes over which we can express
properties that can be further used to guide the interconnection of orchestrations. We
recall from [ŢF15] the algebraic structures that underlie institution-independent logic
programming, in particular the substitution systems that are characteristic of relational
logic programming, and prove that the resulting logic of orchestration schemes constitutes
a generalized substitution system. This result is central to our work, not only because it
provides the declarative semantics of our approach to service-oriented computing, but also
because it gives a definite mathematical foundation to the analogy between service-oriented
computing and conventional logic programming outlined above. Building on these results,
we show how clauses, queries, unification and resolution can be defined over the generalized
substitution system of orchestration schemes, providing in this way the corresponding
operational semantics of service-oriented computing.

The work presented herein continues our investigation on logic-independent foundations
of logic programming reported in [ŢF15]. As such, it is based on the theory of institutions
of Goguen and Burstall [GB92]; although familiarity with the institution-independent
presentation of logic programming is not essential, some knowledge of basic notions of
institution theory such as institution, (co)morphism of institutions, and also of the description
of institutions as functors into the category of rooms [Dia08, ST11] is presumed.

2. Orchestration Schemes

The first step in the development of the particular variant of logic programming that we
consider in this paper consists in determining appropriate categorical abstractions of the
structures that support service-oriented computing. These will ultimately allow us to describe
the process of service discovery and binding in a way that is independent of any particular
formalism (such as various forms of automata, transition systems or process algebras).

Our approach is grounded on two observations: first, that orchestrations can be organized
as a category whose arrows, or more precisely, cospans of arrows, can be used to model the
composition of service components (as defined, for example, in [FLB07, FLB11, FL13b]);
second, that the discovery of a service to be bound to a given client application can be
formalized in terms of logical specifications of required and provided properties, ensuring that
the specification of the properties offered by the service provider refines the specification of
the properties requested by the client application. To this end, we explore the model-theoretic

4 I. ŢUŢU AND J. L. FIADEIRO

notion of refinement advanced in [ST88], except that, in the present setting, the structures
over which specifications are evaluated are morphisms into ground orchestrations, i.e. into
orchestrations that have no dependencies on external services. The motivation for this choice
is that, in general, the semantics of non-ground orchestrations is open: the (observable)
behaviour exhibited by non-ground orchestrations varies according to the external services
that they may procure at run time. With these remarks in mind, we arrive at the following
concept of orchestration scheme.

Definition 2.1 (Orchestration scheme). An orchestration scheme is a quadruple 〈Orc,Spec,
Grc,Prop〉 consisting of

• a category Orc of orchestrations and orchestration morphisms,
• a functor Spec: Orc→ Set that defines a set Spec(o) of service specifications over o

for every orchestration o,
• a full subcategory Grc ⊆ Orc of ground orchestrations, and
• a functor Prop: Grc → Set that defines a natural subset Prop(g) ⊆ Spec(g)1 of

properties of g (specifications that are guaranteed to hold when evaluated over g)
for every ground orchestration g.

To illustrate our categorical approach to orchestrations, we consider two main running
examples: program expressions as discussed in [Fia12] (see also [Mor94]), which provide a
way of constructing structured (sequential) programs through design-time discovery and
binding, and the theory of asynchronous relational networks put forward in [FL13a], which
emphasizes the role of services as an interface mechanism for software components that can
be composed through run-time discovery and binding.

2.1. Program Expressions. The view that program expressions can be seen as defining
‘service orchestrations’ through which structured programs can be built in a compositional
way originates from [Fia12]. Intuitively, we can see the rules of the Hoare calculus [Hoa69] as
defining ‘clauses’ in the sense of logic programming, where unification is controlled through
the refinement of pre/post-conditions as specifications of provided/required services, and
resolution binds program statements (terms) to variables in program expressions. In Figure 1
we depict Hoare rules in a notation that is closer to that of service modules, which also brings
out their clausal form: the specification (a pair of a pre- and a post-condition) on the left-
hand side corresponds to the consequent of the clause (which relates to a ‘provides-point’ of
the service), while those on the right-hand side correspond to the antecedent of the clause (i.e.
to the ‘requires-points’ of the service) – the specifications of what remains to be discovered
and bound to the program expression (the ‘service orchestration’ inside the box) to produce
a program. In Figure 2, we retrace Hoare’s original example of constructing a program that
computes the quotient and the remainder resulting from the division of two natural numbers
as an instance of the unification and resolution mechanisms particular to logic programming.
We will further discuss these mechanisms in more detail in Subsection 3.3.

The formal description of program expressions that we consider here follows the pre-
sentation given in [GM96] of the algebraic semantics of programs except that, instead of
the theory of many-sorted algebra, we rely on the theory of preordered algebra developed
in [DF98], whose institution we denote by POA. In this context, signatures are ordinary

1By describing the set Prop(g) as a natural subset of Spec(g) we mean that the family of inclusions
(Prop(g) ⊆ Spec(g))g∈|Grc| defines a natural transformation from Prop to (Grc ⊆ Orc) ; Spec.

SERVICE-ORIENTED LOGIC PROGRAMMING 5

skipρ, ρ

(empty statement)

x := eρ(e), ρ(x)

(assignment)

;pgm1 pgm2ρ, ρ′′
ρ, ρ′

ρ′, ρ′′

(sequence)

ifC then
pgm1

else
pgm2

endif

ρ, ρ′
ρ ∧ JCK, ρ′

ρ ∧ ¬JCK, ρ′

(selection)

whileC do
pgm

done

ρ, ρ ∧ ¬JCK ρ ∧ JCK, ρ

(iteration)

Figure 1: Program modules

algebraic signatures whose denotation is defined over the category of preorders rather than
that of sets, with models interpreting the sorts as preordered sets and the operation symbols
as monotonic functions. The sentences are built as in first-order logic based on two kinds of
atoms: equational atoms l = r and preorder atoms l → r, where l and r are terms of the
same sort; the latter are satisfied by a preordered algebra A if and only if the interpretations
of l and r in A belong to the preorder relation of the carrier of their sort.

In order to fully define the orchestration scheme of program expressions we assume that
the programming language we have chosen to analyse is specified through a many-sorted
signature 〈S, F 〉 equipped with

• a distinguished set of sorts Spgm ⊂ S corresponding to the types of executable
expressions supported by the language, and sorts State,Config ∈ S \ Spgm capturing
the states of the programs and the various configurations that may arise upon their
execution, respectively;
• operation symbols 〈 〉 : State → Config and 〈 , 〉 : eXp State → Config for sorts

eXp ∈ Spgm, which we regard as constructor operators for the sort Config ;
• a (sortwise infinite) Spgm-indexed set Var of program variables, and state variables

st , st ′ : State, used to refer to the states that precede or result from executions; and
• a preordered 〈S, F 〉-algebra A that describes the semantics of the programming

language through the preorder relation associated with the sort Config .2

Example 2.2. The premises that we consider within this subsection are weak enough to
allow the proposed algebraic framework to accommodate a wide variety of programming
languages. For instance, the program expressions underlying the modules depicted in Figure 1
are simply terms of sort Pgm that can be formed based on the following five operation symbols

2Alternatively, one could use a theory presentation or a structured specification instead of the algebra A.

6 I. ŢUŢU AND J. L. FIADEIRO

pgm
S

P
1
v

S
P

2
pgm

1
;

pgm
2

S
P

3

S
P

4

S
P

5
v

pgm
3

;
pgm

4

S
P

6

S
P

7

S
P

8
v

q
:=

0

S
P

9
v

r
:=
x

S
P

1
0

v
pgm

5

w
h
i
l
e
y
≤
r
d
o

d
o
n
e

S
P

1
1

S
P

1
2

v
pgm

6
;

pgm
7

S
P

1
3

S
P

1
4

S
P

1
5

v
q

:=
q

+
1

S
P

1
6

v
r

:=
r
−
y

F
igu

re
2
:

T
h

e
d

eriva
tio

n
o
f

a
p

rogram
th

at
com

p
u

tes
th

e
q
u
otien

t
q

an
d

th
e

rem
ain

d
er
r

ob
tain

ed
from

th
e

d
iv

ision
of
x

b
y
y

S
P

1
:

tru
e
,Jx

=
q
∗
y

+
rK∧

Jr
<
yK

S
P

9
:Jx

=
q
∗
y

+
xK,Jx

=
q
∗
y

+
rK

S
P

2
:

tru
e
,Jx

=
q
∗
y

+
rK∧

Jr
<
yK

S
P

1
0
:Jx

=
q
∗
y

+
rK,Jx

=
q
∗
y

+
rK∧

¬
Jy
≤
rK

S
P

3
:

tru
e
,Jx

=
q
∗
y

+
rK

S
P

1
1
:Jx

=
q
∗
y

+
rK∧

Jy
≤
rK,Jx

=
q
∗
y

+
rK

S
P

4
:Jx

=
q
∗
y

+
rK,Jx

=
q
∗
y

+
rK∧

Jr
<
yK

S
P

1
2
:Jx

=
(q

+
1)∗

y
+

(r
−
y
)K,Jx

=
q
∗
y

+
rK

S
P

5
:

tru
e
,Jx

=
q
∗
y

+
rK

S
P

1
3
:Jx

=
(q

+
1)∗

y
+

(r
−
y
)K,Jx

=
q
∗
y

+
(r
−
y
)K

S
P

6
:

tru
e
,Jx

=
q
∗
y

+
xK

S
P

1
4
:Jx

=
q
∗
y

+
(r
−
y
)K,Jx

=
q
∗
y

+
rK

S
P

7
:Jx

=
q
∗
y

+
xK,Jx

=
q
∗
y

+
rK

S
P

1
5
:Jx

=
(q

+
1)∗

y
+

(r
−
y
)K,Jx

=
q
∗
y

+
(r
−
y
)K

S
P

8
:Jx

=
0
∗
y

+
xK,Jx

=
q
∗
y

+
xK

S
P

1
6
:Jx

=
q
∗
y

+
(r
−
y
)K,Jx

=
q
∗
y

+
rK

SERVICE-ORIENTED LOGIC PROGRAMMING 7

(written using the mixfix notation of CafeOBJ [DF98] and Casl [Mos04]):

(empty statement) skip : → Pgm,

(assignment) := : Id AExp→ Pgm,

(sequence) ; : Pgm Pgm→ Pgm,

(selection) if then else endif : Cond Pgm Pgm→ Pgm,

(iteration) while do done : Cond Pgm→ Pgm.

To simplify our presentation, we omit the details associated with the sorts Id of
identifiers, AExp of arithmetic expressions and Cond of conditions; we also tacitly assume
that the signature under consideration declares the usual operation symbols associated
with the names of identifiers, the addition, subtraction and multiplication of arithmetic
expressions, and with the atoms and Boolean connectives specific to conditions. Moreover,
we assume the essential sorts State and Config to be defined, as well as the operation
symbols 〈 〉 and 〈 , 〉.

Algebraic signatures having the aforementioned additional structure induce orchestration
schemes in a canonical way, as follows.

Orchestrations. The orchestrations are program expressions, that is 〈S, F ∪Var〉-terms
pgm : eXp, usually denoted simply by pgm if there is no danger of confusion, such that eXp
is a sort in Spgm. The arrows through which they are linked generalize the subterm relations;
in this sense, a morphism 〈ψ, π〉 between programs pgm1 : eXp1 and pgm2 : eXp2 consists of

• a substitution ψ : var(pgm1)→ var(pgm2), mapping the variables that occur in pgm1

to program expressions defined over the variables of pgm2, together with
• a position π in pgm2, i.e. a sequence of natural numbers that precisely identifies a

particular occurrence of a subterm pgm2�π of pgm2,

such that ψtm(pgm1) = pgm2�π.3 Their composition is defined componentwise, in a way
that ensures the commutativity of the following diagram.

pgm1 : eXp1

〈ψ1,π1〉
//

〈ψ1;ψ2,π2·π1〉

OO
pgm2 : eXp2

〈ψ2,π2〉
// pgm3 : eXp3

Specifications. For each program expression pgm : eXp, a (program) specification is a
triple of the form ι : [ρ, ρ′], where ι is a position in pgm indicating the ‘subprogram’ of pgm
whose behaviour is being analysed,4 and ρ and ρ′ are pre- and post-conditions associated with
pgm�ι, formalized as (quantifier-free) POA-sentences over the signature 〈S, F ∪ {st : State}〉.
The intuitive interpretation is the usual one:

Whenever the program pgm�ι is executed in an initial state that satisfies
the pre-condition ρ, and the execution terminates, the resulting final state
satisfies the post-condition ρ′.

Note, however, that specifications cannot be evaluated over arbitrary program expressions
because, due to the presence of program variables (from Var), some of the programs may
not support a well-defined notion of execution. We will address this aspect in Section 3

3Here, we let ψtm denote the canonical extension of the substitution ψ from variables to terms.
4The first component of specifications may be encountered in the literature (e.g. in [Mor94]) with a

different meaning: the set of identifiers whose values may change during the execution of the program.

8 I. ŢUŢU AND J. L. FIADEIRO

by taking into account translations of specifications along morphisms whose codomains
are ground program expressions. For now, it suffices to mention that the translation of a
program specification ι : [ρ, ρ′] of pgm1 : eXp1 along a morphism 〈ψ, π〉 : (pgm1 : eXp1) →
(pgm2 : eXp2) is defined as the specification (π · ι) : [ψ(ρ), ψ(ρ′)] of pgm2 : eXp2.

Ground orchestrations and properties. As expected, ground program expressions are
just program expressions that do not contain variables: 〈S, F 〉-terms pgm : eXp whose sort
eXp belongs to Spgm. Consequently, they have a well-defined operational semantics, which
means that we can check whether or not they meet the requirements of a given specification.

A specification ι : [ρ, ρ′] is a property of a ground program expression pgm : eXp if and
only if the following satisfaction condition holds for the preordered algebra A:

A �POA ∀{st , st ′ : State} · (ρ(st) ∧ 〈pgm�ι, st〉 → 〈st ′〉)⇒ ρ′(st ′).

To keep the notation simple and, at the same time, emphasize the roles of st and st ′, we
used ρ(st) in the above POA-sentence as another name for ρ, while ρ′(st ′) is the sentence
derived from ρ′ by replacing the variable st with st ′.5 The same notational convention is
used in Figure 1 to represent the specification attached to the assignment expression. In
that case, ρ is assumed to be a sentence defined not only over st : State, but also over a
variable v : AExp; the sentences ρ(e) and ρ(x) are then derived from ρ by replacing v with e
and x (regarded as an atomic arithmetic expression), respectively. Another notation used in
Figure 1 (and also in Figure 2) is JCK, where C is a term of sort Cond; this follows Iverson’s
convention (see [Ive62], and also [GKP94]), and corresponds to an atomic POA-sentence
that captures the semantics of the condition C.

We conclude the presentation of orchestrations as program expressions with Propo-
sition 2.3 below, which guarantees that properties form natural subsets of the sets of
specifications; in other words, the morphisms of ground programs preserve properties.

Proposition 2.3. Let 〈ψ, π〉 : (pgm1 : eXp1)→ (pgm2 : eXp2) be a morphism between ground
programs. For every property ι : [ρ, ρ′] of pgm1 : eXp1, the specification Spec(ψ, π)(ι : [ρ, ρ′])
is a property of pgm2 : eXp2.

Proof. By the definition of the translation of specifications along morphisms of program
expressions, Spec(ψ, π)(ι : [ρ, ρ′]) is a property of pgm2 : eXp2 if and only if

A �POA ∀{st , st ′ : State} · (ψ(ρ)(st)

ρ(st)

∧ 〈pgm2�π·ι
pgm1�ι

, st〉 → 〈st ′〉)⇒ ψ(ρ′)(st ′)

ρ′(st ′)

.

To prove this, notice that all morphisms of ground program expressions share the same
underlying substitution: the identity of ∅. Therefore, ψ(ρ) = ρ, ψ(ρ′) = ρ′, and pgm2�π·ι =
pgm2�π�ι = ψtm(pgm1)�ι = pgm1�ι, from which we immediately deduce that both the evalu-
ation of ι : [ρ, ρ′] in pgm1 : eXp1 and that of Spec(ψ, π)(ι : [ρ, ρ′]) in pgm2 : eXp2 correspond
to the satisfaction by A of the same POA-sentence.

5Formally, the sentences ρ(st) and ρ′(st ′) are obtained by translating ρ and ρ′ along the 〈S, F 〉-substitutions
{st} → {st , st ′} given by st 7→ st and st 7→ st ′, respectively.

SERVICE-ORIENTED LOGIC PROGRAMMING 9

2.2. Asynchronous Relational Networks. Asynchronous relational networks as devel-
oped in [FL13a] uphold a significantly different perspective on services: the emphasis is
put not on the role of services in addressing design-time organisational aspects of complex,
interconnected systems, but rather on their role in managing the run-time interactions that
are involved in such systems. In this paper, we consider a variant of the original theory of
asynchronous relational networks that relies on hypergraphs instead of graphs, and uses
ω-automata [Tho90] (see also [PP04]) instead of sets of traces as models of behaviour.

The notions discussed within this context depend upon elements of linear temporal
logic, and are introduced through dedicated syntactic structures that correspond to specific
temporal signatures and signature morphisms. However, the proposed theory is largely
independent of any logical framework of choice – similarly to the way in which program
expressions can be defined over a variety of algebraic signatures – and can be easily adapted
to any institution for which

1. the category of signatures is (finitely) cocomplete;
2. there exist cofree models along every signature morphism, meaning that the reduct

functors determined by signature morphisms admit right adjoints;
3. the category of models of every signature has (finite) products;
4. all model homomorphisms reflect the satisfaction of sentences.

In addition to the above requirements, we implicitly assume, as is often done in insti-
tutions (see, for example, [Dia08] and [ST11] for more details), that the considered logical
system is closed under isomorphisms, meaning that the satisfaction of sentences is invariant
with respect to isomorphisms of models. This property holds in most institutions; in particu-
lar, it holds in the variant of temporal logic that we use here as a basis for the construction
of the orchestration scheme of asynchronous relational networks.

Linear Temporal Logic. In order to capture a more operational notion of service orchestration,
we work with an automata-based variant of the institution LTL of linear temporal logic [FC96].
This logical system, denoted ALTL, has the same syntax as LTL, which means that signatures
are arbitrary sets of actions, and that signature morphisms are just functions. With respect
to sentences, for any signature A, the set of A-sentences is defined as the least set containing
the actions in A that is closed under standard Boolean connectives6 and under the temporal
operators next (�) and until (U). As usual, the derived temporal sentences 3ρ and 2ρ
stand for true U ρ and ¬(true U ¬ρ), respectively.

The semantics of ALTL is defined over (non-deterministic finite-state) Muller au-
tomata [Mul63] instead of the more conventional temporal models. This means that, in the
present setting, the models of a signature A are Muller automata Λ = 〈Q,P(A),∆, I,F〉,
which consist of a (finite) set Q of states, an alphabet P(A), a transition relation ∆ ⊆
Q × P(A) × Q, a subset I ⊆ Q of initial states, and a subset F ⊆ P(Q) of (non-empty)
final-state sets.

The satisfaction relation is based on that of LTL: an automaton Λ satisfies a sentence ρ
if and only if every trace accepted by Λ satisfies ρ in the sense of LTL. To be more precise,
let us first recall that a trace over A is an (infinite) sequence λ ∈ P(A)ω, and that a run of
an automaton Λ defined as above on a trace λ is a state sequence % ∈ Qω such that %(0) ∈ I
and (%(i), λ(i), %(i+ 1)) ∈ ∆ for every i ∈ ω. A run % is said to be successful if its infinity

6For convenience, we assume that disjunctions, denoted
∨
E, and conjunctions, denoted

∧
E, are defined

over arbitrary finite sets of sentences E, and we abbreviate
∧
{ρ1, ρ2} as ρ1 ∧ ρ2 and

∧
∅ as true.

10 I. ŢUŢU AND J. L. FIADEIRO

set, i.e. the set of states that occur infinitely often in %, denoted Inf(%), is a member of F .
Then a trace λ is accepted by Λ if and only if there exists a successful run of Λ on λ. Finally,
given a trace λ (that can be presumed to be accepted by Λ) and i ∈ ω, we use the notation
λ(i..) to indicate the suffix of λ that starts at λ(i). The satisfaction of temporal sentences
by traces can now be defined by structural induction, as follows:

λ � a if and only if a ∈ λ(0),

λ � ¬ρ if and only if λ 2 ρ,
λ �

∨
E if and only if λ � ρ for some ρ ∈ E,

λ � �ρ if and only if λ(1..) � ρ, and

λ � ρ1 U ρ2 if and only if λ(i..) � ρ2 for some i ∈ ω, and λ(j..) � ρ1 for all j < i,

where a is an action in A, ρ, ρ1 and ρ2 are A-sentences, and E is a set of A-sentences.
One can easily see that the first of the hypotheses 1–4 that form the basis of the present

study of asynchronous relational networks is satisfied by ALTL, as it corresponds to a well-
known result about the existence of small colimits in Set. In order to check that the remaining
three properties hold as well, let us first recall that a homomorphism h : Λ1 → Λ2 between
Muller automata Λ1 = 〈Q1,P(A),∆1, I1,F1〉 and Λ2 = 〈Q2,P(A),∆2, I2,F2〉 (over the same
alphabet) is a function h : Q1 → Q2 such that (h(p), α, h(q)) ∈ ∆2 whenever (p, α, q) ∈ ∆1,
h(I1) ⊆ I2, and h(F1) ⊆ F2. We also note that for any map σ : A→ A′, i.e. for any signature
morphism, and any Muller automaton Λ′ = 〈Q′,P(A′),∆′, I ′,F ′〉, the reduct Λ′�σ is the
automaton 〈Q′,P(A),∆′�σ, I

′,F ′〉 with the same states, initial states and final-state sets as
Λ′, and with the transition relation given by ∆′�σ = {(p′, σ−1(α′), q′) | (p′, α′, q′) ∈ ∆′}.

The following results enable us to use the institution ALTL as a foundation for the
subsequent development of asynchronous relational networks. In particular, Proposition 2.4
ensures the existence of cofree Muller automata along signature morphisms; Proposition 2.5
allows us to form products of Muller automata based on a straightforward categorical
interpretation of the fact that the sets of traces accepted by Muller automata, i.e. regular
ω-languages, are closed under intersection; and finally, Proposition 2.6 guarantees that all
model homomorphisms reflect the satisfaction of temporal sentences.

Proposition 2.4. For every morphism of ALTL-signatures σ : A→ A′, the reduct functor
�σ : ModALTL(A′)→ ModALTL(A) admits a right adjoint, which we denote by ()σ.

Proof. According to a general result about adjoints, it suffices to show that for any automaton
Λ over the alphabet P(A) there exists a universal arrow from �σ to Λ.

Let us thus consider a Muller automaton Λ = 〈Q,P(A),∆, I,F〉 over P(A). We define
the automaton Λσ = 〈Q,P(A′),∆σ, I,F〉 over the alphabet P(A′) by

∆σ = {(p, α′, q) | (p, σ−1(α′), q) ∈ ∆}.
It is straightforward to verify that the identity map 1Q defines a homomorphism of automata
Λσ�σ → Λ: for any transition (p, α, q) ∈ ∆σ�σ, by the definition of the reduct functor �σ,
there exists a set α′ ⊆ A′ such that σ−1(α′) = α and (p, α′, q) ∈ ∆σ; given the definition
above of ∆σ, it follows that (p, σ−1(α′), q) ∈ ∆, and hence (p, α, q) ∈ ∆.

Λ Λσ�σ
1Q

oo Λσ

Λ′�σ

h

OO

h

aa

Λ′

h

OO

SERVICE-ORIENTED LOGIC PROGRAMMING 11

Let us now assume that h : Λ′�σ → Λ is another homomorphism of automata, with
Λ′ = 〈Q′,P(A′),∆′, I ′,F ′〉. Then for any transition (p′, α′, q′) ∈ ∆′, by the definition of the
functor �σ, we have (p′, σ−1(α′), q′) ∈ ∆′�σ. Based on the homomorphism property of h, it
follows that (h(p′), σ−1(α′), h(q′)) ∈ ∆, which further implies, by the definition of ∆σ, that
(h(p′), α′, h(q′)) ∈ ∆σ. As a result, the map h is also a homomorphism of automata Λ′ → Λσ.
Even more, it is obviously the unique homomorphism Λ′ → Λσ (in the category of automata
over P(A′)) such that h ; 1Q = h in the category of automata over P(A).

Proposition 2.5. For any set of actions A, the category ModALTL(A) of Muller automata
defined over the alphabet P(A) admits (finite) products.

Proof. Let (Λi)i∈J be a (finite) family of Muller automata over the alphabet P(A), with Λi
given by 〈Qi,P(A),∆i, Ii,Fi〉. We define the automaton Λ = 〈Q,P(A),∆, I,F〉 by

Q =
∏
i∈J Qi,

∆ = {(p, α, q) | (p(i), α, q(i)) ∈ ∆i for all i ∈ J},
I =

∏
i∈J Ii, and

F = {S ⊆ Q | πi(S) ∈ Fi for all i ∈ J},
where the functions πi : Q→ Qi are the corresponding projections of the Cartesian product∏
i∈J Qi. By construction, it immediately follows that for every i ∈ J , the map πi defines

a homomorphism of automata Λ → Λi. Even more, one can easily see that for any other
family of homomorphisms (hi : Λ′ → Λi)i∈J , with Λ′ = 〈Q′,P(A′),∆′, I ′,F ′〉, the unique
map h : Q′ → Q such that h ; πi = hi for all i ∈ J defines a homomorphism of automata as
well. Therefore, the automaton Λ and the projections (πi)i∈J form the product of (Λi)i∈J .

Proposition 2.6. Let h : Λ1 → Λ2 be a homomorphism between automata defined over an
alphabet P(A). Every temporal sentence over A that is satisfied by Λ2 is also satisfied by Λ1.

Proof. Suppose that Λi = 〈Qi,P(A),∆i, Ii,Fi〉, for i ∈ {1, 2}. Since the map h : Q1 → Q2

defines a homomorphism of automata, for every successful run % ∈ Qω1 of Λ1 on a trace
λ ∈ P(A)ω, the composition % ; h yields a successful run of Λ2 on λ. As a result, Λ2 accepts
all the traces accepted by Λ1, which further implies that Λ1 satisfies all temporal sentences
that are satisfied by Λ2.

Service Components. Following [FL13a], we regard service components as networks of
processes that interact asynchronously by exchanging messages through communication
channels. Messages are considered to be atomic units of communication. They can be
grouped either into sets of messages that correspond to processes or channels, or into specific
structures, called ports, through which processes and channels can be interconnected.

The ports can be viewed as sets of messages with attached polarities. As in [BZ83,
BCT06] we distinguish between outgoing or published messages (labelled with a minus sign),
and incoming or delivered messages (labelled with a plus sign).

Definition 2.7 (Port). A port M is a pair 〈M−,M+〉 of disjoint (finite) sets of published
and delivered messages. The set of all messages of M is given by M− ∪M+ and is often
denoted simply by M . Every port M defines the set of actions AM = AM− ∪AM+ , where

• AM− is the set {m! | m ∈M−} of publication actions, and
• AM+ is the set {m¡ | m ∈M+} of delivery actions.

12 I. ŢUŢU AND J. L. FIADEIRO

Processes are defined by sets of interaction points labelled with ports and by automata
that describe their behaviour in terms of observable publication and delivery actions.

Definition 2.8 (Process). A process is a triple 〈X, (Mx)x∈X ,Λ〉 that consists of a (finite)
set X of interaction points, each point x ∈ X being labelled with a port Mx, and a Muller
automaton Λ over the alphabet P(AM), where M is the port given by

M∓ =
⊎
x∈X

M∓x = {x.m | x ∈ X,m ∈M∓x }.

Example 2.9. In Figure 3 we depict a process JP (for Journey Planner) that provides
directions from a source to a target location. The process interacts with the environment by
means of two ports, named JP1 and JP2. The first port is used to communicate with potential
client processes – the request for directions (including the source and the target locations) is
encoded into the incoming message planJourney, while the response is represented by the
outgoing message directions. The second port defines messages that JP exchanges with other
processes in order to complete its task – the outgoing message getRoutes can be seen as a
query for all possible routes between the specified source and target locations, while the
incoming messages routes and timetables define the result of the query and the timetables of
the available transport services for the selected routes.

JP

ΛJP

planJourney +

directions −

JP1

− getRoutes
+ routes
+ timetables

JP2

Figure 3: The process JP

The behaviour of JP is given by the Muller automaton depicted in Figure 4, whose
final-state sets contain q0 whenever they contain q5. We can describe it informally as follows:
whenever the process JP receives a request planJourney it immediately initiates the search
for the available routes by sending the message getRoutes; it then waits for the delivery of
the routes and of the corresponding timetables, and, once it receives both, it compiles the
directions and replies to the client.

q0 q1 q3

q2

q5

q4

¬planJourney¡

planJourney¡

getRoutes!

¬routes¡ ∧ ¬timetables¡

routes¡ ∧
timetables¡

¬routes¡ ∧ timetables¡routes¡ ∧ ¬timetables¡

routes¡

¬routes¡

timetables¡

¬timetables¡

¬directions!
directions!

Figure 4: The automaton ΛJP
7

7In the graphical representation, transitions are labelled with propositional sentences, as in [AS87]; this
means that there exists a transition for any propositional model (i.e. set of actions) of the considered sentence.

SERVICE-ORIENTED LOGIC PROGRAMMING 13

Remark 2.10. To generalize Definition 2.8 to an arbitrary institution (subject to the four
technical assumptions listed at the beginning of the subsection), we first observe that every
polarity-preserving map θ between ports M and M ′ defines a function Aθ : AM → AM ′ , i.e.
a morphism of ALTL-signatures, usually denoted simply by θ, that maps every publication
action m! to θ(m)! and every delivery action m¡ to θ(m)¡. Moreover, for any process
〈X, (Mx)x∈X ,Λ〉, the injections (x. : AMx → AM)x∈X define a coproduct in the category
of ALTL-signatures. This allows us to introduce an abstract notion of process as a triple
〈X, (ιx : Σx → Σ)x∈X ,Λ〉 that consists of a set X of interaction points, each point x ∈ X
being labelled with a port signature Σx, a process signature Σ together with morphisms
ιx : Σx → Σ for x ∈ X (usually defining a coproduct), and a model Λ of Σ.

Processes communicate by transmitting messages through channels. As in [BZ83, FL13a],
channels are bidirectional: they may transmit both incoming and outgoing messages.

Definition 2.11 (Channel). A channel is a pair 〈M,Λ〉 that consists of a (finite) set M of
messages and a Muller automaton Λ over the alphabet P(AM), where AM is given by the
union A−M ∪A

+
M of the sets of actions A−M = {m! | m ∈M} and A+

M = {m¡ | m ∈M}.
Note that channels do not provide any information about the communicating entities.

In order to enable given processes to exchange messages, channels need to be attached to
their ports, thus forming connections.

Definition 2.12 (Connection). A connection 〈M,Λ, (µx : M ⇀Mx)x∈X〉 between the ports
(Mx)x∈X consists of a channel 〈M,Λ〉 and a (finite) family of partial attachment injections
(µx : M ⇀Mx)x∈X such that M =

⋃
x∈X dom(µx) and for any point x ∈ X,

µ−1
x (M∓x) ⊆

⋃
y∈X\{x}

µ−1
y (M±y).

This notion of connection generalizes the one found in [FL13a] so that messages can be
transmitted between more than two ports. The additional condition ensures in this case
that messages are well paired: every published message of Mx, for x ∈ X, is paired with
a delivered message of My, for y ∈ X \ {x}, and vice versa. One can also see that for any
binary connection, the attachment injections have to be total functions; therefore, any binary
connection is also a connection in the sense of [FL13a].

Example 2.13. In order to illustrate how the process JP can send or receive messages, we
consider the connection C depicted in Figure 5 that moderates the flow of messages between
the port named JP2 and two other ports, named R1 and R2.

− getRoutes
+ routes
+ timetables

JP2
getRoutes +

routes −

R1

routes +

timetables −

R2

C

ΛC

Figure 5: The Journey Planner’s connection

The underlying channel of C is given by the set of messages M = {g, r, t} together with
the automaton ΛC that specifies the delivery of all published messages without any delay;

14 I. ŢUŢU AND J. L. FIADEIRO

ΛC can be built as the product of the automata Λm, for m ∈M , whose transition map is
depicted in Figure 6, and whose sets of states are all marked as final.

q0 q1

¬m!
m!

m! ∧m¡

¬m! ∧m¡

Figure 6: The automaton Λm

The channel is attached to the ports JP2, R1 and R2 through the partial injections

• µJP2 : M →MJP2 given by g 7→ getRoutes, r 7→ routes and t 7→ timetables,
• µR1 : M →MR1 given by g 7→ getRoutes and r 7→ routes, and
• µR2 : M →MR2 given by r 7→ routes and t 7→ timetables.

These injections specify the actual senders and receivers of messages. For instance, the
message g is delivered only to the port R1 (because µR2 is not defined on g), whereas r is
simultaneously delivered to both JP2 and R2.

As already suggested in Examples 2.9 and 2.13, processes and connections have dual
roles, and they interpret the polarities of messages accordingly. In this sense, processes
are responsible for publishing messages (i.e. they regard delivered messages as inputs and
published messages as outputs), while connections are responsible for delivering messages.
This dual nature of connections can be made explicit by taking into account, for every
connection 〈M,Λ, (µx : M ⇀ Mx)x∈X〉, partial translations (Aµx : AM ⇀ AMx)x∈X of the
actions defined by the channel into actions defined by the ports, as follows:

dom(Aµx) = {m! | m ∈ µ−1
x (M−x)} ∪ {m¡ | m ∈ µ−1

x (M+
x)},

Aµx(m!) = µx(m)! for all messages m ∈ µ−1
x (M−x),

Aµx(m¡) = µx(m)¡ for all messages m ∈ µ−1
x (M+

x).

We usually designate the partial maps Aµx simply by µx if there is no danger of confusion.

Remark 2.14. Just as in the case of processes, we can define connections based on an
arbitrary logical system, without relying on messages. To achieve this goal, note that, in
ALTL, every connection 〈M,Λ, (µx : M ⇀Mx)x∈X〉 determines a family of spans

AM dom(µx)
⊇
oo

µx
//AMx

indexed by points x ∈ X. Then we can consider connections more generally as triples
〈Σ,Λ, (ιx : Σ′x → Σ, µx : Σ′x → Σx)x∈X〉 in which the signature Σ and the model Λ of Σ
abstract the channel component, and the spans of signature morphisms (ιx, µx)x∈X provide
the means of attaching port signatures to the channel.

We can now define asynchronous networks of processes as hypergraphs having vertices
labelled with ports and hyperedges labelled with processes or connections.

Definition 2.15 (Hypergraph). A hypergraph 〈X,E, γ〉 consists of a set X of vertices or
nodes, a set E of hyperedges, disjoint from X, and an incidence map γ : E → P(X), defining
for every hyperedge e ∈ E a non-empty set γe ⊆ X of vertices it is incident with.

SERVICE-ORIENTED LOGIC PROGRAMMING 15

A hypergraph 〈X,E, γ〉 is said to be edge-bipartite if it admits a distinguished partition
of E into subsets F and G such that no adjacent hyperedges belong to the same part, i.e. for
every e1, e2 ∈ E such that γe1 ∩ γe2 6= ∅, either e1 ∈ F and e2 ∈ G, or e1 ∈ G and e2 ∈ F .

Hypergraphs have been used extensively in the context of graph-rewriting-based ap-
proaches to concurrency, including service-oriented computing (e.g. [BGLL09, FHL+05]).
We use them instead of graphs [FL13a] because they offer a more flexible mathematical
framework for handling the notions of variable and variable binding required in Section 3.

Definition 2.16 (Asynchronous relational network – arn). An asynchronous relational
network N = 〈X,P,C, γ,M, µ,Λ〉 consists of a (finite) edge-bipartite hypergraph 〈X,P,C, γ〉
of points x ∈ X, computation hyperedges p ∈ P and communication hyperedges c ∈ C, and of

• a port Mx for every point x ∈ X,
• a process 〈γp, (Mx)x∈γp ,Λp〉 for every hyperedge p ∈ P , and

• a connection 〈Mc,Λc, (µ
c
x : Mc ⇀Mx)x∈γc〉 for every hyperedge c ∈ C.

Example 2.17. By putting together the process and the connection presented in Exam-
ples 2.9 and 2.13, we obtain the arn JourneyPlanner depicted in Figure 7. Its underlying
hypergraph consists of the points JP1, JP2, R1 and R2, the computation hyperedge JP,
the communication hyperedge C, and the incidence map γ given by γJP = {JP1, JP2} and
γC = {JP2,R1,R2}.

JP

ΛJP

planJourney +

directions −

JP1

− getRoutes
+ routes
+ timetables

JP2
getRoutes +

routes −

R1

routes +

timetables −

R2

C

ΛC

Figure 7: The arn JourneyPlanner

The Orchestration Scheme of Asynchronous Relational Networks. Let us now focus on the
manner in which arns can be organized to form an orchestration scheme. We begin with a
brief discussion on the types of points of arns, which will enable us to introduce notions of
morphism of arns and ground arn.

An interaction point of an arn N is a point of N that is not bound to both computation
and communication hyperedges. We distinguish between two types of interaction points,
called requires- and provides-points, as follows.

Definition 2.18 (Requires- and provides-point). A requires-point of an arn N is a point
of N that is incident only with a communication hyperedge. Similarly, a provides-point of N
is a point incident only with a computation hyperedge.

For the arn JourneyPlanner depicted in Figure 7, the points R1 and R2 are requires-points
(incident with the communication hyperedge C), whereas JP1 is a provides-point (incident
with the computation hyperedge JP).

16 I. ŢUŢU AND J. L. FIADEIRO

Orchestrations. In order to describe arns as orchestrations we first need to equip them
with appropriate notions of morphism and composition of morphisms. Morphisms of arns
correspond to injective homomorphisms between their underlying hypergraphs, and are
required to preserve all labels, except those associated with points that, like the requires-
points, are not incident with computation hyperedges.

Definition 2.19 (Homomorphism of hypergraphs). A homomorphism h between hyper-
graphs 〈X1, E1, γ

1〉 and 〈X2, E2, γ
2〉 consists of functions h : X1 → X2 and h : E1 → E2

8

such that for any vertex x ∈ X1 and hyperedge e ∈ E1, x ∈ γ1
e if and only if h(x) ∈ γ2

h(e).

Definition 2.20 (Morphism of arns). Given two arns N1 = 〈X1, P1, C1, γ
1,M1, µ1,Λ1〉

and N2 = 〈X2, P2, C2, γ
2,M2, µ2,Λ2〉, a morphism θ : N1 → N2 consists of

• an injective homomorphism θ : 〈X1, P1, C1, γ
1〉 → 〈X2, P2, C2, γ

2〉 between the un-
derlying hypergraphs of N1 and N2 such that θ(P1) ⊆ P2 and θ(C1) ⊆ C2, and

• a family θpt of polarity-preserving injections θpt
x : M1

x →M2
θ(x), for x ∈ X1,

such that

• for every point x ∈ X1 incident with a computation hyperedge, θpt
x = 1M1

x
,

• for every computation hyperedge p ∈ P1, Λ1
p = Λ2

θ(p), and

• for every communication hyperedge c ∈ C1, M1
c = M2

θ(c), Λ1
c = Λ2

θ(c) and the following

diagram commutes, for every point x ∈ γ1
c .

M1
c = M2

θ(c)

µ1,c
x
/

µ
2,θ(c)
θ(x) "

M1
x

θpt
x

��

M2
θ(x)

It is straightforward to verify that the morphisms of arns can be composed in terms of
their components. Their composition is associative and has left and right identities given by
morphisms that consists solely of set-theoretic identities. We obtain in this way the first
result supporting the construction of an orchestration scheme of arns.

Proposition 2.21. The morphisms of arns form a category, denoted ARN.

Specifications. To define specifications over given arns, we label their points with linear
temporal sentences, much in the way we used pre- and post-conditions as labels for positions
in terms when defining specifications of program expressions.

Definition 2.22 (Specification over an arn). For any arn N, the set Spec(N) of N-specifi-
cations is the set of pairs 〈x, ρ〉, usually denoted @x ρ, where x is a point of N and ρ is an
ALTL-sentence over AMx , i.e. over the set of actions defined by the port that labels x.

The translation of specifications along morphisms of arns presents no difficulties: for
every morphism θ : N→ N′, the map Spec(θ) : Spec(N)→ Spec(N′) is given by

Spec(θ)(@x ρ) = @θ(x) SenALTL(θpt
x)(ρ)

for each point x of N and each ALTL-sentence ρ over the actions of x. Furthermore, it can
be easily seen that it inherits the functoriality of the translation of sentences in ALTL, thus
giving rise to the functor Spec: ARN→ Set that we are looking for.

8To simplify the notation, we denote both the translation of vertices and of hyperedges simply by h.

SERVICE-ORIENTED LOGIC PROGRAMMING 17

Ground orchestrations. Morphisms of arns can also be regarded as refinements, as they
formalize the embedding of networks with an intuitively simpler behaviour into networks
that are more complex. This is achieved essentially by mapping each of the requires-points
of the source arn to a potentially non-requires-point of the target arn, a point which can
be looked at as the ‘root’ of a particular subnetwork of the target arn. To explain this
aspect in more detail we introduce the notions of dependency and arn defined by a point.

Definition 2.23 (Dependency). Let x and y be points of an arn N. The point x is said
to be dependent on y if there exists a path from x to y that begins with a computation
hyperedge, i.e. if there exists an alternating sequence x e1 x1 . . . en y of (distinct) points
and hyperedges of the underlying hypergraph 〈X,P,C, γ〉 of N such that x ∈ γe1 , y ∈ γen ,
xi ∈ γei ∩ γei+1 for every 1 ≤ i < n, and e1 ∈ P .

Definition 2.24 (Network defined by a point). The arn defined by a point x of an arn N
is the full sub-arn Nx of N determined by x and the points on which x is dependent.

One can now see that any morphism of arns θ : N1 → N2 assigns to each requires-point
x of the source network N1 the sub-arn N2,θ(x) of N2 defined by θ(x).

Example 2.25. In Figure 8 we outline an extension of the arn JourneyPlanner discussed in
Example 2.17 that is obtained by attaching the processes MS (for Map Services) and TS (for
Transport System) to the requires-points R1 and R2 of JourneyPlanner. Formally, the link
between JourneyPlanner and the resulting arn JourneyPlannerNet is given by a morphism
θ : JourneyPlanner→ JourneyPlannerNet that preserves all the labels, points and hyperedges
of JourneyPlanner, with the exception of the requires-points R1 and R2, which are mapped
to MS1 and TS1, respectively.

In this case, MS1 only depends on itself, hence the sub-arn of JourneyPlannerNet defined
by MS1, i.e. the arn assigned to the requires-point R1 of JourneyPlanner, is given by the
process MS and its port MS1. In contrast, the point JP1 depends on all the other points of
JourneyPlannerNet, and thus it defines the entire arn JourneyPlannerNet.

JP

ΛJP

planJourney +
directions −

JP1

− getRoutes
+ routes
+ timetables

JP2

getRoutes +

routes −

MS1

MS

ΛMS

routes +
timetables −

TS1

TS

ΛTS

C

ΛC

Figure 8: The arn JourneyPlannerNet

In view of the above observation, we may consider the requires-points of networks
as counterparts of the variables used in program expressions, and their morphisms as
substitutions. This leads us to the following definition of ground arns.

Definition 2.26 (Ground arn). An arn is said to be ground if it has no requires-points.

Properties. The evaluation of specifications with respect to ground arns relies on the
concepts of diagram of a network and automaton (i.e. ALTL-model) defined by a point,

18 I. ŢUŢU AND J. L. FIADEIRO

whose purpose is to describe the observable behaviour of a ground arn through one of its
points. We start by extending Remarks 2.10 and 2.14 to arns.

Fact 2.27 (Diagram of an arn). Every arn N = 〈X,P,C, γ,M, µ,Λ〉 defines a diagram
DN : JN → SigALTL as follows:

• JN is the free preordered category given by the set of objects

X ∪ P ∪ C ∪ {〈c, x〉N | c ∈ C, x ∈ γc}
and the arrows

– {x→ p | p ∈ P, x ∈ γp} for computation hyperedges, and
– {c← 〈c, x〉N → x | c ∈ C, x ∈ γc} for communication hyperedges;

• DN is the functor that provides the sets of actions of ports, processes and channels,
together with the appropriate mappings between them. For example, given a
communication hyperedge c ∈ C and a point x ∈ γc,

– DN(c) = AMc , DN(〈c, x〉N) = dom(µcx), DN(x) = AMx ,
– DN(〈c, x〉N → c) = (dom(µcx) ⊆ AMc), and
– DN(〈c, x〉N → x) = µcx.

We define the signature of an arn by taking the colimit of its diagram, which is
guaranteed to exist because the category SigALTL, i.e. Set, is finitely cocomplete.

Definition 2.28 (Signature of an arn). The signature of an arn N is the colimiting cocone
ξ : DN ⇒ AN of the diagram DN.

The most important construction that allows us to define properties of ground arns is
the one that defines the observed behaviour of a (ground) network at one of its points.

Definition 2.29 (Automaton defined by a point). Let x be a point of a ground arn G.
The observed automaton Λx at x is given by the reduct ΛGx�ξx , where

• Gx = 〈X,P,C, γ,M, µ,Λ〉 is the sub-arn of G defined by x,
• ξ : DGx ⇒ AGx is the signature of Gx,
• ΛGx is the product automaton

∏
e∈P∪C ΛGx

e , and

• ΛGx
e is the cofree expansion of Λe along ξe, for any hyperedge e ∈ P ∪ C.

Example 2.30. Consider once again the (ground) arn represented in Figure 8. The
automaton defined by the point MS1 is just ΛMS�AMS1

; this follows from the observation

that the arn defined by MS1 consists exclusively of the process MS and the port MS1. On
the other hand, in order to obtain the automaton defined by the provides-point JP1 one
needs to compute the product of the cofree expansions of all four automata ΛJP, ΛC, ΛMS

and ΛTS. Based on Propositions 2.4 and 2.5, the resulting automaton has to accept precisely
the projections to AMJP1

of those traces accepted by ΛJP that are compatible with traces
accepted by ΛC, ΛMS and ΛTS, in the sense that together they give rise, by amalgamation,
to traces over the alphabet of the network.

We now have all the necessary concepts for defining properties of ground arns.

Definition 2.31 (Property of an arn). Let @x ρ be a specification over a ground arn G.
Then @x ρ is a property of G if and only if the automaton Λx observed at the point x in G
satisfies (according to the definition of satisfaction in ALTL) the temporal sentence ρ.

Λx �ALTL ρ

SERVICE-ORIENTED LOGIC PROGRAMMING 19

Remark 2.32. It is important to notice that not only the signature of an arn, but also
the various cofree expansions and products considered in Definition 2.29 are unique only
up to an isomorphism. Consequently, the automaton defined by a point of a ground arn
is also unique only up to an isomorphism, which means that the closure of ALTL under
isomorphisms plays a crucial role in ensuring that the evaluation of specifications with
respect to ground arns is well defined.

All we need now in order to complete the construction of the orchestration scheme of
arns is to show that the morphisms of ground arns preserve properties. This result depends
upon the last of the four hypotheses we introduced at the beginning of the subsection: the
reflection of the satisfaction of sentences by the model homomorphisms of the institution
used as foundation for the construction of arns.

Proposition 2.33. For every morphism of ground arns θ : G1 → G2 and every property
@x ρ of G1, the specification Spec(θ)(@x ρ) is a property of G2.

Proof. Let Gx
1 and Gx

2 be the sub-arns of G1 and G2 determined by x and θ(x) respectively,
and let us also assume that Gx

i = 〈Xi, Pi, Ci, γ
i,M i, µi,Λi〉 and that ξi : DGxi

⇒ AGxi
is the

signature of Gx
i , for i ∈ {1, 2}. Since @x ρ is a property of G1, we know that the automaton

Λ1
x observed at the point x in G1 satisfies ρ. We also know that θ : G1 → G2 defines the

ALTL-signature morphism θpt
x : AM1,x → AM2,θ(x)

as the identity of AM1,x (because G1 is

ground); hence, the automaton Λ2
θ(x) observed at θ(x) in G2 is also a model of AM1,x .

By Proposition 2.6, ALTL-model homomorphisms reflect the satisfaction of sentences;
therefore, in order to prove that Λ2

θ(x) satisfies ρ – and in this way, that Spec(θ)(@x ρ) is a

property of G2 – it suffices to determine the existence of a homomorphism Λ2
θ(x) → Λ1

x.

Recall that Λ1
x and Λ2

θ(x) are the reducts ΛGx1
�ξ1
x

and ΛGx2
�ξ2
θ(x)

, where, for i ∈ {1, 2},

• ΛGxi
is the product

∏
e∈Pi∪Ci Λ

Gxi
e , equipped with projections πie : ΛGxi

→ Λ
Gxi
e , and

• Λ
Gxi
e , for e ∈ Pi ∪ Ci, is the cofree expansion of Λie along ξie, for which we denote the

universal morphism from �ξie to Λie by εie : Λ
Gxi
e �ξie → Λie.

According to the description of the arns defined by given points, we can restrict θ to a
morphism of arns from Gx

1 to Gx
2 . Since Gx

1 is ground, we further obtain, based on this
restriction, a functor F : JGx1 → JGx2 that makes the following diagram commutative.

JGx1 DGx1

((

F

��

SigALTL

JGx2
DGx2

66

This allows us to define the derived cocone F · ξ2 : DGx1
⇒ AGx2

, whose components are

given, for example, by (F · ξ2)x = ξ2
θ(x). Since ξ1 is the colimit of DGx1

it follows that there

exists a (unique) morphism of cocones σ : ξ1 → F · ξ2, i.e. an ALTL-signature morphism
σ : AGx1

→ AGx2
that satisfies, in particular, ξ1

e ; σ = ξ2
θ(e) for every hyperedge e ∈ P1 ∪ C1.

20 I. ŢUŢU AND J. L. FIADEIRO

We obtain in this way, for every hyperedge e ∈ P1 ∪ C1, the composite morphism
π2
θ(e)�ξ2

θ(e)
; ε2
θ(e) from ΛGx2

�ξ2
θ(e)

= ΛGx2
�σ�ξ1

e
to Λ1

e = Λ2
θ(e).

Λ1
e = Λ2

θ(e) Λ
Gx1
e �ξ1

e

ε1eoo Λ
Gx1
e

Λ
Gx2
θ(e)�ξ2

θ(e)

ε2
θ(e)

OO

ΛGx2
�ξ2
θ(e)

= ΛGx2
�σ�ξ1

e

he�ξ1e

OO

π2
θ(e)

�
ξ2
θ(e)

oo ΛGx2
�σ

he

OO

Given that Λ
Gx1
e is the cofree expansion of Λ1

e along ξ1
e , we deduce that there exists a

(unique) morphism he : ΛGx2
�σ → Λ

Gx1
e such that the above diagram is commutative. This

implies, by the universal property of the product ΛGx1
, the existence of a (unique) morphism

h : ΛGx2
�σ → ΛGx1

such that h ; π1
e = he for every e ∈ P1 ∪ C1.

Λ1
e ΛGx1

π1
eoo

ΛGx2
�σ

h

OO

he

bb

It follows that the reduct h�ξ1
x

is a morphism from ΛGx2
�σ�ξ1

x
to ΛGx1

�ξ1
x
. Then, to complete

the proof, we only need to notice that ΛGx2
�σ�ξ1

x
= ΛGx2

�ξ2
θ(x)

= Λ2
θ(x) and ΛGx1

�ξ1
x

= Λ1
x.

3. A Logical View on Service Discovery and Binding

Building on the results of Section 2, let us now investigate how the semantics of the
service overlay can be characterized using fundamental computational aspects of the logic-
programming paradigm such as unification and resolution. Our approach is founded upon a
simple and intuitive analogy between concepts of service-oriented computing like service
module and client application [FLB11], and concepts such as clause and query that are
specific to (the relational variant of) logic programming [Llo87]. In order to clarify this
analogy we rely on the institutional framework that we put forward in [ŢF15] to address
the model-theoretic foundations of logic programming.

We begin by briefly recalling the most basic structure that underlies both the denotational
and the operational semantics of relational logic programming: the substitution system of
(sets of) variables and substitutions over a given (single-sorted) first-order signature. Its
definition relies technically on the category Room of institution rooms and corridors (see
e.g. [Mos02]). The objects of Room are triples 〈S,M,�〉 consisting of a set S of sentences, a
category M of models, and a satisfaction relation � ⊆ |M| × S. They are related through
corridors 〈α, β〉 : 〈S,M,�〉 → 〈S′,M′,�′〉 that abstract the change of notation within or
between logics by defining a sentence-translation function α : S → S′ and a model-reduction
functor β : M′ →M such that the following condition holds for all M ′ ∈ |M′| and ρ ∈ S:

M ′ �′ α(ρ) if and only if β(M ′) � ρ.

Definition 3.1 (Substitution system). A substitution system is a triple 〈Subst, G,S〉, often
denoted simply by S, that consists of

SERVICE-ORIENTED LOGIC PROGRAMMING 21

• a category Subst of signatures of variables and substitutions,
• a room G of ground sentences and models, and
• a functor S : Subst → G / Room, defining for every signature of variables X the

corridor S(X) : G→ G(X) from G to the room G(X) of X-sentences and X-models.

Example 3.2. In the case of conventional logic programming, every single-sorted first-order
signature 〈F, P 〉 determines a substitution system(

AFOL1
6=
)
〈F,P 〉 : Subst〈F,P 〉 → AFOL1

6=(F, P) / Room9

in which Subst〈F,P 〉 is simply the category whose objects are sets of variables (defined over the

signature 〈F, P 〉), and whose arrows are first-order substitutions. The room AFOL1
6=(F, P)

accounts for the (ground) atomic sentences given by 〈F, P 〉, the models of 〈F, P 〉, as well
as the standard satisfaction relation between them. And finally, the functor

(
AFOL1

6=
)
〈F,P 〉

maps every signature (i.e. set) of variables X to the corridor 〈α〈F,P 〉,X , β〈F,P 〉,X〉,

〈Sen(F, P),

α〈F,P 〉,X

��

Mod(F, P),�〈F,P 〉〉 〈Sen(F ∪X,P),Mod(F ∪X,P),

β〈F,P 〉,X

OO
�〈F∪X,P 〉〉

where α〈F,P 〉,X and β〈F,P 〉,X are the translation of sentences and the reduction of models
that correspond to the inclusion of signatures 〈F, P 〉 ⊆ 〈F ∪X,P 〉.

Substitution systems are particularly useful when reasoning about the semantics of
clauses and queries. For instance, the above substitution system can be used to define
(definite) clauses over 〈F, P 〉 as syntactic structures ∀X ·C ← H, also written

C ←−−
X

H

such that X is a signature of variables, C is sentence over 〈F ∪X,P 〉, and H is a (finite)
set of sentences over 〈F ∪ X,P 〉.10 The semantics of such a construction is given by
the class of models of 〈F, P 〉, i.e. of ground models of the substitution system, whose
expansions to 〈F ∪X,P 〉 satisfy C whenever they satisfy all sentences in H – this reflects
the usual interpretation of logic-programming clauses as universally quantified sentences
∀X ·∧H ⇒ C.

Similarly to institutions, the axiomatic approach to logic programming on which we rely
in this paper is parameterized by the signature used. In categorical terms, this means that
the morphisms of signatures induce appropriate morphisms between their corresponding
substitution systems, and moreover, that this mapping is functorial. As regards our inquiry
on the semantics of the service overlay, it suffices to recall that the category SubstSys of
substitution systems results from the Grothendieck construction [TBG91] for the functor
[→ / Room]: (Cat× Room)op → Cat that maps

• every category Subst and room G to the category of functors [Subst→ G / Room],
• every functor Ψ: Subst→ Subst′ and corridor κ : G→ G′ to the canonical composi-

tion functor Ψ (κ / Room): [Subst′ → G′ / Room]→ [Subst→ G / Room].

9Through AFOL1
6= we refer to the institution that corresponds to the atomic fragment of the single-sorted

variant of first-order logic without equality.
10Note that, in relational logic programming, the variables are often distinguished from other symbols

through notational conventions; for this reason, the set X of variables is at times omitted.

22 I. ŢUŢU AND J. L. FIADEIRO

This allows us to introduce the next notion of generalized substitution system.

Definition 3.3 (Generalized substitution system). A generalized substitution system is a
pair 〈Sig,GS〉 given by a category Sig of signatures, and a functor GS : Sig→ SubstSys.

In order to provide a better understanding of the complex structure of generalized substitution
systems, we consider the following notational conventions and terminology:

For every signature Σ of a generalized substitution system GS, we denote the (local)
substitution system GS(Σ) by GSΣ : SubstΣ → GΣ / Room, and we refer to the objects and
morphisms of SubstΣ as signatures of Σ-variables and Σ-substitutions. The room GΣ is
assumed to comprise the set Sen(Σ) of ground Σ-sentences, the category Mod(Σ) of Σ-models,
and the Σ-satisfaction relation �Σ ⊆ |Mod(Σ)| × Sen(Σ).
On objects, GSΣ maps every signature of Σ-variablesX to the corridor GSΣ(X) = 〈αΣ,X , βΣ,X〉
from GΣ to the room GΣ(X) = 〈SenΣ(X),ModΣ(X),�Σ,X〉 of X-sentences and X-models.

αΣ,X : Sen(Σ)→ SenΣ(X) βΣ,X : ModΣ(X)→ Mod(Σ)

On arrows, GSΣ maps every Σ-substitution ψ : X → Y to the corridor GSΣ(ψ) = 〈SenΣ(ψ),
ModΣ(ψ)〉 from GΣ(X) to GΣ(Y), which satisfies, by definition, GSΣ(X) ;GSΣ(ψ) = GSΣ(Y).

Sen(Σ)
αΣ,X

~~

αΣ,Y

SenΣ(X)
SenΣ(ψ)

// SenΣ(Y)

Mod(Σ)

ModΣ(X)

βΣ,X

<<

ModΣ(Y)

βΣ,Y

aa

ModΣ(ψ)
oo

With respect to signature morphisms, every ϕ : Σ→ Σ′ determines a morphism of substitution
systems GSϕ : GSΣ → GSΣ′ in the form of a triple 〈Ψϕ, κϕ, τϕ〉, where Ψϕ is a functor
SubstΣ → SubstΣ′ , κϕ is a corridor 〈Sen(ϕ),Mod(ϕ)〉 : GΣ → GΣ′ , and for every signature
of Σ-variables X, τϕ,X is a (natural) corridor 〈αϕ,X , βϕ,X〉 : GΣ(X)→ GΣ′(Ψϕ(X)).

Sen(Σ)
Sen(ϕ)

//

αΣ,X

��

Sen(Σ′)

αΣ′,Ψϕ(X)

��

SenΣ(X) αϕ,X
// SenΣ′(Ψϕ(X))

Mod(Σ) Mod(Σ′)
Mod(ϕ)
oo

ModΣ(X)

βΣ,X

OO

ModΣ′(Ψϕ(X))

βΣ′,Ψϕ(X)

OO

βϕ,X

oo

In addition, we adopt notational conventions that are similar to those used for institutions.
For example, we may use superscripts as in SubstGSΣ is order to avoid potential ambiguities;
or we may drop the subscripts of �Σ,X when there is no danger of confusion. Also, we will
often denote the functions Sen(ϕ), αΣ,X and SenΣ(ψ) by ϕ(), X() and ψ(), respectively,
and the functors Mod(ϕ), βΣ,X and ModΣ(ψ) by �ϕ, �Σ and �ψ.

Example 3.4. Relational logic programming is based upon the generalized substitution
system AFOL1

6= of the atomic fragment of single-sorted first-order logic without equality.

AFOL1
6= : SigAFOL1

6= → SubstSys

In this case, the category SigAFOL1
6= is just the category of single-sorted first-order signatures.

Every signature 〈F, P 〉 is mapped to a substitution system
(
AFOL1

6=
)
〈F,P 〉 as described in

Example 3.2, while every signature morphism ϕ : 〈F, P 〉 → 〈F ′, P ′〉 resolves to a morphism
of substitution systems for which Ψϕ is the obvious translation of 〈F, P 〉-substitutions along

SERVICE-ORIENTED LOGIC PROGRAMMING 23

ϕ, and κϕ is the corridor AFOL1
6=(ϕ). A more detailed presentation of first-order generalized

substitution systems can be found in [ŢF15].

3.1. A Generalized Substitution System of Orchestration Schemes. What is essen-
tial about orchestration schemes with respect to the development of the service-oriented
variant of logic programming is that they can be organized as a category OS from which
there exists a functor OrcScheme into SubstSys that allows us to capture some of the most
basic aspects of service-oriented computing by means of logic-programming constructs. More
precisely, orchestration schemes form the signatures of a generalized substitution system

OrcScheme: OS→ SubstSys

through which the notions of service module, application, discovery and binding emerge as
particular instances of the abstract notions of clause, query, unification and resolution. In
this sense, OrcScheme and AFOL1

6= can be regarded as structures having the same role in
the description of service-oriented and relational logic programming, respectively.

Morphisms of orchestration schemes are, intuitively, a way of encoding orchestrations.
In order to understand how they arise in practice, let us consider a morphism ϕ between
two algebraic signatures Σ and Σ′ used in defining program expressions. For instance, we
may assume Σ to be the signature of structured programs discussed in Example 2.2, and
ϕ : Σ → Σ′ its extension with a new operation symbol repeat until : Pgm Cond → Pgm.
Then, it is easy to notice that the translation of Σ-terms (over a given set of program
variables) along ϕ generalizes to a functor F between the categories of program expressions
defined over Σ and Σ′. Moreover, the choice of ϕ enables us to define a second functor
U , from program expressions over Σ′ to program expression over Σ, based on the derived
signature morphism (see e.g. [ST11]) Σ′ → Σ that encodes the repeat until operation
as the term 1 ; while not 2 do 1 done.11 The functor U is clearly a right inverse of F with
respect to ground program expressions, whereas in general, for every program expression
pgm over Σ we actually obtain a morphism ηpgm : pgm → U(F (pgm)) as a result of the
potential renaming of program variables; thus, the morphism ηpgm accounts for translation
of the program variables of pgm along F ; U . Furthermore, for every program expression
pgm ′ over Σ′, the translation of Σ-sentences determined by ϕ extends to a map between
the specifications over U(pgm ′) and the specifications over pgm ′, which, as we will see,
can be used to define a translation of the specifications over a program expression pgm
(given by Σ) to specifications over F (pgm). With respect to the semantics, it is natural
to expect that every program expression pgm over Σ has the same behaviour as F (pgm)
and, even more, that every program expression pgm ′ over Σ′ (that may be built using
repeat until), behaves in the same way as U(pgm ′). These observations lead us to the
following formalization of the notion of morphism of orchestration schemes.

Definition 3.5 (Morphism of orchestration schemes). A morphism between orchestration
schemes 〈Orc,Spec,Grc,Prop〉 and 〈Orc′, Spec′,Grc′,Prop′〉 is a tuple 〈F,U, η, σ〉, where

Orc
F
,,
Orc′

U

kk

• F and U are functors as depicted above such that F (Grc) ⊆ Grc′ and U(Grc′) ⊆ Grc,

11In this context, 1 : Pgm and 2: Cond are variables corresponding to the arguments of the derived operation.

24 I. ŢUŢU AND J. L. FIADEIRO

• η is a natural transformation 1Orc ⇒ F ;U such that ηg = 1g for every g ∈ |Grc|, and
• σ is a natural transformation U ; Spec⇒ Spec′ such that for every ground orchestra-

tion g′ ∈ |Grc′| and specification ρ ∈ Spec(U(g′)),

σg′(ρ) ∈ Prop′(g′) if and only if ρ ∈ Prop(U(g′)).

Example 3.6. Let I = 〈Sig,Sen,Mod,�〉 and I ′ = 〈Sig′,Sen′,Mod′,�′〉 be two institutions
suitable for defining orchestration schemes of arns (according to the hypotheses introduced
in Subsection 2.2), and let 〈Υ, α, β〉 be a morphism of institutions I ′ → I such that
Υ: Sig′ → Sig is cocontinuous and β : Mod′ ⇒ Υop ; Mod preserves cofree expansions and
products. If Υ and β admit sections, that is if there exist a functor Φ: Sig→ Sig′ such that
Φ ;Υ = 1Sig and a natural transformation τ : Mod⇒ Φop ;Mod′ such that τ ; (Φop ·β) = 1Mod,
then 〈Υ, α, β〉 gives rise to a morphism 〈F,U, η, σ〉 between the orchestration schemes of
arns defined over I and I ′. In particular, the functor F maps the diagram and the models
that label an arn defined over I to their images under Φ and τ ; similarly, U maps arns
defined over I ′ according to Υ and β; the natural transformation η is just an identity, and σ
extends the α-translation of sentences to specifications. The additional properties of Υ and
β are essential for ensuring that the observable behaviour of ground networks is preserved.

One may consider, for instance, the extension of ALTL (in the role of I) with new
temporal modalities such as previous and since, as in [KMWZ10]; this naturally leads to a
morphism of orchestration schemes for which both Υ and β would be identities. Alternatively,
one may explore the correspondence between deterministic weak ω-automata – which form
a subclass of Muller automata – and sets of traces that are both Büchi and co-Büchi
deterministically recognizable – for which a minimal automaton can be shown to exist (see
e.g. [MS97, Löd01]). In this case, in the roles of I and I ′ we could consider variants of ALTL
with models given by sets of traces and deterministic weak automata, respectively;12 Υ and
α would be identities, β would define the language recognized by a given automaton, and τ
would capture the construction of minimal automata.

It it easy to see that the morphisms of orchestration schemes compose in a natural way
in terms of their components, thus giving rise to a category of orchestration schemes.

Proposition 3.7. The morphisms of orchestration schemes can be composed as follows:

〈F,U, η, σ〉 ; 〈F ′, U ′, η′, σ′〉 = 〈F ; F ′, U ′ ; U, η ; (F · η′ · U), (U ′ · σ) ; σ′〉.
Under this composition, orchestration schemes and their morphisms form a category OS.

The definition of the functor OrcScheme is grounded on two simple ideas:

1. Orchestrations can be regarded as signatures of variables; they provide sentences
in the form of specifications, and models as morphisms into ground orchestrations –
which can also be seen, in the case of arns, for example, as collections of ground
networks assigned to the ‘variables’ of the considered orchestration. In addition,
we can define a satisfaction relation between the models and the sentences of
an orchestration based of the evaluation of specifications with respect to ground
orchestrations. In this way, every orchestration scheme yields an institution whose
composition resembles that of the so-called institutions of extended models [SML04].

12Note that, to ensure that model reducts are well defined for deterministic automata, one may need to
restrict signature morphisms to injective maps.

SERVICE-ORIENTED LOGIC PROGRAMMING 25

2. There is a one-to-one correspondence between institutions and substitution systems
defined over the initial room 〈∅, 1, ∅〉 – the room given by the empty set of sentences,
the terminal category 1, and the empty satisfaction relation. The effect of this
is that a clause can be described as ‘correct’ whenever it is satisfied by the sole
model of 〈∅,1, ∅〉; therefore, we obtain precisely the notion of correctness of a service
module [FLB11]: all models of the underlying signature of variables, i.e. of the
orchestration, that satisfy the antecedent of the clause satisfy its consequent as well.

Formally, OrcScheme results from the composition of two functors, Ins : OS → coIns and
SS: coIns→ SubstSys, that implement the general constructions outlined above.

OS Ins //

OrcScheme

��

coIns
SS // SubstSys

The functor Ins carries most of the complexity of OrcScheme, and is discussed in detail in
Theorem 3.8. Concerning SS, we recall from [ŢF15] that the category coIns of institution

comorphisms can also be described as the category [→ Room]] of functors into Room,

and that any functor G : K → K′ can be extended to a functor [→ K]] → [→ K′]]
that is given essentially by the right-composition with G. In particular, the isomorphism
Room→ 〈∅, 1, ∅〉 / Room that maps every room 〈S,M,�〉 to the unique corridor 〈∅,1, ∅〉 →
〈S,M,�〉 generates an isomorphism of categories between [→ Room]], i.e. coIns, and

[→ 〈∅, 1, ∅〉 / Room]]. The latter is further embedded into SubstSys, defining in this
way, by composition, the required functor SS. To sum up, SS maps every institution
I : Sig → Room to the substitution system S : Sig → 〈∅,1, ∅〉 / Room for which S(Σ), for
every signature Σ ∈ |Sig|, is the unique corridor between 〈∅,1, ∅〉 and I(Σ).

Theorem 3.8. The map Ins : OS→ coIns is a functor, where

• for any orchestration scheme O = 〈Orc,Spec,Grc,Prop〉, Ins(O) is the institution
〈Orc,Spec, /Grc,�〉 whose family of satisfaction relations is given by

(δ : o→ g) �o SP if and only if Spec(δ)(SP) ∈ Prop(g)

for every orchestration o, every o-model δ, i.e. every morphism of orchestrations
δ : o→ g such that g is ground, and every specification SP over o;13

• for any morphism of orchestrations 〈F,U, η, σ〉 : O → O′, with O as above, and O′
given by 〈Orc′,Spec′,Grc′,Prop′〉, Ins(F,U, η, σ) is the comorphism of institutions
〈F, α, β〉 : Ins(O)→ Ins(O′) defined by

αo = Spec(ηo) ; σF (o)

βo = υF (o) ; (ηo /Grc)

for every orchestration o ∈ |Orc|, where υ : (/Grc′)⇒ Uop ; (/Grc) is the natural
transformation given by υo′(x) = U(x) for every orchestration o′ ∈ |Orc′| and every
object or arrow x of the comma category o′ /Grc′.

Proof. For the first part, all we need to show is that the satisfaction condition holds; but this
follows easily since for every morphism of orchestrations θ : o1 → o2, every o1-specification

13Moreover, Ins(O) is exact, because the functor /Grc : Orcop → Cat is continuous (see e.g. [Mes89]).

26 I. ŢUŢU AND J. L. FIADEIRO

SP and every o2-model δ : o2 → g,

δ �o2 Spec(θ)(SP) if and only if Spec(θ ; δ)(SP) ∈ Prop(g)

if and only if (θ /Grc)(δ) = θ ; δ �o2 SP .

As regards the second part of the statement, let us begin by noticing that α and β are
the natural transformations (η · Spec) ; (F · σ) and (ηop · (/Grc)) ; (F op · υ), respectively.
Then, in order to verify that 〈F, α, β〉 is indeed a comorphism Ins(O)→ Ins(O′), consider
an orchestration o in Orc, a model δ′ : F (o) → g′ of F (o), and a specification SP over o.
Assuming that �′ is the family of satisfaction relations of Ins(O′), we deduce that

δ′ �′F (o) αo(SP)

iff Spec′(δ′)(αo(SP)) ∈ Prop′(g′) by the definition of �′F (o)

iff Spec′(δ′)(σF (o)(Spec(ηo)(SP))) ∈ Prop′(g′) by the definition of αo

iff σg′(Spec(ηo ; U(δ′))(SP)) ∈ Prop′(g′) by the naturality of σ

iff Spec(ηo ; U(δ′))(SP) ∈ Prop(U(g′)) since Prop(U(g′)) = σ−1
g′ (Prop′(g′))

iff ηo ; U(δ′) �o SP by the definition of �o

iff βo(δ
′) �o SP by the definition of βo.

Finally, it is easy to see that Ins preserves identities. To prove that it also preserves
composition, let 〈F,U, η, σ〉 and 〈F ′, U ′, η′, σ′〉 be morphisms of orchestration schemes as
below, and suppose that Ins(F,U, η, σ) = 〈F, α, β〉 and Ins(F ′, U ′, η′, σ′) = 〈F ′, α′, β′〉.

〈Orc,Spec,Grc,Prop〉
〈F,U,η,σ〉

//

〈F ;F ′,U ′;U,η;(F ·η′·U),(U ′·σ);σ′〉

OO
〈Orc′, Spec′,Grc′,Prop′〉

〈F ′,U ′,η′,σ′〉
// 〈Orc′′, Spec′′,Grc′′,Prop′′〉

In addition, let υ : (/ Grc′) ⇒ Uop ; (/Grc) and υ′ : (/ Grc′′) ⇒ U ′op ; (/Grc′) be
the natural transformations involved in the definitions of β and β′, respectively. Based
on the composition of morphisms of orchestration schemes and on the definition of Ins,
it follows that Ins(〈F,U, η, σ〉 ; 〈F ′, U ′, η′, σ′〉) is a comorphism of institutions of the form
〈F ; F ′, α′′, β′′〉, where α′′ and β′′ are given by

α′′o = Spec((η ; (F · η′ · U))o) ; ((U ′ · σ) ; σ′)(F ;F ′)(o)

β′′o = (υ′ ; (U ′op · υ))(F ;F ′)(o) ; ((η ; (F · η′ · U))o /Grc).

In order to complete the proof we need to show that α′′ = α ; (F · α′) and β′′ = (F · β′) ; β.
Each of these equalities follows from a sequence of straightforward calculations that relies

SERVICE-ORIENTED LOGIC PROGRAMMING 27

on the naturality of σ (in the case of α′′), or on the naturality of υ (in the case of β′′).

α′′o = Spec(ηo) ; Spec(U(η′F (o))) ; σ(F ;F ′;U ′)(o) ;σ′(F ;F ′)(o)

= Spec(ηo) ; σF (o) ; Spec′(η′F (o)) ; σ′(F ;F ′)(o)

= αo ; α′F (o)

β′′o = υ′(F ;F ′)(o) ; υ(F ;F ′;U ′)(o) ; (U(η′F (o)) /Grc) ;(ηo /Grc)

= υ′(F ;F ′)(o) ; (η′F (o) /Grc′) ; υF (o) ; (ηo /Grc)

= β′F (o) ; βo

Corollary 3.9. The pair 〈OS,OrcScheme〉 defines a generalized substitution system.

We recall from [ŢF15] that, in order to be used as semantic frameworks for logic
programming, generalized substitution systems need to ensure a weak model-amalgamation
property between the models that are ground and those that are defined by signatures
of variables. This property entails that the satisfaction of quantified sentences (and in
particular, of clauses and queries) is invariant under change of notation. In the case of
OrcScheme, this means, for example, that the correctness property of service modules does
not depend on the actual orchestration scheme over which the modules are defined.

Definition 3.10 (Model amalgamation). A generalized substitution system GS : Sig →
SubstSys has weak model amalgamation when for every signature morphism ϕ : Σ→ Σ′ and
every signature of Σ-variables X, the diagram depicted below is a weak pullback.

|Mod(Σ)| |Mod(Σ′)|
�ϕ

oo

|ModΣ(X)|

�Σ

OO

|ModΣ′(Ψϕ(X))|

�Σ′

OO

βϕ,X

oo

This means that for every model Σ′-model M ′ and every X-model N such that M ′�ϕ = N�Σ

there exists a Ψϕ(X)-model N ′ that satisfies N ′�Σ′ = M ′ and βϕ,X(N ′) = N .

Proposition 3.11. The generalized substitution system OrcScheme: OS → SubstSys has
weak model amalgamation.

Proof. Let ϕ be a morphism 〈F,U, η, σ〉 between orchestration schemes O and O′ as in
Definition 3.5, and let o be an orchestration of O. Since orchestrations define substitution
systems over the initial room 〈∅,1, ∅〉, we can redraw the diagram of interest as follows:

|1| |1|
�ϕ

oo

|o /Grc|

�O

OO

|F (o) /Grc′|

�O′

OO

βϕ,o
oo

It is easy to see that the above diagram depicts a weak pullback if and only if βϕ,o is
surjective on objects. By Theorem 3.8, we know that βϕ,o(δ

′) = ηo ; U(δ′) for every object

28 I. ŢUŢU AND J. L. FIADEIRO

δ′ : F (o)→ g′ in |F (o) /Grc′|. Therefore, for every δ : o→ g in |o /Grc| we obtain

βϕ,o(F (δ)) = ηo ; U(F (δ))

= δ ; ηg by the naturality of η

= δ because, by definition, ηg is an identity.

Remark 3.12. In addition to model amalgamation, it is important to notice that, similarly
to AFOL1

6=, in OrcScheme the satisfaction of sentences is preserved by model homomor-
phisms. This is an immediate consequence of the fact that, in every orchestration scheme,
the morphisms of ground orchestrations preserve properties: given an orchestration o, a
specification SP over o, and a homomorphism ζ between o-models δ1 and δ2 as depicted
below, if Spec(δ1)(SP) is a property of g1 then Spec(δ2)(SP) = Spec(ζ)(Spec(δ1)(SP)) is a
property of g2; therefore, δ1 �OrcScheme SP implies δ2 �OrcScheme SP .

o
δ1

��

δ2

��
g1

ζ
// g2

3.2. The Clausal Structure of Services. Given the above constructions, we can now
consider a service-oriented notion of clause, defined over the generalized substitution system
OrcScheme rather than AFOL1

6=. Intuitively, this means that we replace first-order signatures
with orchestration schemes, sets of variables with orchestrations, and first-order sentences
(over given sets of variables) with specifications. Furthermore, certain orchestration schemes
allow us to identify structures that correspond to finer-grained notions like variable and
term: in the case of program expressions, variables and terms have their usual meaning
(although we only take into account executable expressions), whereas in the case of arns,
variables and terms materialize as requires-points and sub-arns defined by provides-points.

The following notion of service clause corresponds to the concept of service module
presented in [FLB11], and also to the concept of orchestrated interface discussed in [FL13a].

Definition 3.13 (Service clause). A (definite) service-oriented clause over a given orches-
tration scheme O = 〈Orc, Spec,Grc,Prop〉 is a structure ∀o ·P ← R, also denoted

P ←−
o
R

where o is an orchestration of O, P is a specification over o – called the provides-interface of
the clause – and R is a finite set of specifications over o – the requires-interface of the clause.

The semantics of service-oriented clauses is defined just as the semantics of first-order
clauses, except that they are evaluated within the generalized substitution system OrcScheme
instead of AFOL1

6=. As mentioned before, this means that we can only distinguish whether
or not a clause is correct.

Definition 3.14 (Correct clause). A service-oriented clause ∀o · P ← R is correct if for
every morphism δ : o→ g such that g is a ground orchestration and Spec(δ)(R) consists only
of properties of g, the specification Spec(δ)(P) is also a property of g.

In other words, a service clause is correct if the specification given by its provides-interface
is ensured by its orchestration and the specifications of its requires-interface.

SERVICE-ORIENTED LOGIC PROGRAMMING 29

Example 3.15. We have already encountered several instances of service clauses in the
form of the program modules depicted in Figure 1. Their provides- and requires-interfaces
are placed on the left- and right-hand side of their orchestrations, and are represented using
symbolic forms that are traditionally associated with services.

To illustrate how service modules can be defined as clauses over arns, notice that
the network JourneyPlanner introduced in Example 2.17 can orchestrate a module named
Journey Planner that consistently delivers the requested directions, provided that the routes
and the timetables can be obtained whenever they are needed. This can be described in
logical terms through the following (correct) service-oriented clause:

@JP1 ρ
JP ←−−−−−−−−−

JourneyPlanner

{
@R1 ρ

JP
1 ,@R2 ρ

JP
2

}
where ρJP, ρJP1 and ρJP2 correspond to the ALTL-sentences 2(planJourney¡⇒ 3directions!),
2(getRoutes¡⇒ 3routes!) and 2(routes¡⇒ 3timetables!), respectively.

Client applications are captured in the present setting by service-oriented queries. The
way they are defined is similar to that of service clauses, but their semantics is based on an
existential quantification, not on a universal one.

Definition 3.16 (Service query). A service-oriented query over an orchestration scheme
O = 〈Orc,Spec,Grc,Prop〉 is a structure ∃o ·Q, also written

7−−
o
Q

such that o is an orchestration of O, and Q is a finite set of specifications over o that defines
the requires-interface of the query.

Definition 3.17 (Satisfiable query). A service-oriented query ∃o ·Q is said to be satisfiable if
there exists a morphism of orchestrations δ : o→ g such that g is ground and all specifications
in Spec(δ)(Q) are properties of g.

Example 3.18. Figure 9 outlines the arn of a possible client application for the service
module Journey Planner discussed in Example 3.15. We specify the actual application,
called Traveller, through the service query

7−−−−−−−
Traveller

{
@R1 ρ

T
1

}
given by the ALTL-sentence 2(getRoute¡⇒ 3route!).

T

ΛT

− getRoute
+ route

T1

getRoute +

route −

R1

C
ΛC

Figure 9: The arn Traveller

30 I. ŢUŢU AND J. L. FIADEIRO

3.3. Resolution as Service Discovery and Binding. Let us now turn our attention to
the dynamic aspects of service-oriented computing that result from the process of service
discovery and binding [FLB11]. Service discovery represents, as in conventional logic pro-
gramming, the search for a module (service clause) that can be bound to a given application
(service query) in order to take it one step closer to a possible solution, i.e. to a ‘complete’
application capable of fulfilling its goal. From a technical point of view, both discovery and
binding are subject to matching the requires-interface of the application, or more precisely,
one of its specifications, with the provides-interface of the module under consideration. This
is usually achieved through a suitable notion of refinement of specifications. For instance, in
the case of program expressions, given specifications ι1 : [ρ1, ρ

′
1] and ι2 : [ρ2, ρ

′
2] over programs

pgm1 : eXp1 and pgm2 : eXp2, respectively, ι2 : [ρ2, ρ
′
2] refines ι1 : [ρ1, ρ

′
1] up to a cospan

pgm1 : eXp1

〈ψ1,π1〉
// pgm : eXp pgm2 : eXp2

〈ψ2,π2〉
oo

if by translation we obtain specifications that refer to the same position of pgm : eXp,
i.e. π1 · ι1 = π2 · ι2, such that the pre-condition ψ2(ρ2) is weaker that ψ1(ρ1), and the
post-condition ψ2(ρ′2) is stronger than ψ1(ρ′1), meaning that

ψ1(ρ1) �POA ψ2(ρ2) and ψ2(ρ′2) �POA ψ1(ρ′1).

This notion of refinement reflects the rules of consequence introduced in [Hoa69] (see
also [Mor94], whence we also adopt the notation ι1 : [ρ1, ρ

′
1] v ι2 : [ρ2, ρ

′
2] used in Figure 2).

In a similar manner, in the case of arns, a specification @x1 ρ1 over a network N1 is
refined by another specification @x2 ρ2 over a network N2 up to a cospan of morphisms of

arns 〈θ1 : N1 → N, θ2 : N2 → N〉 when θ1(x1) = θ2(x2) and θpt
2,x2

(ρ2) �ALTL θpt
1,x1

(ρ1) [ŢF13].
Both of these notions of refinement generalize to the following concept of unification.

Definition 3.19 (Unification). Let SP1 and SP2 be specifications defined over orchestrations
o1 and o2, respectively, of an arbitrary but fixed orchestration scheme. We say that the
ordered pair 〈SP1,SP2〉 is unifiable if there exists a cospan of morphisms of orchestrations

o1
θ1 // o o2

θ2oo

called the unifier of SP1 and SP2, such that θ2(SP2) �OrcScheme θ1(SP1).

Therefore, 〈θ1, θ2〉 is a unifier of SP1 and SP2 if and only if, for every morphism of orches-
trations δ : o→ g such that g is a ground orchestration, if Spec(θ2 ; δ)(SP2) is a property of
g then so is Spec(θ1 ; δ)(SP1).

In conventional logic programming, the resolution inference rule simplifies the current
goal and at the same time, through unification, yields computed substitutions that could
eventually deliver a solution to the initial query. This process is accurately reflected in
the case of service-oriented computing by service binding. However, unlike relational logic
programming, in the case of services the emphasis is put not on the computed morphisms of
orchestrations (i.e. on substitutions), but on the dynamic reconfiguration of the orchestrations
(i.e. of the signatures of variables) that underlie the considered applications.

Definition 3.20 (Resolution). Let ∃o1 ·Q1 be a query and ∀o2 ·P2 ← R2 a clause defined
over an arbitrary but fixed orchestration scheme. A query ∃o ·Q is said to be derived by

SERVICE-ORIENTED LOGIC PROGRAMMING 31

resolution from ∃o1 ·Q1 and ∀o2 ·P2 ← R2 using the computed morphism θ1 : o1 → o when

7−−−
o1

Q1 P2 ←−−o2
R2

7−−
o
θ1(Q1 \ {SP1}) ∪ θ2(R2)

θ1

• θ1 can be extended to a unifier 〈θ1, θ2〉 of a specification SP1 ∈ Q1 and P2, and
• Q is the set of specifications given by the translation along θ1 and θ2 of the specifi-

cations in Q1 \ {SP1} and R2.

Example 3.21. Consider the service query and the clause detailed in Examples 3.18
and 3.15. One can easily see that the single specification @R1 ρ

T
1 of the requires-interface of

the application Traveller and the provides-interface @JP1 ρ
JP of the module Journey Planner

form a unifiable pair: they admit, for instance, the unifier 〈θ1, θ2〉 given by

Traveller
θ1 // JourneyPlannerApp JourneyPlanner

θ2oo

• the arn JourneyPlannerApp depicted in Figure 10,
• the morphism θ1 that maps the point R1 to JP1, the communication hyperedge C

to CJP and the messages getRoute and route of MR1 to planJourney and directions,
respectively, while preserving all the remaining elements of Traveller, and
• the inclusion θ2 of JourneyPanner into JourneyPlannerApp.

T

ΛT

− getRoute
+ route

T1

planJourney +

directions −

JP1

JP

ΛJP

− getRoutes
+ routes
+ timetables

JP2
getRoutes +

routes −

R1

routes +

timetables −

R2

CJP
ΛCJP

C

ΛC

Figure 10: The arn JourneyPlannerApp

It follows that we can derive by resolution a new service query defined by the network
JourneyPlannerApp and the requires-specifications @R1 ρ

JP
1 and @R2 ρ

JP
2 .

7−−−−−−−
Traveller

{
@R1 ρ

T
1

}
@JP1 ρ

JP ←−−−−−−−−−
JourneyPlanner

{
@R1 ρ

JP
1 ,@R2 ρ

JP
2

}
7−−−−−−−−−−−−−
JourneyPlannerApp

{
@R1 ρ

JP
1 ,@R2 ρ

JP
2

} θ1

The logic-programming framework of services. The crucial property of the above
notions of service clause, query, and resolution is that, together with the generalized
substitution system OrcScheme used to define them, they give rise to a logic-programming
framework [ŢF15]. The construction is to a great extent self-evident, and it requires little
additional consideration apart from the fact that, from a technical point of view, in order to
define clauses and queries as quantified sentences, we need to extend OrcScheme by closing
the sets of sentences that it defines under propositional connectives such as implication

32 I. ŢUŢU AND J. L. FIADEIRO

and conjunction. It should be noted, however, that the properties that guarantee the well-
definedness of the resulting logic-programming framework such as the fact that its underlying
generalized substitution system has weak model amalgamation (ensured by Proposition 3.11),
and also the fact that the satisfaction of specifications is preserved by model homomorphisms
(detailed in Remark 3.12), are far from trivial, especially when taking into account particular
orchestration schemes (see e.g. Proposition 2.33).

By describing service discovery and binding as instances of unification and resolution
(specific to the logic-programming framework of services) we obtain not only a rigorously
defined analogy between service-oriented computing and relational logic programming, but
also a way to apply the general theory of logic programming to the particular case of
services. For example, we gain a concept of solution to a service query that reflects the rather
intuitive service-oriented notion of solution and, moreover, through Herbrand’s theorem, a
characterization of satisfiable queries as queries that admit solutions.

Definition 3.22 (Solution). A solution, or correct answer, to a service-oriented query ∃o ·Q
consists of a morphism of orchestrations ψ : o→ o′ such that o′ has models, and every one
of them satisfies the ψ-translations of the specifications in Q.

Proposition 3.23. A service query is satisfiable if and only if it admits a solution.

Even more significant is the fact that logic programming provides us with a general
search procedure that can be used to compute solutions to queries. The search is triggered
by a query ∃o ·Q and consists in the iterated application of resolution, that is of service
discovery and binding, until the requires-interface of the derived service query consists
solely of trivial specifications (tautologies); these are specifications whose translation along
morphisms into ground orchestrations always gives rise to properties. Thus, whenever the
search procedure successfully terminates we obtain a computed answer to the original query
by sequentially composing the resulting computed morphisms. This is the process that led,
for example, to the derivation of the program that calculates the quotient and the remainder
obtained on dividing two natural numbers illustrated in Figure 2. The computed answer is
given in this case by the sequence of substitutions

pgm 7→ pgm1 ; pgm2 7→ (pgm3 ; pgm4) ; pgm2 7→ · · ·
7→ (q := 0 ; r := x) ; while y ≤ r do

q := q + 1 ; r := r − y
done.

In a similar manner, we can continue Example 3.21 towards the derivation of an answer to
the Traveller application. To this purpose, we assume that Map Services and Transport
System are two additional service modules that correspond to the processes MS and TS
used in Example 2.25, and whose provides-interfaces meet the requires-specifications of the
module Journey Planner. We obtain in this way the construction outlined in Figure 11.

The soundness of resolution, detailed in Proposition 3.24 below, entails that the search
for solutions is sound as well, in the sense that every computed answer to ∃o ·Q is also a
solution to ∃o ·Q. This fundamental result, originally discussed in [ŢF15] in the context
of abstract logic programming, ensures, in combination with Proposition 3.23, that the
operational semantics of the service overlay given by discovery and binding is sound with
respect to the notion of satisfiability of a service query.

SERVICE-ORIENTED LOGIC PROGRAMMING 33

T
ra

ve
ll

er

J
ou

rn
ey

P
la

n
n

er

M
ap

S
er

v
ic

es

T
ra

n
sp

or
t

S
y
st

em

T Λ
T

−
g
et
R
o
u
te

+
ro
u
te

T
1

g
et
R
o
u
te

+
ro
u
te

−

R
1

C Λ
C

@
R
1
ρ
T 1

�

@
JP

1
ρ
JP

p
la
n
Jo

u
rn
ey

+

d
ir
ec
ti
o
n
s
−

JP
1

JP Λ
JP

−
g
et
R
o
u
te
s

+
ro
u
te
s

+
ti
m
et
a
b
le
s

JP
2

g
et
R
o
u
te
s
+

ro
u
te
s
−

R
1

ro
u
te
s
+

ti
m
et
a
b
le
s
−

R
2

C Λ
C

@
R
1
ρ
JP 1

@
R
2
ρ
JP 2

@
M
S
1
ρ
M
S

�

g
et
R
o
u
te
s
+

ro
u
te
s
−

M
S
1

M
S

Λ
M
S

@
T
S
1
ρ
T
S

�

ro
u
te
s
+

ti
m
et
a
b
le
s
−

T
S
1

T
S

Λ
T
S

F
ig

u
re

11
:

T
h

e
d

er
iv

at
io

n
of

an
an

sw
er

to
th

e
T

ra
v
el

le
r

ap
p

li
ca

ti
on

ρ
T 1

:
2

(g
et
R
ou

te
¡
⇒

3
ro
u
te

!)
ρ
JP 2

:
2

(r
ou

te
s¡
⇒

3
ti
m
et
ab
le
s!

)

ρ
JP

:
2

(p
la
n
Jo
u
rn
ey

¡
⇒

3
d
ir
ec
ti
on

s!
)

ρ
M
S

:
2

(g
et
R
ou

te
s¡
⇒

3
ro
u
te
s!

)

ρ
JP 1

:
2

(g
et
R
ou

te
s¡
⇒

3
ro
u
te
s!

)
ρ
T
S

:
2

(r
ou

te
s¡
⇒

3
ti
m
et
ab
le
s!

)

34 I. ŢUŢU AND J. L. FIADEIRO

Proposition 3.24. Let ∃o ·Q be a service query derived by resolution from ∃o1 ·Q1 and
∀o2 ·P2 ← R2 using the computed morphism θ1 : o1 → o. If ∀o2 ·P2 ← R2 is correct then,
for any solution ψ to ∃o ·Q, the composed morphism θ1 ; ψ is a solution to ∃o1 ·Q1.

4. Conclusions

We have shown how the integration of the declarative and the operational semantics of
conventional logic programming can be generalized to service-oriented computing, thus
offering a unified semantics for the static and the dynamic aspects of this paradigm. That is,
we have provided, for the first time, an algebraic framework that accounts for the mechanisms
through which service interfaces can be orchestrated, as well as for those mechanisms that
allow applications to discover and bind to services.

The analogy that we have established is summarized in Table 1. Our approach to the
logic-programming semantics of services is based on the identification of the binding of
terms to variables in logic programming with the binding of orchestrations of services to
those of software applications in service-oriented computing; the answer to a service query
– the request for external services – is obtained through resolution using service clauses –
orchestrated service interfaces – that are available from a repository. This departs from other
works on the logic-programming semantics of service-oriented computing such as [KBG07]
that actually considered implementations of the service discovery and binding mechanisms
based on constraint logic programming.

The theory of services that we have developed here is grounded on a declarative semantics
of service clauses defined over a novel logical system of orchestration schemes. The structure
of the sentences and of the models of this logical system varies according to the orchestration
scheme under consideration. For example, when orchestrations are defined as asynchronous
relational networks over the institution ALTL, we obtain sentences as linear-temporal-logic
sentences expressing properties observed at given interaction points of a network, and models
in the form of ground orchestrations of Muller automata. Other logics (with corresponding
model theory) could have been used instead of the automata-based variant of linear temporal
logic, more specifically any institution such that (a) the category of signatures is (finitely)
cocomplete; (b) there exist cofree models along every signature morphism; (c) the category
of models of every signature has (finite) products; and (d) model homomorphisms reflect
the satisfaction of sentences. Moreover, the formalism used in defining orchestrations can
change by means of morphisms of orchestration schemes. We could consider, for instance, an
encoding of the hypergraphs of processes and connections discussed in this paper into graph-
based structures similar to those of [FL13b]; or we could change their underlying institution
by adding new temporal modalities (along the lines of Example 3.6) or by considering other
classes of automata, like the closed reduced Büchi automata used in [AS87, FL13a]. This
encourages us to further investigate aspects related to the heterogeneous foundations of
service-oriented computing based on the proposed logical system of orchestration schemes.

Acknowledgements

The work of the first author has been supported by a grant of the Romanian National
Authority for Scientific Research, CNCS-UEFISCDI, project number PN-II-ID-PCE-2011-3-
0439. The authors also wish to thank Fernando Orejas for suggesting the use of hypergraphs,

SERVICE-ORIENTED LOGIC PROGRAMMING 35

T
a
b

le
1:

C
or

re
sp

o
n

d
en

ce
b

et
w

ee
n

co
n

ce
p

ts
of

re
la

ti
on

al
an

d
se

rv
ic

e-
or

ie
n
te

d
lo

gi
c

p
ro

gr
a
m

m
in

g

R
el

a
ti

o
n

al
lo

gi
c

p
ro

gr
am

m
in

g
S
er

v
ic

e-
or

ie
n
te

d
lo

gi
c

p
ro

gr
a
m

m
in

g

C
on

ce
p

t
ov

er
a

si
gn

at
u

re
〈F
,P
〉

ov
er

p
ro

gr
am

ex
p

re
ss

io
n

s
ov

er
a
sy

n
ch

ro
n

ou
s

re
la

ti
o
n

a
l

n
et

w
o
rk

s

V
ar

ia
b

le
p

a
ir

(x
,F

0
)

p
ro

gr
am

va
ri

ab
le

pg
m

:
eX

p
re

q
u

ir
es

-p
oi

n
t
x
∈
X

T
er

m
st

ru
ct

u
re
σ

(t
1
,.
..
,t
n
)

p
ro

gr
am

st
at

em
en

t

w
h
i
l
e
C
d
o

pg
m

d
o
n
e

su
b

n
et

w
or

k
d

et
er

m
in

ed
b
y

a
p

o
in

t

g
et
R
o
u
te
s
+

ro
u
te
s
−

M
S
1

M
S

Λ
M
S

C
la

u
se

u
n

iv
er

sa
ll

y
q
u

a
n
ti

fi
ed

im
p

li
ca

ti
on

C
←−
− X
H

p
ro

gr
am

m
o
d

u
le

;
ρ
,ρ
′′

ρ
,ρ
′

ρ
′ ,
ρ
′′

se
rv

ic
e

m
o
d

u
le

JP
C

@
JP

1
ρ
JP

@
R
1
ρ
JP 1

@
R
2
ρ
JP 2

Q
u

er
y

ex
is

te
n
ti

a
ll

y
q
u

an
ti

fi
ed

co
n

ju
n

ct
io

n

7−−
− X
Q

p
ro

gr
am

q
u

er
y

ρ
,ρ
′

cl
ie

n
t

ap
p

li
ca

ti
on

T
C

@
R
1
ρ
T 1

U
n

ifi
ca

ti
on

an
d

re
so

lu
ti

on
te

rm
u

n
ifi

ca
ti

on
a
n

d
fi

rs
t-

o
rd

er
re

so
lu

ti
o
n

p
ro

gr
am

d
is

co
v
er

y
an

d
b

in
d

in
g

(s
ee

F
ig

u
re

2)
se

rv
ic

e
d

is
co

ve
ry

an
d

b
in

d
in

g
(s

ee
F

ig
u

re
11

)

36 I. ŢUŢU AND J. L. FIADEIRO

Antónia Lopes for many useful discussions that led to the present form of this paper, and
the anonymous referees for their careful study of the original manuscript.

References

[ACKM04] Gustavo Alonso, Fabio Casati, Harumi A. Kuno, and Vijay Machiraju. Web Services: Concepts,
Architectures and Applications. Data-Centric Systems and Applications. Springer, 2004.

[AS87] Bowen Alpern and Fred B. Schneider. Recognizing safety and liveness. Distributed Computing,
2(3):117–126, 1987.

[BCT06] Boualem Benatallah, Fabio Casati, and Farouk Toumani. Representing, analysing and managing
Web service protocols. Data & Knowledge Engineering, 58(3):327–357, 2006.

[BGLL09] Roberto Bruni, Fabio Gadducci, and Alberto Lluch-Lafuente. A graph syntax for processes and
services. In Cosimo Laneve and Jianwen Su, editors, Web Services and Formal Methods, volume
6194 of Lecture Notes in Computer Science, pages 46–60. Springer, 2009.

[BZ83] Daniel Brand and Pitro Zafiropulo. On communicating finite-state machines. Journal of the acm,
30(2):323–342, 1983.

[DF98] Răzvan Diaconescu and Kokichi Futatsugi. CafeOBJ Report: The Language, Proof Techniques,
and Methodologies for Object-Oriented Algebraic Specification, volume 6 of amast Series in
Computing. World Scientific, 1998.

[Dia08] Răzvan Diaconescu. Institution-Independent Model Theory. Studies in Universal Logic. Birkhäuser,
2008.

[FC96] José L. Fiadeiro and José F. Costa. Mirror, mirror in my hand: a duality between specifications
and models of process behaviour. Mathematical Structures in Computer Science, 6(4):353–373,
1996.

[FHL+05] Gian Luigi Ferrari, Dan Hirsch, Ivan Lanese, Ugo Montanari, and Emilio Tuosto. Synchronised
hyperedge replacement as a model for service oriented computing. In Frank S. de Boer, Marcello M.
Bonsangue, Susanne Graf, and Willem P. de Roever, editors, Formal Methods for Components
and Objects, volume 4111 of Lecture Notes in Computer Science, pages 22–43. Springer, 2005.

[Fia12] José L. Fiadeiro. The many faces of complexity in software design. In Mike Hinchey and Lorcan
Coyle, editors, Conquering Complexity, pages 3–47. Springer, 2012.

[FK04] Ian T. Foster and Carl Kesselman. The Grid 2: Blueprint for a New Computing Infrastructure.
The Morgan Kaufmann Series in Computer Architecture and Design Series. Morgan Kaufmann,
2004.

[FL13a] José L. Fiadeiro and Antónia Lopes. An interface theory for service-oriented design. Theoretical
Computer Science, 503:1–30, 2013.

[FL13b] José L. Fiadeiro and Antónia Lopes. A model for dynamic reconfiguration in service-oriented
architectures. Software and Systems Modeling, 12(2):349–367, 2013.

[FLB07] José L. Fiadeiro, Antónia Lopes, and Laura Bocchi. Algebraic semantics of service component
modules. In José L. Fiadeiro and Pierre-Yves Schobbens, editors, Recent Trends in Algebraic
Development Techniques, volume 4409 of Lecture Notes in Computer Science, pages 37–55.
Springer, 2007.

[FLB11] José L. Fiadeiro, Antónia Lopes, and Laura Bocchi. An abstract model of service discovery and
binding. Formal Aspects of Computing, 23(4):433–463, 2011.

[FS07] José L. Fiadeiro and Vincent Schmitt. Structured co-spans: an algebra of interaction protocols.
In Till Mossakowski, Ugo Montanari, and Magne Haveraaen, editors, Algebra and Coalgebra in
Computer Science, volume 4624 of Lecture Notes in Computer Science, pages 194–208. Springer,
2007.

[GB92] Joseph A. Goguen and Rod M. Burstall. Institutions: abstract model theory for specification
and programming. Journal of the acm, 39(1):95–146, 1992.

[GKP94] Ronald L. Graham, Donald E. Knuth, and Oren Patashnik. Concrete Mathematics: A Foundation
for Computer Science. Addison-Wesley, second edition, 1994.

[GM96] Joseph A. Goguen and Grant Malcolm. Algebraic Semantics of Imperative Programs. Foundations
of computing. mit Press, 1996.

[Hoa69] C. A. R. Hoare. An axiomatic basis for computer programming. Communications of the acm,
12(10):576–580, 1969.

SERVICE-ORIENTED LOGIC PROGRAMMING 37

[Ive62] Kenneth E. Iverson. A Programming Language. Wiley, 1962.
[KBG07] Srividya Kona, Ajay Bansal, and Gopal Gupta. Automatic composition of semantic Web services.

In 2007 ieee International Conference on Web Services, pages 150–158. ieee Computer Society,
2007.

[KMWZ10] Alexander Knapp, Grzegorz Marczyński, Martin Wirsing, and Artur Zaw locki. A heterogeneous
approach to service-oriented systems specification. In Sung Y. Shin, Sascha Ossowski, Michael
Schumacher, Mathew J. Palakal, and Chih-Cheng Hung, editors, acm Symposium on Applied
Computing, pages 2477–2484. acm, 2010.

[Llo87] John W. Lloyd. Foundations of Logic Programming. Symbolic computation: Artificial intelligence.
Springer, 1987.

[Löd01] Christof Löding. Efficient minimization of deterministic weak ω-automata. Information Processing
Letters, 79(3):105–109, 2001.

[Mes89] José Meseguer. General logics. In Heinz-Dieter Ebbinghaus, José Fernández-Prida, Manuel
Garrido, Daniel Lascar, and Mario Rodriquez-Artalejo, editors, Logic Colloquium ’87, volume
129 of Studies in Logic and the Foundations of Mathematics Series, pages 275–329. Elsevier,
1989.

[Mor94] Carroll C. Morgan. Programming from Specifications. Prentice Hall International series in
computer science. Prentice Hall, second edition, 1994.

[Mos02] Till Mossakowski. Comorphism-based Grothendieck logics. In Krzysztof Diks and Wojciech
Rytter, editors, Mathematical Foundations of Computer Science 2002, volume 2420 of Lecture
Notes in Computer Science, pages 593–604. Springer, 2002.

[Mos04] Peter Mosses. casl Reference Manual: The Complete Documentation Of The Common Algebraic
Specification Language. Lecture Notes in Computer Science. Springer, 2004.

[MS97] Oded Maler and Ludwig Staiger. On syntactic congruences for ω-languages. Theoretical Computer
Science, 183(1):93–112, 1997.

[Mul63] David E. Muller. Infinite sequences and finite machines. In 4th Annual Symposium on Switching
Circuit Theory and Logical Design, pages 3–16. ieee Computer Society, 1963.

[PP04] Dominique Perrin and Jean-Éric Pin. Infinite Words: Automata, Semigroups, Logic and Games.
Pure and Applied Mathematics. Elsevier Science, 2004.

[SBFZ07] Jianwen Su, Tevfik Bultan, Xiang Fu, and Xiangpeng Zhao. Towards a theory of web service
choreographies. In Marlon Dumas and Reiko Heckel, editors, Web Services and Formal Methods,
volume 4937 of Lecture Notes in Computer Science, pages 1–16. Springer, 2007.

[SML04] Lutz Schröder, Till Mossakowski, and Christoph Lüth. Type class polymorphism in an institu-
tional framework. In José L. Fiadeiro, Peter D. Mosses, and Fernando Orejas, editors, Recent
Trends in Algebraic Development Techniques, volume 3423 of Lecture Notes in Computer Science,
pages 234–251. Springer, 2004.

[ST88] Donald Sannella and Andrzej Tarlecki. Toward formal development of programs from algebraic
specifications: implementations revisited. Acta Informatica, 25(3):233–281, 1988.

[ST11] Donald Sannella and Andrzej Tarlecki. Foundations of Algebraic Specification and Formal Software
Development. Monographs in Theoretical Computer Science. An eatcs Series. Springer, 2011.

[TBG91] Andrzej Tarlecki, Rod M. Burstall, and Joseph A. Goguen. Some fundamental algebraic tools
for the semantics of computation. Part 3: Indexed categories. Theoretical Computer Science,
91(2):239–264, 1991.

[ŢF13] Ionuţ Ţuţu and José L. Fiadeiro. A logic-programming semantics of services. In Reiko Heckel
and Stefan Milius, editors, Algebra and Coalgebra in Computer Science, volume 8089 of Lecture
Notes in Computer Science, pages 299–313. Springer, 2013.

[ŢF15] Ionuţ Ţuţu and José L. Fiadeiro. From conventional to institution-independent logic programming.
Journal of Logic and Computation, in press.

[Tho90] Wolfgang Thomas. Automata on infinite objects. In Jan van Leeuwen, editor, Handbook of
Theoretical Computer Science, Volume B: Formal Models and Semantics, pages 133–192. Elsevier
and mit Press, 1990.

[Vog03] Werner Vogels. Web services are not distributed objects. ieee Internet Computing, 7(6):59–66,
2003.

	1. Introduction
	2. Orchestration Schemes
	2.1. Program Expressions
	2.2. Asynchronous Relational Networks

	3. A Logical View on Service Discovery and Binding
	3.1. A Generalized Substitution System of Orchestration Schemes
	3.2. The Clausal Structure of Services
	3.3. Resolution as Service Discovery and Binding

	4. Conclusions
	Acknowledgements
	References

