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Abstract 32 

Reinforcement learning (RL) theory posits that learning is driven by discrepancies between the 33 

predicted and actual outcomes of actions (prediction errors, PEs). In social environments, learning is 34 

often guided by similar RL mechanisms. For example, teachers monitor the actions of students and 35 

provide feedback to them. This feedback evokes PEs in students that guide their learning. We report 36 

the first study that investigates the neural mechanisms that underpin these processes.  Neurons in 37 

the Anterior Cingulate Cortex (ACC) signal PEs when learning from the outcomes of one’s own 38 

actions, but also signal information when outcomes are received by others. Does a teacher’s ACC 39 

signal PEs when monitoring a student’s learning? Using fMRI, we studied brain activity in human 40 

subjects (teachers) as they taught a confederate (student) action-outcome associations by providing 41 

positive or negative feedback. We examined activity time-locked to the students’ responses, when 42 

teachers infer student predictions and know actual outcomes. We fitted a RL-based computational 43 

model to the behaviour of the student to characterise their learning, and examined whether a 44 

teacher’s ACC signals when the student’s predictions were wrong. In line with our hypothesis, activity 45 

in the teacher’s ACC covaried with the PE values in the model. Additionally, activity in the teacher’s 46 

insula and ventromedial prefrontal cortex covaried with the predicted value according to the student. 47 

Our findings highlight that the ACC signals prediction errors vicariously for others’ erroneous 48 

predictions, when monitoring and instructing their learning. These results suggest that RL 49 

mechanisms, processed vicariously, may underpin and facilitate teaching behaviours. 50 

 51 
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Introduction 60 

In reinforcement learning (RL) theory, learning is driven by prediction errors (PEs) (Sutton and Barto, 61 

1998), which occur when the outcome of an action is discrepant from that which is predicted. A 62 

wealth of research has found neurons that signal PEs when the outcomes of one’s own actions are 63 

unexpected (Rushworth et al., 2009). However, learning rarely occurs in a social vacuum. Often the 64 

learning of ‘students’  is guided by feedback provided by a ‘teacher’. Such instructed learning is 65 

thought to be fundamental for the transmission of abstract, complex information between humans 66 

(Hoppitt et al., 2008). However, to date, there is no understanding of the neural or computational 67 

mechanisms that underpin teaching behaviours (Stanley and Adolphs, 2013; Gariépy et al., 2014; 68 

Ruff and Fehr, 2014). Does the brain of a teacher process the learning of a student under the 69 

computational principles of RL theory? 70 

 71 

The Anterior Cingulate Cortex (ACC) is well known for its role in social behaviour (Singer et al., 2004; 72 

Ruff and Fehr, 2014). Lesions to the ACC disrupt the processing of social stimuli (Hadland et al., 2003; 73 

Rudebeck et al., 2006), neurons in the ACC are sensitive to rewarding stimuli that others will receive 74 

(Chang et al., 2013) and neuroimaging studies have shown that the ACC processes predictions about 75 

the value of others’ actions (Behrens et al., 2008; Jones et al., 2011; Zhu et al., 2012; Apps et al., 76 

2013b; Boorman et al., 2013; Apps and Ramnani, 2014). In contrast, theories of ACC function suggest 77 

that it processes PEs relating to the outcomes of one’s own decisions, in a manner that conforms to 78 

RL principles (Silvetti et al. in press; Amiez et al., 2005; Alexander and Brown, 2011; Hayden et al., 79 

2011; Kennerley et al., 2011). 80 

How can these viewpoints be reconciled? It has been claimed that the ACC gyrus (ACCg) processes 81 

social information, but the computational principles that it instantiates parallel those of the adjacent 82 

ACC regions (Apps et al., 2013a). That is, the ACCg processes PEs about others' actions. However, no 83 

previous study has examined whether PEs are processed in the ACCg when monitoring, 84 

understanding and guiding the learning of others.  85 

Using fMRI, for the first time, we examine whether activity in the brain of a teacher can be 86 

characterised by the computational principles of RL theory when monitoring and guiding the trial 87 

and error learning of a student. We examined activity in subjects (‘teacher’) whose role was to teach 88 
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action-outcome contingencies to a confederate (‘student’) by monitoring their responses and 89 

providing positive and negative feedback. Teachers had pre-learnt the correct associations and 90 

therefore knew the actual value of each action. In addition, they could also model and simulate the 91 

students' prediction of each outcome. Thus, the teachers could process a PE at the time of students’ 92 

actions. We fitted a RL-based computational model to student’s behaviour, and tested the 93 

hypothesis that activity in the ACCg of teachers would covary with PEs from the model at the time of 94 

students' actions. 95 

 96 

 97 

 98 

 99 
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Methods 116 

Subjects  117 

Sixteen healthy right-handed participants were screened for neurological, psychiatric and 118 

psychological disorders (ages 18-32; 10 female). One subject failed to complete the whole scanning 119 

session and was excluded from the analyses. Each subject was paired with one of three confederate 120 

participants, who they believed were a naïve participant. All participants gave written informed 121 

consent. The studies were approved by the Royal Holloway, University of London Psychology 122 

Department Ethics Committee and conformed to the regulations set out in the CUBIC MRI Rules of 123 

Operation. The subjects were not paid for their participation but were given the incentive of 124 

receiving a picture of their brain for taking part. The subjects were informed that the other 125 

participant performing the task with them (the confederate) was being paid £5 for their participation 126 

since they were not being scanned, but that this payment was unrelated to task performance. 127 

 128 

Task design 129 

Subjects performed a task in which they acted as a ‘teacher’ providing a ‘student’ (confederate) with 130 

positive or negative feedback. The student learned the associations between a set of 10 arbitrary 131 

instruction cues and one of four responses on a keypad.  The teacher had pre-learnt the same 132 

associations one day prior to scanning, and was therefore able to determine whether an action 133 

chosen for a particular visual cue was correct or incorrect. The teacher’s task was to determine 134 

whether the student’s actions were correct or incorrect and then use a keypad of their own to 135 

deliver this feedback to the student. 136 

 137 

During the training the teacher was required to learn the arbitrary stimulus-response associations 138 

between ten instruction cues (coloured shapes that gave no indication of which response was 139 

correct) and one of four motor responses by trial and error (fig.1). That is, there was only one correct 140 

response for each instruction cue ensuring that learning the correct association for one instruction 141 

cue was not informative as to the correct associations for any other instruction cue. There were 100 142 

trials in total, with ten presentations of each instruction cue. The instruction cues were presented in 143 

two blocks, five instruction cues in the first 50 trials and five in the last 50 trials. The cues were 144 

pseudorandomly presented, in a predefined sequence (see fig.1). A correct response was indicated 145 

by the presence of a picture of a one pound coin at time of the feedback screen and an incorrect 146 
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response by a crossed out one pound coin. If the subjects did not respond within 750ms of the 147 

trigger cue, feedback was displayed as “missed”. 148 

 149 

During the scanning session the teacher, monitored the student’s responses and provided them with 150 

feedback. The student learnt exactly the same associations as the teacher had learnt during the 151 

training session, with trials presented in the same order. The teachers were also informed of the 152 

identical nature of the trial structure. To maintain experimental control, we deceived teachers as to 153 

the nature of the student. Whilst the teachers believed they were performing the task with another 154 

genuine participant, the responses they saw were computer-generated and modelled on the 155 

behaviour of a participant in the pilot training session. The students were drawn from one of three 156 

confederates. This approach was necessary in order to maintain control over the performance of the 157 

third-person, such that the behaviour of the other person was consistent across participants.  158 

 159 

During the teaching task the teachers saw two sets of information that were not presented to the 160 

student. Firstly, on one screen, the teachers were reminded of the correct association on each trial, 161 

before the student made a response (fig.1). This eliminated the possibility that trials would be lost, 162 

or that the student’s learning would be compromised by poor performance of the teacher, as a 163 

result of the teacher's failing to recall the correct association for each stimulus that they had learned 164 

in the previous session. It also ensured that participants were able to register the discrepancy 165 

between the student’s prediction and the actual value of their action, a key component of our 166 

hypotheses. 167 

 168 

Procedure 169 

Training session 170 

Teachers were trained in two phases one day prior to scanning. In the first phase, the teacher was 171 

seated in front of a monitor, with a response keypad. This first phase of the training was designed to 172 

ensure that all teachers had learnt all the stimulus-response associations through trial-and-error. All 173 

teachers made at least two consecutive correct responses for the last two presentations of each 174 

instruction cue. All teachers had therefore learnt the correct associations for each stimulus. This 175 

enabled them to act effectively as a teacher during the scanning session. 176 

 177 

In the second part of the training session, the teacher was required to become familiar with their 178 

role as a teacher, and therefore the task that they would perform in the scanner. During this session 179 

the participant lay supine within a mock MRI scanner and provided positive and negative feedback 180 
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to the experimenter outside the mock scanner. They practised this role with the experimenter (see 181 

scanning session below) such that they became familiar with the task they would perform during the 182 

scanning session but were not teaching the student any information about associations that the 183 

student would need to learn in the scanning session – i.e. they learnt how to teach a student, 184 

without teaching a student stimulus-response associations that would be later used during scanning. 185 

In this part of the training, exactly the same setup was used as during scanning, but with the 186 

experimenter taking the place of the student and only a reduced number of trials (20) were used. It 187 

is important to note that given the requirement to maintain control of responses of the 188 

experimenter across subjects, the actions of the experimenter, as with the actual student, were 189 

actually a set of pre-programmed computer-controlled responses. 190 

 191 

Scanning session 192 

Before the teacher entered the scanner they were shown the student sitting in the MRI control 193 

room, in front of the monitor with a response keypad. The corner of the student’s screen was 194 

covered, allowing information to be presented to the teacher inside the scanner that the student 195 

was not presented with (see trial structure below for more details). Crucially the teacher was made 196 

aware that they would have access to information in the corner of the screen that was not able to be 197 

seen by the student. 198 

 199 

By obscuring that corner of only the student’s screen (and not the teacher’s screen) it was also 200 

possible to present the teacher’s trigger cue and response to them without the student being able to 201 

observe this information. Hence, the teacher was also aware that the only feedback displayed to the 202 

student was that of a pound coin or a pound coin with a cross through it at the time of the final 203 

feedback.  If the teacher failed to accurately indicate whether the response of the student was 204 

correct or incorrect, then the words “no feedback” were presented on the screen to the teacher and 205 

the student. This strategy ensured that teachers believed that the student was learning from the 206 

feedback that they were providing and ensured that they performed the task accurately. The 207 

teacher believed that the student was responding to the trials in real-time, but in fact the trials were 208 

computer-controlled, and the profile of responses were based on those of a participant during a 209 

previous pilot experiment. This participant was chosen due to a fast learning rate (see behavioural 210 

modelling below) and also as they missed only three trials. These trials were also shown to the 211 

teacher, thus ensuring that the pre-programmed behaviour of the student seemed genuine to the 212 

teacher. At the end of the scanning session the participants were asked standard debriefing 213 

questions, as used in previous studies (Apps et al., 2012; Apps et al., 2013b; Apps and Ramnani, 214 
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2014), to ensure that they had maintained a full belief in the deception throughout the experiment. 215 

Specifically, we asked four yes/no questions. (1) Are you surprised to read that you were deceived 216 

on the task (yes/no) ? (2) Did you believe that the responses that you were observing were those of 217 

the other person (yes/no)? (3)Did you believe the other person was learning the correct responses 218 

from your feedback (yes/no)? (4) Did you believe that the other person was learning the correct 219 

responses for the different shapes for the first time? (yes/no). A ‘no’ response on question one or a 220 

‘yes’ response on questions two to four would have led to exclusion from the experiment. 221 

Trial structure (see fig.1).  222 

The teachers’ trials consisted of an instruction cue (one of the ten that they had learnt associations 223 

for during training), immediately followed by the cue indicating the correct button (which reminded 224 

the teacher only – and not the student - of the correct association for that instruction cue), a student 225 

trigger cue and response (indicating to the teacher which response the student had made), a teacher 226 

trigger cue (to which the teacher pressed one button on a keypad for a correct student response and 227 

another for an incorrect student response – cued by the presence of a pound or coin or a crossed 228 

out pound coin switching pseudorandomly from left to right across trials) and then the feedback 229 

(indicating to the student whether the response was correct or incorrect).  230 

 231 

Computational Modelling 232 

Behavioural Modelling 233 

The behaviour of the student was modelled using a simple Rescorla-Wagner (R-W) based 234 

reinforcement learning algorithm (Rescorla and Wagner, 1972) which has been extensively used to 235 

examine the behavioural and neural basis of arbitrary visuomotor associations (Dayan and Balleine, 236 

2002; Schultz, 2006; Brovelli et al., 2008; Dayan and Daw, 2008). This model also bears considerable 237 

similarity to recent, influential models of ACC function (Silvetti et al., in press; Alexander and Brown, 238 

2011). As the aim of this study was to examine brain activity in teachers, we maintained 239 

experimental control by ensuring that all subjects observed the same learning behaviour exhibited 240 

by the student. This requirement did not allow us to make comparisons between different 241 

computational models of behaviour, as model comparison cannot be meaningfully applied to a 242 

single subject’s data. However, given the extensive use of the R-W model for associative learning 243 

tasks similar to that used here (Dayan and Daw, 2008), and the fact that most recent computational 244 

models of ACC function that we know of are underpinned by the same principles as a R-W model 245 

(Silvetti et al. in press), this approach was more than sufficient for meeting the aims of this study.  246 

 247 



 

9 
 

The R-W model assumes that the associative value of an action (or stimulus) changes once new 248 

information reveals that the actual outcome of a decision is different from the predicted outcome 249 

(Rescorla and Wagner, 1972). Thus, on each trial, an action has a predicted associative value, that is 250 

updated by a prediction error signal when the outcome reveals that this prediction is erroneous. The 251 

evolution of the associative values for each action are given by: 252 

 253 

(1) 254 

𝑉𝑎(𝑛+1) =  𝑉𝑎(𝑛)  +  𝜂 𝑥 𝛿  

 Where: 255 

(2)        𝛿 = 𝜆𝑎 −  𝑉𝑎(𝑛)     256 

 257 

In both (1) and (2), n is the trial number, a = 1 ….k  with k  representing the available actions and η is 258 

the learning rate. The asymptotic value (λ) of a correct action is greater than 0, but is a free 259 

parameter that is estimated, and is 0 for an incorrect response. A prediction error is therefore the 260 

student’s prediction of its associative value (𝑉𝑎(𝑛)) subtracted from the actual value of the action (𝜆) 261 

known by the teacher. We instructed the students (and teachers on the first day) that 1 of the four 262 

finger movements could be correct for each instruction cue stimulus. Importantly, this also ensured 263 

that learning the correct association for one instruction cue was not informative as to the correct 264 

associations for any other instruction cue. Thus the associative values of actions for one instruction 265 

cue were not informative as to the value of an action for another instruction cue. The initial 266 

associative strength of each action for each stimulus was set to λ/4, given the equiprobability of 267 

each of the four actions being correct.  268 

 269 

 270 

Model estimation 271 

To model the action selection process of the student we transformed the associative values into 272 

probabilities using the softmax equation. This method is a standard approach used in reinforcement 273 

learning theory (Sutton and Barto, 1981). The probability of the action chosen by a subject is given 274 

by: 275 

 276 

  (3) 277 

𝑃𝑎 (𝑛) =   
𝑒𝑥𝑝 (𝛽 𝑉 𝑎  (𝑛))

∑ 𝑒𝑥𝑝 (a 𝛽 𝑉 𝑎  (𝑛))
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 278 

This equation converts the associative values of the action chosen by a subject to a probability 279 

(𝑃𝑎 (𝑛)). The coefficient β represents the stochasticity (or temperature) of the student’s behaviour 280 

(i.e. the sensitivity to the value of each option). A high β (greater than 1) causes all actions to be 281 

nearly equiprobable, with a low β amplifying the differences in associative values. These two 282 

algorithms were used to model action selection by the student over time. The associative value the 283 

student placed on the chosen action ( 𝑉 𝑎  (𝑛)) was then updated in the R-W model, based on the 284 

feedback.  285 

 286 

Crucially, in this study, the feedback was provided by a teacher (the subject being scanned). As the 287 

teacher had expert knowledge of all the associations –and was informed of the correct action on 288 

each trial- they knew the asymptotic value (λ) of each action chosen by the student. In this 289 

experiment, an aim was to examine whether the teacher modelled the learning of the student. It 290 

was therefore assumed that to instruct the student, the teacher would have to calculate the 291 

discrepancy between the student’s prediction of the outcome (𝑉𝑎(𝑛)  )) and the asymptotic value (λ) 292 

of the action chosen by the student. This asymptotic value would be known only by the teacher 293 

whilst the student would still be learning. Only when the student has learnt the correct stimulus-294 

response associations for each cue would there be no discrepancy between the asymptotic value 295 

known by the teacher and the prediction made by the student. The aim of the teacher was therefore 296 

to provide the student with appropriate feedback to minimise the discrepancy between their own 297 

expert knowledge and predictions made by the student.  298 

 299 

Within the R-W model and the softmax algorithm there are free parameters which need to be 300 

estimated. To identify the optimal set of free parameters for the student’s behaviour (given the 301 

teacher’s feedback), the learning rate, the stochasticity parameter β and the asymptotic value λ 302 

were varied. The output of the softmax algorithm is a series of probabilities, based on the values of 303 

each of these parameters and the actions chosen by the student. By varying the parameters, the 304 

probabilities output by the softmax algorithm differ. To select the parameters that best fitted the 305 

student’s behavioural data (given the teacher’s feedback) a maximum likelihood approach was used. 306 

By using a maximum likelihood algorithm it was possible to maximise the probabilities of the actions 307 

chosen by the student and identify the values of each of the parameters that produced them. The 308 

learning rate η was varied between 0 and 1in steps of 0.05, β between 0 and 5 in steps of 0.1 and λ 309 

between 0 and 5 in steps of 0.1.  The likelihood of the chosen actions were found using: 310 

 311 



 

11 
 

(3)       L = ∑ ln𝑛  𝑃𝑎(n) 312 

where the likelihood of each set of parameters (L) is determined by the log of probability of the 313 

performed action (𝑃𝑎(n)) of the student at trial n, according to the model. If the model perfectly 314 

predicts the actions, the probability of every chosen action would = 1 and L would be 0. As the 315 

probabilities become less than 1 the log-likelihood L assumes negative values.  The best fitting 316 

parameters were then selected using: 317 

 318 

(4)     𝜃′ = arg max 𝜃 (L) 319 

 320 

This identified the set of parameters for which L was closest to 0 i.e. the best fitting parameter set. 321 

Where 𝜃 is the parameter set and L is the log-likelihood. Importantly, in this study, the student’s 322 

data was computer controlled and thus every teacher observed the same responses of the student. 323 

Variations in these parameters could therefore only be explained by changes in the feedback, i.e. if 324 

the teacher failed to give the student feedback on a particular trial. If this happened, then those 325 

trials were removed from the modelling and likewise, data at the time of the student's response on 326 

those trials was removed from the fMRI analysis. The maximum likelihood approach revealed that 327 

for the behaviour of the student, the best fitting parameters were a λ of 1, a learning rate η of 0.95 328 

and a β values ranging from 2.3 to 2.7- reflecting the apparent differences in stochasticity of the 329 

behaviour given the teacher’s feedback (see fig.1). Importantly, we used the behaviour of a 330 

participant from a pilot experiment as the ‘student’ behaviour. This student had a high learning rate 331 

(0.95) and thus, this ensured that any effects we observed in the ACCg could not be accounted for by 332 

teachers learning the learning rate of the student, as in Behrens et al. (2008).  333 

 334 

Apparatus 335 

Subjects lay supine in an MRI scanner (3T Siemens Trio, CUBIC, Royal Holloway, University of 336 

London) with the fingers of the right hand positioned on an MRI-compatible response box. Stimuli 337 

were projected onto a screen behind the subject and viewed in a mirror positioned above the 338 

subjects face. Presentation software (Neurobehavioral Systems, Inc., USA) was used for 339 

experimental control (stimulus presentation and response collection). A custom-built parallel port 340 

interface connected to the Presentation PC received transistor-transistor logic (TTL) pulse inputs 341 

from the response keypad. It also received TTL pulses from the MRI scanner at the onset of each 342 

volume acquisition, allowing events in the experiment to become precisely synchronized with the 343 

onset of each scan. The timings of all events in the experiment were sampled accurately, 344 

continuously and simultaneously (independently of Presentation) at a frequency of 1 kHz using an 345 
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A/D 1401 unit (Cambridge Electronic Design, UK). Spike2 software was used to create a temporal 346 

record of these events. Reaction times were calculated off-line, and event timings were prepared for 347 

subsequent general linear model (GLM) analysis of fMRI data (see event definition and modelling 348 

below). 349 

Functional Imaging and analysis 350 

Data Acquisition 351 

 352 

Scans were acquired on a Siemens Trio 3T scanner. T1-weighted structural images were acquired at 353 

a resolution of 1×1×1 mm using an MPRAGE sequence. 1016 EPI scans were acquired from each 354 

participant. 38 slices were acquired in an ascending manner, at an oblique angle (≈30˚) to the AC-PC 355 

line to decrease the impact of susceptibility artefact in subgenual cortex (Deichmann et al., 2003). A 356 

voxel size of 3×3×3 mm (20% slice gap, 0.6 mm) was used; TR=3s, TE=32, flip angle=85°. The 357 

functional sequence lasted 51 minutes. Immediately following the functional sequence, phase and 358 

magnitude maps were collected using a GRE field map sequence (TE1 = 5.19ms, TE2 = 7.65ms). 359 

 360 

Image Preprocessing 361 

Scans were pre-processed using SPM8 (www.fil.ion.ucl.ac.uk/spm). The EPI images from each 362 

subject were corrected for distortions caused by susceptibility-induced field inhomogeneities using 363 

the FieldMap toolbox (Andersson et al., 2001). This approach corrects for both static distortions and 364 

changes in these distortions attributable to head motion (Hutton et al., 2002). The static distortions 365 

were calculated using the phase and magnitude field maps acquired after the EPI sequence. The EPI 366 

images were then realigned, and coregistered to the subject’s own anatomical image. The structural 367 

image was processed using a unified segmentation procedure combining segmentation, bias 368 

correction, and spatial normalization to the MNI template (Ashburner and Friston, 2005); the same 369 

normalization parameters were then used to normalize the EPI images. Lastly, a Gaussian kernel of 8 370 

mm FWHM was applied to spatially smooth the images in order to conform to the assumptions of 371 

the GLM implemented in SPM8. 372 

 373 

Event definition and modelling (Student response) 374 

Multiple GLMs analyses were performed to investigate activity time-locked to the teacher’s 375 

observation of the student’s response. These were performed to ensure that activations identified 376 

could only be accounted for by the uniquely explained variance of a parameter in the R-W model. 377 

Although each of the GLMs differed from the others, they shared several common properties. Each 378 

http://www.fil.ion.ucl.ac.uk/spm
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GLM contained regressors modelling the instruction cue, the student response cue, the teacher 379 

trigger cue and the feedback cue. Regressors were constructed for each of these events by 380 

convolving the event timings with the canonical Heamodynamic Response Function (HRF). The 381 

effects of head motion were modelled in the analysis by including the six parameters of head motion 382 

acquired during preprocessing as covariates of no interest. In addition to these regressors defined 383 

for the event types, each GLM also contained regressors which were first order parametric 384 

modulations of the student response cue event. These modulators scaled the amplitude of the HRF 385 

in line with either the λa , Va  or  δ parameters from the Rescorla-Wagner algorithm. The values of 386 

these parameters corresponded to the teacher’s valuation (λa, the actual value of the action); the 387 

student’s prediction (Va , the student’s prediction of the value) and the prediction error (δ , the 388 

discrepancy between the student’s prediction and the actual value) respectively. The prediction 389 

error could of course only be coded by the teacher at the time of the student’s action, as the student 390 

would not have known the actual value of the action when they are learning. When a trial was 391 

missed by the student or when teachers delivered erroneous feedback or failed to respond, these 392 

parameters were all assigned a value of zero. Two sets of analyses were conducted in this study to 393 

examine responses at the time of the student’s response: 394 

 395 

(1) Nine separate GLMs were created in which the values of one of λ, Va, and δ were used as first-396 

order parametric modulators of the student response cues. These models enabled areas of the brain 397 

in which the BOLD response varied in the manner predicted by one of the parameters to be 398 

identified (see paragraph below). However, due to correlations between the values of these 399 

parameters in the R-W model and correlations due to these parameters being time-locked to the 400 

same event on each trial, additional analyses were required.  401 

To examine activity that covaried with the prediction error parameter, we created three GLMs. The 402 

first contained only the values of the δ parameter as a parametric modulation of the student 403 

response cues. The second contained λ as a parametric modulator, with the values of the δ 404 

parametric modulator orthogonalised with respect to the values λ. The third contained Va as a 405 

parametric modulator, with the values of the δ parametric modulator orthogonalized with respect to 406 

the values of the Va parameter. Voxels were only considered if they were significant in an F-contrast 407 

in all three of these GLMs. This approach was then repeated for the λ and Va parameters. Thus, nine 408 

GLMs were constructed to examine activity which varied with the values from the parameters of the 409 

R-W model. It is important to note that typically one would orthogonalise the parameter of interest 410 

with respect to both of the other parameters, in one GLM. However, this was not possible in the 411 

present study, because the prediction error parameter is a product of the other two parameters in 412 
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the R-W model. Thus, orthogonalizing the prediction error (δ) parameter with respect to both of the 413 

other parameters in this model would have removed most of the variance that could be explained. 414 

The approach we have used provides a statistically conservative way to ensure that any variance 415 

that could be explained by the PE parameter is not due to its correlations with the student’s 416 

prediction parameter or the actual value (the teacher’s valuation).  417 

(2) To control for other possible responses in the ACC at the time of the student’s response, we 418 

created a GLM that contained alternative control parameters that varied with other plausible 419 

responses which were not components of the R-W model.   420 

 421 

The hypothesis of this study was that the ACC would signal a PE at the time of another’s action. In 422 

the R-W model these PEs are ‘signed’, such that during learning a negative outcome results in a 423 

negative PE signal and a positive outcome results in a positive PE. However, it is notable that there is 424 

empirical data that suggests that neurons in the ACC, and models of ACC function, have found both 425 

signed and unsigned PEs in the ACC (Alexander and Brown, 2011; Kennerley et al., 2011; Matsumoto 426 

et al., 2007). It was therefore crucial that we test the possibility that PEs in the ACC reflect not 427 

classical PE signals, as found in dopamine neurons in the midbrain, but may reflect ‘unsigned’ PEs 428 

that simply code for the magnitude of a PE and not whether it is positive or negative. We therefore 429 

created an unsigned PE parameter, that covaried with the magnitude of δ but was always positive.  430 

 431 

Classical error detection accounts of the ACC suggest that the region has a generalised role in 432 

processing errors in information processing (Carter et al., 1998; Bush et al., 2000; Holroyd et al., 433 

2004; Yeung and Nieuwenhuis, 2009), including the processing of errors which are elicited by the 434 

actions of others (Somerville et al., 2006; Shane et al., 2008; Yoshida et al., 2012). It is therefore 435 

possible that the ACC might have exhibited an unsigned and uniform magnitude signal whenever the 436 

student performed an incorrect action. To test this possibility we created a parameter that took on a 437 

value of 1 whenever the student performed an incorrect action and 0 when there was no error.  438 

 439 

The error detection and unsigned prediction error parameters were fitted to the responses of the 440 

student and included in a GLM. In this GLM the parameters were not orthogonalized with respect to 441 

each other, allowing them to compete to explain variance. This allowed us to determine which 442 

parameter best explained activity in the ACCg at the time of the student’s response. T-tests were 443 

then conducted between them to test which parameter best explained activity in a given voxel. 444 

 445 

 446 
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 447 

 448 

 449 

Outcome event 450 

In addition to the main analysis, we examined activity at the time of the outcome event. We used 451 

the same strategy as that employed to examine activity at the time of the student’s response, 452 

namely to fit the parameters from the model to the time of the outcome events. 453 

 454 

Examining activity at the time of the teacher’s response 455 

Whilst our design enabled us to examine activity at the time of the teacher’s response, it was 456 

suboptimal for asking questions about differences in how one’s own compared to others actions are 457 

processed in the brain. Thus, we did not compare activity between the student and teacher motor 458 

events nor examine covariations with the BOLD response with parameter from the RW model at the 459 

time of the teacher’s response. However, other studies have used tasks specifically designed to 460 

tackle such issues, which have nicely characterised responses in the brain comparing performing or 461 

observing actions (Burke et al., 2010; Ramnani and Miall, 2004).  462 

 463 

Second-Level analysis 464 

Random effects analyses (Full-Factorial ANOVA) were applied to determine voxels significantly 465 

different at the group level. SPM{t} images from all subjects at the first-level were entered into 466 

second-level full factorial design matrices. T-contrasts and F-contrasts were conducted in each of the 467 

GLMs. These contrasts identified voxels in which activity varied parametrically in the manner 468 

predicted by the parameters in the R-W model. Separate corrections for multiple comparison were 469 

used for the ACCg and the whole brain. To examine activity across the whole brain, FDR correction 470 

was applied. In contrast, activity in the ACCg was corrected for by using an 80% probability mask of 471 

the ACCg (see ‘Anatomical Localization’ below). 472 

 473 

For the second set of analyses examining alternative models of ACC activity, the T-contrasts between 474 

the prediction error parameter and the control parameters were examined at a lower threshold. This 475 

was necessary due to the high covariance between each of these parameters. For these contrasts a 476 

threshold of P<0.01, uncorrected for multiple comparisons, was employed.  477 

 478 

It was possible that there may be individual differences in activity at the time of the student’s 479 

response, based on teacher’s own learning history. To test this we input the learning rates from the 480 
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R-W model, which were estimated on the choices of the teacher in the initial training session, as 481 

covariates of interest at the time of student’s response. 482 

Anatomical Localization 483 

To test our hypothesis, we used an 80% probability anatomical masks of the ACCg. To create each 484 

mask, subject-specific masks of the ACCg were constructed in FSL (http://www.fmrib.ox.ac.uk/fsl/). 485 

Although the cytoarchitectonic boundaries of the ACC have no corresponding gross anatomical 486 

landmarks, we defined the anatomical boundaries based on the location of these boundaries in 487 

previous literature investigating cingulate cytoarchitecture (Vogt et al., 1995). To define the 488 

posterior border of the midcingulate cortex, we used a boundary defined by a plane perpendicular 489 

to the AC-PC line that lay 22 mm posterior to the anterior commissure (Vogt et al., 1995). We 490 

included all voxels that lay within the ACCg extending anterior to this border, including subgenual 491 

cingulate cortex. The final ACCg mask included only voxels which were within the ACCg in 80% of our 492 

subjects. Importantly, this mask was of the ACCg only and did not extend into the adjacent sulcus. 493 

 494 

 495 

  496 
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Results 497 

Behavioural Results 498 

 499 

The teacher’s task was to monitor the student’s responses, determine whether the response was 500 

correct or incorrect, and deliver this as feedback to the student. The student’s responses, 501 

unbeknown to the teachers, were computer-controlled replays of a real subject’s responses during a 502 

pilot experiment, and included trials in which the student missed three trials (included such that the 503 

student’s responses seemed realistic) and thus, teachers were required to respond on 97 trials. 504 

Teachers correctly gave feedback to the student on 95.2% (SD ± 2.9; range: 91-99%) of trials, 505 

indicating that all teachers understood the correct association for each stimulus and also understood 506 

whether the student’s responses were correct or incorrect. In addition, responses to a standardised 507 

set of questions, revealed that none of the participants were aware of the nature of the deception. 508 

Thus, participants believed they were instructing another participants, and they were highly 509 

accurate at doing so.  510 

 511 

Imaging results 512 

Student’s response 513 

The main aim of this experiment was to examine activity in the brain of a teacher when they monitor 514 

the responses of a student. We tested the hypothesis that the ACCg would signal the discrepancy 515 

between a student’s prediction and the actual outcome known by a teacher – a student prediction 516 

error (PE). In line with the hypothesis, activity was found in the ACCg (fig.2), putatively in 517 

midcingulate area 24a’/24b’, which varied significantly with the PE (δ) parameter of the R-W model 518 

(MNI coordinates (x,y,z) 2, 30, 12;  Z = 3.17; p < 0.005 svc). Activity in this area was also better 519 

explained by the signed R-W PE parameter than by an unsigned PE parameter, or by a parameter in 520 

which simple response errors (see methods) were modelled (p > 0.01 uncorrected). No other region 521 

in the ACC, even at a reduced threshold, showed a significant covariation with the PE parameter (p > 522 

0.01 uncorrected). No portion of the ACC showed a significant effect of either the unsigned 523 

parameter or the parameter which modelled every erroneous response of the student, even at a 524 

reduced threshold (p > 0.01). No region of the ACC showed a significant effect of the student 525 

prediction parameter, or the actual value known by the teacher (p > 0.01). No other brain area 526 

significantly varied with the prediction error parameter when correcting for multiple comparisons (p 527 

< 0.05 FDR). At a reduced threshold, activity in an area consistent with the location of the Ventral 528 

Tegmental Area (VTA) and the head of the caudate nucleus covaried with the PE parameter from the 529 

R-W model (P<0.005 uncorrected). 530 
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 531 

Simulating the student prediction 532 

At the time of the student’s response, the predicted value according to the student could be 533 

modelled by the teacher. We examined whether activity in the brain of the teacher time-locked to 534 

the student’s action covaried with the student’s prediction parameter (Va(n) ). Activity which varied 535 

significantly with this parameter was found in a portion of the Ventromedial Prefrontal cortex 536 

(VmPFC; -14, 32, -10, Z = 5.06, p < 0.05 FDR, putatively BA 32) and in the right short insular gyrus (48, 537 

-4, -2, Z = 4.08 FDR, putatively area Idg; fig.3). These were the only regions in which the unique 538 

variance could be accounted for significantly by the predicted value according to the student. 539 

 540 

The Teacher’s valuation 541 

At the time of the student’s action, the teacher knew the actual value of the student’s choice. We 542 

examined activity time-locked to the student’s choice that covaried with the actual value of the 543 

chosen action. Activity which varied statistically with this parameter was found in the Superior 544 

Frontal Sulcus (SFS) bordering BAs 8,9 and 9/46 (-20, 32, 46; Z = 5.06, p < 0.05 FDR) and Posterior 545 

Cingulate Cortex (PCC; -14, -52, 32; Z = 5.57, p < 0.05 FDR) putatively in BA. These were the only 546 

regions in which the variance could be uniquely and significantly accounted for by the actual value of 547 

the action known by the teacher. 548 

Individual differences in the brains of teachers 549 

To test whether activity at the time of the student’s response varied depending on the teacher’s 550 

own learning history, we examined whether activity covaried with the learning rates of the teachers 551 

in the initial training session. No areas of the brain covaried significantly when correcting for multiple 552 

comparisons. However, at a reduced threshold (p < 0.001 uncorrected) we found activity in the three 553 

regions, including regions that also responded to the teacher’s valuation in bilateral SFS (MNI 26, 0, 554 

42; Z = 4.4; -34, -2, 40;  Z = 3.87), and in the PCC (MNI -14, -22, 34; Z = 3.59), as well as in the intra-555 

parietal sulcus (MNI -44, -38, 50; Z = 4.05). However, these results should be interpreted with 556 

caution, given the low sample size for exploring individual differences and that the results are 557 

reported at an uncorrected threshold. 558 

 559 

 560 
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 561 

 562 

Outcome events 563 

In addition to the main analysis, we also examined activity time-locked to the outcome event. 564 

Activity was not found to covary with any of the parameters from the model at the time of the 565 

outcome when correcting for multiple comparisons. However, activity was found to covary with PE 566 

parameter from the model in several areas, Cerebellar Lobule VI (MNI -20, -38, 34, Z = 4.05), VmPFC 567 

(MNI 10, 54, 12, Z = 3.92), Hippocampus (MNI 36, -12, -20), and the left temporal pole (MNI -56, -10, 568 

-24; Z = 3.58), but only at a reduced threshold (p < 0.001 uncorrected). 569 

 570 

 571 

 572 

 573 

 574 

  575 
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Discussion  576 

This study investigated activity in the brain of a teacher when monitoring a student’s responses, as 577 

the student learnt from feedback provided by the teacher. In line with our hypothesis, activity in a 578 

portion of the ACCg varied with prediction error (PE) values in a RL-based computational model. 579 

Activity in insula cortex and in the VmPFC varied with the predicted value of the action according to 580 

the student. These results suggest that the ACCg plays a specific role in signaling information about 581 

how erroneous another’s predictions about their actions are. In addition, we found that areas that 582 

are monosynaptically interconnected with the ACCg also play important roles in the processing of 583 

information about other people’s learning. 584 

Anatomical evidence supports the notion that the ACCg is sensitive to information that guides 585 

reinforcement learning. The ACCg receives direct input from dopaminergic neurons in the Ventral 586 

Tegmental Area (VTA) (Williams and Goldman-Rakic, 1998). It has been well established that the 587 

firing properties of dopamine neurons in the VTA conform to the principles of RL. Specifically, they 588 

show an increased spike frequency to unexpectedly positive outcomes, a decreased spike frequency 589 

to unexpectedly negative outcomes and no activity change to predictable outcomes (Schultz and 590 

Dickinson, 2000; Schultz, 2006). As such the VTA is believed to signal PEs in a manner that drives 591 

one’s own learning of rewarding outcomes. Interestingly, we found that the BOLD signal in the ACCg 592 

showed similar response characteristics. However, whilst it is well known that dopamine neurons 593 

signal this information for one’s predictions about the outcomes of one’s own decisions, we have 594 

shown that the ACCg processes such PE signals when they pertain to others’ predictions and the 595 

outcomes of others’ actions as well.  596 

Anatomical evidence also supports the notion that the ACC processes social information. The portion 597 

of the ACCg that was activated in this study (in the gyral, midcingulate cortex) has strong 598 

connections to the posterior portions of the superior temporal sulcus (pSTS), the temporal poles 599 

(TPs) (Markowitsch et al., 1985; Seltzer and Pandya, 1989; Barbas et al., 1999), and the paracingulate 600 

cortex (Pandya et al., 1981; Vogt and Pandya, 1987; Petrides and Pandya, 2007). These three regions 601 

are believed to form a core circuit that is engaged when processing information about the mental 602 

states of others (Ramnani and Miall, 2004; Frith and Frith, 2006; Hampton et al., 2008). In addition, 603 

the ACCg has monosynaptic connections to the portions of the insula and the VmPFC that were 604 

found to covary with the student’s prediction in this study (Mesulam and Mufson, 1982; Mufson and 605 

Mesulam, 1982; Morecraft et al., 1992; Cavada et al., 2000). Previous studies have shown that 606 

activity in the VmPFC, the insula, the pSTS, the paracingulate cortex and the TPs covaries with 607 

parameters from RL-based computational models during other forms of social interactions (Ramnani 608 
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and Miall, 2004; Behrens et al., 2008; Hampton et al., 2008; Baumgartner et al., 2009; Klucharev et 609 

al., 2009; Cooper et al., 2013; Gariépy et al., 2014). Thus, input from areas which appear to process 610 

information in a manner that conforms to the principles of RL during social interactions and the 611 

input from midbrain dopaminergic nuclei both highlight the ACCg as a candidate for processing PE 612 

signals relating to the behaviour of others. Moreover, these results suggest that the ACCg may 613 

process information in concert with the VmPFC and the insula in order to vicariously process 614 

information about the predictions other people make when learning. 615 

Functional evidence also supports the claim that an overarching functional property of the ACCg is 616 

that it processes information about rewards during social interactions (Apps et al., 2013a). Lesions to 617 

the ACCg in monkeys disrupt the processing of social stimuli (Hadland et al., 2003; Rudebeck et al., 618 

2006) by reducing the typical delay present when reaching for a rewarding stimulus in the presence 619 

of another monkey. In addition, single-unit recording studies have shown that a large proportion of 620 

neurons in the ACCg code for a reward that a conspecific will receive. Crucially, these neurons do not 621 

change their firing rate when an identical reward is to be received by oneself (Chang et al., 2013). 622 

Imaging studies have also shown that the ACCg signals the net-value of rewards that others will 623 

receive (Apps and Ramnani, 2014), signals the unpredictibility of the relationship between another’s 624 

advice and the outcomes of another’s choices (Behrens et al., 2008), and signals when the outcomes 625 

of another’s actions are unexpected (Apps et al., 2013b). These results all support the view that the 626 

ACCg signals information relating to reward-based decisions during social interactions. However, the 627 

new contribution that our study makes is to show that the ACCg processes information at the time 628 

of others’ actions and does so when a subject’s behaviour is aimed at guiding another’s learning.  629 

It has been argued that there are two major social frames of reference within which brain areas 630 

process social information. Whilst some areas process information when inferring the intentions and 631 

mental states of other people (‘other’ reference frame), other regions process information when 632 

updating one’s own behaviour based on other’s intentions or behaviour (‘self’ reference frame) 633 

(Hunt and Behrens, 2011; Baez-Mendoza et al., 2013; Baez-Mendoza and Schultz, 2013; Chang, 634 

2013; Chang et al., 2013). Understanding the reference frames present in a task is therefore 635 

important for understanding the frame of reference within which a region, in this case the ACCg, 636 

processes social information. In this task, subjects were monitoring the learning of others in order to 637 

provide them with feedback. Importantly, the design of the task ensured that participants were not 638 

processing information about the relationship between their own actions and the reward they 639 

would receive themselves. Rather, they were processing information about the erroneous 640 

predictions of another. Interestingly, this supports recent claims that the ACCg (areas 24a’/24b’) may 641 
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in fact act as a nexus between these two frames of reference (Hunt and Behrens, 2011; Apps et al., 642 

2013a). Specifically, it has been claimed that the area is engaged when processing information about 643 

(i) the rewards that others will receive, based on one’s own or others’ actions, and (ii) others’ 644 

predictions about rewards, when others’ predictions can be used to guide one’s own behaviour 645 

(Apps et al., 2013a). Our results support this claim by showing that the ACCg processes the 646 

erroneous predictions of others (i.e. inferring information about others), in order that a subject can 647 

provide them with feedback (i.e. updating one’s own behaviour based on another’s intentions). 648 

Thus, the ACCg appears to process information in a way that acts as a nexus between the two major 649 

social reference frames. 650 

The functional and computational properties of the whole ACC are still under considerable debate, 651 

however, one common feature of several recent accounts of the ACC is that they are underpinned 652 

by similar computational principles to those of RL theory (Silvetti et al., in press; Yeung and 653 

Nieuwenhuis, 2009). Several theories of ACC function have recently been developed that account for 654 

a diverse range of single-unit recording, EEG and fMRI data. Silvetti et al.’s (in press) reward-value 655 

and prediction model (RVPM) and Alexander and Brown’s (2011) Predicted-Response Outcome 656 

(PRO) model both argue that the ACC acts as a ‘critic’, learning the value of stimuli or actions 657 

through PE signals. Similarly, Shenhav et al.’s (2013) Expected Value of Control (EVC) model is based 658 

around the notion that the ACC signals the value of the amount of cognitive control that will be 659 

required and updates this valuation when an outcome suggests this is required. Each of these 660 

models relies upon PE signals updating predictions. These models are largely supported by empirical 661 

evidence reporting from activity in areas 24c’/32’, which lie in the sulcus of the ACC - a different 662 

region of the ACC from that found of this study. The area we identified was in the ACCg in areas 663 

24a’/24b’. Thus, in line with other recent studies (Boorman et al., 2013; Apps et al., 2013b),  our 664 

research has shown that this region may also process PEs, a key component of R-L based models and 665 

also of computational accounts of other ACC regions. Whether this PE is signalled by neurons that 666 

also signal fictive PEs – PEs for the outcomes of unchosen actions –  that have been found in the ACC 667 

(Hayden et al., 2009) is yet to be determined. However,  our results suggest that whilst the ACCg 668 

may have a degree of specialization for social information processing, the computational principles 669 

that govern its operation are similar to those of other regions of the ACC.  670 

In summary, this study provided the first characterisation of the neural and computational processes 671 

that may operate in the brain of a teacher as they deliver reinforcement to a student. Our findings 672 

have highlighted a novel PE processed in the ACCg of a teacher that may play a key role in signalling 673 

how erroneous students’ predictions are. Furthermore, our findings suggest that areas previously 674 
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implicated in RL for oneself may also be important for vicariously processing and understanding the 675 

learning of others. 676 

 677 

 678 
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Figure Legends 820 

Figure 1. (A) Trial Structure. Participants performed trials as a teacher, guiding the associative 821 

learning of a student. Each trial began a with a green instruction cue (one of ten that the teacher had 822 

learnt the associations for during training), followed by the association cue informing the teacher of 823 

the correct response for the stimulus. This was displayed in the corner of the teacher’s screen. The 824 

corresponding corner of the student’s screen outside the scanner was covered, such that this cue 825 

was shown only to the teacher inside the scanner. Following this, the teacher saw the student’s 826 

response. They were required to indicate to the student whether this response was correct or 827 

incorrect. The teacher’s indicated their response on a keypad at the time of a screen where a pound 828 

coin (correct) or a crossed out pound coin (incorrect) were presented. Participants had to select the 829 

corresponding stimulus to deliver to the student. This stimulus was also presented in the corner of 830 

the screen, ensuring that the student could not see the teacher’s decision at that time. The chosen 831 

feedback was delivered to the student at the time of the outcome stimulus. (B) Example model 832 

data. Plot of the data of the example output from the R-W model. In this example the learning rate 833 

was set to 1 for clarity. 834 

Figure 2. Student prediction errors. (A) Activity shown in the ACC time-locked to the student’s 835 

response in which activity covaried with the prediction error parameter from the R-W model on the 836 

mean anatomical image. (B) Parameter estimates in the peak ACC voxel. Activity in this region 837 

correlated only with the prediction error parameter and not with the student’s prediction or the 838 

actual value of the outcome. Activity in this region also did not significantly covary with the unsigned 839 

prediction error parameter or a parameter that simply coded for student erroneous responses. Error 840 

bars depict standard error of the mean. (C) Peristimulus time histogram (PSTH) of activity time-841 

locked to the student’s action in the brain of the teacher. Activity plotted for when the student’s 842 

prediction was erroneously positive (light green triangles) or erroneously negative (dark green 843 

circles). The values of the prediction error were taken from the R-W computational model. Error bars 844 

depict standard error of the mean. 845 

 846 

Figure 3. Simulating the student prediction. Activity shown in the ventromedial prefrontal cortex (A) 847 

and the right short insula gyrus (B) covarying with the predicted value according to the student, 848 

taken from the R-W model. Plots of the parameter estimates from the peak voxel in the VmPFC (C) 849 

and the insula (D) for the prediction error, the student predicted value and the actual value of the 850 

outcome known by the teacher. Parameter estimates for the predicted value parameter are for the 851 

unique variance explained by the regressor once orthogonalised with respect to the actual outcome 852 

parameter. Parameter estimates for the prediction error parameter and the actual outcome 853 

parameter are from regressors which have not been orthogonalised. Error bars depict standard error 854 

of the mean. PSTH plots from the VmPFC (E) and the Insula (F) time-locked to the student’s 855 

prediction. Activity in these regions is broken down into low (<0.5) predicted value (light red 856 

triangles) vs high (>0.5) predicted value (dark red circles) according to the model. Error bars depict 857 

standard error of the mean. 858 
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