
From Conventional to
Institution-Independent
Logic Programming

Ionuţ Ţuţu∗†1,2 and José Luiz Fiadeiro†1
1Department of Computer Science, Royal Holloway University of London

2Institute of Mathematics of the Romanian Academy,
Research group of the project ID-3-0439

April 15, 2015

We propose a logic-independent approach to logic programming through which
the paradigm as we know it for Horn-clause logic can be explored for other
formalisms. Our investigation is based on abstractions of notions such as logic
program, clause, query, solution, and computed answer, which we develop over
Goguen and Burstall’s theory of institutions. These give rise to a series of concepts
that formalize the interplay between the denotational and the operational seman-
tics of logic programming. We examine properties concerning the satisfaction of
quantified sentences, discuss a variant of Herbrand’s theorem that is not limited
in scope to any particular logical system or construction of logic programs, and
describe a general resolution-based procedure for computing solutions to queries.
We prove that this procedure is sound; moreover, under additional hypotheses
that reflect faithfully properties of actual logic-programming languages, we show
that it is also complete.

Keywords: Institution theory, Substitution systems, Logic programming, Her-
brand’s theorem, Resolution.

1 Introduction
The essential idea of exploring the computational aspects of logical inference as a foundation
for the development of new programming paradigms was first investigated by Kowalski [30, 29]
and Colmerauer [7] based on the pioneering work of Herbrand in proof theory [28] and on
the introduction by Robinson [41] of resolution as an inference rule suited for automation.

∗Correspondence to: Department of Computer Science, Royal Holloway University of London.
†E-mail addresses: ittutu@gmail.com (I. Ţuţu), jose.fiadeiro@rhul.ac.uk (J. L. Fiadeiro).

1

Logic programming originated from the observation that a considerable fragment of first-
order logic has a natural computational interpretation that makes it adequate not only
as a declarative language but also as a programming language. To be more precise, logic
programming (a) defines computable functions by way of standard constructs from model
theory, and (b) executes these definitions as programs through goal-directed deductions that
are performed according to a fixed strategy. This means that logic programming provides, at
the same time, both a denotational and an operational perspective on programs.
Conventional logic programming is semantically based upon the Horn-clause fragment of

(single-sorted) first-order logic without equality, and implements deduction as backwards
reasoning defined in terms of resolution steps [31]. However, the essence of the paradigm
is, to a great extent, independent of any logical system of choice. This is reflected by a
multitude of variants that have been developed over time, such as order-sorted [25] and
category-based equational logic programming [8], constraint logic programming [9], as well
as higher-order [34, 35] and behavioural (i.e. object-oriented) logic programming [24]. More
recent developments in the semantics of service-oriented computing [16] have also suggested
a deep connection with logic programming; this connection was made explicit in [50] with
the introduction of a service-oriented variant of the paradigm.

Through our inquiry we aim to provide a single unifying framework for the model-theoretic
foundations of logic programming, with a high level of abstraction, that incorporates ideas
from concrete instances of the phenomena but without being committed to any particular
logical system. To this end, our work is rooted in the institution theory of Goguen and
Burstall [23] – a major field of study in universal logic that originated in computer science
– and draws inspiration from previous institution-theoretic developments related to logic
programming such as [46, 10] and also [34]. We propose an axiomatic approach to logic
programming, and intrinsically to logic programs, that is based on a three-level hierarchy of
concepts meant to capture:

1. the denotational semantics of logic programming, based on a notion of generalized
substitution system that extends the concept of institution with appropriate abstractions
of variables, substitutions, local sentences, interpretations (of variables), and satisfaction,
all parameterized by the signature used;

2. the operational semantics of logic programming, supported by a notion of logic-
programming framework that describes clauses and queries – two of the most important
syntactic structures used to define and execute logic programs – and also goal-directed
rules that allow the integration of a general form of resolution; and

3. the various constructions of logic programs through a notion of logic-programming
language that defines programs as abstract objects characterized by signatures, sets
of axioms (clauses) and classes of models; this allows us to uniformly accommodate
not only representations of logic programs as sets of clauses (over a fixed signature) as
in [31] but also a great variety of module systems such as those reported, for example,
in [25, 43, 4, 15].

Under this conceptual structure, the first main result of the present paper is a variant of
Herbrand’s theorem for abstract logic-programming languages, which links the denotational
and the operational semantics of a given language by reducing the satisfiability of a query with
respect to a logic program to the search for a suitable correct-answer substitution. In addition
to the fact that it is grounded on the more general setting of abstract logic-programming

2

languages, this upgrades the corresponding institution-independent result from [10] in a non-
trivial manner by relying on hypotheses that are applicable in a considerably wider range of
contexts; in this sense, the logic-programming semantics of services advanced in [51] provides
a prime example of a logic-programming language that does not fit into the framework put
forward in [10]. The second main contribution of our paper is the formulation of a sound
procedure for searching for solutions to queries, which is based on the computation of a
series of intermediate results (namely computed substitutions) by means of resolution. This
procedure is shown to be complete under assumptions that reflect well-known properties of
actual logical systems such as relational or equational first-order logic.

The paper is organized as follows: in Section 2 we briefly recall some of the most important
category- and institution-theoretic concepts, notations, and terminology that are necessary
for the subsequent developments presented in this work; Section 3 reviews the foundations
of conventional logic programming, with explicit emphasis on the abstraction of first-order
variables and substitutions, and on the mappings induced by signature morphisms; Section 4
introduces the basic notion of generalized substitution system and details the conditions
that guarantee the invariance of the satisfaction of universally and existentially quantified
sentences (defined over a given generalized substitution system) under change of notation;
Section 5 is dedicated to the development of abstract logic programming, encompassing the
notions of logic-programming framework and language, as well as the main results of the
paper; finally, in Section 6 we discuss how another notable variant of logic programming,
(many-sorted) equational logic programming, can be defined as an abstract logic-programming
language.

2 Preliminaries
Categories
We assume the reader is familiar with basic notions of category theory such as category,
functor, and natural transformation. With a few exceptions, we use the terminology and the
notations from [32]. In this sense, we denote by |C| the collection of objects of a category C,
by C(A,B) the collection of arrows from A to B, by f ; g the composition of arrows f and g
in diagrammatic order, and by 1A the identity arrow of an object A.

A note on foundations. Most of the constructions described in this paper rely on large
or very large collections of objects, and thus some care must be taken with respect to the
set-theoretic foundations of category theory. One may consider for instance the hierarchy of
set universes discussed in [32], in which every universe is closed under the usual set-theoretic
constructions, contains the elements of its elements, and belongs to the next universe in the
hierarchy. In this way, we obtain concepts such as category and functor for every level of
the hierarchy, which means that we cannot define, for example, the category of all sets, but
rather a category of sets for every universe. In terms of notation, given an arbitrary but
fixed level of the hierarchy of set universes, we denote by Set its corresponding category of
sets and functions, and by Cat its category of categories and functors, which belongs, of
course, to a higher set-theoretic universe.

The most important category-theoretic notions for our work are those of comma category,
Grothendieck construction, and generalized subfunctor. We only recall here a number of
definitions and elementary properties, mainly for fixing the terminology and the notation to

3

be used throughout the paper. The interested reader can find more detailed presentations in
canonical texts on category theory such as [32, 1], as well as in works like [21, 49] on the
applications of category theory to algebraic specification.

Definition 2.1 (Comma category). Given two functors F1 : C1 → K and F2 : C2 → K with
the same codomain, the comma category F1 / F2 is the category in which (a) the objects
are triples 〈A1, f, A2〉, where A1 ∈ |C1|, A2 ∈ |C2|, and f : F1(A1) → F2(A2) is an arrow
in K, (b) the arrows 〈A1, f, A2〉 → 〈A′1, f ′, A′2〉 are pairs 〈g1, g2〉, where g1 : A1 → A′1 and
g2 : A2 → A′2 are arrows in C1 and C2, respectively, such that f ; F2(g2) = F1(g1) ; f ′, and
(c) the composition of arrows is defined componentwise.

The comma category F1 / F2 is often denoted C1 / F2, F1 / C2 or simply C1 / C2 if F1, F2,
or both of them, respectively, correspond to inclusions of categories. A special case arises
when F1 is the constant functor with value A ∈ |K|, and F2 is the identity of K. Then we
denote the comma category F1 / F2 by A /K, and the forgetful functor A /K→ K by |_|A.
Fact 2.2. Every arrow h : A → A′ in a category K induces a left-composition functor
h /K : A′ /K→ A /K that maps every object 〈A′, f, B〉 of A′ /K to 〈A, h ; f,B〉.

Definition 2.3 (Indexed category). For any category I of indices, an I-indexed category is a
functor C : Iop → Cat.

Definition 2.4 (Grothendieck construction). Any indexed category C : Iop → Cat can be
‘flattened’ to a Grothendieck category C] in which (a) the objects are pairs 〈i, A〉 where i ∈ |I|
and A ∈ |C(i)|, (b) the arrows 〈i, A〉 → 〈i′, A′〉 are pairs 〈u, f〉 such that u : i→ i′ is an arrow
in I and f : A→ C(u)(A′) is an arrow in C(i), and (c) the composition of arrows 〈u, f〉 and
〈u′, f ′〉 is defined as 〈u ; u′, f ; C(u)(f ′)〉.

Fact 2.5. Every I-indexed functor F between indexed categories C,D : Iop → Cat, i.e. every
natural transformation F : C⇒ D, determines a functor F] : C] → D] that maps every object
〈i, A〉 of C] to 〈i, Fi(A)〉 and every arrow 〈u, f〉 : 〈i, A〉 → 〈i′, A′〉 of C] to 〈u, Fi(f)〉. We
obtain in this way a ‘flattening’ functor (_)] from the category [Iop → Cat] of I-indexed
categories to Cat.

Definition 2.6 (Category of functors). For any category K, the category [_→ K]] of
functors into K is the Grothendieck category defined by the functor [_→ K] : Catop → Cat
that maps any category C to the functor category [C→ K] and any functor U : C→ C′ to
the left-composition functor U_: [C′ → K]→ [C→ K].

This means that the objects of [_→ K]] are in essence functors F : C→ K into K, and that
the morphisms from F : C→ K to F ′ : C′ → K are pairs 〈U, τ〉, where U is a functor C→ C′,
and τ is a natural transformation F ⇒ U ; F ′. Moreover, the composition of morphisms is
defined by 〈U, τ〉 ; 〈U ′, τ ′〉 = 〈U ; U ′, τ ; (U · τ ′)〉.
Fact 2.7. Functors G : K→ K′ determine appropriate natural transformations [G] between
[_ → K] and [_ → K′]; their components [G]C, for C ∈ |Catop|, are the obvious right-
composition functors [C→ K] → [C→ K′]. Hence, by Fact 2.5, every functor G between
categories K and K′ induces a functor [G]] : [_→ K]] → [_→ K′]].

Definition 2.8 (Subfunctor). For any two functors F,G : C → Set, F is said to be a
subfunctor of G (denoted F ⊆ G) if there exists a natural transformation F ⇒ G whose
components are all set-theoretic inclusions.

4

Therefore, F is a subfunctor of G when for every object A ∈ |C|, F (A) is a subset of G(A),
and for every arrow f : A→ A′ in C, F (f) is the domain-codomain restriction of G(f).

Definition 2.9 (Generalized subfunctor). For any two functors F,G : I→ [_→ Set]], F is
said to be a generalized subfunctor of G (denoted F ⊆ G) when F (i) is a natural subfunctor
of G(i) for every i ∈ |I|.

This means that for every object i ∈ |I|, F (i) is a subfunctor of G(i), and for every arrow
u : i→ i′ in I, F (u) and G(u) make the following square commute.

i

u

��

F (i) : Ci → Set
F (i)⊆G(i)

//

F (u)
��

G(i) : Ci → Set

G(u)
��

i′ F (i′) : Ci′ → Set
F (i′)⊆G(i′)

// G(i′) : Ci′ → Set

Institutions
The notion of institution emerged within computer science from the general concept of
language [5]. It was introduced by Goguen and Burstall in [23] with the aim of formalizing
the intuitive notion of logical system as a balanced interaction between its syntax and its
semantics. The theory of institutions provides a rigorous model-theoretic abstraction of
logics that can be used to provide foundations for specification and programming languages.
In what follows we recall the basic notions and notations of institutions. Intuitively, an

institution consists of a collection of signatures, each of which determines appropriate sets of
sentences and collections of models, as well as a satisfaction relation between models and
sentences that is assumed to be invariant under change of signature.

Definition 2.10 (Institution). An institution I =
〈
SigI ,SenI ,ModI ,�I

〉
consists of

• a category SigI of signatures and signature morphisms,

• a sentence functor SenI : SigI → Set defining, for every signature Σ, the set SenI(Σ)
of Σ-sentences and, for every signature morphism ϕ : Σ→ Σ′, the sentence-translation
map SenI(ϕ) : SenI(Σ)→ SenI(Σ′),

• a model functor ModI : (SigI)op → Cat defining, for every signature Σ, the category
ModI(Σ) of Σ-models and Σ-model homomorphisms and, for every signature morphism
ϕ : Σ→ Σ′, the reduct functor ModI(ϕ) : ModI(Σ′)→ ModI(Σ),

• a family of satisfaction relations �IΣ ⊆ |ModI(Σ)| × SenI(Σ) indexed by signatures,

such that the following holds for every signature morphism ϕ : Σ→ Σ′, Σ′-model M ′, and
Σ-sentence ρ:

M ′ �IΣ′ SenI(ϕ)(ρ) if and only if ModI(ϕ)(M ′) �IΣ ρ.

This property is usually called the satisfaction condition for I.

5

When there is no danger of confusion we may omit the superscripts or subscripts from
the notations introduced above. For instance, when the institution I and the signature Σ
can be easily inferred, we will often denote the satisfaction relation �IΣ simply by �. In
addition, we will frequently denote the sentence translation SenI(ϕ) by ϕ(_) and the reduct
functor ModI(ϕ) by _�ϕ; and we will say that M is the ϕ-reduct of M ′ and that M ′ is a
ϕ-expansion of M whenever M = M ′�ϕ. Finally, we will use the fact that the satisfaction
relation extends in a natural way from sentences to sets of sentences, and we will say that a
Σ-sentence ρ is a semantic consequence of a set of Σ-sentences E, denoted E �IΣ ρ, when
every Σ-model that satisfies every sentence in E satisfies ρ as well.
Note that, for any signature Σ of an institution I, the satisfaction relation �IΣ can be

identified with a Boolean-valued function �IΣ : SenI(Σ)→ [|ModI(Σ)| → 2] that determines
whether any given sentence is satisfied by any given model. In view of this observation,
the satisfaction condition for I can be captured categorically by defining the satisfaction
relations �IΣ as components of a natural transformation

�I : SenI ⇒ [|ModI(_)| → 2]
from SenI to the functor [|ModI(_)| → 2] that maps every signature Σ ∈ |SigI | to the
collection of all functions from |ModI(Σ)| to the two-element set 2.

Σ

ϕ

��

SenI(Σ)

SenI(ϕ)
��

�IΣ // [|ModI(Σ)| → 2]

ModI(ϕ);_
��

Σ′ SenI(Σ′)
�IΣ′

// [|ModI(Σ′)| → 2]

A large number of logical systems have been formalized as institutions. Some examples
related to the study of logic programming include (many-sorted) first-order logic [23], order-
sorted Horn-clause logic with equality [26], category-based equational logic [8], higher-order
logic [36], hidden algebra [24], constraint logic [9], and the rather recent logic of asynchronous
relational networks [50]. Many others are thoroughly discussed in monographs on institutions
and algebraic specifications such as [11, 44].
Institution comorphisms [27] capture the intuitive notion of embedding simpler logical

systems into more complex ones. They were originally discussed in [34] under the name of
plain maps, and in [47] under the name of institution representations.
Definition 2.11 (Comorphism of institutions). Given two institutions I =

〈
SigI ,SenI ,

ModI ,�I
〉
and I ′ =

〈
SigI

′
,SenI

′
,ModI

′
,�I

′〉, a comorphism I → I ′ is a triple 〈Φ, α, β〉
where

• Φ is a signature functor SigI → SigI
′
,

• α is a natural transformation SenI ⇒ Φ ; SenI
′
, and

• β is a natural transformation Φop ; ModI
′
⇒ ModI ,

such that the following holds for every I-signature Σ, Φ(Σ)-model M ′, and Σ-sentence ρ:

M ′ �I
′

Φ(Σ) αΣ(ρ) if and only if βΣ(M ′) �IΣ ρ.

Institution comorphisms compose in a natural, componentwise manner. Their composition
is associative and has identities, thus providing a category coIns of institutions and institution
comorphisms.

6

Institutions as Functors

Institutions can also be defined as functors into a category of local satisfaction systems called
rooms or twisted relations [23]. This alternative characterization has proved to be convenient
for various studies on generalized institutions [22], heterogeneous logical systems [37, 38],
and logic translations [39].

Definition 2.12 (Room). The category Room of rooms and corridors is defined as follows:

The objects are Boolean rooms, i.e. triples 〈S,M,�〉 consisting of
• a set S of sentences,
• a category M of models, and
• a satisfaction relation � ⊆ |M| × S.

The morphisms 〈S,M,�〉 → 〈S′,M′,�′〉, called corridors, are pairs 〈α, β〉 where
• α is a sentence-translation function S → S′, and
• β is a model-reduction functor M′ →M,

such that the following condition holds for all models M ′ ∈ |M′| and all sentences ρ ∈ S:

M ′ �′ α(ρ) if and only if β(M ′) � ρ.

The composition of morphisms is defined componentwise.

The ternary structure of rooms induces appropriate projections Sen and Mod into the
categories of sets and categories, respectively, as well as a natural transformation � that
captures the invariance of the satisfaction of sentences by models with respect to the change
of rooms:

• Sen: Room → Set and Mod: Roomop → Cat are the functors that map every room
〈S,M,�〉 to its underlying set of sentences S and category of models M,

• � is the natural transformation Sen⇒ [|Mod(_)| → 2] whose components are given by
the satisfaction relations of the considered rooms.

This means that every institution I having Sig as the category of signatures can be
identified with the functor I : Sig→ Room that maps

• every signature Σ to
〈
SenI(Σ),ModI(Σ),�IΣ

〉
, and

• every signature morphism ϕ to
〈
SenI(ϕ),ModI(ϕ)

〉
.

Conversely, every functor I : Sig→ Room describes an institution whose category of signa-
tures, sentence functor, model functor, and family of satisfaction relations are given by Sig,
I ; Sen, Iop ; Mod, and I · �, respectively.

This one-to-one correspondence between institutions and functors into Room can be easily
extended to maps of institutions by noticing that every comorphism 〈Φ, α, β〉 from I to
I ′ can also be regarded as an arrow 〈Φ, τ〉 between the functors I : SigI → Room and
I ′ : SigI

′
→ Room, where α = τ · Sen, and β = τop ·Mod.

Fact 2.13. The categories coIns and [_→ Room]] are isomorphic.

7

3 The Logical System of Reference
Our first step towards a presentation of the foundations of logic programming that does not
depend on any concrete logical system consists in determining an appropriate benchmark
institution that will enable us to relate to concepts and results specific to conventional logic
programming [31]. To this end, we recall that logic programming has been traditionally
studied in the Horn subinstitution of FOL1

6= – the single-sorted variant of first-order logic
without equality.

Signatures. A FOL1
6=-signature is a pair 〈F, P 〉 where F and P are ω-indexed families

(Fn)n∈ω and (Pn)n∈ω of disjoint sets of operation and relation symbols, respectively. The
indices are usually called arities and qualify operation and relation symbols; in this sense,
we denote an operation or relation symbol ς of arity n by ς : n. However, when there is no
risk of confusion, we may drop the additional qualification and denote ς : n simply by ς. The
signature morphisms ϕ : 〈F, P 〉 → 〈F ′, P ′〉 reflect the structure of signatures and consist of
families ϕop and ϕrel of functions ϕop

n : Fn → F ′n and ϕrel
n : Pn → P ′n, for n ∈ ω, between the

corresponding sets of operation and relation symbols, respectively.

Sentences. The sentences are ordinary first-order sentences built over relational atoms: for
any FOL1

6=-signature 〈F, P 〉, the set TF of F -terms is the least set such that σ(t1, . . . , tn) ∈ TF
whenever σ ∈ Fn and t1, . . . , tn ∈ TF , and the set of 〈F, P 〉-sentences is the smallest set
that contains the relational atoms π(t1, . . . , tn), where π ∈ Pn and t1, . . . , tn ∈ TF , and is
closed under Boolean connectives1 and quantification over sets of first-order variables. It
should be noted that 〈F, P 〉-variables are pairs (x, F0), often denoted simply by their name,
x, and that the sets of 〈F, P 〉-variables are in fact collections of variables such that different
variables have different names. Also, every set of 〈F, P 〉-variables X determines an extended
signature 〈F ∪X,P 〉, which can be obtained from 〈F, P 〉 by adding the variables of X as
new constants.
The translation of sentences along a signature morphism ϕ : 〈F, P 〉 → 〈F ′, P ′〉 is defined

inductively on the structure of sentences by replacing the symbols of 〈F, P 〉 according to
ϕ. To be more precise, ϕ determines a function ϕtm : TF → TF ′ given by σ(t1, . . . , tn) 7→
ϕop
n (σ)(ϕtm(t1), . . . , ϕtm(tn)), which allows us to define the translation of 〈F, P 〉-relational

atoms π(t1, . . . , tn) as ϕrel
n (π)(ϕtm(t1), . . . , ϕtm(tn)). This definition can be straightforwardly

extended to more complex sentences. For instance, the translation of universally quantified
〈F, P 〉-sentences is given by ∀X · ρ 7→ ∀Xϕ ·ϕX(ρ), where Xϕ is the set of 〈F ′, P ′〉-variables
{(x, F ′0) | (x, F0) ∈ X}, and ϕX : 〈F ∪X,P 〉 → 〈F ′ ∪Xϕ, P ′〉 is the canonical extension of ϕ
such that (ϕX)op

0 (x, F0) = (x, F ′0) for every (x, F0) ∈ X.

〈F, P 〉
ϕ

//

⊆
��

〈F ′, P ′〉

⊆
��

〈F ∪X,P 〉
ϕX
// 〈F ′ ∪Xϕ, P ′〉

Models. Considering a FOL1
6=-signature 〈F, P 〉, an 〈F, P 〉-model M consists of

1For convenience, we assume that disjunctions, denoted
∨
E, and conjunctions, denoted

∧
E, are defined

over arbitrary finite sets of sentences E, and we abbreviate
∧

{ρ1, ρ2} as ρ1 ∧ ρ2, and
∧

∅ as true. In
addition, when there is no danger of confusion, we may also abbreviate

∧
{ρ} as ρ.

8

• a set |M |, called the carrier set of M , together with

• a function Mσ : |M |n → |M | for each operation symbol σ ∈ Fn, and

• a subset Mπ ⊆ |M |n for each relation symbol π ∈ Pn.

Homomorphisms h : M1 →M2 are F -algebra homomorphisms, i.e. functions h : |M1| → |M2|
satisfying h(M1,σ(m1, . . . ,mn)) = M2,σ(h(m1), . . . , h(mn)) for all σ ∈ Fn and all arguments
m1, . . . ,mn ∈ |M1|, such that h(M1,π) ⊆M2,π for every π ∈ Pn.
With respect to model reducts, for any morphism of signatures ϕ : 〈F, P 〉 → 〈F ′, P ′〉 and
〈F ′, P ′〉-model M ′, the ϕ-reduct M ′�ϕ is defined as the 〈F, P 〉-model M with the same
carrier set as M ′ such that Mς = M ′ϕ(ς) for every operation or relation symbol ς of 〈F, P 〉.

The satisfaction relation. The satisfaction between models and sentences is the usual
Tarskian satisfaction defined inductively on the structure of sentences and based on the
evaluation of terms in models. For example, an 〈F, P 〉-model M satisfies a universally
quantified 〈F, P 〉-sentence ∀X ·ρ if all of its expansions along the signature inclusion 〈F, P 〉 ⊆
〈F ∪X,P 〉 satisfy ρ; thus, M �〈F,P 〉 ∀X · ρ if N �〈F∪X,P 〉 ρ for all models N of 〈F ∪X,P 〉
such that N�〈F,P 〉 = M , that is for all valuations in M of the variables in X.

The approach that we follow in the present inquiry on the foundations of logic programming
relies on abstract concepts of universally and existentially quantified sentences, whose
definitions are independent of the logical system of choice. For this reason, our description
of conventional logic programming is not based on the institution FOL1

6= discussed above,
but on its quantifier-free fragment (with sentences built from atoms by repeated applications
of Boolean connectives), which we denote by qf-FOL1

6=.

An Institution of Substitutions
The category of substitutions. Let us fix a qf-FOL1

6=-signature 〈F, P 〉, for example the
following signature of natural numbers with addition (specified as a ternary predicate).

FNAT = {0 : 0, s_: 1}
PNAT = {add : 3}

In this setting, variables (or, more precisely, sets of variables) can be seen as signatures of
a specialized logical system. A signature of variables is just a set X of 〈F, P 〉-variables with
distinct names, which, by definition, shares no elements with the set F0 of constant-operation
symbols. The syntactic entities over a given signature of variables X are defined as the
corresponding qf-FOL1

6=-expressions that can be formed based on the operation and relation
symbols of 〈F, P 〉, and on the variables of X considered as new constants. For example, the
terms over X, or with variables from X, can be informally defined in an inductive manner as
follows:

• every variable of X is a term over X,

• if σ ∈ Fn and t1, . . . , tn are terms over X then σ(t1, . . . , tn) is a term over X as well.

Substitutions provide syntactic transformations on expressions that are defined over sets
of variables: given two signatures of variables X and Y , a substitution ψ : X → Y is a map
ψ : X → TF∪Y that associates a term over Y with every variable of X. Note that any

9

substitution ψ : X → Y can be canonically extended to a function ψtm : TF∪X → TF∪Y
defined by x 7→ ψ(x) for variables, and σ(t1, . . . , tn) 7→ σ(ψtm(t1), . . . , ψtm(tn)) for compound
terms. This allows us to define the composition of two substitutions ψ : X → Y and θ : Y → Z
as the map ψ ; θtm : X → TF∪Z . It is easy to see that ψ ; θ induces the term translation
ψtm ; θtm, which entails that the composition of substitutions is associative. Moreover, it
satisfies the identity laws by taking, for every signature of variables X, the identity 1X as
the function that encodes the variables of X as terms over X. Hence, the signatures of
〈F, P 〉-variables together with their corresponding substitutions form a category Subst〈F,P 〉.

Sentences, models, and the satisfaction relation. Signatures of variables do not
inherit only the terms of the extended qf-FOL1

6=-signatures, but also their sentences, models,
and the satisfaction relation between them. For every signature of variables X we define

• the set of sentences Sen〈F,P 〉(X) as Sen(F ∪X,P),

• the category of models Mod〈F,P 〉(X) as Mod(F ∪X,P), and

• the satisfaction relation �〈F,P 〉,X as �〈F∪X,P 〉.

With respect to substitutions, notice that for every two signatures of variables X and Y ,
every substitution ψ : X → Y determines a sentence-translation map

Sen〈F,P 〉(ψ) : Sen〈F,P 〉(X)→ Sen〈F,P 〉(Y)

defined on atoms by π(t1, . . . , tn) 7→ π(ψtm(t1), . . . , ψtm(tn)), and a model-reduct functor

Mod〈F,P 〉(ψ) : Mod〈F,P 〉(Y)→ Mod〈F,P 〉(X)

that maps every Y -model N to the X-model N�ψ given by |N�ψ| = |N |, (N�ψ)ς = Nς for
each symbol ς of 〈F, P 〉, and (N�ψ)x = Nψ(x), the evaluation of the term ψ(x) in N , for each
variable x ∈ X.

We have thus defined the four components of an institution of 〈F, P 〉-substitutions: the
category of signatures Subst〈F,P 〉, the sentence functor Sen〈F,P 〉, the model functor Mod〈F,P 〉,
and the family of satisfaction relations (�〈F,P 〉,X)X∈|Subst〈F,P〉|. Our construction is completed
by the following result, originally discussed in [10], stating that satisfaction is invariant with
respect to substitution of variables.

Proposition 3.1. For every substitution ψ : X → Y , Y -model N , and X-sentence ρ,

N �〈F,P 〉,Y Sen〈F,P 〉(ψ)(ρ) if and only if Mod〈F,P 〉(ψ)(N) �〈F,P 〉,X ρ.

Corollary 3.2. For every qf-FOL1
6=-signature 〈F, P 〉, the structure(

qf-FOL1
6=
)
〈F,P 〉 =

〈
Subst〈F,P 〉,Sen〈F,P 〉,Mod〈F,P 〉,�〈F,P 〉

〉
defines an institution – the institution of 〈F, P 〉-substitutions.

Institutions of substitutions are not considered in isolation; instead, they are linked by
various institution comorphisms induced by morphisms between their underlying first-order
signatures.

10

Proposition 3.3. Every morphism of qf-FOL1
6=-signatures ϕ : 〈F, P 〉 → 〈F ′, P ′〉 determines

a comorphism 〈Ψϕ, αϕ, βϕ〉 between the institutions of 〈F, P 〉- and 〈F ′, P ′〉-substitutions,
where

• Ψϕ(X) = Xϕ and Ψϕ(ψ)(x, F ′0) = (ϕY)tm(ψ(x, F0)),

• αϕ,X = Sen(ϕX), and

• βϕ,X = Mod(ϕX),

for each signature of 〈F, P 〉-variables X, substitution ψ : X → Y , and variable (x, F ′0) ∈ Xϕ.

Proof. We begin by proving that Ψϕ is a functor Subst〈F,P 〉 → Subst〈F ′,P ′〉. Following an
inductive argument on the structure of terms, we infer that for every 〈F, P 〉-substitution
ψ : X → Y , the translations (ϕX)tm ; Ψϕ(ψ)tm and ψtm ; (ϕY)tm are equal.

TF∪X
(ϕX)tm

//

ψtm

��

TF ′∪Xϕ

Ψϕ(ψ)tm

��

TF∪Y
(ϕY)tm

// TF ′∪Y ϕ

Then, based on this property, for any two 〈F, P 〉-substitutions ψ : X → Y and θ : Y → Z,

Ψϕ(ψ ; θ)(x, F0)
= (ϕZ)tm((ψ ; θ)(x, F0)) by the definition of Ψϕ(ψ ; θ)
= (ϕZ)tm(θtm(ψ(x, F0))) by the definition of composition in Subst〈F,P 〉
= Ψϕ(θ)tm((ϕY)tm(ψ(x, F0))) because (ϕY)tm ; Ψϕ(θ)tm = θtm ; (ϕZ)tm

= Ψϕ(θ)tm(Ψϕ(ψ)((x, F0))) by the definition of Ψϕ(ψ)
= (Ψϕ(ψ) ; Ψϕ(θ))(x, F0) by the definition of composition in Subst〈F ′,P ′〉.

In a similar manner, it can be shown that Ψϕ also preserves identity substitutions.
As regards the last two components of the comorphism, the naturality of αϕ and βϕ

amounts to the fact that the following two squares commute for every 〈F, P 〉-substitution
ψ : X → Y .

Sen〈F,P 〉(X)
ϕX(_)

//

ψ(_)
��

Sen〈F ′,P ′〉(Ψϕ(X))

Ψϕ(ψ)(_)
��

Sen〈F,P 〉(Y)
ϕY (_)

// Sen〈F ′,P ′〉(Ψϕ(Y))

Mod〈F,P 〉(X) Mod〈F ′,P ′〉(Ψϕ(X))
_�ϕX
oo

Mod〈F,P 〉(Y)

_�ψ

OO

Mod〈F ′,P ′〉(Ψϕ(Y))

_�Ψϕ(ψ)

OO

_�ϕY
oo

This can be established with ease through a series of straightforward calculations. For

11

example, in the case of atomic sentences π(t1, . . . , tn) over X we obtain

Ψϕ(ψ)(ϕX(π(t1, . . . , tn)))
= Ψϕ(ψ)(ϕrel

n (π)((ϕX)tm(t1), . . .)) by the definition of ϕX(_)
= ϕrel

n (π)(Ψϕ(ψ)tm((ϕX)tm(t1)), . . .) by the definition of Ψϕ(ψ)(_)
= ϕrel

n (π)((ϕY)tm(ψtm(t1)), . . .) because (ϕX)tm ; Ψϕ(ψ)tm = ψtm ; (ϕY)tm

= ϕY (π(ψtm(t1), . . .)) by the definition of ϕY (_)
= ϕY (ψ(π(t1, . . . , tn))) by the definition of ψ(_).

4 Substitution Systems
The institutions of substitutions discussed in Section 3 provide the most basic building blocks
needed for writing logic programs: signatures of variables and sentences over those signatures.
For instance, the following definition of the addition of natural numbers (which makes use of
the dedicated clausal notation specific to logic programming)

add(0,M,M)←−−
M

add(sM,N, sP)←−−−−−
M,N,P

add(M,N,P)

can be presented formally as the set given by the universal closures of the sentences
true ⇒ add(0,M,M) and add(M,N,P) ⇒ add(sM,N, sP) defined over the signatures
of 〈FNAT, PNAT〉-variables {M} and {M,N,P}, respectively.
In order to describe the semantics of such definitions at the same level of abstraction,

we need to make explicit the translations of sentences and the reductions of models that
correspond to signature extensions such as 〈FNAT, PNAT〉 ⊆ 〈FNAT ∪ {M}, PNAT〉. A possible
approach is to consider signatures of Σ-variables, for some signature Σ of a given logical
system, as specific morphisms X : Σ → Σ(X). This treatment of (signatures of) variables
was first outlined in [42] as part of an institutional approach to open formulae, and is related
to many developments in institution theory such as institution-independent semantics for
quantifiers [46], ultraproducts [11], general versions of Herbrand theorems [10], Birkhoff
completeness [6], hybridization [33], structural induction [12], constructor-based logics [18],
and forcing techniques [19, 17].

The framework that we propose for formalizing signatures of variables (and substitutions)
generalizes the aforementioned approach by taking into account only their corresponding
extensions of rooms. This choice is motivated by the difficulties that may arise in defining
variables as signature extensions in other logical systems of interest for logic programming,
such as the institution of asynchronous relational networks [50]. In that case, signatures (and,
consequently, signature morphisms) and variables are significantly different from a structural
point of view: the former are logical systems satisfying given properties, while the latter are
hypergraphs whose vertices and hyperedges are labelled with signatures and models of their
underlying logical system; for this reason, variables cannot be faithfully represented through
extensions of their base signatures.

Definition 4.1 (Substitution system). A substitution system is a triple 〈Subst, G,S〉, usually
denoted simply by S, consisting of

• a category Subst of signatures of variables and substitutions,

12

• a room G of ground sentences and models, and

• a functor S : Subst→ G/Room defining, for every signature of variables X, the corridor
S(X) : G→ G(X) from G to the room G(X) of X-sentences and X-models.

Therefore, given a room G = 〈Sen(G),Mod(G),�G〉 of ground sentences and models, the
signatures of variables are defined abstractly as objects X of a category Subst for which
we consider (a) a set Sen(G(X)) of X-sentences together with a sentence-extension map
αX : Sen(G) → Sen(G(X)), (b) a category Mod(G(X)) of X-models together with a mod-
el-reduction functor βX : Mod(G(X)) → Mod(G), and (c) a satisfaction relation �G(X)
between X-models and X-sentences such that the following satisfaction condition holds for
all X-models N and ground sentences ρ:

N �G(X) αX(ρ) if and only if βX(N) �G ρ.

Similarly, substitutions ψ : X → Y are arrows in Subst for which we assume the existence of
(a) a sentence-translation map Sen(ψ) : Sen(G(X))→ Sen(G(Y)) and (b) a model-reduction
functor Mod(ψ) : Mod(G(Y))→ Mod(G(X)) such that the following diagrams commute

Sen(G)
αX

��

αY

��

Sen(G(X))
Sen(ψ)

// Sen(G(Y))

Mod(G)

Mod(G(X))

βX
==

Mod(G(Y))

βY
aa

Mod(ψ)
oo

and, for every Y -model N and X-sentence ρ,

N �G(Y) Sen(ψ)(ρ) if and only if Mod(ψ)(N) �G(X) ρ.

It should be noted that, whenever the signatures of variables are defined as extensions of
their base signatures (in a given institution), the corridors 〈Sen(ψ),Mod(ψ)〉 determined by
substitutions ψ : X → Y correspond to the institution-independent concept of substitution
defined in [10].

Example 4.2. Every qf-FOL1
6=-signature 〈F, P 〉 gives rise to a substitution system(

qf-FOL1
6=
)
〈F,P 〉 : Subst〈F,P 〉 → qf-FOL1

6=(F, P) / Room2

in which

• signatures of 〈F, P 〉-variables X determine corridors given by the set-theoretic inclusions
Sen(F, P) ⊆ Sen〈F,P 〉(X) and the reduct functors Mod〈F,P 〉(X) → Mod(F, P) that
forget the interpretation of variables, and

• substitutions ψ : X → Y are mapped to 〈Sen〈F,P 〉(ψ),Mod〈F,P 〉(ψ)〉.

Note that we can easily recover the institution of 〈F, P 〉-substitutions described in Corol-
lary 3.2 (regarded as a functor into Room) by means of a straightforward composition:(

qf-FOL1
6=
)
〈F,P 〉 =

(
qf-FOL1

6=
)
〈F,P 〉 ; |_|qf-FOL1

6=(F,P).

2In this case, the room qf-FOL1
6=(F, P) is just the image of the first-order signature 〈F, P 〉 under the functor

representation of the institution qf-FOL1
6=.

13

Working with substitution systems instead of the simpler institutions of substitutions
means that we also need to consider an adequate notion of map of substitution systems.

Definition 4.3 (Morphism of substitution systems). A morphism between substitution
systems S : Subst→ G / Room and S ′ : Subst′ → G′ / Room is a triple 〈Ψ, κ, τ〉 where

Subst S //

Ψ
��

G / Room

Subst′
S′
// G′ / Room

κ/Room

OO

τ
��

• Ψ is a functor Subst→ Subst′,

• κ is a corridor G→ G′, and

• τ is a natural transformation S ⇒ Ψ ; S ′ ; (κ / Room).

Proposition 4.4. For every morphism of qf-FOL1
6=-signatures ϕ : 〈F, P 〉 → 〈F ′, P ′〉, the co-

morphism 〈Ψϕ, αϕ, βϕ〉 given in Proposition 3.3 can be extended to a morphism of substitution
systems

〈Ψϕ, κϕ, τϕ〉 :
(
qf-FOL1

6=
)
〈F,P 〉 →

(
qf-FOL1

6=
)
〈F ′,P ′〉

where κϕ is the corridor qf-FOL1
6=(ϕ) = 〈Sen(ϕ),Mod(ϕ)〉, and τϕ,X = 〈αϕ,X , βϕ,X〉 for

every X ∈ |Subst〈F,P 〉|.

Proof. All we need to check is that, for every signature of 〈F, P 〉-variables X, τϕ,X is indeed
an arrow in the comma category qf-FOL1

6=(F, P) /Room. This follows directly from the fact
that the equality

(qf-FOL1
6=)〈F,P 〉(X) ; τϕ,X = κϕ ; (qf-FOL1

6=)〈F ′,P ′〉(Ψϕ(X))

can be obtained by applying the functor qf-FOL1
6= to the commutative diagram below.

〈F, P 〉
⊇

��

ϕ
//

��

〈F ′, P ′〉

⊇
��

〈F ∪X,P 〉
ϕX
// 〈F ′ ∪Xϕ, P ′〉

As expected, the composition of morphisms of substitution systems can be straightfor-
wardly defined in terms of their components: for any morphisms 〈Ψ, κ, τ〉 : S → S ′ and
〈Ψ′, κ′, τ ′〉 : S ′ → S ′′ between substitution systems S : Subst → G / Room, S ′ : Subst′ →
G′ / Room, and S ′′ : Subst′′ → G′′ / Room, 〈Ψ, κ, τ〉 ; 〈Ψ′, κ′, τ ′〉 : S → S ′′ is given by

• the translation of signatures of variables Ψ ; Ψ′ : Subst→ Subst′′,

• the translation of ground sentences and models κ ; κ′ : G→ G′′, and

• the translation of sentences and models defined over signatures of variables

τ ; (Ψ · τ ′ · (κ / Room)) : S ⇒ (Ψ ; Ψ′) ; S ′′ ; (κ ; κ′ / Room),

where (τ ; (Ψ · τ ′ · (κ / Room)))X = τX ; τ ′Ψ(X), for all signatures of variables X.

14

Together with the obvious identities, the construction above yields a category SubstSys with
substitution systems as objects and morphisms of substitution systems as arrows.
Fact 4.5. The category SubstSys arises from the Grothendieck construction for the functor
[_→ _ / Room]: (Cat× Room)op → Cat that maps

• every category Subst and room G to the category of functors [Subst→ G/Room], and

• every functor Ψ: Subst→ Subst′ and corridor κ : G→ G′ to the canonical composition
functor Ψ_(κ / Room): [Subst′ → G′ / Room]→ [Subst→ G / Room].

We conclude the present section by noticing that the construction of first-order substitution
systems is functorial, in the sense that it can be presented as a functor into SubstSys. We
can thus define the following concept of generalized substitution system.

Definition 4.6 (Generalized substitution system). Generalized substitution systems are
objects of the category [_→ SubstSys]] of functors into SubstSys.

Therefore, generalized substitution systems are functors GS : Sig→ SubstSys from a category
Sig of signatures and signature morphisms to SubstSys. Because this definition is rather
compact and lacks some of the transparency needed for dealing with logic-programming
languages, let us first establish the notations and terminology that we will use throughout
our work.

• Given a signature Σ of a generalized substitution system GS, we will denote the (local)
substitution system GS(Σ) by GSΣ : SubstΣ → GΣ /Room, and will refer to the objects
and morphisms of SubstΣ as signatures of Σ-variables and Σ-substitutions.
The room GΣ consists of the set Sen(Σ) of ground Σ-sentences, the category Mod(Σ)
of Σ-models, and the Σ-satisfaction relation �Σ ⊆ |Mod(Σ)| × Sen(Σ).

• On objects, GSΣ maps every signature of Σ-variables X to the corridor GSΣ(X) =
〈αΣ,X , βΣ,X〉 from GΣ to the room GΣ(X) = 〈SenΣ(X),ModΣ(X),�Σ,X〉 of X-sen-
tences and X-models.

αΣ,X : Sen(Σ)→ SenΣ(X) βΣ,X : ModΣ(X)→ Mod(Σ)

• On morphisms, GSΣ maps every Σ-substitution ψ : X → Y to the corridor GSΣ(ψ) =
〈SenΣ(ψ),ModΣ(ψ)〉 from GΣ(X) to GΣ(Y), which satisfies, by definition, GSΣ(X) ;
GSΣ(ψ) = GSΣ(Y).

Sen(Σ)
αΣ,X

��

αΣ,Y

��

SenΣ(X)
SenΣ(ψ)

// SenΣ(Y)

Mod(Σ)

ModΣ(X)

βΣ,X
==

ModΣ(Y)

βΣ,Y
aa

ModΣ(ψ)
oo

• With respect to signature morphisms, every arrow ϕ : Σ → Σ′ in Sig determines a
morphism of substitution systems GSϕ = 〈Ψϕ, κϕ, τϕ〉 from GSΣ to GSΣ′ , where κϕ

15

is the corridor 〈Sen(ϕ),Mod(ϕ)〉 between GΣ and GΣ′ and, for every signature of
Σ-variables X, τϕ,X is the corridor 〈αϕ,X , βϕ,X〉 between GΣ(X) and GΣ′(Ψϕ(X)).

Sen(Σ)
Sen(ϕ)

//

αΣ,X

��

Sen(Σ′)
αΣ′,Ψϕ(X)

��

SenΣ(X)
αϕ,X

// SenΣ′(Ψϕ(X))

Mod(Σ) Mod(Σ′)
Mod(ϕ)
oo

ModΣ(X)

βΣ,X

OO

ModΣ′(Ψϕ(X))

βΣ′,Ψϕ(X)

OO

βϕ,X

oo

In addition, we adopt similar notational conventions as in the case of institutions. For
example, we may use superscripts as in SubstGSΣ in order to avoid potential ambiguities; or we
may drop the subscripts of �Σ,X when there is no danger of confusion. Likewise, we will often
denote the functions Sen(ϕ), αΣ,X , and SenΣ(ψ) by ϕ(_), X(_), and ψ(_), respectively,
and the functors Mod(ϕ), βΣ,X , and ModΣ(ψ) by _�ϕ, _�Σ, and _�ψ.

Example 4.7. The quantifier-free, single-sorted fragment of first-order logic without equality
forms a generalized substitution system, which we denote by qf-FOL1

6=.

qf-FOL1
6= : Sigqf-FOL1

6= → SubstSys

Institutions of Quantified Sentences
The last ingredient needed to interpret logic programs is an appropriate concept of quantified
sentence over a given generalized substitution system. To this purpose, we introduce universal
and existential closures of sentences defined over signatures of variables by adapting the
general institution-independent quantifiers of [46] to our framework of generalized substitution
systems.

Definition 4.8 (Quantified sentence). In any generalized substitution system GS : Sig →
SubstSys, a universally quantified Σ-sentence is a structure ∀X · ρ where X is a signature
of Σ-variables and ρ is an X-sentence. The denotation of ∀X · ρ is given by the class of
Σ-models whose X-expansions satisfy ρ. To be more precise, a Σ-model M is a model of
∀X · ρ, denoted M �qs

Σ ∀X · ρ, if, for every X-model N such that N�Σ = M , N �Σ,X ρ.
Existentially quantified Σ-sentences ∃X · ρ are introduced in a similar manner. Their

semantics is, as expected, existential rather than universal: the denotation of a sentence
∃X · ρ is given by the class of Σ-models that admit X-expansions satisfying ρ.

Let QSen(Σ), or QSenGS(Σ) when we want to make explicit the underlying generalized
substitution system, be the set of quantified sentences (universal or existential) over a
signature Σ of a generalized substitution system GS : Sig→ SubstSys. It is straightforward
to see that QSen can be extended to a functor Sig → Set by defining QSen(ϕ)(QX · ρ)
as QΨϕ(X) · αϕ,X(ρ) for every morphism of signatures ϕ : Σ → Σ′ and every quantified
Σ-sentence QX · ρ, where Q ∈ {∀,∃}.
Fact 4.9. For any generalized substitution system GS : Sig→ SubstSys, QSen is a quantified-
sentence functor Sig→ Set.

In order to reason about programs defined over different signatures, it is necessary to
ensure that the translation of quantified sentences is consistent with the reduction of models
– in the sense that the satisfaction relation is preserved. As in many institutions that capture

16

logical systems with quantifiers, this condition relies on the essential property of model
amalgamation, i.e. on the possibility of combining models of different but related signatures,
provided that they have a common reduct to a given shared signature. The form of model
amalgamation used here was first introduced in [3]; other early papers include [43, 14]. Its
importance was also emphasized in works on heterogeneous specifications [48, 4], which are
closely related to our setting.

Definition 4.10 (Model amalgamation). A generalized substitution system GS : Sig →
SubstSys has (weak) model amalgamation when for every signature morphism ϕ : Σ → Σ′
and every signature of Σ-variables X, the diagram depicted below is a (weak) pullback.

|Mod(Σ)| |Mod(Σ′)|
_�ϕ

oo

|ModΣ(X)|

_�Σ

OO

|ModΣ′(Ψϕ(X))|

_�Σ′

OO

βϕ,X

oo

This means that for every Σ′-model M ′ and every X-model N such that M ′�ϕ = N�Σ there
exists a Ψϕ(X)-model N ′, called the amalgamation of M ′ and N , that satisfies N ′�Σ′ = M ′

and βϕ,X(N ′) = N . Whenever this holds, the following commutative square, which subsumes
the diagram above, is said to be a (weak) model-amalgamation square:

GΣ
κϕ

//

GSΣ(X)
��

GΣ′

GSΣ′ (Ψϕ(X))
��

GΣ(X)
τϕ,X

// GΣ′(Ψϕ(X))

In generalized substitution systems such as qf-FOL1
6= (as well as qf-FOL=, discussed

in Section 6), for every signature morphism ϕ : 〈F, P 〉 → 〈F ′, P ′〉 and every signature of
〈F, P 〉-variables X, the commutative square of interest for model amalgamation can be
obtained by taking the image through qf-FOL1

6= of the following diagram of signature
morphisms:

〈F, P 〉

⊆
��

ϕ
// 〈F ′, P ′〉

⊆
��

〈F ∪X,P 〉
ϕX
// 〈F ′ ∪Xϕ, P ′〉

It is well known that such diagrams describe pushouts and that every pushout of first-order
signatures gives rise to a model-amalgamation square (details can be found, for example,
in [11, 44]). These considerations lead to the following result.

Proposition 4.11. The generalized substitution system qf-FOL1
6= has model amalgamation.

The model-amalgamation property allows us to prove that the translations of quantified
sentences and the reductions of models preserve the satisfaction relation.

17

Proposition 4.12. Let GS : Sig → SubstSys be a generalized substitution system that has
weak model amalgamation. Then for every signature morphism ϕ : Σ→ Σ′, every quantified
Σ-sentence QX · ρ, and every Σ′-model M ′,

M ′ �qs
Σ′ QSen(ϕ)(QX · ρ) if and only if Mod(ϕ)(M ′) �qs

Σ QX · ρ.

Proof. Since the two kinds of quantified sentences can be treated similarly, we focus here only
on the case of universal sentences. Let us thus consider a signature morphism ϕ : Σ→ Σ′, a
universally quantified Σ-sentence ∀X · ρ, and a Σ′-model M ′.
The proof of the ‘if’ part is simpler and it does not require the model-amalgamation

property. Assume that Mod(ϕ)(M ′) �qs
Σ ∀X ·ρ, and let N ′ be an arbitrary Ψϕ(X)-expansion

of M ′. Since κϕ ; GSΣ′(Ψϕ(X)) = GSΣ(X) ; τϕ,X (because 〈Ψϕ, κϕ, τϕ〉 is a morphism of
substitution systems), it follows that βϕ,X(N ′) is anX-expansion of Mod(ϕ)(M ′). As a result,
βϕ,X(N ′) �Σ,X ρ, which implies, by the satisfaction condition for τϕ,X , that N ′ �Σ′,Ψϕ(X)
αϕ,X(ρ). Given that, by definition, QSen(ϕ)(∀X · ρ) is the universally quantified sentence
∀Ψϕ(X) ·αϕ,X(ρ), we conclude that M ′ �qs

Σ′ QSen(ϕ)(∀X · ρ).
For the ‘only if’ part, assume that M ′ is a model of QSen(ϕ)(∀X · ρ), and let N be an

X-expansion of Mod(ϕ)(M ′), which means that Mod(ϕ)(M ′) = βΣ,X(N). We need to show
that N satisfies ρ. Since GS has weak model amalgamation, we deduce that there exists
a Ψϕ(X)-model N ′ such that βΣ′,Ψϕ(X)(N ′) = M ′ and βϕ,X(N ′) = N . This means that
N ′ is a Ψϕ(X)-expansion of M ′, and thus N ′ �Σ′,Ψϕ(X) αϕ,X(ρ) because, by hypothesis,
M ′ �qs

Σ′ ∀Ψϕ(X) · αϕ,X(ρ). Therefore, by the satisfaction condition for τϕ,X , we have
βϕ,X(N ′) �Σ,X ρ.

Corollary 4.13. For any generalized substitution system GS : Sig→ SubstSys that has weak
model amalgamation, the structure GSqs = 〈Sig,QSen,Mod,�qs〉 describes an institution –
the institution of quantified sentences over GS.

5 Abstract Logic Programming
As we have seen, generalized substitution systems provide us with a framework that is rich
and flexible enough for capturing some of the most essential aspects of logic programming.
However, since they make no assumptions on the structure of sentences defined over signatures
of variables, we cannot distinguish between clauses and queries, nor can we describe unifiable
sentences, which would further enable the search for solutions to queries by means of a suitable
concept of resolution. To overcome these limitations, we extend the notion of generalized
substitution system with appropriate functors that define local clauses and queries, and
with binary inference rules that allow the integration of the declarative and operational
semantics of logic programming. The following property gives a concise presentation of the
local sentences defined by a generalized substitution system.
Fact 5.1. Every generalized substitution system GS : Sig → SubstSys determines a local-
sentence functor LSen: Sig → [_→ Set]], also denoted LSenGS when we want to make
explicit the generalized substitution system, that maps

• every signature Σ to the pair 〈SubstΣ,GSΣ ; |_|GΣ
; Sen〉, usually identified with the

second component, the functor GSΣ ; |_|GΣ
; Sen: SubstΣ → Set, and

• every signature morphism ϕ : Σ→ Σ′ to 〈Ψϕ, τϕ · (|_|GΣ
; Sen)〉.

18

SubstΣ
GSΣ //

Ψϕ
��

GΣ / Room |_|GΣ
**
Room Sen // Set

SubstΣ′ GSΣ′
// GΣ′ / Room |_|GΣ′

44κϕ/Room

OO

τϕ
��

This means that, for every signature Σ, LSen(Σ) describes the sets LSen(Σ)(X) = SenΣ(X)
of local Σ-sentences, where X is a signature of Σ-variables, together with translations
of local sentences LSen(Σ)(ψ) = SenΣ(ψ), where ψ is a Σ-substitution. In addition, for
every signature morphism ϕ : Σ → Σ′, LSen(ϕ) describes the translation of Σ-variables
Ψϕ : SubstΣ → SubstΣ′ and the family of natural maps αϕ,X : SenΣ(X) → SenΣ′(Ψϕ(X)),
indexed by signatures of Σ-variables X.
We can now define the main concept underlying our approach to logic programming.

Definition 5.2 (Logic-programming framework). A logic-programming framework is a tuple
F = 〈GS,C,Q,
〉 where

• GS is a generalized substitution system that has weak model amalgamation,

• C and Q are generalized subfunctors of LSen, defining the sets CΣ(X) ⊆ SenΣ(X) and
QΣ(X) ⊆ SenΣ(X) of X-clauses and X-queries, respectively, for every signature Σ and
every signature of Σ-variables X, and

•
 is a generalized subfunctor of (Q × C) × Q defining, for every signature Σ and
every signature of Σ-variables X, the set
Σ,X ⊆ (QΣ(X) × CΣ(X)) × QΣ(X) of
X-goal-directed rules, for which we will often use the notation ρ1, γ
Σ,X ρ2 in place of
(ρ1, γ, ρ2) ∈
Σ,X ,

such that the following soundness property holds for every signature Σ, signature of Σ-variables
X, X-queries ρ1 and ρ2, and every X-clause γ:

ρ1, γ
Σ,X ρ2 implies {ρ2, γ} �Σ,X ρ1.

Example 5.3. Conventional first-order logic programming is defined over the generalized
substitution system qf-FOL1

6= as follows: for every signature 〈F, P 〉 and every signature of
〈F, P 〉-variables X,

• the set C〈F,P 〉(X) of X-clauses consists of all implications of the form
∧
H ⇒ C, where

H is a finite set of relational atoms and C is an atom,

• the set Q〈F,P 〉(X) of X-queries consists of all finite conjunctions of atoms
∧
Q, and

• the goal-directed rules are given by
∧

({C} ∪Q), (
∧
H ⇒ C)
〈F,P 〉,X

∧
(Q ∪H).

One can easily see that the (local) first-order clauses, queries, and goal-directed rules are
preserved along both signature morphisms and substitutions; this means, for example, that
the translation of a clause along a signature morphism, when regarded as a sentence over
the domain signature of that morphism, is a clause defined over the codomain signature
of the morphism. Moreover, the goal-directed rules correspond, in essence, to applications
of modus ponens, and thus they are sound. As a result, the constructions above define a
logic-programming framework, which we denote by FOL1

6=.

19

The definitions of clauses and queries are rather straightforward.

Definition 5.4 (Clause and query). Let Σ be a signature of the underlying generalized
substitution system GS of a logic-programming framework 〈GS,C,Q,
〉. A Σ-clause is a
universally quantified sentence ∀X · γ over Σ such that γ ∈ CΣ(X). Similarly, a Σ-query is
an existentially quantified sentence ∃X · ρ over Σ such that ρ ∈ QΣ(X).
We obtain in this way two subfunctors ∀C (defining the clauses) and ∃Q (defining the

queries) of the sentence functor QSen of the institution of quantified sentences over GS.

Following recent developments in the theory of structured specifications [13], we propose
an axiomatic approach to logic-programming languages, in which the programs are treated as
abstract entities, each of them defining a signature (in a given logic-programming framework),
a class of models – that provides the denotational semantics of the program – and an
appropriate set of clauses – that supports the operational semantics of the program. In
addition, programs are related by morphisms that induce appropriate reductions of models
and translations of clauses, defined in terms of their projections to the underlying logic-
programming framework.

Definition 5.5 (Logic-programming language). Given a framework F = 〈GS,C,Q,
〉, a
logic-programming language L = 〈LP,Sign,PMod,Ax〉 over F consists of

LP
Sign
��

Ax

$$

PModop

zz

Catop Sig
∀C

//
Modop
oo

^f
⊇ ⊇x�

Set

• a category LP of logic programs and morphisms of logic programs,

• a signature functor Sign : LP→ Sig, and

• subfunctors PMod ⊆ Signop ; Mod and Ax ⊆ Sign ; ∀C defining, for every program P ,
the category PMod(P) of P -models and the set Ax(P) of P -clauses,

such that, for every logic program P and every model M of P , M �qs
Sign(P) Ax(P).

By way of notation, when there is no risk of confusion, we will often denote logic programs
P by 〈〈Σ,Γ〉〉 where Σ = Sign(P) and Γ = Ax(P), emphasizing in this way their corresponding
signatures and sets of clauses; moreover, we may denote simply by ν the signature morphism
Sign(ν) determined by a morphism of programs ν : P → P ′. We may also indicate that a
Σ-model M is a model of P by writing M �lp

Σ P in place of M ∈ |PMod(P)|, and that a
quantified Σ-sentence QX · ρ is semantically entailed by P , meaning that M �qs

Σ QX · ρ for
all P -models M , by writing P �lp

Σ QX · ρ.
Example 5.6. Most of the mechanisms used in defining (structured) specifications can
also be used to define logic programs. For instance, one of the simplest and most common
descriptions of logic programs is as theory presentations [23, 14] over a logic-programming
framework F = 〈GS,C,Q,
〉 such as FOL1

6=. In this case, the programs defined by the
resulting logic-programming language – denoted Fpres – are pairs 〈Σ,Γ〉 of signatures Σ of
GS and sets of Σ-clauses Γ, while the morphisms ϕ : 〈Σ,Γ〉 → 〈Σ′,Γ′〉 are merely signature
morphisms ϕ : Σ → Σ′ such that Γ′ �qs

Σ′ ϕ(Γ). The functors Sign, Ax, and PMod have

20

their usual interpretations: for every presentation 〈Σ,Γ〉, (a) Sign(Σ,Γ) is the signature Σ,
(b) Ax(Σ,Γ) is the set of Σ-clauses Γ, and (c) PMod(Σ,Γ) is the full subcategory of Mod(Σ)
given by the models of Σ that satisfy Γ.

Under this formalism, based on the first-order signature 〈FNAT, PNAT〉 considered in Section 3
and on the clauses presented in Section 4, the logic program over (FOL1

6=)pres that defines
the addition of natural numbers can be described as follows:

signature
op 0 : 0
op s_: 1
pred add : 3

axioms
add(0,M,M)←−−

M

add(sM,N, sP)←−−−−−
M,N,P

add(M,N,P)

For the remaining part of this section we will assume L = 〈LP,Sign,PMod,Ax〉 to be an
arbitrary but fixed logic-programming language over a framework F = 〈GS,C,Q,
〉.

Herbrand’s Theorem
From a model-theoretic perspective, a logic program 〈〈Σ,Γ〉〉 gives a positive answer to a
Σ-query ∃X · ρ if and only if 〈〈Σ,Γ〉〉 semantically entails ∃X · ρ, which means, of course,
that every model of 〈〈Σ,Γ〉〉 admits an X-expansion that satisfies ρ. In practice, this kind of
answer is not always adequate for the particular task at hand, as we may be interested in
finding the actual ‘values’ for X – independent of any choice of model of 〈〈Σ,Γ〉〉 – that meet
all the requirements described by ρ.

Definition 5.7 (Solution). For any logic program 〈〈Σ,Γ〉〉, a Σ-substitution ψ : X → Y is a
〈〈Σ,Γ〉〉-solution, or correct 〈〈Σ,Γ〉〉-answer, to a Σ-query ∃X · ρ if Y is conservative, i.e. if the
functor βΣ,Y : ModΣ(Y)→ Mod(Σ) is surjective on objects,3 and 〈〈Σ,Γ〉〉 �lp

Σ ∀Y ·ψ(ρ).

Therefore, we have to consider two notions of answer to a query, both of which are relative
to a given logic program: the first one corresponds to the denotational semantics of the
logic-programming language, while the second provides the necessary foundations for its
operational semantics.
Herbrand’s theorem ensures that the two notions are equivalent. First, it reduces the

semantic entailment of the considered query to satisfaction in the initial model of the logic
program; then, it shows that any expansion of the initial model that satisfies the underlying
local sentence of the query gives rise to a solution, and vice versa. These properties are well
known in the literature for various logical systems (e.g. [31, 26, 24]), and they were first
investigated in an institution-independent setting in [10]. The result we develop here upgrades
the ones from [10] by considering a different set of hypotheses, based on the existence of
certain reachable models instead of representable signature morphisms and substitutions;
moreover, it can be utilized even in situations in which the signatures of variables cannot be
described as extensions of their base signatures. These new assumptions are significantly

3Note that, in first-order logic, a (non-empty) signature of 〈F, P 〉-variables is conservative if and only if F0
is not empty.

21

more permissive as they allow us to apply the theory advanced herein to logical systems
that, similarly to those discussed in [50, 51], do not fit into the framework proposed in [10] –
which, in fact, can be shown to be a concrete realization of the conceptual structure that we
put forward here. To be more precise, the logic-programming semantics of services presented
in [50, 51] is founded on a generalized substitution system whose signatures can be identified
with particular institutions of extended models (as defined, for example, in [45]); every
signature Σ has precisely one model, which, in combination with the satisfaction relation,
characterizes the notion of correctness of a service clause; furthermore, the signatures of
Σ-variables X are simply signatures of Σ (regarded as an institution), and their models
correspond to Σ-signature morphisms N : X → Y into signatures Y that belong to a specific
class of ‘ground’ signatures, which can be shown to be conservative. In consequence, the
signatures of Σ-variables cannot be faithfully described as extensions of Σ and, moreover,
they cannot be guaranteed to be representable in the sense of [10], since this would imply
that they too have only one model.
The following concept of reachable model extends (non-trivially) the homonymous one

from [19] to the present setting of generalized substitution systems by eliminating the need
for an initial signature of variables with the same sentences, models, and satisfaction relation
as its corresponding base signature.

Definition 5.8 (Reachable model). Let Σ be a signature and X a signature of Σ-variables
in a generalized substitution system. A Σ-model M is said to be X-reachable when for every
X-expansion N of M there exists a Σ-substitution ψ : X → Y such that

• Y is conservative, and

• the canonical map _�Σ : N /ModΣ(ψ)→M / βΣ,Y determined by the reduct functor
βΣ,X is surjective on objects.

Hence, given N and ψ as above, a Σ-model M is X-reachable if every homomorphism
h : M → N1�Σ from M to the Σ-reduct of an Y -model N1 admits an X-expansion of the
form f : N → N1�ψ.
In many concrete examples of institutions (see e.g. [19]), a model M is reachable (with

respect to some signature of variables) if and only if all its elements are interpretations of
terms, i.e. if the unique homomorphism 0Σ → M from the initial model of the signature
of M to M is epi. In particular, for first-order logic, the initial model 0〈F,P 〉,Γ of a set Γ
of 〈F, P 〉-clauses is X-reachable for every signature of 〈F, P 〉-variables X: every expansion
N〈F,P 〉,Γ of 0〈F,P 〉,Γ yields a substitution ψ : X → ∅ to the empty signature of variables (which
is conservative, and has the same models as 〈F, P 〉) such that 0〈F,P 〉,Γ�ψ = N〈F,P 〉,Γ; as a
result, every homomorphism h : 0〈F,P 〉,Γ → N1�〈F,P 〉 in Mod(F, P) admits an X-expansion
N〈F,P 〉,Γ → N1�ψ given by the reduct h�ψ.

Proposition 5.9. Every logic program 〈〈F, P 〉,Γ〉 of (FOL1
6=)pres admits an initial model

0〈F,P 〉,Γ that is reachable with respect to all signatures of 〈F, P 〉-variables.

Concerning the work presented in [51], one can easily check that the one (and only) model
M of any given signature Σ is trivially reachable with respect to any signature of Σ-variables
X: every X-expansion N of M , i.e. every Σ-signature morphism N : X → Y , is in itself
a Σ-substitution whose codomain is conservative; moreover, for every model N1 : Y → Z
of Y , since by definition there exists a unique homomorphism h : M → N1�Σ, namely the

22

identity of M , we deduce that N1 (regarded as a model homomorphism N → N1�N) is an
X-expansion of h.
In addition to the existence of particular reachable models, we also require (as in [10])

that model homomorphisms preserve the satisfaction of the local sentence upon which the
query under consideration is based.
Definition 5.10 (Preservation of satisfaction). Given a signature Σ and a signature of
Σ-variablesX in a generalized substitution system GS : Sig→ SubstSys, anX-homomorphism
h : N1 → N2 is said to preserve the satisfaction of an X-sentence ρ if N1 �Σ,X ρ implies
N2 �Σ,X ρ.
Note that, in the case of qf-FOL1

6=, all homomorphisms preserve, by definition, the satisfaction
of all relational atoms. This property can be easily extended to arbitrary conjunctions of
atoms, and thus to local queries of FOL1

6=.
Fact 5.11. In FOL1

6=, all homomorphisms preserve the satisfaction of all local queries.
Theorem 5.12 (Herbrand’s theorem). For every logic program 〈〈Σ,Γ〉〉 and every Σ-query
∃X · ρ such that (a) 〈〈Σ,Γ〉〉 has an X-reachable initial model 0〈〈Σ,Γ〉〉, and (b) the satisfaction
of ρ is preserved by X-homomorphisms, the following statements are equivalent:

1. 〈〈Σ,Γ〉〉 �lp
Σ ∃X · ρ.

2. 0〈〈Σ,Γ〉〉 �qs
Σ ∃X · ρ.

3. ∃X · ρ admits a 〈〈Σ,Γ〉〉-solution.
Proof.
1⇒ 2. Obvious, since 0〈〈Σ,Γ〉〉 �lp

Σ 〈〈Σ,Γ〉〉.
2⇒ 3. By hypothesis, there exists an X-expansion N〈〈Σ,Γ〉〉 of 0〈〈Σ,Γ〉〉 so that N〈〈Σ,Γ〉〉 �Σ,X ρ.
Since 0〈〈Σ,Γ〉〉 is assumed to be X-reachable, we know there exists a substitution ψ : X → Y
(determined by N〈〈Σ,Γ〉〉) satisfying the two properties listed in Definition 5.8. Hence, we only
need to show that 〈〈Σ,Γ〉〉 �lp

Σ ∀Y ·ψ(ρ).
Let us thus consider a model M of 〈〈Σ,Γ〉〉 and a Y -expansion N of M . Based on the
initiality of 0〈〈Σ,Γ〉〉, we obtain a (unique) Σ-homomorphism h : 0〈〈Σ,Γ〉〉 →M = N�Σ, which
can be lifted, by the surjectivity of the map _�Σ : N〈〈Σ,Γ〉〉 /ModΣ(ψ)→ 0〈〈Σ,Γ〉〉 / βΣ,Y , to an
X-homomorphism f : N〈〈Σ,Γ〉〉 → N�ψ. Since f preserves the satisfaction of ρ (by hypothesis)
and N〈〈Σ,Γ〉〉 �Σ,X ρ, it follows that N�ψ �Σ,X ρ, which implies, by the satisfaction condition
for ψ, that N �Σ,Y ψ(ρ). Therefore, M �qs

Σ ∀Y ·ψ(ρ).
3⇒ 1. Assume that ψ : X → Y is a 〈〈Σ,Γ〉〉-solution to ∃X · ρ, and that M is a model of
〈〈Σ,Γ〉〉. This means that 〈〈Σ,Γ〉〉 �lp

Σ ∀Y ·ψ(ρ), and hence M �qs
Σ ∀Y ·ψ(ρ). In addition, Y

is conservative, from which we deduce that there exists a Y -expansion N of M such that
N �Σ,Y ψ(ρ). It follows by the satisfaction condition for ψ that N�ψ is an X-expansion of
M such that N�ψ �Σ,X ρ. Consequently, M �qs

Σ ∃X · ρ.
Remark 5.13. The additional hypotheses referring to the existence of a reachable initial
model of 〈〈Σ,Γ〉〉 and to the preservation of the satisfaction of ρ by homomorphisms are used
only in the proof of the ‘completeness’ part of Theorem 5.12, i.e. for the implication 1⇒ 3;4
the ‘soundness’ part, corresponding to the implication 3⇒ 1, holds for every logic program
〈〈Σ,Γ〉〉 (defined over an arbitrary language) and every Σ-query ∃X · ρ.

4Moreover, it would suffice to assume that the model 0〈〈Σ,Γ〉〉 is weakly initial.

23

Operational Semantics
One of the most important (and distinctive) features of the concept of logic-program-
ming language is that it allows us to make effective use of the resolution inference rule
and, in a very natural way, to give an operational semantics to logic programs. Consider,
for instance, the logic program 〈〈FNAT, PNAT〉,Γ〉 described in Example 5.6 and the query
∃{X1} · add(s 0, s 0, X1), sometimes written as

7−−−−
X1

add(s 0, s 0, X1)

using a notation similar to that of clauses. We can compute a solution to the query
∃{X1} · add(s 0, s 0, X1) using the clauses of Γ and the goal-directed rules of FOL1

6= as
follows: we first derive the query ∃{X2} ·add(0, s 0, X2), based on the second clause of Γ, the
substitutions θ1 : {X1} → {X2} and ψ1 : {M,N,P} → {X2} given by X1 7→ sX2, M 7→ 0,
N 7→ s 0 and P 7→ X2, and the following goal-directed rule over {X2};

add(s 0, s 0, sX2)
θ1(add(s 0,s 0,X1))

, add(0, s 0, X2)⇒ add(s 0, s 0, sX2)
ψ1(add(M,N,P)⇒ add(sM,N,sP))

〈FNAT,PNAT〉,X2 add(0, s 0, X2)

by iterating these constructions, we can further derive the trivial query ∃∅ · true using the
first clause, the substitutions θ2 : {X2} → ∅ and ψ2 : {M} → ∅ given by X2 7→ s 0 and
M 7→ s 0, and the goal-directed rule over ∅ detailed below;

add(0, s 0, s 0)
θ2(add(0,s 0,X2))

, true ⇒ add(0, s 0, s 0)
ψ2(true ⇒ add(0,M,M))

〈FNAT,PNAT〉,∅ true

finally, we compose the substitutions θ1 and θ2 (which are usually computed through term
unification) to obtain a solution to ∃{X1} · add(s 0, s 0, X1).
The procedure outlined above does not depend on any particular details of (FOL1

6=)pres;
in fact, it admits a straightforward formalization within the abstract framework of logic-
programming languages.

Definition 5.14 (Resolution). Let ∃X1 ·ρ1 be a query and ∀Y1 ·γ1 a clause over a signature
Σ. A Σ-query ∃X2 · ρ2 is said to be derived by resolution from ∃X1 · ρ1 and ∀Y1 · γ1 using
the computed substitution θ1 : X1 → X2 if there exists a substitution ψ1 : Y1 → X2 such that
θ1(ρ1), ψ1(γ1)
Σ,X2 ρ2.

Unification. Note that resolution describes not only the derivation of new and (presumably)
simpler queries from appropriate pairs of queries and clauses, but also how partial answers
to the original queries can be computed by means of sentence unification. In this sense,
for any signature Σ and signatures of Σ-variables X1 and Y1, an ordered pair 〈ρ1, γ1〉 of
sentences ρ1 ∈ QΣ(X1) and γ1 ∈ CΣ(Y1) is said to be unifiable if there exists a pair 〈θ1, ψ1〉
of substitutions θ1 : X1 → X2 and ψ1 : Y1 → X2, called the unifier of ρ1 and γ1, such that
θ1(ρ1), ψ1(γ1)
Σ,X2 ρ2 for some X2-sentence ρ2 ∈ QΣ(X2).
It is also possible to distinguish between the various levels of generality of the unifiers.

Given two unifiers 〈θ1, ψ1〉 and 〈θ′1, ψ′1〉 of ρ1 and γ1 as depicted below, we say that 〈θ′1, ψ′1〉
is an instance of 〈θ1, ψ1〉, or that 〈θ1, ψ1〉 is more general than 〈θ′1, ψ′1〉, if there exists a
substitution θ such that θ1 ; θ = θ′1 and ψ1 ; θ = ψ′1. Given this, the unifiers of ρ1 and γ1 can

24

be defined as objects of a subcategory of the category of cospans of Σ-substitutions.

X2

θ

��

X1

θ1 77

θ′1
''

Y1

ψ1gg

ψ′1
ww

X ′2

It should be noted however that, under the present formalization, the most general unifiers,
defined as initial objects in their corresponding category (along the lines of [20]), cannot
be guaranteed to exist. Even in the case of FOL1

6=, one cannot find, for example, a most
general unifier of add(s 0, s 0, X1) ∧ add(s s 0, 0, X1) and add(M,N,P)⇒ add(sM,N, sP)
– although one exists for add(s 0, s 0, X1) and add(M,N,P) ⇒ add(sM,N, sP), as well
as for add(s s 0, 0, X1) and add(M,N,P) ⇒ add(sM,N, sP). This does not restrict the
applicability of the theory proposed here because our abstract notion of resolution corresponds
in fact to an extended variant of first-order resolution in which any unifier may give rise to a
derivation, not just the most general ones.

The scope of Definition 5.14 can be easily broaden to accommodate sets of clauses: given
a set Γ of clauses over a signature Σ, a Σ-query ∃X2 · ρ2 is said to be derived by resolution
from ∃X1 · ρ1 and Γ using the computed substitution θ1 : X1 → X2, written

∃X1 · ρ1 −�Γ,θ1 ∃X2 · ρ2,

if ∃X2 ·ρ2 is derived by resolution from ∃X1 ·ρ1 and ∀Y1 ·γ1 using the computed substitution
θ1, for some Σ-clause ∀Y1 · γ1 ∈ Γ. This gives us a family (−�Γ,θ)θ∈SubstΣ

of one-step
derivation relations generated by Γ, whose union is denoted by −�Γ.

The rest of this subsection is devoted to the composition of one-step derivations, which
will be shown to provide a general procedure for resolving queries. To this purpose, let us
first investigate the soundness of the one-step derivation relations.
Proposition 5.15. Let 〈〈Σ,Γ〉〉 be a logic program, and ∃X1 · ρ1 and ∃X2 · ρ2 two Σ-queries.
Then for every inference step ∃X1 · ρ1 −�Γ,θ1 ∃X2 · ρ2 and every solution ψ : X2 → Y to the
query ∃X2 · ρ2, the substitution θ1 ; ψ is a solution to ∃X1 · ρ1.
Proof. Assume that ∃X2 ·ρ2 is derived by resolution from ∃X1 ·ρ1 and Γ using the computed
substitution θ1 : X1 → X2, and that ψ : X2 → Y is a 〈〈Σ,Γ〉〉-solution to ∃X2 · ρ2. The latter
implies that the codomain Y of θ1 ; ψ is conservative. Therefore, we only need to prove that
〈〈Σ,Γ〉〉 �lp

Σ ∀Y · (θ1 ; ψ)(ρ1).
Let M be a model of 〈〈Σ,Γ〉〉 and N a Y -expansion of M . By the definition of the one-step

derivation relation −�Γ,θ1 we know there exists a clause ∀Y1 · γ1 ∈ Γ and a substitution
ψ1 : Y1 → X2 such that θ1(ρ1), ψ1(γ1)
Σ,X2 ρ2. This allows us to deduce, based on the
soundness of the goal-directed rules, that

{
ρ2, ψ1(γ1)

}
�Σ,X2 θ1(ρ1). Furthermore, since the

semantic consequence is preserved by translation along signature morphisms (which, in turn,
is an immediate consequence of the invariance of truth under change of notation), we obtain{
ψ(ρ2), (ψ1 ; ψ)(γ1)

}
�Σ,Y (θ1 ; ψ)(ρ1). This means that in order to conclude our proof it

suffices to show that N satisfies both ψ(ρ2) and (ψ1 ; ψ)(γ1).
In the case of the first relation, since ψ is a 〈〈Σ,Γ〉〉-solution to ∃X2 · ρ2, 〈〈Σ,Γ〉〉 �lp

Σ
∀Y ·ψ(ρ2). It follows that M �qs

Σ ∀Y ·ψ(ρ2), which further implies N �Σ,Y ψ(ρ2).
In the case of the second relation, by the general properties of substitution systems, we know

that N�ψ1;ψ is a Y1-expansion of M . As a result, N�ψ1;ψ �Σ,Y1 γ1 because M �qs
Σ ∀Y1 · γ1,

and thus, by the satisfaction condition for ψ1 ; ψ, N �Σ,X2 (ψ1 ; ψ)(γ1).

25

The search for (computed) solutions to a given query proceeds by means of a sequence
of one-step derivations, each of which contributes towards the final answer through its
corresponding computed substitution.

Definition 5.16 (Derivation). For any set Γ of clauses over Σ, and any Σ-queries ∃X1 · ρ1
and ∃Xn · ρn, a Γ-derivation of ∃Xn · ρn from ∃X1 · ρ1 is a chain of one-step derivations

∃X1 · ρ1 −�Γ,θ1 ∃X2 · ρ2 −�Γ,θ2 ∃X3 · ρ3 · · · ∃Xn−1 · ρn−1 −�Γ,θn−1 ∃Xn · ρn.

Whenever such a chain exists, the query ∃Xn · ρn is said to be derived from ∃X1 · ρ1 and Γ
using the computed substitution θ = θ1 ; θ2 ; · · · ; θn−1, written ∃X1 · ρ1 −�∗Γ,θ ∃Xn · ρn. By
definition, if the chain depicted above is empty, ∃X1 · ρ1−�∗Γ,1X1

∃X1 · ρ1. We obtain in this
way a family (−�∗Γ,θ)θ∈SubstΣ

of derivation relations generated by Γ.

Remark 5.17. The union of (−�∗Γ,θ)θ∈SubstΣ
is the reflexive and transitive closure of −�Γ.

Proposition 5.15 can be generalized without difficulty from one-step to arbitrary derivations
by a straightforward induction on the length of the derivation.

Corollary 5.18. Let 〈〈Σ,Γ〉〉 be a logic program, and ∃X1 · ρ1 and ∃Xn · ρn two Σ-queries.
Then for every derivation ∃X1 ·ρ1−�∗Γ,θ∃Xn ·ρn and every solution ψ : Xn → Y to ∃Xn ·ρn,
the substitution θ ; ψ is a solution to ∃X1 · ρ1.

All we require now in order to define computed answers is a concept of trivial query, which
is meant to characterize the successful termination of the search procedure.

Definition 5.19 (Trivial query). Let Σ be a signature. A Σ-query ∃Y · > is said to be
trivial if Y is conservative and every Y -model satisfies >.

Fact 5.20. In FOL1
6=, a query is trivial if and only if it is of the form ∃Y · true.5

An immediate consequence of the definition above is that every trivial query corresponds
to a local tautology (and even more, the query itself is a tautology). As a result, for any
logic program 〈〈Σ,Γ〉〉 and any trivial Σ-query ∃Y · >, 〈〈Σ,Γ〉〉 �lp

Σ ∀Y · >. This amounts to
describing the identity 1Y as a 〈〈Σ,Γ〉〉-solution to ∃Y · >.
Fact 5.21. Every trivial query ∃Y · > over the signature Σ of a logic program 〈〈Σ,Γ〉〉 admits
a 〈〈Σ,Γ〉〉-solution: the identity substitution 1Y .

Definition 5.22 (Computed answer). Given a program 〈〈Σ,Γ〉〉, a Σ-substitution θ : X → Y
is a computed 〈〈Σ,Γ〉〉-answer to a Σ-query ∃X · ρ if there exists a trivial query ∃Y · > such
that ∃X · ρ−�∗Γ,θ ∃Y · >.
Corollary 5.18 and Fact 5.21 lead us to the first main result of this subsection.

Theorem 5.23 (Soundness of resolution). For any logic program 〈〈Σ,Γ〉〉 and any Σ-query
∃X · ρ, every computed 〈〈Σ,Γ〉〉-answer to ∃X · ρ is a solution to ∃X · ρ.

5Note that, to ensure the conservativity of non-empty signatures of variables, the considered first-order
signature has to define at least one constant.

26

Completeness

As expected, completeness is more difficult to obtain, and requires additional hypotheses.
To simplify the proof, we consider two lemmas, each of which introduces a new property
to be satisfied by the query at hand or by the considered logic program. The first lemma
allows us to derive by resolution any translation (along a substitution) of a given query, while
the second reduces the search for solutions to a sequence of elementary inferences in a local
institution of substitutions – which, in the case of first-order logic-programming, involves no
quantifiers.

Definition 5.24 (Identity clause). Let ∃X · ρ be a query over a signature Σ. A Σ-clause
∀X · γ is said to be an identity of ∃X · ρ if γ is a tautology and ρ, γ
Σ,X ρ.

Fact 5.25. In the logic-programming framework FOL1
6=, every non-trivial query ∃X ·∧Q

admits an identity ∀X · π(t1, . . . , tn)⇒ π(t1, . . . , tn), where π(t1, . . . , tn) is an atom in Q.

Lemma 5.26. Consider a signature Σ, a Σ-query ∃X · ρ, and an identity ∀X · γ of ∃X · ρ.
Then for every Σ-substitution ψ : X → Y there exists a one-step derivation of ∃Y ·ψ(ρ) from
∃X · ρ and ∀X · γ having ψ as the computed substitution.

∃X · ρ−�{∀X · γ},ψ ∃Y ·ψ(ρ)

Proof. Because ∀X · γ is the identity of ∃X · ρ, we know that ρ, γ
Σ,X ρ. This implies
ψ(ρ), ψ(γ)
Σ,Y ψ(ρ) because, by the functoriality of
, the goal-directed rules are preserved
along substitutions. It follows that 〈ψ,ψ〉 is a unifier of ρ and γ, which allows us to conclude
that ∃Y · ψ(ρ) can be derived by resolution from ∃X · ρ and ∀X · γ using the computed
substitution ψ.

The second lemma is based on the following concept of instance of a set of clauses, which,
together with the generalization of the goal-directed rules to sets of local clauses, provides
an essential characterization of the derivation relation.

Definition 5.27 (Instance of a set of clauses). Given a set Γ of clauses over Σ and a signature
of Σ-variables X, the X-instance of Γ is defined as the set X(Γ) of all X-sentences that can
be obtained by translating the local clauses of Γ along substitutions into X.

X(Γ) =
{
ψ(γ) ∈ SenΣ(X)

∣∣ ∀Y · γ ∈ Γ and ψ : Y → X
}

Definition 5.28. For every signature Σ and signature of Σ-variables X,
Σ,X can be
extended to a set
∗Σ,X of goal-directed rules between X-queries and sets of X-clauses as
follows: given two queries ρ1, ρn ∈ QΣ(X) and a (possibly empty) set of clauses G ⊆ CΣ(X),

ρ1, G
∗Σ,X ρn

if there exists an alternating sequence ρ1 γ1 ρ2 γ2 ρ3 . . . ρn−1 γn−1 ρn of queries ρi ∈ QΣ(X)
and clauses γi ∈ G such that ρi, γi
Σ,X ρi+1 for each 1 ≤ i < n.

γ1 γ2 γn−1

ρ1 ρ2 ρ3 . . . ρn−1 ρn

27

This gives rise to a generalized subfunctor
∗ of
(
Q× C ; [P]]

)
×Q.6

Proposition 5.29. For all sets Γ of clauses over a signature Σ, queries ∃X1 · ρ1 and
∃Xn · ρn over Σ, and all (computed) substitutions θ : X1 → Xn,

∃X1 · ρ1 −�∗Γ,θ ∃Xn · ρn if and only if θ(ρ1), Xn(Γ)
∗Σ,Xn ρn.

Proof. We prove the result by induction on the length of the derivation. For the base case,
the conclusion can be inferred directly from the definitions of −�∗Γ and
∗; because of this,
in the following we will focus entirely on the more interesting case that corresponds to the
induction step.
For the ‘if’ part, assume there exists an Xn-query ρ2 and an Xn-clause ψ1(γ1) ∈ Xn(Γ),

further indicating the existence of a clause ∀Y1 · γ1 ∈ Γ and of a substitution ψ1 : Y1 → Xn

such that θ(ρ1), ψ1(γ1)
Σ,Xn ρ2 and ρ2, Xn(Γ)
∗Σ,Xn ρn. Based on the definition of
resolution and on the induction hypothesis, we deduce that ∃X1 · ρ1 −�Γ,θ ∃Xn · ρ2 and
∃Xn · ρ2 −�∗Γ,1Xn ∃Xn · ρn; therefore, by the composition of these derivations, we obtain
∃X1 · ρ1 −�∗Γ,θ ∃Xn · ρn.

For the ‘only if’ part, let θ1 ; θ2 be a factorization of θ such that ∃X1 · ρ1 −�Γ,θ1 ∃X2 · ρ2
and ∃X2 · ρ2 −�∗Γ,θ2 ∃Xn · ρn. Then, by the induction hypothesis, θ2(ρ2), Xn(Γ)
∗Σ,Xn ρn.
We also know, by the definition of resolution, that there exists a clause ∀Y1 · γ1 ∈ Γ and
a substitution ψ1 : Y1 → X2 such that θ1(ρ1), ψ1(γ1)
Σ,X2 ρ2. Based on the functoriality
of
∗, this implies that (θ1 ; θ2)(ρ1), (ψ1 ; θ2)(γ1)
Σ,Xn θ2(ρ2), and thus, since (ψ1 ; θ2)(γ1)
belongs to Xn(Γ) and θ2(ρ2), Xn(Γ)
∗Σ,Xn ρn, we conclude that θ(ρ1), Xn(Γ)
∗Σ,Xn ρn.

Let us recall that, in general, the derivation of queries proceeds by selecting, at each step,
a new rule – over a new signature of variables – to be applied to the current goal. Provided
that we know the result of the derivation, Proposition 5.29 allows us to reduce the derivation
of queries to applications of goal-directed rules that are defined over the same signature of
variables. In view of this characterization, the soundness of resolution can be interpreted
locally as described in the following corollary.

Corollary 5.30. Let 〈〈Σ,Γ〉〉 be a logic program, X a conservative signature of Σ-variables,
and ρ an X-query. Then for every trivial X-query >,

ρ,X(Γ)
∗Σ,X > implies 〈〈Σ,Γ〉〉 �lp
Σ ∀X · ρ.

Proof. Assume > to be a trivial query over X such that ρ,X(Γ)
∗Σ,X >. By Proposition 5.29,
it follows that ∃X · ρ −�∗Γ,1X ∃X · >. This means that the identity 1X is a computed
〈〈Σ,Γ〉〉-answer to ∃X · ρ (because X is conservative), and thus, by Theorem 5.23, 1X is also
a solution to ∃X · ρ. As a result, 〈〈Σ,Γ〉〉 �lp

Σ ∀X · ρ.
With respect to the completeness of resolution, we are interested in the converse of

the implication discussed in the corollary above. This may hold for certain programs in
logic-programming languages of interest, but it cannot be guaranteed in general.

Definition 5.31 (Query-completeness). A logic program 〈〈Σ,Γ〉〉 is said to be query-complete
if for every conservative signature of Σ-variables X, and every X-query ρ,

〈〈Σ,Γ〉〉 �lp
Σ ∀X · ρ implies ρ,X(Γ)
∗Σ,X >

6We recall from Fact 2.7 and Definition 5.2 that C ; [P]] is the functor that maps every signature Σ and
every signature of Σ-variables X to the set P(CΣ(X)) of sets of X-clauses.

28

for some trivial X-query >. In addition, the logic-programming language L is query-complete
when all logic programs of L have this property.

The following result is well known in the literature; it can be found, for instance, in a
slightly different form, in [31]. The result is based on the observation that for every signature
of variables X over a first-order signature 〈F, P 〉, and for every set Γ of clauses over 〈F, P 〉,
the X-expansion N of the free 〈〈F, P 〉,Γ〉-model over X given by Nx = x for every x ∈ X
satisfies a relational atom ρ if and only if there exist a clause ∀Y ·∧H ⇒ C in Γ and a
substitution ψ : Y → X such that ψ(C) = ρ and N �〈F,P 〉,X

∧
ψ(H).

Therefore, if 〈〈F, P 〉,Γ〉 �lp
〈F,P 〉 ∀X · ρ, then N �〈F,P 〉,X ρ, and thus there exists a clause

ψ(γ) ∈ X(Γ) such that ρ, ψ(γ)
Σ,X ρ1, where N �〈F,P 〉,X ρ1. By iterating this construction,
we obtain an alternating sequence of X-queries and clauses as in Definition 5.28; furthermore,
since N�〈F,P 〉 is the free 〈〈F, P 〉,Γ〉-model over X, it is always possible to assemble such
a sequence that terminates in a trivial query – which, in the case of FOL1

6=, is simply the
sentence true (see Fact 5.20). Consequently, ρ,X(Γ)
∗Σ,X true. A more detailed presentation
of this result can be found, for example, in [31].

Proposition 5.32. The logic-programming language (FOL1
6=)pres is query-complete.

We can now obtain our second lemma as a direct consequence of Proposition 5.29.

Lemma 5.33. Suppose that 〈〈Σ,Γ〉〉 is a query-complete logic program. Then for every
Σ-query ∃X · ρ such that X is conservative and 〈〈Σ,Γ〉〉 �lp

Σ ∀X · ρ, there exists a trivial
query ∃X · > that can be derived from ∃X · ρ and Γ, with the identity substitution 1X as the
computed answer.

∃X · ρ−�∗Γ,1X ∃X · >

Proof. Let 〈〈Σ,Γ〉〉 be a program and ∃X · ρ a Σ-query such that 〈〈Σ,Γ〉〉 �lp
Σ ∀X · ρ. By

query-completeness, there exists a trivial X-query > such that ρ,X(Γ)
∗Σ,X >. Hence,
by Proposition 5.29, we can derive the trivial query ∃X · > from ∃X · ρ and Γ using the
computed substitution 1X .

Theorem 5.34 (Completeness of resolution). Let 〈〈Σ,Γ〉〉 be a query-complete logic program
and ∃X · ρ a Σ-query that admits an identity ∀X · γ ∈ Γ. Then every 〈〈Σ,Γ〉〉-solution to
∃X · ρ is also a computed 〈〈Σ,Γ〉〉-answer to ∃X · ρ.
Proof. Let ψ : X → Y be a 〈〈Σ,Γ〉〉-solution to ∃X ·ρ. By Lemma 5.26 we know that ∃Y ·ψ(ρ)
can be derived from ∃X · ρ and its identity, ∀X · γ, using the substitution ψ. Therefore,
since ∀Y · γ ∈ Γ, the query ∃Y ·ψ(ρ) can also be derived from ∃X · ρ and Γ.

∃X · ρ−�Γ,ψ ∃Y ·ψ(ρ)

In addition, by Definition 5.7, the signature of variables Y is conservative, and 〈〈Σ,Γ〉〉 �lp
Σ

∀Y ·ψ(ρ). Hence, by Lemma 5.33, we can derive a trivial query ∃Y · > from ∃Y ·ψ(ρ) and
Γ using the computed substitution 1Y .

∃Y ·ψ(ρ)−�∗Γ,1Y ∃Y · >

Composing the two derivation chains outlined above yields a derivation of ∃Y ·> from ∃X ·ρ
using the substitution ψ. Consequently, ψ is a computed answer to ∃X · ρ.

29

6 Equational Logic Programming Revisited
Let us now focus on another prominent example of logic-programming language. Equational
logic programming [25] integrates the machinery of its relational counterpart within algebraic
specification in order to solve equations over abstract data types that are provided by
given specifications. This is accomplished by replacing (a) the underlying single-sorted
relational variant of first-order logic (without equality) with the many-sorted equational
variant, (b) resolution with paramodulation, and (c) presentations (in the definition of logic
programs) with program modules that are adequate for defining abstract data types. In this
setting, the computation of the sum of s 0 and s 0 considered in Section 5 can be triggered
by a query of the form

7−−−−−−−
X1 : Nat s 0 + s 0 = X1

meant to be solved over a logic program that consists of two modules: NAT, defining the
natural numbers as an abstract data type, and ADD, introducing the addition operation.

module NAT = free
sort Nat

op 0 : → Nat

op s_: Nat→ Nat

module ADD = NAT then
op _ + _: Nat Nat→ Nat

clause 0 +M = M ←−−−−−
M : Nat

clause (sM) +N = s (M +N)←−−−−−−−
M,N : Nat

The Generalized Substitution System
Equational logic programming is defined over the generalized substitution system qf-FOL=
of the quantifier-free fragment of many-sorted first-order equational logic. Since most of the
definitions and properties to check are straightforward adaptations of the definitions and
properties discussed for qf-FOL1

6= to the equational many-sorted setting of qf-FOL=, we
only briefly review some of the most important concepts that we need. A more in-depth
discussion of the components of qf-FOL= can be found, for example, in [26],7 or in the
recent monographs [11, 44].

Signatures. The signatures of qf-FOL= are pairs 〈S, F 〉 where S is a (finite) set of sorts
and F is a family (Fw→s)w∈S∗,s∈S of (finite) sets of operation symbols indexed by arities
and sorts. Signature morphisms ϕ : 〈S, F 〉 → 〈S′, F ′〉 are defined by functions ϕst : S → S′

between the sets of sorts and by families of functions ϕop
w→s : Fw→s → F ′ϕst(w)→ϕst(s) where

w ∈ S∗ and s ∈ S.

Signatures of variables and substitutions. For every signature 〈S, F 〉, a signature of
variables X is an S-indexed family of sets Xs of variables (x, Fε→s),8 often denoted x : s
where x is the name of the variable (distinct from the names of other variables in X) and s

7It should be noted that in [26] the authors consider an even more general setting of order-sorted equational
logic, with subsorts and overloading of operation symbols.

8We denote the empty arity by ε; hence, Fε→s is the set of constant-operation symbols of 〈S, F 〉 of sort s.

30

is its sort. In order to define substitutions, let us first recall that, for each sort s ∈ S, the set
TF,s of F -terms of sort s is the least set such that σ(t1, . . . , tn) : s ∈ TF,s for all operation
symbols σ ∈ Fs1···sn→s and all terms ti ∈ TF,si . Substitutions ψ : X → Y are S-indexed
families of maps ψs : Xs → TF∪Y,s assigning a term over the extended signature 〈S, F ∪ Y 〉
to every variable of X.

Sentences, models, and the satisfaction relation. Similarly to the relational setting,
the sentences over a qf-FOL=-signature 〈S, F 〉 are built from equational atoms l = r, where
l and r are F -terms having the same sort, by iteration of the usual Boolean connectives.
The models M of 〈S, F 〉 interpret each sort s ∈ S as a set Ms, called the carrier set of
s in M , and each operation symbol σ ∈ Fs1···sn→s as a function Mσ : Ms1 × · · · ×Msn →
Ms. Homomorphisms h : M1 → M2 are families of functions (hs : M1,s → M2,s)s∈S such
that hs(M1,σ(m1, . . . ,mn)) = M2,σ(hs1(m1), . . . , hsn(mn)) for all operation symbols σ ∈
Fs1···sn→s and all arguments mi ∈Msi .

M1,s1 × · · · ×M1,sn
M1,σ

//

hs1×···×hsn
��

M1,s

hs

��

M2,s1 × · · · ×M2,sn
M2,σ

// M2,s

Finally, the satisfaction relation is defined by induction on the structure of sentences, based
on the evaluation of terms in models. For instance, an 〈S, F 〉-model M satisfies an equational
atom l = r if and only if the terms l and r yield the same value in M .
Just as in the case of qf-FOL1

6=, the signatures of variables inherit the sentences, the
models, and the satisfaction relation of their corresponding extended first-order signatures.
This means that for every signature of 〈S, F 〉-variables X, Sen〈S,F 〉(X), Mod〈S,F 〉(X), and
�〈S,F 〉,X are defined as Sen(S, F ∪X), Mod(S, F ∪X), and �〈S,F∪X〉, respectively.

The following result relies on arguments similar to those of Proposition 4.11, based on
the fact that the translation of variables along signature morphisms determines pushouts of
first-order signatures, which in turn induce model-amalgamation squares.

Proposition 6.1. The generalized substitution system qf-FOL= has model amalgamation.

Paramodulation
Paramodulation originated with the work of Robinson and Wos [40] as a refinement of
resolution that is suitable for dealing with clauses and queries defined over first-order logic
with equality. The definition of its corresponding goal-directed rules relies on the following
notions of context and substitution of a term in a given context [44, 2].
For any sort s of a qf-FOL=-signature 〈S, F 〉, and for any signature of 〈S, F 〉-variables

X, an X-context for s is a term c over an extended signature of variables of the form
X ∪ {� : s} that contains precisely one occurrence of the new variable �. The substitution of
a term t ∈ TF∪X,s in c, denoted c[t], is defined as the translation of c along the substitution
(� 7→ t) : X ∪ {� : s} → X that maps every variable x ∈ X to the term x, and � to t.

Clauses and queries. Given a qf-FOL=-signature 〈S, F 〉, the local clauses over a signa-
ture of 〈S, F 〉-variables X are (as in the relational case) implications of the form

∧
H ⇒ (l =

r), where H is a finite set of equational atoms and l = r is an equational atom.

31

Similarly, the local queries over X are just finite conjunctions of equational atoms
∧
Q.

Goal-directed rules. Every signature of 〈S, F 〉-variables X determines rules of the form∧
({c[l] = t} ∪Q), (

∧
H ⇒ (l = r))
〈S,F 〉,X

∧
({c[r] = t} ∪Q ∪H)

or ∧
({t = c[l]} ∪Q), (

∧
H ⇒ (l = r))
〈S,F 〉,X

∧
({t = c[r]} ∪Q ∪H)

where Q and H are finite sets of equational atoms over X, l and r are terms over X of some
sort s, c is an X-context for s, and t is a term over X with the same sort as c.

It is easy to verify that the above constructions satisfy all the necessary properties
of Definition 5.2. Thus, they give rise to a (many-sorted) equational logic-programming
framework that we denote by FOL=. Moreover, the abstract concept of resolution captures
in this setting an extended version of what is known as paramodulation: a query ∃X2 ·

∧
Q2

(over some signature 〈S, F 〉) is derived by paramodulation in one step from another query
∃X1 ·

∧
Q1 and a clause ∀Y1 ·

∧
H1 ⇒ (l1 = r1) using the computed substitution θ1 : X1 → X2

if and only if there exists a substitution ψ1 : Y1 → X2 such that∧
θ1(Q1), (

∧
ψ1(H1)⇒ (ψtm

1 (l1) = ψtm
1 (r1)))
〈S,F 〉,X2

∧
Q2.

The extension is in this case twofold: first, the derivation is not limited to most general unifiers
(similarly to FOL1

6=); second, the term ψtm
1 (l1) need not be equal with the θ1-translation of a

subterm in Q1, but with a subterm in the θ1-translation of Q1.
All we need now in order to compute answers to queries defined over FOL= is an analogue

of Fact 5.20 providing an adequate characterization of trivial queries. To this end, notice
first that a signature of 〈S, F 〉-variables X is conservative if and only if there exists at least
one F -term for each sort s ∈ S such that TF∪X,s is not empty.
Fact 6.2. Let Y be a signature of 〈S, F 〉-variables in FOL= such that TF,s = ∅ implies
TF∪Y,s = ∅ for every s ∈ S. Then an 〈S, F 〉-query ∃Y · > is trivial if and only if > is a
conjunction of equalities of the form t = t.
To illustrate the use of paramodulation, let Γ be the set consisting of the two clauses

defined by the module ADD together with the identity clause ∀∅ · true ⇒ (0 = 0). Then the
sum of s 0 and s 0 can be computed according to the following chain of derivations:

∃{X1 : Nat} · s 0 + s 0 = X1

−�Γ,X1 7→X2 ∃{X2 : Nat} · s (0 + s 0) = X2 using the first clause of Γ
and the substitution M 7→ 0, N 7→ s 0

−�Γ,X2 7→X3 ∃{X3 : Nat} · s s 0 = X3 using the second clause of Γ
and the substitution M 7→ s 0

−�Γ,X3 7→s s 0 ∃∅ · s s 0 = s s 0 using the third (and last) clause of Γ.

Program modules
In order to accommodate both the so-called loose semantics specific to relational logic
programming, and the free semantics necessary for specifying abstract data types, equational
logic programs may be defined by means of program modules like NAT and ADD that are

32

built from (finite) presentations over FOL=, by iteration of structuring operators such
as union, translation, and free semantics [43]. Various other operators dedicated, for
example, to the derivation or to the extension of modules (often parameterized by classes
of signature morphisms or of homomorphisms) have been considered in the specification
literature [4, 44, 15]. To keep the presentation simple, we focus here only on the three
aforementioned operators.

The equational logic-programming language FOLstruc
= defines programs as ‘terms’ formed

from the programs of FOLpres
= by repeated applications of the union, translation, and free-

semantics operators listed below – together with the appropriate images of the resulting pro-
gram modules under the functors Sign, Ax, and PMod. Similarly to the case of presentations,
the morphisms of programs ν : P → P ′ are morphisms of signatures ν : Sign(P)→ Sign(P ′)
such that M ′�ν ∈ |PMod(P)| for every model M ′ ∈ |PMod(P ′)|.

Union. For any two program modules P1 and P2 having the same signature Σ, P1 ∪ P2 is
also a program module, with

Sign(P1 ∪ P2) = Σ
Ax(P1 ∪ P2) = Ax(P1) ∪Ax(P2)

PMod(P1 ∪ P2) = PMod(P1) ∩ PMod(P2).

Translation. For any program module P and any signature morphism ϕ : Sign(P) → Σ′,
translate P by ϕ is also a program module, with

Sign(translate P by ϕ) = Σ′

Ax(translate P by ϕ) = ϕ(Ax(P))
PMod(translate P by ϕ) = Mod(ϕ)−1(PMod(P)).

Free semantics. For any two program modules P and P ′, and any signature morphism
ϕ : Sign(P)→ Sign(P ′), free P ′ over P through ϕ is also a program module, with

Sign(free P ′ over P through ϕ) = Sign(P ′)
Ax(free P ′ over P through ϕ) = Ax(P ′)

PMod(free P ′ over P through ϕ) = the full subcategory of PMod(P ′) given by
the models M ′ that are free with respect to ϕ over some model M of P .

To describe the modules NAT and ADD, note that, for any program module P , free P is an
abbreviation for free P over ∅ through ι, where ι is the inclusion ∅ ⊆ Sign(P), and that,
for any other program module P ′ such that Sign(P) is a subsignature of Sign(P ′), P then P ′

is an abbreviation for (translate P by ι) ∪ P ′, where ι is the inclusion Sign(P) ⊆ Sign(P ′).

The soundness of paramodulation with respect to a given equational logic program follows
from Theorem 5.23. As regards completeness, note that, unlike (FOL1

6=)pres, the logic-
programming language FOLstruc

= cannot be guaranteed to be query-complete due to its
reliance upon the free-semantics operator [44]. However, it is known that every program
module built only with the union and translation operators is semantically equivalent with a
program defined over FOLpres

= [15] and, moreover, that logic programs given as presentations
〈Σ,Γ〉 are query-complete whenever the term rewriting system generated by Γ is convergent,
i.e. both confluent and terminating [2]. These observations lead to the following result.

33

Proposition 6.3. Let P be a logic program defined over FOLstruc
= using only the union and

translation operators, such that the term rewriting system generated by Ax(P) is convergent.
Then P is query-complete.

7 Conclusions
We have advanced an abstract axiomatic theory of logic programming by identifying and
examining in an institution-theoretic setting two of the most basic principles of the paradigm:
(a) the fact that each logic program has a rigorous mathematical semantics given by a class
of models (and often by a ‘standard’ model of that class) determining the specific set of
queries that can be positively answered, and (b) the existence of a sound (and in some
cases complete) goal-directed procedure for computing answer-substitutions that confirm the
validity of the positive answer received by a query. In this way, the present study unifies
the relational and the equational variants of logic programming, and we can expect it to
integrate with ease many other derived forms such as higher-order [35], behavioural [24], or
even service-oriented logic programming [50]. The first two share many similarities with the
equational variant presented in Section 6. The latter, however, is significantly different from
all the other forms of logic programming mentioned above – even though the logic programs
(known as repositories) and their corresponding operational semantics are defined similarly to
their relational counterparts. This is mainly due to the fact that the signatures of variables
(formalized in this case as labelled hypergraphs) can no longer be treated as extensions of
signatures (which provide the structures that can be used as labels for the hypergraphs
underlying the signatures of variables). Consequently, the service-oriented substitutions
cannot be captured by the institution-independent concept of substitution considered in [10],
nor can they be expressed as generalized forms of signature morphisms as in [18], for example.
Nevertheless, they can be easily shown to form the components of a generalized substitution
system as defined in Section 4.
Our efforts have focused mainly on the development of a simple yet sufficiently rich

theoretical framework to allow the investigation of properties related to the satisfaction of
quantified sentences, the generalization of Herbrand’s theorem to abstract logic-programming
languages and, even more, the definition of a sound and (conditionally) complete procedure
for computing solutions to queries. This procedure relies on exploring a potentially infinite
search space of queries, related through substitutions computed by means of resolution, in
search of queries that are trivial, i.e. known to admit the simplest possible solutions. Its
implementation is not complete because we do not commit to any particular search strategy,
which could make use, for example, of most general unifiers and backtracking. However, it
should be noted that under the present formalization of the search space, any such strategy
would be sound and, moreover, complete if it ensured that the reachability of all trivial
queries is maintained.
Apart from the obvious need to consider various other forms of logic programming, an

interesting direction for future research is to examine the preservation and the reflection of
answers along morphisms of logic programs (following the lines of [10]), as this may give
us the possibility to search for solutions to queries in restricted contexts that correspond
to ‘subprograms’, and then translate these solutions back to the original setting. Another
open problem of practical importance is the development of an appropriate concept of map
of logic-programming languages to capture, for example, the encoding of relational logic
programming into its equational correspondent based on the representation of relations as

34

Boolean-valued operations (see e.g. [11]). Even though from a denotational perspective we
obtain an immediate answer in the form of the notion of morphism of generalized substitution
systems (suggested in Definition 4.6), from an operational point of view the answer does not
appear to be equally obvious since different logic-programming frameworks may be founded
on highly different kinds of goal-directed rules.

Acknowledgements
The authors would like to thank Răzvan Diaconescu and Uwe Wolter for many useful
discussions that led to the present form of this paper, as well as the anonymous referees for
their helpful comments and suggestions. This research has been supported by a grant of the
Romanian National Authority for Scientific Research, CNCS-UEFISCDI, project number
PN-II-ID-PCE-2011-3-0439.

References
[1] Jiri Adámek, Horst Herrlich, and George Strecker. Abstract and Concrete Categories:

The Joy of Cats. Dover books on mathematics. Dover Publications, 2009. reprint.

[2] Franz Baader and Tobias Nipkow. Term Rewriting and All That. Cambridge University
Press, 1999.

[3] Edward K. Blum and Francesco Parisi-Presicce. The semantics of shared submodules
specifications. In Hartmut Ehrig, Christiane Floyd, Maurice Nivat, and James W.
Thatcher, editors, Theory and Practice of Software Development, volume 185 of Lecture
Notes in Computer Science, pages 359–373. Springer, 1985.

[4] Tomasz Borzyszkowski. Logical systems for structured specifications. Theoretical
Computer Science, 286(2):197–245, 2002.

[5] Rod M. Burstall and Joseph A. Goguen. The semantics of Clear, a specification language.
In Dines Bjørner, editor, Abstract Software Specifications, volume 86 of Lecture Notes in
Computer Science, pages 292–332. Springer, 1979.

[6] Mihai Codescu and Daniel Găină. Birkhoff completeness in institutions. Logica Univer-
salis, 2(2):277–309, 2008.

[7] Alain Colmerauer, Henry Kanoui, Philippe Roussel, and Robert Pasero. Un systéme de
communication homme-machine en Francais. Technical report, Groupe de Intelligence
Artificielle, Faculté des Sciences de Luminy, Université de Aix-Marseille II, Marseille,
1973.

[8] Răzvan Diaconescu. Completeness of category-based equational deduction. Mathematical
Structures in Computer Science, 5(1):9–40, 1995.

[9] Răzvan Diaconescu. Category-based constraint logic. Mathematical Structures in
Computer Science, 10(3):373–407, 2000.

[10] Răzvan Diaconescu. Herbrand theorems in arbitrary institutions. Information Processing
Letters, 90(1):29–37, 2004.

35

[11] Răzvan Diaconescu. Institution-Independent Model Theory. Studies in Universal Logic.
Birkhäuser, 2008.

[12] Răzvan Diaconescu. Structural induction in institutions. Information and Computation,
209(9):1197–1222, 2011.

[13] Răzvan Diaconescu. An axiomatic approach to structuring specifications. Theoretical
Computer Science, 433:20–42, 2012.

[14] Răzvan Diaconescu, Joseph A. Goguen, and Petros Stefaneas. Logical support for
modularisation. In Gérard Huet and Gordon Plotkin, editors, Logical Environments,
pages 83–130. Cambridge University Press, 1993.

[15] Răzvan Diaconescu and Ionuţ Ţuţu. On the algebra of structured specifications. Theo-
retical Computer Science, 412(28):3145–3174, 2011.

[16] José L. Fiadeiro, Antónia Lopes, and Laura Bocchi. An abstract model of service
discovery and binding. Formal Aspects of Computing, 23(4):433–463, 2011.

[17] Daniel Găină. Forcing, Downward Löwenheim-Skolem and Omitting Types theorems,
institutionally. Logica Universalis, pages 1–30, 2013.

[18] Daniel Găină, Kokichi Futatsugi, and Kazuhiro Ogata. Constructor-based logics. Journal
of Universal Computer Science, 18(16):2204–2233, 2012.

[19] Daniel Găină and Marius Petria. Completeness by forcing. Journal of Logic and
Computation, 20(6):1165–1186, 2010.

[20] Joseph A. Goguen. What is unification? Resolution of Equations in Algebraic Structures,
1:217–261, 1989.

[21] Joseph A. Goguen and Rod M. Burstall. Some fundamental algebraic tools for the
semantics of computation. Part 1: Comma categories, colimits, signatures and theories.
Theoretical Computer Science, 31:175–209, 1984.

[22] Joseph A. Goguen and Rod M. Burstall. A study in the foundations of programming
methodology: specifications, institutions, charters and parchments. In David H. Pitt,
Samson Abramsky, Axel Poigné, and David E. Rydeheard, editors, Category Theory
and Computer Programming, volume 240 of Lecture Notes in Computer Science, pages
313–333. Springer, 1986.

[23] Joseph A. Goguen and Rod M. Burstall. Institutions: abstract model theory for
specification and programming. Journal of the ACM, 39(1):95–146, 1992.

[24] Joseph A. Goguen, Grant Malcolm, and Tom Kemp. A hidden Herbrand theorem:
combining the object and logic paradigms. Journal of Logic and Algebraic Programming,
51(1):1–41, 2002.

[25] Joseph A. Goguen and José Meseguer. EQLOG: Equality, types, and generic modules
for logic programming. In Logic Programming: Functions, Relations, and Equations,
pages 295–363. Prentice Hall, 1986.

36

[26] Joseph A. Goguen and José Meseguer. Models and equality for logical programming. In
Hartmut Ehrig, Robert A. Kowalski, Giorgio Levi, and Ugo Montanari, editors, Theory
and Practice of Software Development, volume 250 of Lecture Notes in Computer Science,
pages 1–22. Springer, 1987.

[27] Joseph A. Goguen and Grigore Roşu. Institution morphisms. Formal Aspects of
Computing, 13(3–5):274–307, 2002.

[28] Jacques Herbrand. Investigations in proof theory, pages 525–581. Source books in the
history of the sciences. Harvard University Press, 1967.

[29] Robert A. Kowalski. Predicate logic as programming language. In IFIP Congress, pages
569–574, 1974.

[30] Robert A. Kowalski and Donald Kuehner. Linear resolution with selection function.
Artificial Intelligence, 2(3/4):227–260, 1971.

[31] John W. Lloyd. Foundations of Logic Programming. Symbolic computation: Artificial
intelligence. Springer, 1987.

[32] Saunders Mac Lane. Categories for the Working Mathematician. Graduate texts in
mathematics. Springer, 1998.

[33] Manuel A. Martins, Alexandre Madeira, Răzvan Diaconescu, and Luís Soares Barbosa.
Hybridization of institutions. In Andrea Corradini, Bartek Klin, and Corina Cîrstea,
editors, Algebra and Coalgebra in Computer Science, volume 6859 of Lecture Notes in
Computer Science, pages 283–297. Springer, 2011.

[34] José Meseguer. General logics. In Heinz-Dieter Ebbinghaus, José Fernández-Prida,
Manuel Garrido, Daniel Lascar, and Mario Rodriquez-Artalejo, editors, Logic Colloquium
’87, volume 129 of Studies in Logic and the Foundations of Mathematics Series, pages
275–329. Elsevier, 1989.

[35] José Meseguer. Multiparadigm logic programming. In Hélène Kirchner and Giorgio Levi,
editors, Algebraic and Logic Programming, volume 632 of Lecture Notes in Computer
Science, pages 158–200. Springer, 1992.

[36] Bernhard Möller, Andrzej Tarlecki, and Martin Wirsing. Algebraic specifications of
reachable higher-order algebras. In Donald Sannella and Andrzej Tarlecki, editors,
Abstract Data Types, volume 332 of Lecture Notes in Computer Science, pages 154–169.
Springer, 1987.

[37] Till Mossakowski. Comorphism-based Grothendieck logics. In Krzysztof Diks and
Wojciech Rytter, editors, Mathematical Foundations of Computer Science 2002, volume
2420 of Lecture Notes in Computer Science, pages 593–604. Springer, 2002.

[38] Till Mossakowski. Institutional 2-cells and Grothendieck institutions. In Kokichi
Futatsugi, Jean-Pierre Jouannaud, and José Meseguer, editors, Algebra, Meaning, and
Computation, Essays Dedicated to Joseph A. Goguen on the Occasion of His 65th

Birthday, volume 4060 of Lecture Notes in Computer Science, pages 124–149. Springer,
2006.

37

[39] Till Mossakowski, Răzvan Diaconescu, and Andrzej Tarlecki. What is a logic translation?
Logica Universalis, 3(1), 2009.

[40] George Robinson and Lawrence Wos. Paramodulation and theorem-proving in first-
order theories with equality. In Bernard Meltzer and Donald Michie, editors, Machine
intelligence, volume 4, pages 135–150. Edinburgh University Press, 1983.

[41] John A. Robinson. A machine-oriented logic based on the resolution principle. Journal
of the ACM, 12(1):23–41, 1965.

[42] Donald Sannella and Andrzej Tarlecki. Building specifications in an arbitrary institution.
In Gilles Kahn, David B. MacQueen, and Gordon D. Plotkin, editors, Semantics of Data
Types, volume 173 of Lecture Notes in Computer Science, pages 337–356. Springer, 1984.

[43] Donald Sannella and Andrzej Tarlecki. Specifications in an arbitrary institution. Infor-
mation and Computation, 76(2/3):165–210, 1988.

[44] Donald Sannella and Andrzej Tarlecki. Foundations of Algebraic Specification and Formal
Software Development. Monographs in Theoretical Computer Science. An EATCS Series.
Springer, 2011.

[45] Lutz Schröder, Till Mossakowski, and Christoph Lüth. Type class polymorphism in an
institutional framework. In José L. Fiadeiro, Peter D. Mosses, and Fernando Orejas,
editors, Recent Trends in Algebraic Development Techniques, volume 3423 of Lecture
Notes in Computer Science, pages 234–251. Springer, 2004.

[46] Andrzej Tarlecki. Quasi-varieties in abstract algebraic institutions. Journal of Computer
and System Sciences, 33(3):333–360, 1986.

[47] Andrzej Tarlecki. Moving between logical systems. In Magne Haveraaen, Olaf Owe, and
Ole-Johan Dahl, editors, Specification of Abstract Data Types, volume 1130 of Lecture
Notes in Computer Science, pages 478–502. Springer, 1995.

[48] Andrzej Tarlecki. Towards heterogeneous specifications. In Dov M. Gabbay and Maarten
van Rijke, editors, Frontiers of Combining Systems, volume 2, pages 337–360. Research
Studies Press, 2000.

[49] Andrzej Tarlecki, Rod M. Burstall, and Joseph A. Goguen. Some fundamental algebraic
tools for the semantics of computation. Part 3: Indexed categories. Theoretical Computer
Science, 91(2):239–264, 1991.

[50] Ionuţ Ţuţu and José L. Fiadeiro. A logic-programming semantics of services. In Reiko
Heckel and Stefan Milius, editors, Algebra and Coalgebra in Computer Science, volume
8089 of Lecture Notes in Computer Science, pages 299–313. Springer, 2013.

[51] Ionuţ Ţuţu and José L. Fiadeiro. Service-oriented logic programming. Logical Methods
in Computer Science, in press.

38

	1 Introduction
	2 Preliminaries
	3 The Logical System of Reference
	4 Substitution Systems
	5 Abstract Logic Programming
	6 Equational Logic Programming Revisited
	7 Conclusions

