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Abstract 23 

 24 

An extensive series of physiological studies in macaques shows the existence of neurons 25 

in three multisensory cortical regions, MSTd, VIP and VPS, that are tuned for direction 26 

of self-motion in both visual and vestibular modalities. Some neurons have congruent 27 

direction preferences, suggesting integration of signals for optimum encoding of self-28 

motion trajectory; others have opposite preferences and could be used for discounting 29 

retinal motion that arises from perceptually irrelevant head motion. Whether such a 30 

system exists in humans is unknown. Here, artificial vestibular stimulation was elicited 31 

in human participants during fMRI scanning in conjunction with carefully calibrated 32 

visual stimulation that emulated either congruent or opposite stimulation conditions. 33 

Direction and speed varied sinusoidally such that the two conditions contained identical 34 

vestibular stimulation and identical retinal stimulation, differing only in the relative 35 

phase of the two components. In human MST (hMST) and putative VIP (pVIP), multi-36 

voxel pattern analysis (MVPA) permitted classification of stimulus phase based on fMRI 37 

time-series data, consistent with the existence of separate neuron populations 38 

responsive to congruent and opposite cue combinations. Decoding was also possible in 39 

the vicinity of parieto-insular vestibular cortex (PIVC), possibly in a homologue of 40 

macaque VPS. 41 

  42 

 43 

  44 
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Introduction 45 

 46 

Moving successfully through the environment requires the integration of visual and 47 

vestibular information. These senses provide primary sources of information for 48 

determining our own inertia and (in the case of vision) the movement of objects in the 49 

environment. However, natural movements of the head during self-motion result in 50 

optic flow that confounds both visual heading perception and detection of object 51 

motion. Multisensory integration potentially provides a means by which irrelevant 52 

retinal motion arising from the movement of the body, eyes and head can be discounted 53 

from retinal motion that occurs as a result of either self-translation or movement of 54 

external objects.  55 

 56 

Physiological studies of the integration of visual and vestibular cues have implicated 57 

macaque dorsal medial superior temporal area MSTd (Gu et al., 2006) and ventral 58 

intraparietal area VIP (Chen et al., 2011a); see Fetsch et al. (2013) for review. In these 59 

cortical regions, some neurons have congruent visual-vestibular preferences for 60 

direction of translation (heading) and others, in similar numbers, have opposite 61 

preferences. A third region, the visual posterior sylvian area VPS, has many neurons 62 

with opposite preferences, although few with congruent preferences (Chen et al., 63 

2011b). Neurons with congruent and opposite preferences may serve to strengthen the 64 

perception of heading and to discount optic flow that arises from head-motion, 65 

respectively. During rotational motion, VIP shows similar proportions of neurons with 66 

opposite and congruent visual-vestibular preference (Chen et al., 2011a), but MSTd 67 

shows a marked predominance of neurons with opposite preferences (Takahashi et al., 68 

2007). This predominance might suggest that rotational vestibular cues resulting from 69 
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head motion are encoded in MSTd primarily for the purpose of distinguishing relevant 70 

external motion from irrelevant self-motion. Whole-field visual flow can be used for this 71 

purpose but the additional use of vestibular cues might increase precision and also 72 

potentially disambiguates head rotation from large rotating objects.  73 

 74 

In human neuroimaging studies, several cortical regions show specificity for optic flow, 75 

including a region known as hMST, which may include a homologous region to macaque 76 

MSTd. The cingulate sulcus visual area (CSv) and a region in intraparietal cortex that 77 

has some characteristics in common with macaque VIP (putative human VIP or pVIP), 78 

have been shown to favor optic flow that reflects self-motion over flow that does not 79 

(Wall and Smith, 2008; Cardin and Smith, 2010). hMST and CSv have also been found to 80 

respond to vestibular stimulation (Smith et al., 2012). Whether any of these areas 81 

contain neurons capable of disambiguating relevant and irrelevant visual cues by the 82 

use of opposite visual-vestibular preferences is unknown. 83 

 84 

Standard artificial methods of inducing vestibular sensation in a scanner environment 85 

result in visual sensations that are inconsistent with natural visual–vestibular cue 86 

combinations, making meaningful study of visual-vestibular interactions very difficult.  87 

Using psychophysics, we were able to emulate cue combinations compatible with 88 

natural head roll by employing visual stimuli that were tailored to match the measured 89 

sensation of head roll induced by galvanic vestibular stimulation (GVS). We then used 90 

multivariate pattern analysis to determine whether distinct populations of congruent 91 

and opposite neurons exist in human cortical regions that are known to be involved in 92 

multisensory processing.   93 

 94 
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Materials and Methods 95 

 96 

Participants: Seven healthy participants (5 female, median age 20 years) took part. They 97 

were screened according to standard procedures and gave informed consent. The study 98 

was approved by the relevant local ethics committee. 99 

 100 

Stimuli: During GVS, sinusoidal waveforms were used to generate vestibular stimulation 101 

with an isolated bipolar constant-current stimulator (DS5, Digitimer Ltd) located in the 102 

scanner control room. Stimulation was delivered via shielded cables that were passed 103 

through appropriate RF filters into the MRI examination room. Non-metallic electrodes 104 

(Skintact F-WA00, Leonhard Lang Ltd) were placed over the mastoid bone just behind 105 

each ear. A sinusoidal alternating current (1Hz, ±3mA) passed between the two 106 

electrodes, activating the cranial nerves connecting the vestibular organs to the 107 

brainstem. This induced a perception of head roll (rotation, R, about the anterior-108 

posterior head axis). The magnitude (excursion, in degrees) of perceived roll induced by 109 

vestibular activation is referred to here as Rvest. GVS also induces a vestibulo-ocular 110 

reflex with a dominant torsional component, Rvor. This causes rotation of the image on 111 

the retina (Rret_vor) which is equal in magnitude but opposite in direction to Rvor and 112 

affects visual cues to head roll.  113 

 114 

Visual stimuli were presented to the participant via a NordicNeuroLab VisualSystem. 115 

This is an optical goggle system, chosen because it allowed the surroundings (scanner 116 

bore, etc.) to be completely occluded, by the lens hoods. The system included an IR 117 

video camera (60Hz) for monitoring eye movements. The IR image was processed with 118 



 

 6 

software (Arrington, Inc) that could detect cyclotorsional eye rotation, based on the 119 

features of the iris, as well as gaze direction. The image presented was dark apart from 120 

2000 white dots (limited lifetime to reduce afterimages, 120/sec replaced) in a circular 121 

patch of diameter 15deg. The patch could be rotated sinusoidally about its center, at a 122 

rate and phase that matched the sinusoidal percept induced by GVS. The phase differed 123 

from the GVS waveform by 90 deg to account for the integration of acceleration to speed 124 

seen in vestibular responses at 1Hz (e.g. Fernandez and Goldberg, 1971). The 125 

magnitude of rotation could be varied. It was found that if the magnitude was 126 

appropriate, the sensation of visual roll induced by GVS could be nulled so that the dot 127 

patch appeared static (see Pre-scan calibrations). During periods with no GVS, the dot 128 

patch remained present but was stationary. The dot patch contained a central fixation 129 

point that changed randomly among 5 possible colors at 2Hz. Participants engaged in a 130 

color counting task that encouraged good fixation and maintained attention in a 131 

constant state.  132 

 133 

Pre-scan calibrations: Prior to the main experimental runs, each participant carried out 134 

two short procedures in the scanner to obtain session-tailored calibration values for the 135 

fMRI experiment. These values vary across individuals and sessions so it was important 136 

to obtain measures in the same session as the scan. First, a psychophysical nulling 137 

calibration determined Rscreen_null, the extent to which the dot patch had to rotate in 138 

order to null the perception of roll motion (Rperc) created by GVS. Participants fixated 139 

the central target and received 1sec of GVS. They then pressed one of two buttons to 140 

indicate whether they perceived clockwise (CW) or anticlockwise (ACW) rotation of the 141 

visual stimulus. Image rotation was then varied over trials with a Best-PEST staircase 142 
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procedure (Lieberman and Pentland, 1982) to find the best value of Rscreen_null. This 143 

value was then tested, by giving the participant several 16sec GVS stimulations to 144 

induce CW Rperc, at the same time rotating the dot patch ACW by Rscreen_null. We were 145 

satisfied that an adequate null had been achieved if participants could not perceive 146 

motion or could not follow the direction of motion. The measured value of Rscreen_null 147 

was then used in the Nulled condition of the fMRI experiment (see Conditions below) for 148 

that participant. It was found that on average the dot patch had to rotate sinusoidally 149 

±1.71° (sd=0.51, min=0.75, max=2.65) in order to cancel the percept of motion induced 150 

by the GVS. 151 

 152 

Second, GVS was administered in blocks of 16s (six blocks separated by 8s rest blocks) 153 

while cyclotorsional eye position was tracked, in order to measure Rvor. Rvor is always 154 

in the opposite direction to Rperc, the purpose of VOR being to compensate for head 155 

motion. Participants fixated and passively viewed the static dot patch. They were 156 

presented with 12 blocks (16secs) of GVS and torsional eye traces were recorded. At the 157 

end of the calibration the eye data were smoothed and the amplitude of cycles 4-12 was 158 

extracted and averaged across cycles and blocks. This was 0.43° on average (sd = 0.14, 159 

min=0.16, max=0.62; this low VOR gain is typical of previous studies). The participant-160 

specific value measured was used to adjust the retinal speed of the Control condition 161 

(see Conditions) so as to match that of the Nulled condition i.e. to compensate for the 162 

effect of Rvor on retinal motion. 163 

 164 
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Conditions: Using the parameters obtained immediately prior to scanning, GVS was 165 

applied together with visual rotation of a magnitude and direction that either cancelled 166 

the percept induced by GVS (Nulled condition) or had the opposite phase, effectively 167 

summing the retinal and vestibular effects (Control condition). The measured Rvor 168 

parameter was used to equate retinal speed across the two conditions. A small 169 

optokinetic reflex (OKR) may also have occurred but this was ignored because it would 170 

be the same in both conditions, the retinal speed being the same. 171 

 172 

Fig. 1 illustrates the two conditions quantitatively. The Nulled condition emulates 173 

natural head roll, in which retinal motion is present (but is not perceived as rotation of 174 

the visual world) and the visual and vestibular cues are congruent. In the Control 175 

condition, GVS is the same but retinal motion reverses direction, the motion is strongly 176 

perceived, and the two cues are incongruent (opposite in direction). 177 

 178 

Design: The fMRI experiment employed a block design and consisted of eight ~5min 179 

runs. 16s trial blocks were separated by 8s rest blocks and the two conditions were 180 

each presented six times per run. This gave a total of 48 presentations per condition.  181 

fMRI data were collected with a Siemens Trio 3-Tesla scanner with either an eight-182 

channel head array coil for acquisition of a high quality T1 weighted structural image 183 

(MDEFT; Deichmann et al., 2004) or a custom 8-channel posterior head coil (Stark 184 

Contrast, Germany) for an in-session T1 image and the functional  images. Functional 185 

images were collected with 23 oblique slices (2.5 mm isotropic voxels) with an 186 

echoplanar imaging sequence (TR = 2 sec, TE = 33 msec).  187 

 188 



 

 9 

Analysis: Both standard (univariate) analysis and multi-voxel pattern analysis (MVPA) 189 

were used. Univariate analysis was carried out with BrainVoyager software (Goebel et 190 

al., 2006). All functional data underwent preprocessing in which images were corrected 191 

for slice timing and for head motion. High pass temporal filtering (cutoff 0.01Hz) was 192 

used to remove low-frequency drifts. Functional data were co-registered to the MDEFT 193 

anatomy. Statistical contrasts were set up using the general linear model to fit each 194 

voxel timecourse with a model derived by convolving a standard haemodynamic 195 

response function with the stimulus time series. Six additional regressors to model head 196 

movements and a session regressor were added. 197 

 198 

Region of interest (ROI) analysis: Various ROIs were defined in separate scans. hMST was 199 

defined using a standard paradigm (Huk et al., 2002) based on the presence of 200 

ipsilateral responses. Alternately expanding and contracting dot patterns (5deg 201 

diameter; 13.5° eccentricity) were presented separately in the left or right visual 202 

hemifields. 16s stimulus blocks were interleaved with blocks with static dots. CSv and 203 

pVIP were defined using a second localiser (Wall and Smith, 2008) that consisted of two 204 

conditions presented for 15s each, separated by 15s bocks with no stimulus. In one 205 

condition, self-motion-compatible optic flow simulating spiral motion of the observer 206 

was presented. The second condition contained locally matched dot motion but in a self-207 

motion-incompatible 3x3 array of 9 flow patches. Contrasting activity for compatible vs. 208 

incompatible flow readily defined CSv. It also revealed a visually responsive region in 209 

the vicinity of PIVC (see Cardin and Smith, 2010) that we refer to here as PIC (posterior 210 

insular cortex) in line with previous studies. It is plausible that PIC is a homologue of 211 

macaque VPS (Frank et al, 2014).  In many cases, pVIP was also defined. We find that 212 

pVIP is the most difficult region to define with this method because it responds quite 213 
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well to both stimuli and definition relies on a modest degree of differential activity. In a 214 

few cases pVIP could not be defined reliably for this reason and in some others the 215 

acquisition volume did not extend sufficiently far dorsally. V1 was also localised, to 216 

provide a control ROI which was not expected to distinguish congruent and opposite 217 

vestibular-visual cues. V1 was defined using standard retinotopic mapping procedures, 218 

with a wedge (24º segment with a radius of 12º) rotating at 64 sec/cycle.  219 

 220 

In addition to these visually defined ROIs, a vestibular localiser was used to determine 221 

independent regions that responded to GVS in darkness. The GVS localiser employed 2 s 222 

(2 cycles) of a 1 Hz sinusoid. Stimulation was followed by a 2-10 second inter-trial 223 

interval. A total of 160 trials were presented across two runs. All light was excluded and 224 

participants were also asked to close their eyes. Two ROIs were defined in this way. 225 

PIVC was identified in all participants, in accord with several previous studies; however, 226 

we refer here to the ROI defined in this way as PIVC/PIC because it likely includes PIC as 227 

well as PIVC (see Discussion). Partial overlap was often seen between (vestibular) 228 

PIVC/PIC and (visual) PIC but PIC was on average slightly more posterior (see Figure 2), 229 

as is VPS in macaques. The proportion of overlapping voxels was 15%. A vestibular 230 

hMST ROI was also identified bilaterally that overlapped with visually defined hMST but 231 

was typically less extensive, in accord with previous work (Smith et al., 2012). The 232 

overlap was 38%. 233 

 234 

To test whether populations of neurons could distinguish the two cross-model 235 

vestibular-visual cue combinations, the BOLD response in the main experiment was 236 

extracted from all regions of interest and submitted to both univariate analysis as 237 

above, to reveal any differences in response magnitude, and also to multi-voxel pattern 238 
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analysis (MVPA). MVPA was performed with a MATLAB-implemented LIBrary for 239 

Support Vector Machines (LIBSVM; Chang and Lin, 2011). For each ROI, independently 240 

and irrespective of overlap between visual and vestibular estimates of hMST and PIC, 241 

the data were pooled across participants to create a single large sample and normalised 242 

across the two conditions (see Furlan et al, 2014 for details of the method). Decoding 243 

performance was measured as a function of the number of features (voxels) included, 244 

which was incremented in steps of 30.  The features were selected randomly. They were 245 

resampled and the analysis repeated 5000 times at each increment. A leave-one-out 246 

procedure was used to train a support vector machine (SVM) on 7 runs and test on the 247 

remaining run, resulting in 8 performances for each sample. In order to test whether the 248 

classifier was performing above chance, the analysis was re-run with random 249 

permutation of trial labels. The 95th percentile of the distribution of 5000 results with 250 

different randomly permuted labels was calculated in order to determine whether 251 

correctly labelled classification analyses were performing significantly above chance.  252 

The mean of the distribution was used to estimate chance performance (expected to be 253 

50%). 254 

 255 

Results 256 

 257 

MVPA classification accuracies for decoding Nulled vs. Control within visually defined 258 

hMST, pVIP, CSv and PIC, and vestibularly defined hMST and PIVC/PIC, are displayed in 259 

Figure 3. Also included is V1, a control visual region that was not expected to distinguish 260 

between Nulled and Control conditions. As the two conditions were matched for retinal 261 

speed and GVS magnitude, decoding success is reliant on the presence of sensitivity to 262 
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the relative phase of the two signals, perhaps in the form of independent populations of 263 

neurons that respond to congruent (Nulled condition) and opposite (Control condition) 264 

head-roll cues. 265 

 266 

Of the visually defined regions studied, hMST, pVIP and PIC all supported classification 267 

of the two stimulus combinations, showing the expected increase in decoding 268 

performance with the number of features included (illustrated only for hMST) and 269 

reaching statistical significance for higher numbers of features. All three easily breached 270 

the 95th percentile of the permuted data. The two conditions could not be significantly 271 

decoded in visually defined CSv or in V1. Classification accuracy also reached 272 

significance in the two ROIs defined vestibularly, PIVC/PIC and hMST. 273 

 274 

The univariate magnitude of the BOLD response in each condition was extracted from 275 

each ROI and is shown in Figure 4.  All regions examined showed broadly comparable 276 

responses in the two conditions, mirroring the matched retinal stimulation rather than 277 

reflecting the difference in perceived motion resulting from the temporal phase in 278 

which the stimuli were combined. There was an overall trend towards larger responses 279 

in the Nulled condition (not significant by t-test in any region). A possible explanation of 280 

this difference, if real, is that retinal motion in the Control condition was too weak. 281 

Analysis of VOR gain showed that it was about 10% lower, in both conditions, than 282 

during the pre-scan calibration on which the correction was based, which means that 283 

retinal motion in the Control condition was somewhat slower than intended. 284 

 285 

Discussion 286 
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Using psychophysics, we were able to create, and present to a static person lying in an 287 

MRI scanner, visual-vestibular cue combinations that were consistent with natural head 288 

rotation in the roll axis (congruent visual-vestibular cues). We were able to mimic the 289 

natural situation in which the head rolls, the retinal image consequently rotates, but the 290 

world appears static i.e. retinal image motion is suppressed. By reversing the direction 291 

of retinal motion (to give opposite visual-vestibular cues) we could create a situation in 292 

which the magnitude of retinal motion was unchanged but was now strongly perceived 293 

because it summed with, rather than nulling, the effect of GVS (Control condition). 294 

When direction of rotation was alternated over time by means of sinusoidal GVS 295 

accompanied by sinusoidal retinal motion, each combination could be created in a 296 

continuous fashion and we could switch between them by reversing the relative phase 297 

of the two stimuli. The two conditions then contained identical retinal motion and 298 

identical vestibular motion, and could be compared directly with fMRI, free from the 299 

confound of absolute direction. This allowed us to determine whether several key brain 300 

regions, some of which may be homologues of cortical regions in non-human primates 301 

that have been shown to integrate visual and vestibular cues, were sensitive to the 302 

difference between the two combinations i.e. to the relative phase in which the stimuli 303 

were presented. 304 

 305 

Univariate analysis of the fMRI data enabled us to ask, for each cortical region examined, 306 

whether activity is determined by retinal motion or by perceived motion. The two 307 

conditions elicited similar BOLD responses in all areas studied (Figure 4). Small 308 

differences may exist that we failed to detect but activity appears to be broadly 309 

governed by retinal motion rather than perceived motion. If anything, activity was 310 

greater when no motion was visible (Nulled condition). 311 
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 312 

In contrast, multivariate analysis (MVPA) enabled us to distinguish the Nulled and 313 

Control conditions in several cortical regions.  First, hMST (whether defined with a 314 

visual or vestibular localizer) displayed significant prediction accuracy, indicating that it 315 

is sensitive to the phase in which visual and vestibular stimuli were combined. The most 316 

obvious interpretation, given the physiological literature, is that hMST contains some 317 

neurons that are selectively responsive to congruent visual/vestibular cues and others 318 

that prefer opposite cues, although other interpretations are possible (e.g. a continuous 319 

rather than bipolar distribution of phase sensitivities). If so, such neurons may act to 320 

strengthen perception of heading and to identify and discount retinal motion that 321 

results from head movements. The results incidentally provide further support for the 322 

notion that hMST includes a sub-region that is homologous with macaque MSTd. The 323 

fact that MSTd is driven more strongly by visual than vestibular input (Gu et al., 2006; 324 

Takahashi et al., 2007; Chen et al., 2011b) and that the same is true of hMST (Smith et 325 

al., 2012) is also consistent with this interpretation. 326 

 327 

Areas pVIP and PIC also showed sensitivity to the phase of the visual and vestibular 328 

stimuli, suggesting that they too may contain populations of neurons with congruent 329 

and opposite preferences. This is consistent with a possible homology with macaque 330 

areas VIP and VPS respectively. However considerable caution is needed here. In the 331 

case of pVIP, the evidence for a functional homology is considerably weaker than for 332 

hMST. Macaque VIP responds to both visual and vestibular heading cues (Bremmer et 333 

al., 2002) and is involved in the integration of vestibular-visual information (Chen et al., 334 

2011a). The fact that human pVIP is also multisensory (Bremmer et al., 2001) fits well 335 

with the possibility of a homology, as do the present results. However, the human 336 
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intraparietal sulcus (IPS) contains many more discrete sensory regions than macaque 337 

IPS (e.g. Swisher et al., 2007) suggesting a different, more evolved organization. This 338 

reduces the likelihood of direct functional equivalence. We use the acronym pVIP 339 

because the area is the same as that referred to as human VIP by Bremmer et al., 2001, 340 

not because we are confident of a homology. Cells with congruent and opposite heading 341 

preferences have been found in VPS (Chen et al., 2011b), although with a 342 

preponderance of oppositely tuned cells. PIVC/PIC defined with GVS supports pattern 343 

classification. Macaque PIVC shows little responsiveness to optic flow but is prominent 344 

in vestibular processing, and therefore may play a more peripheral role in multimodal 345 

processing, perhaps by providing vestibular signals to VPS. It is therefore likely that 346 

classification in vestibular PIVC/PIC was supported by neurons in the hypothesised PIC 347 

portion of this ROI. CSv did not show predictor accuracy above chance, and whilst this 348 

region has been found to respond well to vestibular as well as visual stimuli (Smith et 349 

al., 2012), our results provide no evidence to suggest that it is involved in multisensory 350 

integration.  351 

In conclusion, our fMRI results, together with the finding that participants were unable 352 

to see retinal motion when it emulated that which would be present in a typical head 353 

roll situation, suggests that multisensory integration plays a large role in discounting 354 

retinal motion that is irrelevant to interacting with the world and provides important 355 

information concerning the locus of this process in the human brain. 356 

 357 
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Figure legends  419 

Figure 1 420 

Quantitative example to illustrate stimulus construction. Positive values represent CW 421 

movement, negative values ACW.   422 

(a) GVS induces a CW vestibular head roll percept of say 2.5° (Rvest= 2.5). VOR acts to 423 

stabilize the image: when the vestibular system signals CW head roll, which normally 424 

causes ACW retinal motion, the eyes rotate ACW giving compensatory CW retinal 425 

motion, say 0.5° (Rret_vor = 0.5), which signals ACW head roll of -0.5° (Rhead_vor = -0.5), 426 

reducing the roll percept to 2.0° (Rperc =2.0). Note that real CW head motion would make 427 

the retinal image rotate ACW on the retina but in the case of GVS, the retinal image is 428 

static (ignoring VOR), so you think the world (image) must be rotating CW. 429 

(b) To cancel such a perceived rotation (Nulled condition), the dot patch must be 430 

rotated in the opposite direction (Rscreen_null = -2.0). This results in a nulled perceived roll 431 

(Rperc = 0) and a retinal image rotation (Rret_null) of -1.5°, the sum of Rscreen_null and Rret_vor.  432 

(c) In the Control condition, retinal motion is required that is equal and opposite to the 433 

Nulled condition (Rret_ctrl = 1.5). The screen motion required to achieve this in the 434 

presence of VOR (Rret_vor =0.5) is 1° (Rscreen_ctrl = 1.0). 435 

 436 

Figure 2 437 

Flattened cortical representations from two participants. S1 and S2, showing the 438 

Regions of Interest (ROIs) examined. Each ROI is shown as a color overlay (see key). V1, 439 

hMST, pVIP,  CSv and PIC defined by visual localisers are shown in addition to PIVC/PIC 440 

and hMST defined with vestibular stimulation in darkness. 441 
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  442 

Figure 3  443 

(a) MVPA classification accuracy for hMST, defined with a visual localizer, as a function 444 

of the number of features included. Dashed portion of curve is extrapolated. (b) Peak 445 

classification accuracy for all cortical regions examined, together with the associated 446 

number of voxels in each case. Also shown are chance performance and the 95th 447 

percentile from permutation testing (mean across all regions).  448 

 449 

Figure 4  450 

Mean BOLD response amplitudes (normalized percent signal change) for the Nulled and 451 

Control conditions in each cortical region studied. Error bars show ±1 SEM. 452 

 453 
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