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Abstract

Blackburn, Etzion and Ng showed in a paper in 2010 that there ex-
ist 2-traceability codes of length l of size cqdl/4e, where the constant c
depends only on l. The question remains as to what the best possible
c may be. A well-known construction using error-correcting codes with
high minimum distance gives 2-traceability codes of size cqdl/4e with c ≥ 1.
However, in the same paper, an example of a 2-traceability code of length
3 with size 3

2
(q − 1) was given, which shows that c > 1 in some sit-

uations, and that there are traceability codes that are bigger than the
construction using error-correcting codes. Here we give an upper bound
4q − 3 for 2-traceability codes of length 4 and give an example of (l− 1)-
traceability codes of length l with size l

l−1
(q−1). This example also gives

a 2-traceability code of length 4 larger than any codes constructed using
the error-correcting code construction.

1 Introduction

Traceability codes are combinatorial objects introduced by Chor, Fiat and Naor
[3] in 1994 for the construction of traitor tracing schemes to protect digital
content. We will only introduce the necessary notation and definitions for de-
scribing our results here and refer the reader to [1, 2, 4] for further references
and other important results in the area.

Let F be a finite set of cardinality q. A code C of length l over F is a set
C ⊆ F l. We write d(u,v) for the Hamming distance between two words u,
v ∈ F l, and for a code C, we write d(C) for the minimum distance of C. For
x ∈ F l we write x = (x1, x2, . . . , xl) or x = x1x2 . . . xl for convenience.

Let C be a code of length l over F . If X ⊆ C then a descendant of the set X
is a word d ∈ F l such that for each i ∈ {1, . . . , l}, there is an x ∈ X such that
di = xi. The set of descendants of X is

desc(X) = {d ∈ F l : d is a descendant of X}.
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Moreover, the k-descendant set of C is the union of all descendant sets desc(X)
for all subsets X ⊆ C with |X| ≤ k, and is denoted desck(C).

Now, let d be a word in F l and let k ≥ 2. A codeword x ∈ C is a (possible)
parent of d if there exists a set P ⊆ C, P ≤ k, such that x ∈ P and d ∈ desc(P ).
A parent set of d is a set P ⊆ C such that d ∈ desc(P ) and |P | ≤ k. We use
Pk,C(d) to denote the set of all possible parent sets for d. For any word d ∈ F l,
let Pd be the set of all codewords of C at minimum distance to d. If Pd appears
in every possible parent set of d of size at most k, then C is a k-traceability
(k-TA) code.

In [2], Blackburn, Etzion and Ng showed that there exist 2-TA codes of
length l of size cqdl/4e, where the constant c depends only on l [2, Theorem
3]. The question remains open as to what the best possible c may be. A well-
known construction using error-correcting codes with high minimum distance
gives 2-TA codes of size cqdl/4e with c ≥ 1:

Theorem 1.1 [3] Let C be an error-correcting code of length l, over a q-ary
alphabet F . If d(C) > l −

⌈
l
k2

⌉
then C is a k-TA code.

For example, a Reed-Solomon code would give a k-TA code of size qdl/4e.
In the same paper, however, an example of a 2-TA code of length 3 with size
3
2 (q − 1) was given:

Example 1.2 [2, Example 1]. Let q = 2r+1, where r is a positive integer. Let
A = {0, 1, . . . , 2r}. Define C = C1 ∪ C2 ∪ C3, where

C1 = {(0, i, i) : 1 ≤ i ≤ r}
C2 = {(i, 0, r + i) : 1 ≤ i ≤ r}
C3 = {(r + i, r + i, 0) : 1 ≤ i ≤ r}.

Then C is a q-ary 2-TA code of length 3, containing 3r = 3
2 (q−1) codewords.

This example shows that the constant c in the upper bound of [2] can be
greater than 1 in some situations, and that there are traceability codes that are
bigger than the construction of Theorem 1.1. It is not known what the best
constant c is. From the proof of [2, Theorem 3], the constant is exponential in
l. Here we obtain an upper bound 4q − 3 for 2-TA codes of length 4 and give
an example of (l − 1)-TA codes of length l with size l

l−1 (q − 1). This example
also gives a 2-TA code of length 4 larger than any codes constructed using the
error-correcting code construction.

2 A bound on 2-TA codes of length 4

We consider the cases of C having minimum distance 2 and 3 separately.

Lemma 2.1 Let C be a q-ary 2-TA code of length 4, q ≥ 2, with minimum
distance d(C) = 2. Without loss of generality, suppose that x = 0000, y =
0011 ∈ C. Then any other codeword z ∈ C \ {x,y} must have either z1 = 0 or
z2 = 0, and z3, z4 6∈ {0, 1}.
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Proof: Let z ∈ C \ {x,y}, z = z1z2z3z4. Let d = 00z3z4. Then

d ∈ desc(x, z) ∩ desc(y, z),

and since Pd must be contained in the parent sets, we must have Pd = {z}.
Since C is a 2-TA code, we must have d(d, z) < d(d,x).

Now d(d,x) ≤ 2. Since d(d, z) < d(d,x), we can’t have d(d,x) = 0. If
d(d,x) = 1, then either z3 = 0, z4 6= 0 or z3 6= 0, z4 = 0. In the first case, since
we must have d(d, z) < d(d,x), we have d = z = 000z4. This contradicts the
fact that C has minimum distance 2. Similarly for the second case.

Hence we must have d(d,x) = 2 and so z3 6= 0, z4 6= 0. Similarly we have
z3 6= 1, z4 6= 1.

Since d(d, z) < d(d,x), we must have d(d, z) ≤ 1, so either z1 = 0 or z2 = 0.
Hence all codewords of C are of the form 00z3z4, z10z3z4 or 0z2z3z4, with z3,
z4 6∈ {0, 1}.

From the proof of Lemma 2.1, we see that in a code of length 4 with minimum
distance 2, if two codewords agree in the first two positions then the symbols in
the third position of these codewords do not appear again in the third position
of another codeword. Hence we have the following result:

Lemma 2.2 Let C be a q-ary 2-TA code of length 4, q ≥ 2, with minimum
distance d(C) = 2. Define X ⊆ C as follows:

X = {u ∈ C : ∃v ∈ C,u 6= v, with u1 = v1 and u2 = v2}.

Then |X| ≤ q.

We can now prove a bound on C:

Theorem 2.3 Let C be a q-ary 2-TA code of length 4, with d(C) = 2 and q ≥ 2.
Then |C| ≤ 3q − 2.

Proof: Again, without loss of generality, suppose that x = 0000, y = 0011 ∈ C.
Define the set X ⊆ C as in Lemma 2.2. Clearly x, y ∈ X. We further define
the sets U, V ⊆ C:

U = {u10u3u4 : u1 does not occur in the 1st position of another codeword},
V = {0v2v3v4 : v2 does not occur in the 2nd position of another codeword}.

By Lemma 2.1, all codewords of C are of the form 00z3z4, z10z3z4 or 0z2z3z4.
Hence every codeword belongs to X, U or V . By definition X is disjoint from
U and from V . Clearly U and V are also disjoint, since if a codeword agrees
with another codeword in positions one and two then, by definition, they are
contained in X. Hence C = X ∪ U ∪ V and |C| = |X|+ |U |+ |V |.
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Consider the set U . No two codewords of U can agree in position one and
they cannot contain 0 in position one. Hence U can contain at most (q − 1)
codewords. By the same argument, there are at most (q − 1) codewords in V .
By Lemma 2.2, X contains at most q codewords. Hence |C| = |X|+ |U |+ |V | ≤
q + 2(q − 1) = 3q − 2, as required.

Now we consider a q-ary 2-TA code C of length 4 with minimum distance
d(C) = 3. We prove the following theorem.

Theorem 2.4 Let C be a q-ary 2-TA code of length 4, q ≥ 3, with minimum
distance d(C) = 3. Then |C| ≤ 4q − 3.

Proof: We define two disjoint subsets X, Y of C as follows:

X = {x ∈ C : at least 4 codewords in C contain x1 in their first position},
Y = {x ∈ C : at most 3 codewords in C contain x1 in their first position}.

Clearly C = X ∪ Y and since X and Y are disjoint, we have that |C| =
|X|+ |Y |. Therefore we will obtain a bound on the size of C by finding bounds
on the size of the subsets X and Y .

If X is non-empty then it contains at least four codewords. Without loss of
generality we assume that x = 0000, y = 0111, z = 0222, w = 0333 ∈ X.

If all the codewords in x coincide in the first position, then there can be at
most q codewords in X since d(C) = 3.

Suppose then that not all codewords in X coincide in the first position, and
so X contains at least two groups of four codewords which agree in position one.
Without loss of generality we assume that four codewords of this second group
are u, v, s, t ∈ X:

u = 1u2u3u4,

v = 1v2v3v4,

s = 1s2s3s4,

t = 1t2t3t4,

with distinct symbols at position i for each i = 2, 3, 4.
We will show that none of the ui, vi, si, ti can be 0, 1, 2 or 3. This show

that the symbols in the second (third, and fourth, respectively) position must
be distinct and therefore |X| ≤ q.

Suppose that u2 = 0, so u = 10u3u4. Since d(C) = 3, u3, u4 6= 0 and v2, s2,
t2 6= 0.

Consider the word d = 10v30 ∈ desc(x,v). Since d(C) = 3 d is not a
codeword. Since u4 6= 0, d(d,u) = 2. By the traceability property, either x or v
(or both) must belong to Pd, the set of all codewords of C at minimum distance
to d. So either d(d,x) = 1 or d(d,v) = 1.

Suppose d(d,x) = 1. This means that v3 = 0 and v = 1v20v4 and v4, u3,
s3, t3 6= 0.
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Now consider the word d′ = 10s30 ∈ desc(x, s). Again d′ is not a codeword,
and d(d′,u) = d(d′,x) = 2. So we must have s ∈ Pd′ and therefore we must
have d(d′, s) = 1 and s4 = 0.

To recapitulate, we now have:

x = 0000,

u = 10u3u4,

v = 1v20v4,

s = 1s2s30,

t = 1t2t3t4,

with ui, vi, si, ti 6= 0.
Finally, consider the word d′′ = 1t200 ∈ desc(x, t). Again d′′ is not a

codeword, and d(d′′,x) = d(d′′, t) = d(d′′,v) = 2.
This contradicts the traceability property that says that codewords nearest

to the descendant must be contained in the parent set.
Following the same argument, assuming d(d,v) = 1 also gives a constradic-

tion. Therefore our initial assumption that there are two codewords in X which
agree in a position other than the first position, must be incorrect. Hence all
codewords in X are distinct in each of their final three positions, and X can
contain at most q distinct codewords.

We now have a bound on the size of X, namely that |X| ≤ q. A bound on
the size of the set Y is straightforward. If X is not empty, then at least one
symbol has already appeared in the first position of at least four codewords, and
so cannot appear in the first position of any codeword in Y , that is, we have only
q− 1 choices for x1 in Y , and |Y | ≤ 3(q− 1), and so |C| ≤ q + 3(q− 1) = 4q− 3.
If X is empty, |C| ≤ 3q ≤ 4q − 3 for all q ≥ 3, and hence for any 2-TA code of
length 4 with d(C) = 3 and q ≥ 3, we have |C| ≤ 4q − 3.

It is not hard to show that for the remaining cases of q = 2, d(C) = 1 and
d(C) = 4, |C| ≤ q. Hence the following theorem is now proved:

Theorem 2.5 Let C be a 2-TA code of length 4, over a q-ary alphabet. Then
|C| ≤ 4q − 3.

Having proved the bound, the question of whether this bound is tight once
again arises. Furthermore, can we find a construction method for a code of
maximum size? This remains an open question.

For a 2-TA code of length 4, Theorem 1.1 requires a code C with d(C) = 4.
However a code of length 4 with minimum distance 4 can contain at most q
codewords. In the next section we show that it is possible to constuct a 2-TA
code of length 4 larger than any codes constructed using Theorem 1.1.
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3 An (l − 1)-TA code of length l

We will show that a q-ary (l− 1)-TA code of length l and size l
l−1 (q− 1) exists.

The following example is an extension of Example 1.2:

Example 3.1 Let q = (l − 1)r + 1, where r is a positive integer. Let A =
{0, 1, ..., (l − 1)r}.

Define C = C1 ∪ C2 ∪ ... ∪ Cl, where

C1 = {(0, i, ..., i) : 1 ≤ i ≤ r},
C2 = {(i, 0, r + i, ..., r + i) : 1 ≤ i ≤ r},
C3 = {(r + i, r + i, 0, 2r + i, ..., 2r + i) : 1 ≤ i ≤ r},

...

Cl = {((l − 2)r + i, ..., (l − 2)r + i, 0) : 1 ≤ i ≤ r}.

Each subset Cj contains r codewords, and hence |C| = lr = l
l−1 (q − 1).

Let d ∈ desc(x1,x2, . . . ,xl−1), xi ∈ C for all i = 1, . . . , l − 1. Let x be a
nearest codeword to d. Then x must agree with d in at least two positions. But
any two positions will identify the only codeword that can contribute to those
positions in d. Hence x must be in every possible parent set for d and C is an
(l − 1)-TA code.

If we take l = 4 (so q = 3r + 1) this gives us a 3-TA code of length 4 of
size 4

3 (q − 1). Now, since a k-TA code is also a (k − 1)-TA code, we have the
following result:

Theorem 3.2 There is a q-ary 2-TA code C of length 4 with |C| = 4
3 (q − 1).

This shows that it is possible to constuct a 2-TA code of length 4 larger
than any codes constructed using Theorem 1.1. Unfortunately, our results only
confirm that c can be greater than 1, but do not indicate how c varies with l.
The question remains open as to what the best possible c may be.
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