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Abstract

The paper describes an application of specialist experts techniques to prediction with side
information. We pick vicinities in the side information domain to create elementary time
series, use standard prediction techniques to predict for those elementary series, and then
merge the predictions using specialist experts methods. Prediction with expert advice
bounds ensure that optimal vicinities are selected dynamically. The algorithm is tested on
the problem of predicting implied volatility of options and proves to be a viable alternative
to on-line regression.
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1. Introduction

We consider the on-line protocol where on each trial ¢ = 1,2,... the learner observes a
signal z; and attempts to predict an outcome ¥;, which is shown to the learner later. The
performance of the learner is measured by means of the cumulative loss; throughout the
most of the paper we use square loss.

This problem falls in a somewhat grey area between the theory of time series and machine
learning. Machine learning mostly studies ‘spatial’ dependencies between x; and 1; while
the theory of time series concentrates on the evolution of y; with time.

This problem has been addressed within the context of on-line regression. One option is
to apply traditional batch algorithms such as ridge regression in the on-line context; see (Zh-
danov and Kalnishkan, 2013) for a comparison of losses of ridge regression in the on-line and
batch modes. An alternative is to develop special on-line regression algorithms. For exam-
ple, see (Vovk, 2001), (Azoury and Warmuth, 2001), and Section 11.8 of (Cesa-Bianchi and
Lugosi, 2006) for aggregating algorithm regression also known as the Vovk-Azoury-Warmuth
predictor. An important area is the development of regression algorithms targeted at chang-
ing dependencies; see (Herbster and Warmuth, 2001) for tracking algorithms, (Busuttil and
Kalnishkan, 2007a) for aggregating algorithm regression with changing dependencies, and
(Chernov and Zhdanov, 2010b) for regression under discounted loss.

In this paper we propose an alternative to regression methods. We develop an approach
to on-line prediction combining spatial dependencies with temporal evolution based on the
use of specialist experts. Signals x are grouped into a finite number of vicinities and time
series of outcomes 1 are formed according to what vicinities x; belong to. The predictions
made for time series are then merged using a prediction with expert advice technique. This
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paper uses recent specialist expert techniques developed in (Chernov et al., 2010; Chernov
and Vovk, 2009) to handle the vicinities with greater flexibility.

The method is tested on the problem of predicting applied volatility of options in
datasets provided by the Russian Trading Systems Stock Exchange. Very simple meth-
ods of predicting time series are used, namely, predict the last element and exponentially
weighted moving average. Still the results turn out to be comparable to a much more so-
phisticated kernel ridge regression technique. The experiments in this paper may be seen
as a follow-up to (Busuttil and Kalnishkan, 2007b), where the same datasets were used.

The paper is organised as follows. Section 2 describes the prediction framework and
some necessary algorithms from prediction with expert advice. Section 3 describes the
main algorithm, merging, and its naive alternative, partitioning. Section 4 discusses the
problem of volatility prediction in general and the datasets we use in particular. Section 5
describes an application of the merging algorithm to our datasets and reports the results.
Finally, in Section 6 the results as well as some properties of the algorithm and the domain
are discussed.

As an empirical study of an application of the theory of prediction with expert advice,
this paper can be compared to (Vovk and Zhdanov, 2009), which also deals with the square
loss function. Such applications are relatively few and may serve as testing grounds for
method of prediction with expert advice in the future.

2. Preliminaries
2.1. Prediction Framework

This paper is concerned with prediction in the following framework. Let outcomes wy,wo, . ..
from an outcome set €2 occur successively in discrete time. A learner tries to predict each
outcome and outputs a prediction 7 from a prediction set I' on the basis of a signal x; from
a domain X each time before it sees the outcome w;. The quality of predictions is assessed
by means of a loss function A : T' x Q — [0, 4+00].

The framework can be summarised in the following protocol:

Protocol 1: Basic prediction

fort=1,2,...do
nature announces z; € X

learner outputs v, € I’

nature announces w; € )

learner suffers loss A(7y, wy)
end

Over T trials the learner suffers the cumulative loss

T
Losst = Z Ay, we)
t=1

We will denote the loss of the learner by Lossr or by Lossy(Algorithm) with Algorithm in
brackets being the name of the algorithm the learner uses.



In this paper we are mostly interested in the case where the prediction and outcome
spaces are an interval Q = I' = [A, B] and the square loss function A(vy,w) = (v — w)? is

used.

2.2. Prediction with Expert Advice

This section discusses prediction with expert advice; see (Cesa-Bianchi and Lugosi, 2006)
for a complete overview. The problem of prediction with expert advice can be summarised
as follows.

Suppose that there is a pool © of (static) experts; throughout this paper we assume
that © is finite. The experts try to predict the outcomes from the same sequence and their
predictions 7¢(f) are made available to the learner before it outputs its own.

The goal of the learner is to suffer total loss comparable to the best expert in the pool
in some sense.

Protocol 2: Prediction with expert advice

fort=1,2,...do
experts # € © announce predictions v(0) € T
learner outputs y; € I’
nature announces w; € 2
each expert 0 € © suffers loss \(7(6),w:)
learner suffers loss A(7y, wy)

end

Over T trials each expert @ suffers the cumulative loss

T

Lossy(0) = Z A (), wr)

t=1

and the learner suffers the cumulative loss

T
Losst = Z AV, we)
t=1

one wants the inequality Lossy < Lossp(0) to hold for all T'=1,2,... and 6 € ©.

It is in the spirit of prediction with expert advice not to impose any restrictions on the
law generating outcomes w; or on the internal working of experts. As a matter of fact,
‘nature’ and ‘experts’ are just names for the slots in the protocol.

2.3. Aggregating Algorithm

In this section we overview the standard aggregating algorithm (AA) for prediction with
expert advice after (Vovk, 1998, 2001). It takes the following parameters: a learning rate
n € (0,400) and an initial distribution over the set of static experts 6; a distribution can
be represented by an array of initial weights py(6),6 € ©.



The algorithm maintains an array of weights wy(#),0 € ©. Their initial values are
wo(f) = po(#),0 € O, and they are updated according to the rule

wt(@) = wt_l(g)e—ﬁk(%(ﬂ),wt) _ po(e)e—nLosst(G) )

On step t upon observing the experts’ predictions () the learner outputs a prediction ~y;
that for every possible w € §2 satisfies the condition

A, w) < ce(n)g(w) (1)
where ) .
W =——Ine——">->—3 w(@)e M0®)w)
o) = =y D w(0)e )

and c(n) is a constant specified by the loss function A. The constant is defined in such a
way that - can always be found. One can show by induction (see Lemma 1 from (Vovk,

2001)) that
T

1
D glwr) = —=Tn Y po(f)e o)
=1 K
and therefore
- c(n)
Lossp(AA) =Y " Ay, wy) < e(n) Lossp(6) + 7’7 In1/po(6) . (3)
t=1
The aggregating algorithm thus performs nearly as well as the best expert losswise.
If the prediction and outcome spaces are an interval @ = I' = [A, B] and the square
loss function is A(y,w) = (7 — w)?, then for 5 satisfying 0 < n < ﬁ we have ¢(n) =1

(see (Vovk, 2001; Chernov and Zhdanov, 2010a)) and therefore the optimal value is n =

ﬁ. For this values of 7 we can use a simple substitution function

_A+B g(B)—g(4)
2 2(B — A)

~

mapping g to a ~y satisfying (1).

The aggregating algorithm generalises Bayesian mixtures of probabilistic hypothesis (see,
e.g., Section 2 of (Bishop and Nasrabadi, 2006)); it is identical to the Bayesian mixture for
the so called logarithmic loss. However it is more general in that it admits arbitrary loss
functions such as the square loss function.

2.4. Specialist Experts

Suppose that an expert in the prediction with expert advice framework can abstain from
making a prediction on step t; if it does so, we say that it sleeps on step t. One may want
to obtain an equivalent of bound (3) ensuring that the learner competes well with every
expert 6 on the steps where 6 is awake.

The concept of a specialist expert was proposed in (Freund et al., 1997). In this paper
we will be discussing specialist experts as a special case of the theory of expert evaluators



after (Chernov et al., 2010; Chernov and Vovk, 2009). A simple extension of the AA may
be used for specialist experts.

If an expert 6 sleeps on step ¢, let us assume that it suffers notional loss A(7(6),w;)/c(n)
(if ¢(n) = 1 we can simply say that it ‘goes with the crowd’ and subscribes to yet unknown
~¢ whatever it is going to be) and apply the AA. The weight of a sleeping expert is updated
according to this notional loss. If Ogeep is the set of experts sleeping on step ¢ and O,yake
is the set of experts that are awake (not sleeping) on step ¢, then (1) becomes

c(n) 1 A ((0)w)
Ay, w) < — In wy—1(6)e”MMIw)
(/yt ) n Zeee Wi_1 (0) Z t 1( )

eeeawake
Z wy—1(0)e M) /e(n)
eeesleep

or

e~ (ve.w)/c(n) Z wi—1(0) >
0cO

Z wt_l(g)e*ﬂk(’Yt(G),w)_i_ Z wt_l(e)efr])\('yt,w)/c(n).

9€®awakc eeeslccp

Clearly, all terms corresponding to sleeping experts cancel out and we get

c(n) 1 —nA(7(0),w)
Ay, w) < In w1 (f)e” DL
( t 77 Zeee)awake wt_l(e) ee(aza;ake t

i.e., the formula is identical to that from the aggregating algorithm except that the sum is
taken over the experts that are awake. Note that we still need to update the weights of
sleeping experts so that they get the right weights when they wake up. We will call this
algorithm aggregating algorithm with sleeping experts (AAS).

Arguing as in the case of the AA, we get a bound similar to (3); by dropping equal
terms in the losses on the left- and right-hand side we obtain

Lossgg)(AAS) < ¢(n) Lossé?) 0) + clm) Inl/po(0) , (4)
n
where the sum in Loss®) is taken only over steps when expert 6 was not sleeping.

3. Algorithms

In this section we describe an algorithm for a predictor working in the environment of
Protocol 1.

Suppose that we want to apply a time series prediction method. The simplest way
of doing this is to treat the outcomes wi,wo,... as a time series ignoring the signals x;
altogether. Obviously this can lead to a loss of potentially useful information.



Let us take a more refined approach and consider a partition of the domain X = UszlX ks
where X; N X; = @ if i # j. This partition allows one to split the time series into k different
series. The predictor then can work as follows. On step ¢ it finds k such that x; € X}, then
picks the subsequence t; < t3 < ... <ty < t such that x;;, € X} and uses the time series
Wiy, Wiy, - - - s wr, to make a prediction for step ¢. We will call this the partitioning method.

A disadvantage of this method is that it ignores all dependencies among w; for different
k. The moment t; when the signal belonged to X}, for the last time may have occurred long
ago compared to ¢t and the outcomes may have evolved significantly since then.

This motivates the following algorithm. Consider a finite subset {Uy, Us, ..., Ux} C 2%
such that UleUk = X. We will call sets U}, vicinities because it is natural to choose them
in such a way that elements of U; are in some respect akin to each other. Each vicinity U;
generates a specialist expert that predicts as follows. The expert is awake only on steps ¢
where z; € U;. It maintains the series wy,,wy,, ... of outcomes for such steps and uses the
series to make predictions for steps ¢t where x; € U;. For t such that x; ¢ U; the expert
makes no predictions. The experts are then merged using the aggregating algorithm for
specialist experts. We will call this the merging method.

The computational complexity of the merging method depends on the underlying time
series prediction algorithm. The extra complexity brought about by merging depends on
the employed loss function; however, for most natural loss functions including the square
loss merging takes time linear in the number of vicinities.

4. RTSSE Implied Volatility Prediction

In this section we describe a model problem in detail.

4.1. Implied Volatility

An option is a derivative financial instrument linked to an underlying asset, which is usually
a share, but can also be a portfolio of shares, a futures on a share etc. There are two popular
types of options, puts and calls. Definitions and more details on puts and calls are available
from standard textbooks such as (Hull, 2006; Wilmott, 2007); for the purposes of this paper
it suffices to note that puts and calls have two important parameters, strike price X and
time to maturity 7. Throughout the life of a particular option X stays fixed while T
decreases and when it reaches 0, the option ceases to exist.

The most popular approach to options pricing is based on the Black-Scholes(-Merton)
theory. This theory assumes that the underlying asset price S follows an exponential Wiener
process with constant volatility ¢, which cannot be directly observed but can be estimated
from historical data. Given o, the prices of so called European call and put options, can be
calculated using the Black-Scholes formulas

c=SN(d) — Xe "' N(dy) , (5)
p=Xe "TN(—dy) — SN(—dy) (6)



with

g — In(S/X) + (r +02/2)T
1 — O’\/T )
iy — In(S/X)+ (r — o%/2)T

ovVT ’

where N is the cumulative distribution function of the Gaussian distribution with the mean
of 0 and standard deviation of 1, S is the price of the underlying asset, o is its volatility,
r is the risk-free interest rate (assumed to be 0 in this paper) and X and T" are the strike
price and time left until the maturity of the option.

In practice this model is often violated. The prices ¢ and p can be observed directly in
transactions as well as S. Given the current prices of options and the underlying asset we can
find o that satisfies the Black-Scholes equations. This ¢ is known as the implied volatility.
Contrary to Black-Scholes theory, it is often not constant and exhibits a dependency on
the strike price and time. The graph of a dependency of o on the strike price X (other
parameters being equal) is known as the volatility smile due to its characteristic shape; the
graph of the dependency of o on X and T is known as the volatility surface. There is no
unique generally accepted theory explaining the phenomenon of implied volatility; however,
volatility remains a meaningful parameter and traders often use it to quote option prices.
The reader may refer to Chapter 16 of (Hull, 2006) as a financial introduction to volatility
smiles.

4.2. RTSSE Datasets

In this paper we approach the problem of finding the implied volatility from a purely machine
learning perspective. The datasets we use were provided by the Russian Trading System
Stock Exchange (RT'SSE) and record data from mid-2000s, when the Russian stock market
was experiencing steady unperturbed growth (perhaps unhealthy from the economics point
of view).

The following three datasets were used: eerul206 describes put and call options maturing
in December 2006 on futures on shares of Unified Energy System of Russia (the company
has since been split and its shares are no longer trading); gaz307 describes put and call
options maturing in March 2007 on futures on shares of Gazprom; and rts307 describes put
and call options maturing in March 2007 on futures on the RTSSE index.

The options studied were American rather than European, which implies a difference in
the execution arrangements. Under very general assumptions, American call options should
not be executed early and therefore they cost the same as European call options and should
satisfy (5). The same cannot be said of American put options, which can cost more than
European put options. Formula (6) is technically speaking not applicable to American put
options. However one can still calculate implied volatility using the Black-Scholes formula;
it has no meaning within the standard Black-Scholes model, but is was used by RTSSE as
a helpful descriptive parameter.

Each dataset contains records of consecutive transactions with put and call options on
a particular underlying asset with the same maturity date. The numbers of transactions
are given in Table 1. The following attributes of a transaction are available: date and



Table 1: Datasets Summary

Dataset | Underlying asset | Maturity Number of transactions
eerul206 | futures on share | December 2006 13152
gaz307 futures on share | March 2007 10985
rts307 futures on index | March 2007 8410

time, strike price X, time left to maturity of the option T, the price of the underlying
asset S at the time of transaction, and a bit differentiating puts from calls. We attempt to
predict the implied volatility in the transaction. The quality of the prediction is measured
by the squared deviation of the predicted implied volatility from the true implied volatility
calculated from the option price using the Black-Scholes formula (note that the option
price is not one of our attributes; otherwise the problem would amount to learning the
Black-Scholes formula itself).

We compare the losses incurred by our methods against a benchmark technique employed
by the stock exchange for quoting implied volatilities. This is a proprietary method based on
fitting coefficients in a formula describing the volatility smile; the method involves occasional
manual adjustments. As the outputs of the proprietary technique were used for publicly
available quotes, one cannot rule out the influence of the technique on the behaviour of the
implied volatility, which makes competing with this method particularly difficult.

4.3. Preliminary Analysis

The behaviour of volatility is illustrated in Figures 1-4, which show dependencies of volatil-
ity on strike and transaction number (which is essentially effective time) near the beginning
and near the end of eerul206. Initially volatility is relatively flat. Towards the end of the
dataset it becomes much more variable and the dependency of volatility on strike takes on
a smile-like shape. The range of the plots was capped at 1, so occasional outliers exceeding
1 are not shown.

The pictures show that on the one hand, the sequence of volatilities looks very much
like a time series and on the other hand volatility exhibits a dependency on strike price,
especially towards the end of the dataset (i.e., close to maturity of the option).

The number of possible strikes is limited. While theoretically the strike can have any real
value, stock exchanges usually restrict strikes to some round numbers in order to improve
liquidity. Thus one can consider splitting the time series into separate time series, one for
each strike. However it is easy to see from the pictures that some strikes are much more
common than others. While for popular strikes the most recent transaction may be quite
near, for rare strikes it is far away.

Note that we cannot straightforwardly consider this problem within the framework of
multivariate time series as, e.g., in (Lutkepohl, 2005): we cannot speak of an evolution of
a vector of volatilities for different strikes because of an irregular nature of the sequence of
strikes. As a matter of fact, most standard models for volatility smiles are based on vectors
of closing prices as in, e.g., (Konstantinidi et al., 2008).
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One thus is naturally drawn to the idea of grouping strikes together and forming com-

bined time series for groups of strikes.

However the pictures do not seem to suggest a

natural grouping. It is known that most transactions happen for strikes near the current
underlying price and the strikes on the sides are less frequently used. While the pictures
seem to be in agreement with this generally, there is no simple pattern in the distribution

of strikes.

Here the ideas of the paper come naturally. Let us create multiple vicinities of strikes,
introduce associated specialist experts, and let the AAS converge on the relevant ones.



5. Applying the Algorithm
5.1. Setup

In this section we describe an application of the algorithm of the paper to the problem.

Let S consisting of s; < s3 < ... < sy, be the strikes for a dataset. A simple vicinity of
diameter d is a set of d consecutive strikes; there are L — d + 1 vicinities of diameter d.

A compound vicinity is a subset of S x {0,1}, where the 0/1 bit denotes whether the
option in transaction is a put or call. A compound vicinity of diameter d is a product of
a vicinity of diameter d by either 0 or 1; there are 2(L — d + 1) compound vicinities of
diameter d. Note that some of them may give rise to empty time series if, say, there were
no transactions on put options with particular strikes. However every transaction belongs
to at least one compound vicinity.

In the experiments below we took all simple and compound vicinities of diameters from
1 to d with d = 5.

We are interested in the performance w.r.t. the squared loss so we apply the AAS for
square loss. In order to apply AAS, predictions of time series methods were capped at 1
and thus for the purpose of merging we assumed that the prediction and outcome space
were [0, 1].! Equal initial weights were given to all experts.

Two very simple methods for predicting time series turned out to be very successful,
predict the last element and exponentially weighted moving average (EWMA). In the former
given a series yi,¥2,...,Yyr, the value vr11 = yr is predicted. In the later the value
yr+1 = Ayr + (1 — X\)yr is predicted, where yp is the prediction output on the previous
step and A is a parameter (taken to be 0.95). At the beginning where no previous element
is available, we used the default value of 0.3.

5.2. Experimental Results

The results of the prediction methods were evaluated against the loss of the proprietary
RTSSE technique discussed in Section 4.2 called the competitor loss for brevity. In the
pictures below we plot the adjusted loss of algorithms, which is the cumulative loss minus
the cumulative loss of the competitor. Note that for the purpose of calculating the loss, the
outcomes were not capped at 1.

Figures 5-10 show the adjusted loss of predict the last element and EWMA in two
modes, partitioning and merging. The solid lines represent the results of merging experts
based on all simple and compound vicinities of diameters from 1 to 5. The dotted lines
represent the naive partitioning mode with compound vicinities of diameter 1. No merging
happens there: a signal x; uniquely determines a vicinity.

Table 2 shows the figures of cumulative adjusted loss at the end of the datasets.

The figures and the table lead to the following conclusions.

1. Simple time series methods applied strike-wise perform comparably to the RTSSE
proprietary technique. At the end of the datasets (i.e., when the options approach maturity)
they outperform the proprietary technique.

1. Tighter limits would allow one to choose a better learning rate n; however we did not investigate this
further.

10



Table 2: Cumulative loss at the end of the dataset

Dataset | Competitor Improvement achieved by
loss predict last element EWMA
naive partitioning | merging | naive partitioning | merging
eerul206 185.05 13.91 25.25 15.13 25.73
gaz307 48.56 2.71 5.3 3.75 6.19
rts307 156.33 0.65 5.31 0.76 5.56

The figures show that the competitor outperforms our methods at the beginning. A
plausible explanation is that the competitor incorporates some prior knowledge about the
behaviour of volatility, while our methods need to learn from scratch. It is tempting to
attribute our good performance at the end to learning the data well. However there is a
more realistic explanation. The period when we outperform the competitor is rather short;
it is even shorter in terms of ‘physical’ time (transactions happen much more frequently
near the end). Presumably the competitor was optimised to perform well most of the time.

2. EWMA with A = 0.95 performs slightly but consistently better than predict the last
element.

3. Merging method with compound vicinities of diameters from 1 to 5 performs consis-
tently better than naive partitioning. It is better most of the time with the gap widening
with time.

It should be noted here that the methods perform very fast. Neither the underlying
methods nor AAS take much time. On a typical pc the running time goes from seconds to
single minutes as d is increased from 1 to 15.

6. Discussion of Experimental Results

6.1. Comparison with Ridge Regression

In this section we report results of kernel ridge regression for comparison. Ridge regression
is a popular method of machine learning and it can be seen as an extension of model building
used in econometrics.

As input, ridge regression was given all parameters of the transaction enumerated in
Section 4.2: strike price, put/call bit, the price of the underlying asset, and the time left
to maturity; each parameter was normalised to fit the interval [—1,1]. Vapnik’s polynomial
kernel of degree d, i.e., K(z1,22) = ((x1,22) + 1)¢ was used. Regression was applied in a
sliding window fashion with the window size of 250. On step ¢ regression was trained on the
training set formed by 250 previous pairs (z:—251, Yt—251), (T1—2505 Y£—250)s - - - » (Tt—1, Yt—1);
regression was thus retrained on every step. For the first 250 transactions prediction was
done using the volatility from the previous transaction (recall from Figure 3 that at the
beginning of the dataset volatility is very stable).

Table 3 shows the figures of adjusted loss at the end of the dataset for the retrospec-
tively optimal parameters, degree d and ridge a. Note that retrospective choice of optimal
parameters skews the comparison; the variability of the cumulative loss for different values
of the parameters was substantial.

11
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Figures 11-13 show the cumulative adjusted loss of regression for comparison with our
methods. The pictures were plotted to the same scales as those in Figures 5-10; for Figure 13

this required cutting off parts of the graph.

12

o) 2000

— diameters 1 to §
-~ naive algorithm

4000

6000 8000 10000 12000 14000

Figure 6: EWMA on eerul206

— diameters 1 to §
-+ naive algorithm

0 2000 4000 6000 8000 10000 12000

Figure 8: EWMA on gaz307

—— diameters 1 to §
- naive algorithm
-12

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Figure 10: EWMA on rts307



Table 3: Cumulative ridge regression loss at the end of the dataset

Dataset Improvement | Parameters
achieved by RR | d a
eerul206 26.82 4 1
gaz307 4.09 4 0.4
rts307 94.80 5 0.2
101 6

o 2000 4000 6000 8000 10000 12000 14000 0 2000 4000 6000 8000 10000 12000

Figure 11: Ridge regression on eerul206 Figure 12: Ridge regression on gaz307
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Figure 13: Ridge regression on rts307

For the first two datasets the performance of regression is comparable to our method;

our methods outperforms ridge regression on gaz307 in terms of the cumulative loss at the
end of the dataset. For the third dataset ridge regression greatly outperforms our method,

but it is due to a very short interval at the end.
It is interesting that ridge regression uses much more information that our method. The

merging algorithm in our setup makes predictions only on the basis of strike and put/call
bit. This hints at an interesting property of the domain. The property requires further

investigation.
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Table 4: Improvements of EWMA for different ranges of vicinities

Maximum size | eerul206 | gaz307 | rts307
1 19.9 4.42 1.73
2 23.04 6.23 3.98
3 24.64 6.3 4.93
4 25.3 6.23 5.37
5 25.73 6.19 5.56
6 25.92 6.09 5.61
7 26.03 6.03 5.61
8 26.11 5.96 5.58
9 26.15 5.86 5.56
10 26.17 5.79 5.54
11 26.19 5.71 5.51
12 26.19 5.66 5.49
13 26.18 5.62 5.46
14 26.17 5.6 5.44
15 26.15 5.58 5.43

6.2. Selecting the Range of Sizes

In our experiments above we took all compound vicinities of sizes from 1 to 5. Let us discuss
the choice of the maximum size. Table 4 gives improvements over the competitor at the end
of datasets for EWMA. Each line shows the result for the merging algorithm with simple
and compound vicinities of diameters from 1 to the maximum size in the first column.

Number 5 is not necessarily the best maximum size, but the improvement brought about
by larges sizes is very small. This comes at a cost of increased running time. For very large
sizes the performance goes gown, but very slowly.

This behaviour is easy to explain theoretically. The regret term in (4) is proportional
to In(1/pp(0)). Since we took a uniform initial distribution on experts, the regret is propor-
tional to the logarithm of the number of experts.

The number of simple vicinities of diameter d is L — d + 1, where L is the number of
strikes, so the total number of vicinities grows approximately linearly with d. The regret
term thus grows approximately logarithmically. This growth is slow.

The conclusion is that loss-wise one should not be afraid to take large maximum diam-
eter. In practice the main constrain restricting the growth of d is running time.

It is remarkable that vicinities of size exactly d perform poorly. For example, the merging
algorithm with EWMA running on simple and compound vicinities of diameter exactly 5
brings improvement 18.91 for eerul206, 3.82 for gaz 307, and 2.69 for rts307. These results
are not very good and worse than line 4 in Table 4; however adding vicinities of diameter
5 to vicinities of diameters 1 to 4 helps.

The conclusion is that in the mixture there should be vicinities of different sizes. AAS
automatically picks up the right ones.
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Figure 14: EWMA on eerul206 with sim-
ple vicinities

6.3. Selecting Types of Vicinities

In our experiments above we took both simple and compound vicinities. What happens if
we drop compound vicinities?

Figure 14 shows the adjusted loss of EWMA in two modes, partitioning and merging,
on eerul206. The naive partitioning algorithm works on simple vicinities of diameter 1 and
the merging algorithm on vicinities of diameters 1 to 5.

The performance is dramatically inferior to that on compound vicinities. Note however
that the merging algorithm still outperforms the naive.

It appears that the put/call bit makes a lot of difference to prediction. This indicates an
interesting domain property. Theoretically for European options implied volatility should
be the same for puts and calls with equal parameters; this follows from the put-call parity,
which is a very general statement. The difference may be due to the fact that the options
are actually American. Further investigation of this is beyond the scope of the paper.

7. Conclusions

We have proposed a computationally simple algorithm for on-line prediction based on the use
of specialist experts technique. Theempirical results show that the algorithm consistently
outperforms a naive analog, outperforms a proprietary industrial algorithm, and performs
comparably to ridge regression, sometimes outperforming it.
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