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Abstract

In this thesis we study the ordinary and the modular representation

theory of the symmetric group. In particular we focus our work on

different important open questions in the area.

1. Foulkes’ Conjecture

In Chapter 2 we focus our attention on the long standing open problem

known as Foulkes’ Conjecture. We use methods from character theory of

symmetric groups to determine new information on the decomposition

into irreducible characters of the Foulkes character.

2. Foulkes modules and decomposition numbers

The decomposition matrix of a finite group in prime characteristic p

records the multiplicities of its p-modular irreducible representations as

composition factors of the reductions modulo p of its irreducible repre-

sentations in characteristic zero.

In Chapter 3 we give a combinatorial description of certain columns of the

decomposition matrices of symmetric groups in odd prime characteristic.

The result applies to blocks of arbitrarily high p-weight. It is obtained

by studying the p-local structure of certain twists by the sign character

of the Foulkes module H(2n). This is joint work with Mark Wildon.

In Chapter 4 we extend the results obtained in Chapter 3 on the modular

structure of H(2n), to the entire class of Foulkes modules H(an) defined

over any field F of odd prime characteristic p such that a < p 6 n. In par-

ticular we characterize the vertices of all the indecomposable summands

of H(an).

3. Vertices of Specht and simple modules

In Chapter 5 we study the vertices of indecomposable Specht modules for

symmetric groups. For any given indecomposable non-projective Specht

module, the main theorem of the chapter describes a large p-subgroup

contained in its vertex.

In Chapter 6 we consider the vertices of simple modules for the symmet-

ric groups in prime characteristic p. The main theorem of the chapter

completes the classification of the vertices of simple FSn-modules labelled

by hook partitions. This is joint work with Susanne Danz.
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Notation

Throughout p denotes a prime number and Fp denotes the finite field

of size p. Unless otherwise stated F denotes an arbitrary field of prime

characteristic p. Given a finite group G, we denote by FG the usual group

algebra. All FG-modules are intended to be finite dimensional right

modules, homomorphisms between modules are composed from right to

left.

Throughout n denotes a positive integer, and Sn denotes the symmetric

group on the set {1, 2, . . . , n}. We write SA for the symmetric group on

the non-empty subset A ⊆ {1, 2, . . . , n}. If n ∈ N and pa is the highest

power of p dividing n then we write (n)p = pa and we say that the p-part

of n is pa.

If σ ∈ Sn is a permutation fixing exactly n− r elements of {1, 2, . . . , n}
then we say σ has support of size r and write | suppσ| = r. In partic-

ular, the support of σ is the subset of {1, 2, . . . , n} consisting of the r

elements that are not fixed by σ. We also use the obvious extension of

this definition to subgroups of Sn.

Finally we write λ ` n to indicate that λ is a partition of n, that is

λ = (λ1, λ2, . . . , λk) where λ1 ≥ λ2 ≥ . . . ≥ λk ≥ 1 and
∑k

i=1 λi = n .

6



Contents

1 Introduction and background results 9

1.1 Introduction and overview of main results . . . . . . . . . . . . . . . 9

1.1.1 Character theory . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.1.2 Modular representation theory . . . . . . . . . . . . . . . . . 11

1.2 Background on modular representation theory . . . . . . . . . . . . . 13

1.2.1 Relative projectivity and vertices . . . . . . . . . . . . . . . . 13

1.2.2 Block theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.2.3 The Brauer homomorphism . . . . . . . . . . . . . . . . . . . 17

1.2.4 Brauer homomorphism and p-permutation modules . . . . . . 19

1.3 Background on the representation theory of symmetric groups . . . . 23

1.3.1 The combinatorics of partitions and tableaux . . . . . . . . . 24

1.3.2 Young permutation modules and Specht modules . . . . . . . 26

1.3.3 The structure of Sylow p-subgroups of symmetric groups . . . 28

1.3.4 Blocks of symmetric groups . . . . . . . . . . . . . . . . . . . 31

1.3.5 The decomposition matrices of symmetric groups . . . . . . . 33

1.4 Young modules and Foulkes modules . . . . . . . . . . . . . . . . . . 34

1.4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

1.4.2 Definitions and preliminary results . . . . . . . . . . . . . . . 35

2 Foulkes’ Conjecture 37

2.1 Introduction and outline . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.2 More on the ordinary Foulkes character . . . . . . . . . . . . . . . . 39

2.3 The multiplicities of hook characters are zero . . . . . . . . . . . . . 42

2.4 A sufficient condition for zero multiplicity . . . . . . . . . . . . . . . 44

3 The decomposition matrix of the symmetric group 51

3.1 Introduction and outline . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.2 Twisted Foulkes modules . . . . . . . . . . . . . . . . . . . . . . . . 56

3.3 The local structure of H(2m;k) . . . . . . . . . . . . . . . . . . . . . . 60

3.4 Proofs of Theorem 3.1.1 and Proposition 3.1.3 . . . . . . . . . . . . . 69

7



3.5 Applications of Theorem 3.1.1 and Proposition 3.1.3 . . . . . . . . . 72

4 The modular structure of the Foulkes module 76

4.1 Introduction and outline . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.2 The indecomposable summands of H(an) . . . . . . . . . . . . . . . . 77

4.3 One corollary on decomposition numbers . . . . . . . . . . . . . . . . 89

5 The vertices of Specht modules 92

5.1 Introduction and outline . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.2 A lower bound on the vertices of Specht modules . . . . . . . . . . . 94

5.3 A family of Specht modules with maximal vertex . . . . . . . . . . . 98

6 Vertices of simple modules labelled by hook partitions 101

6.1 Introduction and outline . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.2 Exterior powers of the natural FSn-module. . . . . . . . . . . . . . . 103

6.3 The p-subgroups of symmetric groups . . . . . . . . . . . . . . . . . 104

6.3.1 Elementary abelian groups. . . . . . . . . . . . . . . . . . . . 104

6.4 The proof of Theorem 6.1.1 . . . . . . . . . . . . . . . . . . . . . . . 109

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

8



Chapter 1

Introduction and background

results

1.1 Introduction and overview of main results

Let G be a finite group, F a field and n a natural number. A representation of G over

F of dimension n is an homomorphism φ from G to the group GLn(F) of invertible

linear maps over an F-vector space of dimension n.

The representation theory of finite groups started with the mail exchange be-

tween Frobenius and Dedekind in Spring 1896. In the following years, many math-

ematicians such as Burnside, Schur, Noether and others laid the foundations of the

ordinary representation theory (i.e. F = C). Given a group G, a complex vector

space V and a representation

ρ : G −→ GL(V ),

we have that ρ is uniquely determined by its ordinary character

χ : G −→ C, χ(g) = tr(ρ(g)).

We denote by Irr(G) the set of all the irreducible characters of G. An important

consequence of the fundamental Maschke’s theorem is that every ordinary character

of G can be uniquely expressed as a linear combination of irreducible characters with

coefficients in N. The new ideas contained in this theory had a spectacular impact

on classical group theory. Problems considered not achievable were solved with the

new tools offered by representation and character theory. A famous example is
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Burnside’s paqb Theorem.

In 1935, Richard Brauer initiated the study of modular representation theory

(i.e. char(F) = p > 0). The situation, in this setting, is much more delicate in

respect to the ordinary case. A very important contribution of Brauer himself is

the introduction of Brauer characters. Unfortunately two different (non irreducible)

representations over the field F of prime characteristic p, can afford the same Brauer

character. More precisely, the Brauer character of an FG-module M determines

the simple composition factors of M and their multiplicities, but does not uniquely

identify the isomorphism class of M .

Symmetric groups have always played a central role in group theory. In repre-

sentation theory of finite groups they provide evidence for some of the important

modern local-global conjectures such as Alperin Weight conjecture, Donovan conjec-

ture, McKay conjecture and Broué’s abelian defect group conjecture. Moreover, the

importance of the study of the representations of symmetric groups transcends group

theory; in fact this topic has an important impact on the investigation of the rep-

resentation theory of related algebras like the Brauer algebra, the partition algebra,

the Hecke algebra of the symmetric group and the recently discovered Khovanov-

Lauda-Rouquier algebras (KLR algebras). Without adding any further detail about

the above listed objects, it is important to mention that these algebras are differ-

ent generalizations of the group algebra of the symmetric group, have a wide range

of applications in many distinct branches of mathematics (from combinatorics to

quantum mechanics) and many of the ideas and the sophisticated techniques used

to approach the study of them are already encoded in the classical representation

theory of the symmetric group.

Despite the numerous generalisations of the algebra of the symmetric group,

there are many fundamental open problems at the level of FSn. Motivated by some

of those questions, in this thesis we focus on the study of both the ordinary and the

modular representation theory of the symmetric groups.

1.1.1 Character theory

The ordinary representation theory of the symmetric group Sn was extensively stud-

ied since 1896. Remarkable results are now well known and largely understood. For

example, there is a well defined bijection between simple CSn-modules and parti-

tions of n. The simple modules are known as Specht modules and the Specht module

corresponding to the partition λ of n is denoted by Sλ. We write χλ for the character

afforded by Sλ. The hook length formula describes combinatorially the dimension of
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any simple CSn-module and the Murnaghan-Nakayama formula allows us to calcu-

late explicitly the character table. Unfortunately (or not!) we are far from having

an answer to all the possible questions. There are many interesting open problems

that seem definitely out of reach at the moment.

In this work, in particular in Chapter 2, we will focus our attention on the

long-standing open problem known as Foulkes’ Conjecture. Stated in 1950 by H.O.

Foulkes in [26] as a problem in invariant theory, significant advances towards a proof

of Foulkes’ Conjecture have been recently achieved via character theory of symmetric

groups. Apart from the obvious appeal of a sixty years old conjecture, the study

of this problem is interesting for the impact that the knowledge of the ordinary

structure of the Foulkes module has on other problems in different areas such as

modular representation theory and group theory.

We write φ(ab) for the ordinary character afforded by the Foulkes module of

parameters a and b (the reader may wish to refer ahead to Section 1.4 for the defini-

tion of the Foulkes module). The determination of the decomposition into irreducible

characters of φ(ab) is of central importance in the study of Foulkes’ Conjecture. Our

main contribution on these lines is Theorem 2.1.3. There we determine a wide subset

of the irreducible characters of the symmetric group appearing with zero multiplicity

in φ(ab). In particular we give sufficient conditions on the shape of a partition λ of

ab in order to have the inner product between the characters φ(ab) and χλ equal to

zero. Our results give a partial answer to Problem 9 of Stanley’s survey article on

positivity problems in algebraic combinatorics [72]. This chapter is based on the

paper [28].

1.1.2 Modular representation theory

The modular representation theory of the symmetric group is the main object of

this thesis. As already mentioned in the first general part of this introduction the

representation theory of a finite group over a field F of prime characteristic p is much

more complicated compared to the characteristic 0 setting. This is the case also for

the symmetric group Sn. Important and natural questions that have a complete

answer in the ordinary case, are obscure and apparently very hard to solve in the

modular setting. For example, while the hook length formula gives us a precise

combinatorial way to compute the dimension of any given simple CSn-module, the

dimension of the simple FSn-modules is in general not known. In Chapters 3, 4, 5

and 6 we will study various aspects of the modular structure of important families

of modules for the group algebra FSn.
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Chapter 3 is devoted to the long standing and fundamental open problem of

determining the decomposition matrix of the symmetric group. As explained in full

detail in Section 1.3.5, the decomposition matrix of the symmetric group records

the multiplicities of the simple FSn-modules as composition factors of the Specht

modules Sλ defined over the field F.

Our main contribution in the study of this problem is Theorem 3.1.1, where we

completely describe a number of columns of the decomposition matrix labelled by

partitions of arbitrarily high p-weight. One of the key tools used in the proof of

Theorem 3.1.1 was the determination of the vertices of indecomposable summands

of some twists by the sign character of the family of Foulkes modules of parameters

2 and n (Theorem 3.1.2). For a detailed account of the definition and the basic

properties of vertices of indecomposable modules we refer the reader to Section

1.2.1. This chapter is based on the paper [29].

Motivated by the preliminary and specific result obtained in Theorem 3.1.2, in

Chapter 4 we study the more general problem of determining the possible vertices

of the family of the indecomposable summands of Foulkes modules H(an). In par-

ticular in Theorem 4.1.1 we are able to completely describe both vertices and Green

correspondents of arbitrary indecomposable direct summands of H(an), whenever

a < p 6 n. In this more general setting we are also able to draw corollaries on

the structure of the decomposition matrix of the symmetric group. In particular in

Theorem 4.1.2 we give upper bounds on some decomposition numbers in term of the

multiplicities of irreducible ordinary characters in the decomposition of the ordinary

Foulkes character φ(an). This chapter is based on the paper [31].

In Chapter 5, we study the vertices of indecomposable Specht modules defined

over F. As explained in the introduction of the chapter, this is an important open

problem in the representation theory of the symmetric group, largely studied by

mathematicians in the last fifty years.

In Theorem 5.1.2 we give a lower bound on the vertices of indecomposable Specht

modules. More precisely, for any given indecomposable Specht module Sλ we de-

termine a large subgroup necessarily contained in a vertex of Sλ. Theorem 5.1.2

generalizes an earlier result due to Wildon in [77].

We conclude Chapter 5 by describing a family of Specht modules with maximal

possible vertex. In particular, in Theorem 5.1.3 we give conditions on a partition λ

in order to have the vertices of Sλ equal to the defect groups of the block where Sλ

lies. The first part of the chapter is based on the paper [30].
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As mentioned above, a very natural problem that lacks a satisfactory answer in

modular representation theory of symmetric groups is to determine the dimensions

of simple modules. As we will clarify in Section 1.2.1 below, the vertices of a simple

module D are local invariants encoding interesting information about the p-part of

the F-linear dimension of D. Motivated by this open problem, in Chapter 6 we focus

our attention on the study of the vertices of simple FSn-modules. Unfortunately a

characterisation of the vertices of the full family of simple modules seems to be a

very hard problem. Therefore we focus on the description of a more approachable

subfamily, namely the one composed by all the simple modules labelled by hook

partitions. As explained in the introduction of the chapter this family was largely

studied in the last fifteen years. Given a natural number n and a hook partition

λ = (n−r, 1r), the vertices of the simple FSn-module Dλ were already known except

when p > 3, r = p − 1 and n is congruent to p modulo p2. In Theorem 6.1.1 we

deal with this last unknown case. In particular we prove that if r = p− 1 and n is

congruent to p modulo p2 then the vertices of Dλ are the Sylow p-subgroups of Sn.

This is the last piece of information needed to completely classify vertices of simple

modules labelled by hook partitions. A compact statement of this classification is

given in Theorem 6.1.3. This chapter is based on the paper [14]

1.2 Background on modular representation theory

In this section we summarize without proofs some of the main results in the area of

modular representation theory of finite groups. We refer the reader to [1], [2] and

[62] for a complete and extensive account of the theory. Throughout this section we

let F be a field of prime characteristic p > 0, G a finite group and we denote by FG
the group algebra of G over F.

1.2.1 Relative projectivity and vertices

An FG-module U is a free module if it is isomorphic to a finite direct sum of copies

of the regular representation FG naturally defined by linear extension of the action

of G on itself by right multiplication. If

U ∼= FG⊕ · · · ⊕ FG︸ ︷︷ ︸
r

,

then we say that U is free of rank r. An FG-module V is a projective module if it is

a direct summand of a free module. In particular an FG-module is indecomposable

and projective if and only if it is an indecomposable direct summand of the regular
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module FG. The following theorem is a fundamental characterization of projective

modules (see [1, Section 5, Theorem 2]).

Theorem 1.2.1 Let U be an FG-module. The following are equivalent:

1. U is a projective module.

2. If φ is a surjective FG-homomorphism of the FG-module V onto U then the

kernel of φ is a direct summand of V .

3. If φ is a surjective FG-homomorphism of the FG-module V onto the FG-module

W and ψ is an FG-homomorphism from U to W then there exists an FG-

homomorphism ζ of U to V such that φζ = ψ.

Let H be a subgroup of G. An FG-module U is called relatively H-projective if it

is a direct summand of IndG(ResH U), namely the induction to G of the restriction

to H of U . This is a generalization of the notion of projectivity. In fact it is not too

difficult to realize that if H = 1 then U is relatively 1-projective if and only if it is

projective. The following proposition (see [1, Section 9, Proposition 1]) characterizes

relatively H-projective modules and it is an analogue of Theorem 1.2.1.

Proposition 1.2.2 Let U be an FG-module and let H be a subgroup of G. The

following are equivalent:

1. U is a relatively H-projective module.

2. If φ is a surjective FG-homomorphism of the FG-module V onto U that splits

as an FH-homomorphism then the kernel of φ is a direct summand of V .

3. If φ is a surjective FG-homomorphism of the FG-module V onto the FG-

module W and ψ is an FG-homomorphism of U to W then there exists an

FG-homomorphism ζ from U to V such that φζ = ψ, provided that there is an

FH-homomorphism from U to V with this property.

A natural question arising at this point is: given an FG-module U , for which

subgroups H of G is U relatively H-projective? The lemma below (see [1, Section

9]) is an important first step towards an answer.

Lemma 1.2.3 Let H be a subgroup of G and let M be a relatively H-projective

FG-module. Let P be a Sylow p-subgroup of H. Then M is relatively P -projective.

Let now V be an indecomposable FG-module. A subgroup Q of G that is minimal

with respect to the condition that V is relatively Q-projective is called a vertex of

V . Introduced by J. A. Green in 1959 [33], vertices of indecomposable modules over
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modular group algebras have proved to be important invariants linking the global

and local representation theory of finite groups over fields of positive characteristic.

Given a finite group G and a field F of characteristic p > 0, by Green’s result,

the vertices of every indecomposable FG-module form a G-conjugacy class of p-

subgroups of G. Moreover, vertices of simple FG-modules are known to satisfy

a number of very restrictive properties, most notably in consequence of Knörr’s

Theorem [52] below. We refer the reader to Section 1.2.2 for the definition of blocks

and defect groups of a block of the group algebra FG.

Theorem 1.2.4 Let B be a block of the group algebra FG and let S be a simple

FG-module with vertex Q lying in B. If D is a defect group of B containing Q, then

CD(Q) 6 Q 6 D.

The latter, in particular, implies that vertices of simple FG-modules lying in

blocks with abelian defect groups have precisely these defect groups as their vertices.

Despite this result, the precise structure of vertices of simple FG-modules is still

poorly understood, even for very concrete groups and modules.

Since an indecomposable module is projective if and only if its vertex is the

trivial subgroup we have that, roughly speaking, the vertex of an indecomposable

module V measures the distance of the module V from being projective.

If V has vertex Q and U is an indecomposable FQ-module such that V is a direct

summand of IndG(U), then we call U a source of V . The source U of V is unique

up to conjugation in NG(Q). A fundamental result in the theory of vertices is the

following theorem.

Theorem 1.2.5 (Green correspondence) There is a one-to-one correspondence

between isomorphism classes of indecomposable FG-modules with vertex Q and iso-

morphism classes of indecomposable FNG(Q)-modules with vertex Q. Moreover, if

V is an indecomposable FG-module with vertex Q then the Green correspondent

U of V is the unique indecomposable summand of ResNG(Q)(V ) having vertex Q.

Equivalently V is the unique summand of IndG U having vertex Q.

We conclude the section by stating some well known results that we will exten-

sively use later on in the thesis.

Theorem 1.2.6 Let Q be a subgroup of the p-group P . If U is an absolutely inde-

composable FQ-module then IndPQ(U) is absolutely indecomposable with vertex Q.

Proof: See Theorem 8 in [33]. 2

An important consequence of theorem 1.2.6 is the following Theorem that relates

the F-linear dimension of an indecomposable module to the size of its vertex.
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Theorem 1.2.7 Let V be an indecomposable FG-module. Let P be a Sylow p-

subgroup of G containing a vertex Q of V . Then

|P : Q|
∣∣ dimF(V ).

Theorem 1.2.7 is a very important tool that will be frequently used in Chapters

5 and 6.

1.2.2 Block theory

In this paragraph we recall the main definitions and some of the basic properties

concerning the block theory of group algebras. As usual let G be a finite group and

let F a field of prime characteristic p such that |G| is divisible by p. The group

algebra FG can be considered as an F(G × G)-module via the action defined by

a(g, h) = g−1ah, for a, g and h in G. We call p-blocks of G the indecomposable

summands B1, . . . , Bk of the F(G×G)-module FG. Equivalently

FG = B1 ⊕ · · · ⊕Bk,

is the unique decomposition of the algebra FG as the direct sum of indecomposable

subalgebras. If V is an indecomposable FG-module, we say that V lies in the p-block

Bi if V Bi = V and V Bj = 0 for all j 6= i.

Theorem 1.2.8 If B is a p-block of FG then B has vertex, as an F(G×G)-module,

of the form

δ(D) = {(d, d) | d ∈ D},

where D is a p-subgroup of G.

Proof: See [1, Section 13, Theorem 4] 2

It is not too difficult to notice that the vertices of a p-block B form a conjugacy

class of p-subgroups of G. These are called the defect groups of G. If D is a defect

group of a block B and has order pd then B is said to be of defect d. The following

theorem (see [1, Section 13, Theorem 5]) sheds light on the relation between vertices

of indecomposable modules lying in B and B itself.

Theorem 1.2.9 Let V be an indecomposable FG-module lying in a p-block B. If Q

is a vertex of V then there exists a defect group D of B such that Q 6 D.

In fact by [1, Section 14, Corollary 5], for every p-block B there exists an indecom-

posable module V lying in B having vertex equal to the defect group D of B.
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The Brauer correspondence relates the p-blocks of FG to the p-blocks of sub-

groups of G. We define this important tool below.

Definition 1.2.10 Let H be a subgroup of G, b a p-block of H and B a p-block of

G. We say that B corresponds to b and write B = bG if b, as an F(H ×H)-module,

is a direct summand of the restriction of B to H ×H and if B is the only block of

G with this property.

The following proposition underlines the connection between Brauer correspon-

dence for blocks and Green correspondence for indecomposable modules. Again

global and local information are closely related.

Proposition 1.2.11 Let V be an indecomposable FG-module with vertex Q lying

in the p-block B of G. Let U be the Green correspondent of V , lying in the block b

of NG(Q). Then B = bG.

1.2.3 The Brauer homomorphism

Let V be an FG-module. Given a p-subgroup Q 6 G we denote by V Q the set

V Q = {v ∈ V : vg = v for all g ∈ Q}

of Q-fixed elements. It is easy to see that V Q is an FNG(Q)-module on which Q

acts trivially. For a proper subgroup R of Q, the relative trace map TrQR : V R → V Q

is the linear map defined by

TrQR(v) =
∑
g∈T

vg,

where the sum is over a set T of right coset representatives for R in Q. We observe

that

TrQ(V ) :=
∑
R<Q

TrQR(V R)

is an FNG(Q)-module contained in V Q. Moreover, for all R < P < Q we have that

TrQR(V R) = TrQP (TrPR(V R)).

Therefore

TrQ(V ) =
∑
P∈ΩQ

TrQP (V P ),

where ΩQ is the set consisting of all maximal subgroups of Q. If P ∈ ΩQ then every

element g ∈ QrP has the property that {1, g, g2, . . . , gp−1} is a set of representatives
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of the right cosets of P in Q; in particular, we get TrQP (v) = v + vg + · · · + vgp−1,

for v ∈ V P .

The Brauer quotient of V with respect to Q is the FNG(Q)-module V (Q) defined

by

V (Q) = V Q/
∑
R<Q

TrQR(V R).

Lemma 1.2.12 Let U and V be two FG-modules and let P be a p-subgroup of G,

then

(U ⊕ V )(P ) ∼= U(P )⊕ V (P )

as F(NG(P ))-modules.

Proof: It is easy to observe that (U ⊕V )P = UP ⊕V P . Moreover, if R is a maximal

subgroup of P and {1, g, g2, . . . , gp−1} is a set of representatives for the cosets of R

in P , then

TrPR((U ⊕ V )R) =
{ p−1∑
i=0

(u, v)gi | (u, v) ∈ UR ⊕ V R
}

= TrPR(UR)⊕ TrPR(V R).

Hence (U ⊕ V )(P ) ∼= U(P )⊕ V (P ). 2

The next proposition (see [9, (1.3)]) is fundamental for many arguments used

later in this thesis.

Proposition 1.2.13 If V is an indecomposable FG-module and Q is a p-subgroup

of G, then V (Q) 6= 0 implies that Q is contained in a vertex of V .

In the following example we show that the converse of Proposition 1.2.13 is not

true in general.

Example 1.2.14 Let p be a prime, let G be the cyclic group of order p2 and let σ

be a generator of G. Let J be the FpG-submodule of FpG defined by

J =
〈
σi − 1 | i ∈ {1, 2, . . . , p2 − 1}

〉
Fp ,

where the action of FpG is defined as the natural linear extension of the action of

G on itself by right multiplication. Since J is (p2 − 1)-dimensional, Theorem 1.2.7

implies that G is the vertex of J . It is easy to see that JG is a 1-dimensional module

linearly generated by v = 1 + σ + · · · + σp
2−1. Consider now the element u defined

by

u =

p−1∑
i=0

σip.
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Clearly u ∈ J 〈σp〉 and we have that

v = TrG〈σp〉(u).

Therefore we conclude that J(G) = 0.

The following proposition will be very useful for proving Theorem 6.1.1 in Chap-

ter 6. The proof is straightforward, and is thus left to the reader.

Proposition 1.2.15 Let G be a finite group, let V be an FG-module with F-basis

B, and let P be a p-subgroup of G. Suppose that there is some b0 ∈ B satisfying the

following properties:

(i) b0 ∈ V P ;

(ii) whenever Q <max P , u ∈ V Q and TrPQ(u) =
∑

b∈B ab(u)b, for ab(u) ∈ F,

one has ab0(u) = 0.

Then b0 + TrP (V ) ∈ V (P ) r {0}, and therefore V (P ) 6= 0.

1.2.4 Brauer homomorphism and p-permutation modules

In this subsection we summarize the principal results from [9]. We start by defining

p-permutation modules and describing some of their basic properties. In particular

we focus on the behaviour of this family of modules under the Brauer map defined

in Section 1.2.3. The results presented in this section will be used extensively in

Chapters 3 and 4.

Let G be a finite group. An FG-module V is said to be a p-permutation module

if whenever P is a p-subgroup of G, there exists an F-basis B of V whose elements

are permuted by P . In this case we say that B is a p-permutation basis of V with

respect to P , and write V = 〈B〉. This definition immediately implies that the direct

sum of p-permutation modules is a p-permutation module. It is also easily seen that

if V has a p-permutation basis with respect to a Sylow p-subgroup P of G then

V is a p-permutation module. It is enough to observe that if Q is another Sylow

p-subgroup of G and g is an element of G such that Q = P g, then the set B′ defined

by

B′ = {bg | b ∈ B}

is a p-permutation basis for V with respect to Q.

The following proposition characterizing p-permutation modules is proved in [9,

(0.4)]. Notice that if V and W are FG-modules we write V | W to indicate that V

is isomorphic to a direct summand of W .

19



Proposition 1.2.16 An indecomposable FG-module V is a p-permutation module

if and only if there exists a p-subgroup P of G such that V | IndGP (F).

Thus an indecomposable FG-module is a p-permutation module if and only if

it has trivial source. It follows that the restriction or induction of a p-permutation

module is still p-permutation, as is any summand of a p-permutation module.

Lemma 1.2.17 Let F be a field of prime characteristic p. Let G be a finite group

and let K and H be subgroups of G such that K 6 H 6 G. Suppose that p does not

divide |H : K|. Then IndGH(F) is a direct summand of IndGK(F).

Proof: From the hypothesis we deduce that a Sylow p-subgroup of H is contained in

K. Therefore the trivial FH-module FH is relatively K-projective, by Lemma 1.2.3.

Hence

FH | IndHK(ResHK(FH)) = IndHK(FK).

The statement now follows by inducing up to G. 2

The following theorem is proved in [9, 3.2(1)] and is the first and most impor-

tant evidence of the nice behaviour of p-permutation modules under the Brauer

homomorphism.

Theorem 1.2.18 Let V be an indecomposable p-permutation FG-module and let Q

be a vertex of V . Let R be a p-subgroup of G. Then V (R) 6= 0 if and only if R ≤ Qg

for some g ∈ G.

If V is an FG-module with p-permutation basis B with respect to a Sylow p-

subgroup P of G and R ≤ P , then taking for each orbit of R on B the sum of the

elements in that orbit, we obtain a basis for V R. The sums over vectors lying in

orbits of size p or more are relative traces from proper subgroups of R, and so V (R)

is equal to the F-span of

{v + TrR(V ) | v ∈ BR},

where BR = {v ∈ B |vg = v for all g ∈ R}. Notice that, to ease the notation we will

sometimes equivalently denote BR by B(R). Thus Theorem 1.2.18 has the following

corollary, which we shall use throughout Chapters 3 and 4.

Corollary 1.2.19 Let V be a p-permutation FG-module with p-permutation basis

B with respect to a Sylow p-subgroup P of G. Let R ≤ P . The FNG(R)-module

V (R) is equal to 〈b+TrR(V ) | b ∈ BR〉 and V has an indecomposable summand with

a vertex containing R if and only if BR 6= ∅.

The next result [9, 3.4] explains what is now known as Broué correspondence.
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Theorem 1.2.20 An indecomposable p-permutation module V has vertex Q if and

only if V (Q) is a projective FNG(Q)/Q-module. Furthermore

• The Brauer functor sending V to V (Q) is a bijection between the set of in-

decomposable p-permutation FG-modules with vertex Q and the set of inde-

composable projective F(NG(Q)/Q)-modules. Regarded as an FNG(Q)-module,

V (Q) is the Green correspondent of V .

• Let V be a p-permutation FG-module and E an indecomposable projective

F(NG(Q)/Q)-module. Then E is a direct summand of V (Q) if and only if

its correspondent U (i.e. the FG-module U such that U(Q) ∼= E) is a direct

summand of V .

Some important consequences that we will use extensively in the thesis are stated

below.

Corollary 1.2.21 Let U be a p-permutation FG-module and let Q be a p-subgroup

of G. Then U(Q) is a p-permutation FNG(Q)-module.

Proof: Let R be a Sylow p-subgroup of NG(Q) and let P be a Sylow p-subgroup

of G containing R. Denote by BP a p-permutation basis of U with respect to P .

By Corollary 1.2.19 we have that the FNG(Q)-module U(Q) has linear basis BP (Q).

It is easy to observe that BP (Q) is a p-permutation basis with respect to R. This

completes the proof. 2

Corollary 1.2.22 Let G and H be two finite groups and let C be a subgroup of

G. Let U be an indecomposable p-permutation FG-module, V be an indecomposable

p-permutation FH-module and W1, . . . ,Wk be indecomposable FC-modules. Then

• If ResC(U) = W1 ⊕ · · · ⊕ Wk, then there is a vertex R of U and vertices

Q1, . . . , Qk of W1, . . . ,Wk respectively, such that Qi 6 R for all i ∈ {1, 2, . . . , k}.

• The indecomposable F(G×H)-module U � V has a vertex containing Q× P ,

where Q and P are vertices of U and V respectively.

Lemma 1.2.23 Let Q and R be p-subgroups of a finite group G and let U be a p-

permutation FG-module. Let K = NG(R). If R is normal in Q then ResNK(Q) U(Q)

and
(
U(R)

)
(Q) are isomorphic as FNK(Q)-modules.

Proof: Let P be a Sylow p-subgroup of NG(R) containing Q and let B be a p-

permutation basis for U with respect to P . By Corollary 1.2.19 we have U(Q) =

〈B(Q)〉 as an FNG(Q)-module. In particular

ResNK(Q)(U(Q)) = 〈B(Q)〉
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as an FNK(Q)-module. On the other hand U(R) = 〈B(R)〉 as an FNG(R)-module.

Now B(R) is a p-permutation basis for U(R) with respect to P . Since P contains

Q we have
(
U(R)

)
(Q) = 〈B(R)〉(Q) = 〈(B(R))(Q)〉 = 〈B(Q)〉, as FNK(Q)-modules,

as required. 2

Lemma 1.2.24 Let G and H be finite groups and let U and U ′ be p-permutation

modules for FG and FH, respectively. If Q ≤ G is a p-subgroup then

(U � U ′)(Q) = U(Q)� U ′,

where on the left-hand side Q is regarded as a subgroup of G×H in the obvious way.

Proof: This follows easily from Corollary 1.2.19 by taking p-permutation bases for

U and U ′. 2

Proposition 1.2.25 Let M be a p-permutation FG-module and P be a p-subgroup

of G. If M(P ) is an indecomposable FNG(P )-module then M has a unique inde-

composable summand U such that P is contained in a vertex of U .

Proof: Suppose by contradiction that there exist V1 and V2 indecomposable sum-

mands of M with vertices Q1 and Q2 respectively, such that P 6 Q1 ∩Q2. Then by

Lemma 1.2.12 we have that

V1(P )⊕ V2(P ) | M(P ).

This contradicts the indecomposability of M(P ) since by Theorem 1.2.20 we have

that Vi(P ) 6= 0 for i ∈ {1, 2}. 2

Lemma 1.2.26 Let M be an indecomposable p-permutation module and let P 6 G

be a vertex of M . Let Q be a subgroup of P . Suppose that M lies in the block B of

FG. If M(Q), considered as an FNG(Q)-module, has a summand in the block b of

FNG(Q), then bG is defined and bG = B.

Proof: See [77, Lemma 7.4]. 2

In Chapters 3 and 4 we will need the following well known Scott’s lifting theorem

for p-permutation modules (see for instance [2, Theorem 3.11.3]). We denote by Zp
the ring of p-adic integers. If M is an FpG-permutation module with permutation

basis B, we denote by MZp the canonical lift of M defined by

MZp = 〈b | b ∈ B〉Zp .
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Theorem 1.2.27 If U is a direct summand of a permutation FpG-module M then

there is a ZpG-module UZp, unique up to isomorphism, such that UZp is a direct

summand of MZp and UZp ⊗Zp Fp ∼= U .

An argument that we shall use several times is stated in the lemma below:

Lemma 1.2.28 If P is a p-group and Q is a subgroup of P then the permutation

module IndPQ(F) is indecomposable, with vertex Q. 2

Proof: This is a straightforward application of Proposition 1.2.6. 2

We conclude the section by recalling the definition and the basic properties of

Scott modules. We refer the reader to [9, Section 2] for a more detailed account.

Given a subgroup H of G there exists a unique indecomposable summand U of the

permutation module IndGH(F) such that the trivial FG-module is a submodule of U .

This can be seen by observing that

dimF(HomFG(F, IndGH(F)) = dimF(HomFH(F,F)) = 1,

therefore the multiplicity of the trivial FG-module as a direct summand of the socle

of IndGH(F) is equal to 1. We say that U is the Scott module of G associated to H and

we denote it by Sc(G,H). The following theorem summarizes the main properties

of Scott modules (see [9, Theorems (2.1) and (3.2)]).

Theorem 1.2.29 Let G be a finite group, H a subgroup of G and P a Sylow p-

subgroup of H. Then the Scott module Sc(G,P ) is isomorphic to Sc(G,H) and is

uniquely determined up to isomorphism among the summands of IndGH(F) by either

of the following properties:

• The trivial FG-module is isomorphic to a submodule of Sc(G,P ).

• The trivial FG-module is isomorphic to a quotient of Sc(G,P ).

Moreover, Sc(G,P ) has vertex P and the Broué correspondent (Sc(G,P ))(P ) is

isomorphic to the projective cover of the trivial F(NG(P )/P )-module.

1.3 Background on the representation theory of sym-

metric groups

In this section we collect the main results in both the ordinary and the modular

representation theory of the symmetric group.

23



1.3.1 The combinatorics of partitions and tableaux

A composition ` of a natural number n is a finite sequence of non-negative integers

` = (`1, . . . , `k), such that
∑k

i=1 `i = n. The non-negative integers `1, `2, . . . , `k are

called the parts of the composition. For example ` = (2, 3, 1, 1, 0) is a composition of

7. A partition λ of a natural number n (denoted by λ ` n) is a composition of n whose

parts are strictly positive and non-increasingly ordered. For example λ = (3, 2, 1, 1)

is a partition of 7 and is called the underlying partition of ` = (2, 3, 1, 1, 0).

Let λ = (λ1, . . . , λk) be a partition of a natural number n. For all i ∈ {1, . . . , λ1}
denote by λ′i the natural number defined by

λ′i = |{λj | λj > i}|.

Let s = λ1 and define λ′ = (λ′1, . . . , λ
′
s) to be conjugate partition of λ. Given

µ = (µ1, . . . , µt) a partition of m, we say that λ is a subpartition of µ, and write

λ ⊆ µ, if k 6 t and λj 6 µj , for all j such that 1 6 j 6 k.

There is a natural partial order on the set of partitions of a positive integer n

known as the dominance order. Given λ, µ ` n, denote by p(λ) and p(µ) the number

of parts of λ and µ respectively. We say λ dominates µ, and write λ� µ, if

j∑
i=1

λi >
j∑
i=1

µi

for all j such that 1 ≤ j ≤ min
(
p(λ), p(µ)

)
.

The Young diagram [λ] of λ is an array of boxes, left aligned, having λj boxes

in the jth-row for all j ∈ {1, . . . , k}.
A λ-tableau is an assignment of the numbers {1, 2, . . . , n} to the boxes of the

Young diagram of λ such that no number appears twice. We will denote by t(i, j)

the number assigned to the box of t in row i and column j. Given a λ-tableau t, the

transposed tableau of t is the λ′-tableau obtained by assigning to the box in row i

and column j the value t(j, i). We will denote by t′ the transposed tableau of t.

The symmetric group Sn acts naturally on the set of λ-tableaux by permuting

the entries within the boxes. We call row-standard any λ-tableau having the entries

of each row ordered increasingly from left to right. Similarly a λ-tableau is called

column-standard if the entries of each column are increasingly ordered from top to

bottom. When a λ-tableau is both row-standard and column-standard it is called

standard. Given a λ-tableau v we will denote by v the row-standard tableau obtained

from v by sorting its rows in increasing order. We will call v the row-straightening

of v.
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For example, if λ = (3, 2, 1, 1) then in Figure 1.1 below are represented a λ-tableau

u and the row-straightening u of u.

3

5

6

7

1

4

2

u =

1

4

6

7

2

5

3

u =

Figure 1.1: Two (3, 2, 1, 1)-tableaux

There is a fundamental ordering on the set of standard λ-tableaux known (again)

as the dominance order. In order to define it we must define the dominance order

on compositions. Let ` = (`1, . . . , `k) and b = (b1, . . . , bs) be compositions of the

natural number n. We say that ` dominates b, and write `� b, if

r∑
i=1

`i >
r∑
i=1

bi,

for all r ∈ N. (If r is larger than the number of parts of ` or b then take the

corresponding part to be 0). If t is a standard tableau, then we denote by com(t6j)

the composition recording the number of entries 6 j in each row of t. For example

if t = u, where u is as in Figure 1.1, then com(t67) = (3, 2, 1, 1) and com(t64) =

(3, 1, 0, 0). Let λ be a partition of n. If t and v are standard λ-tableaux then we say

that t dominates v if

com(t6j) � com(v6j),

for all j with 1 6 j 6 n. Notice, for example, that the tableau u in Figure 1.1 is the

most dominant (3, 2, 1, 1)-standard tableau. Following the usual convention, we will

re-adopt the � symbol for dominance order on standard tableaux.

We conclude the section by defining a special subclass of partitions of a natural

number n that we will consider extensively in the rest of the thesis, in particular

in Chapters 2 and 6. Let k be a natural number smaller than n and let λ be the

partition defined by

λ = (n− k, 1, . . . , 1︸ ︷︷ ︸
k

) = (n− k, 1k).

We realize that the Young diagram [λ] has the shape of a hook. For this reason λ is

called a hook partition.
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1.3.2 Young permutation modules and Specht modules

We turn now to a brief account of the theory of Specht modules for Sn. We refer

the reader to [39] for further details and examples. We start by introducing the

following definition. Given a partition λ = (λ1, . . . , λk) of n we denote by Sλ the

subgroup of Sn defined by

Sλ = Sλ1 × · · · × Sλk .

The subgroups Sλ are called Young subgroups of Sn for all λ partitions of n.

We say that two λ-tableaux t and u are row-equivalent if the entries in each

row of t are the same as the entries in the corresponding row of u (for instance

the tableaux u and u in Figure 1.1 are row equivalent). It is easy to see that this

defines an equivalence relation on the set of λ-tableaux. We will denote by {t} the

row-equivalence class of t and we will say that {t} is a λ-tabloid. The symmetric

group Sn acts naturally on the set of λ-tabloids, therefore we can define Mλ to be

the Sn-permutation module generated as a vector space by the set of all λ-tabloids.

The module Mλ is called a Young permutation module. Since Sn acts transitively

on the set of λ-tabloids and since the stabilizer in Sn of a fixed λ-tabloid {t} is

conjugate to the Young subgroup Sλ we have the following important isomorphism

of FSn-modules:

Mλ ∼= IndSnSλ(F), for all λ ` n.

Given any λ-tableau t we denote by C(t) the column stabilizer of t, namely the

subgroup of Sn that fixes the columns of t setwise. The λ-polytabloid corresponding

to the λ-tableau t is the following element of Mλ:

et =
∑
g∈C(t)

sgn(g){t}g.

The Specht module Sλ is the submodule of Mλ linearly generated by the poly-

tabloids. When considered over the field of complex numbers, the family of Specht

modules

{Sλ | λ ` n},

is a complete set of non-isomorphic simple CSn-modules. For every partition λ of n

we denote by πλ and χλ the ordinary characters afforded by Mλ and Sλ respectively.

Notice that for all h ∈ Sn we have that eth = eth for any given λ-tableau t.

Moreover if g ∈ C(t) then it is easy to observe that etg = sgn(g)et. Finally we will

say that et is a standard polytabloid if t is a standard λ-tableau. One of the main

theorems about the structure of Specht modules is the following Standard Basis
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Theorem proved by James in [39]. Here we present it in its stronger version with

the contribution made by Wildon in [77, Proposition 4.1].

Theorem 1.3.1 The set of standard λ-polytabloids is a Z-basis for the Specht mod-

ule Sλ defined over Z. Moreover if v is a column-standard λ-tableau then its row-

straightening v is a standard λ-tableau and

ev = ev + x,

where x is a Z-linear combination of standard λ-polytabloids et such that v . t.

In particular we observe that the dimension of the Specht module Sλ equals

the number of standard λ-tableaux. One of the nicest results in the representation

theory of symmetric groups is the hook length formula. The hook length formula is

a closed combinatorial formula which gives the dimensions of Specht modules. We

need to introduce a bit of notation in order to state the related theorem. Let b be a

box of the Young diagram of λ. We denote by Hb the hook on b, namely the subset

of boxes of [λ] lying either to the right or below b, including b itself. We define the

hook length hb to be the number of boxes in Hb.

Theorem 1.3.2 Let λ be a partition of n, then

dim(Sλ) =
n!∏

b∈[λ] hb
.

For example the dimension of S(3,2,1) is 6!
5·32 = 16.

We present below some fundamental results concerning the ordinary representa-

tion theory and the character theory of symmetric groups. We refer the reader to

[39] for the proofs of such well known theorems.

The theorem below gives important information concerning the decomposition

of Young permutation modules into irreducible Specht modules.

Theorem 1.3.3 Let λ and µ be two partitions of n. If the CSn-module Sλ is a

direct summand of Mµ then λ dominates µ.

Theorem 1.3.4 (Branching Theorem) Let µ be a partition of n. Let Λ be the

set of all the partitions of n + 1 corresponding to the Young diagrams obtained

by adding a box to the Young diagram of µ. Then the induced CSn+1-module

IndSn+1(Sµ) decomposes as follows:

IndSn+1(Sµ) =
⊕
λ∈Λ

Sλ.
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The following theorems will be extensively used in Chapter 2. They are both

straightforward corollaries of the Littlewood–Richardson rule, as stated in [39, Chap-

ter 16].

Theorem 1.3.5 Let k be a natural number such that k < n and let λ be a partition

of n−k. If L is the set of all the partitions of n corresponding to the Young diagrams

obtained by adding k boxes, no two in the same column, to the Young diagram of λ,

then

(χλ × 1Sk)
xSn
Sn−k×Sk

=
∑
µ∈L

χµ.

Theorem 1.3.6 Let k be a natural number such that k < n and let λ be a partition

of n − k. Denote by sgnk the sign character of the symmetric group Sk (i.e. the

character afforded by the Specht module S(1k)). If K is the set of all the partitions

of n corresponding to the Young diagrams obtained by adding k boxes, no two in the

same row, to the Young diagram of λ, then

(χλ × sgnk)
xSn
Sn−k×Sk

=
∑
µ∈K

χµ.

Theorem 1.3.7 Let k be a natural number such that k < n, let λ be a partition of

n− k, let µ be a partition of k and let ν be a partition of n. If

〈
(χλ × χµ)

xSn , χν〉 6= 0

then λ, µ ⊆ ν, and p(ν) 6 p(λ) + p(µ).

1.3.3 The structure of Sylow p-subgroups of symmetric groups

We pause for a moment the study of the representation theory to recall the structure

of the Sylow p-subgroups of symmetric groups, as described for example in [45,

Chapter 4]. Then, after fixing a convenient notation we prove a number of properties

of the Sylow p-subgroups of Sn and their subgroups that we will use in Chapters 3, 4

and 6. In particular, in Section 6.3 we will also extend some of the results presented

in this section.

Let Pp be the cyclic group 〈(1, 2, . . . , p)〉 6 Sp of order p. Let further P1 := {1}
and, for d > 1, we set

Ppd+1 := Ppd o Pp := {(σ1, . . . , σp;π) : σ1, . . . , σp ∈ Ppd , π ∈ Pp} .
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Recall that, for d > 2, the multiplication in Ppd o Pp is given by

(σ1, . . . , σp;π)(σ′1, . . . , σ
′
p;π
′) = (σ1σ

′
(1)π, . . . , σpσ

′
(p)π;ππ′),

for (σ1, . . . , σp;π), (σ′1, . . . , σ
′
p;π
′) ∈ Ppd .

We shall always identify Ppd with a subgroup of Spd in the usual way. That

is, (σ1, . . . , σp;π) ∈ Ppd is identified with the element (σ1, . . . , σp;π) ∈ Spd that is

defined as follows: if j ∈ {1, . . . , pd} is such that j = b + pd−1(a − 1), for some

a ∈ {1, . . . , p} and some b ∈ {1, . . . , pd−1} then

(j)(σ1, . . . , σp;π) := (b)σa + pd−1((a)π − 1).

Via this identification, Ppd is generated by the elements g1, . . . , gd ∈ Spd , where

gj :=

pj−1∏
k=1

(k, k + pj−1, k + 2pj−1, . . . , k + (p− 1)pj−1) (1 6 j 6 d) . (1.1)

With this notation, we have Pp 6 Pp2 6 · · · 6 Ppd−1 6 Ppd , and the base group of

the wreath product Ppd−1 o Pp has the form

p−1∏
i=0

g−id · Ppd−1 · gid.

In particular, we can write Ppd as

Ppd = (Ppd−1 × P gd
pd−1 × · · · × P

(gp−1
d )

pd−1 ) o 〈gd〉 .

Since the order of a Sylow p-subgroup of Spd equals the p-part of pd!, an easy

inductive argument is now enough to show that Ppd is a Sylow p-subgroup of Spd ,

for all d ∈ N.

Definition 1.3.8 Let g1, . . . , gd be the generators of Ppd fixed in (1.1). For j ∈
{1, . . . , d− 1}, let

gj,j+1 :=

p−1∏
i=0

g−ij+1gjg
i
j+1,

and for l ∈ {1, . . . , d− j − 1}, we inductively set

gj,j+1,...,j+l+1 :=

p−1∏
i=0

g−ij+l+1 · gj,j+1,...,j+l · gij+l+1 .
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To ease the notation we denote the element g1,2,...,j by zj for all j ∈ {1, 2, . . . , d}.
In Section 6.3 we will extensively describe these elements. Here we want to focus on

the study of some properties of the element zd = g1,2,...,d. In particular we observe

that for all j ∈ {1, 2, . . . , d− 1} we can express zd as

zd =

p−1∏
kj+1=0

p−1∏
kj+2=0

· · ·
p−1∏
kd=0

(g
kj+1

j+1 · · · gkdd )−1zj(g
kj+1

j+1 · · · gkdd ).

Moreover for all j ∈ {1, 2, . . . d−1} we have that gj commutes with yj := z
(g
kj+1
j+1 ···g

kd
d )

j ,

for all kj+1, . . . , kd ∈ {0, 1, . . . , p − 1}. This follows by observing that supp(gj) ∩
supp(yj) = ∅ unless kr = 0 for all r ∈ {j + 1, . . . , d}, in which case yj = zj and

gj commutes with zj by construction. This implies that zd commutes with gj for

all j ∈ {1, 2, . . . , d} and therefore we deduce that 〈zd〉 is a central subgroup of Ppd .

This fact will be used later in Chapters 3 and 4.

Now let n ∈ N be arbitrary, and consider the p-adic expansion n =
∑r

i=0 nip
i

of n, where 0 6 ni 6 p − 1 for i ∈ {0, . . . , r}, and where we may suppose that

nr 6= 0. By [45, 4.1.22, 4.1.24], the Sylow p-subgroups of Sn are isomorphic to the

direct product
∏r
i=0(Ppi)

ni . For subsequent computations it will be useful to fix

a particular Sylow p-subgroup Pn of Sn as follows: for i ∈ {t ∈ N | nt 6= 0} and

1 6 ji 6 ni, let k(ji) :=
∑i−1

l=0 nlp
l + (ji − 1)pi and

Ppi,ji := (1, 1 + k(ji)) · · · (pi, pi + k(ji)) · Ppi · (1, 1 + k(ji)) · · · (pi, pi + k(ji)) .

Now set

Pn := Pp,1 × · · · × Pp,n1 × · · · × Ppr,1 × · · · × Ppr,nr .

Notice that for i ∈ {1, . . . , r} and ji ∈ {1, . . . , ni}, the direct factor Ppi,ji of Pn is

determined by i and its support supp(Ppi,ji).

Example 1.3.9 Suppose that p = 3. Then P3 = 〈g1〉, P9 = 〈g1, g2〉, P27 =

〈g1, g2, g3〉 and z3 ∈ Z(P27), where

g1 = (1, 2, 3) ,

g2 = (1, 4, 7)(2, 5, 8)(3, 6, 9) ,

g3 = (1, 10, 19)(2, 11, 20)(3, 12, 21)(4, 13, 22) · · · (8, 17, 26)(9, 18, 27) ,

z2 = g1,2 = g1g
g2
1 g

(g22)
1 = (1, 2, 3)(4, 5, 6)(7, 8, 9) ,

z3 = g1,2,3 = z2z
g3
2 z

(g23)
2 = (1, 2, 3)(4, 5, 6)(7, 8, 9) · · · (22, 23, 24)(25, 26, 27) .
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Moreover, P51
∼= P3 × P3 × P9 × P9 × P27.

The following Lemma, proved by Danz in [12], gives an interesting picture of the

lattice of subgroups of Pn.

Lemma 1.3.10 ([12, Lemma 2.1, Remark 2.2]) Let n be a natural number with

p-adic expansion n =
∑r

i=0 nip
i. Let P 6 Pn be such that P is Sn-conjugate to

Ppi, for some i ∈ {1, . . . , r}. Then P 6 Ppl,jl, for some l ∈ {i, . . . , r} and some

1 6 jl 6 nl. Moreover, Ppl,jl has precisely pl−i subgroups that are Sn-conjugate to

Ppi, and these are pairwise Ppl,jl-conjugate to each other.

Remark 1.3.11 Let again n ∈ N with p-adic expansion n =
∑r

i=0 nip
i. Let P 6 Pn

be such that P is Sn-conjugate to Ppi, for some i ∈ {1, . . . , r}, so that P 6 Ppl,jl, for

some l ∈ {i, . . . , r} and some 1 6 jl 6 nl, by Lemma 1.3.10. Note that the subgroups

of Ppl,jl that are Sn-conjugate to Ppi are uniquely determined by their supports. In

particular, if i = 1 then P is generated by one of the p-cycles (1, . . . , p), . . . , (n −
n0 − p+ 1, . . . , n− n0) ∈ Pn.

1.3.4 Blocks of symmetric groups

In the first part of Section 1.3.2 we gave an account of characteristic free properties

of the representations of symmetric groups. The last part of the section was focused

on the ordinary character theory. We now turn our interest to the modular case.

Let F be a field of prime characteristic p. The p-blocks of the symmetric group

algebra FSn are described combinatorially by Nakayama’s Conjecture, first proved

by Brauer and Robinson in two connected papers [67] and [7]. In order to state this

result, we must recall some definitions.

Let λ be a partition. A p-hook in λ is a connected part of the rim of the

Young diagram of λ consisting of exactly p boxes, whose removal leaves the diagram

of a partition. By repeatedly removing p-hooks from λ we obtain the p-core of

λ (usually denoted by γ(λ)); the number of hooks we remove is the p-weight of λ

(usually denoted by w(λ)). When the prime p is clearly fixed, we will sometimes talk

about core and weight instead of p-core and p-weight. In general a p-core partition

is a partition that does not have removable p-hooks. The best way to understand

and perform these kind of operations on partitions is to use James’ abacus. We

refer the reader to [45, Chapter 2] for the definition and a detailed account of the

combinatorial properties of the abacus.

Theorem 1.3.12 (Nakayama’s Conjecture) Let p be prime. The p-blocks of Sn

are labelled by pairs (γ,w), where γ is a p-core and w ∈ N0 is the associated weight,
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such that |γ|+wp = n. Thus the Specht module Sλ lies in the block labelled by (γ,w)

if and only if λ has p-core γ and weight w. 2

We denote the block of weight w corresponding to the p-core γ by B(γ,w). The

following description of the Brauer correspondence for blocks of symmetric groups

is critical to the proofs of Proposition 3.4.1 in Chapter 3 and Proposition 4.3.1 in

Chapter 4.

Theorem 1.3.13 Let V be an indecomposable p-permutation module lying in the

block B(γ,w) of Sn. Suppose that R is a subgroup of a vertex of V and that R

moves exactly the first rp elements of {1, . . . , n}; that is supp(R) = {1, . . . , rp}.
Then NSn(R) ∼= NSrp(R)× Sn−rp. Moreover,

(i) NSrp(R) has a unique block, b say.

(ii) The blocks b⊗B(γ,w − r) and B(γ,w) are Brauer correspondents.

(iii) As an FNSn(R)-module, V (R) lies in b⊗B(γ,w − r).

Proof: Part (i) is an immediate corollary of Lemma 2.6 and the following sentence

of [10]. Part (ii) is stated in (2) on page 166 of [10], and then proved as a corollary

of the characterisation of maximal Brauer pairs given in Proposition 2.12 of [10]. In

order to prove part (iii) we let W be an indecomposable summand of V (R) lying in

the block c of FNSn(R). By Lemma 1.2.26 we deduce that the Brauer correspondent

cSn is defined. Moreover, by part (i) we have that

c = b⊗B(γ, t),

where b is the unique block of FNSrp(R) and B(γ, t) is a p-block of FSn−rp. By [73,

Exercise 27.4] V (R) is a direct summand of ResNSn (R)(V ), therefore

0 6= W · c | ResNSn (R)(V ) · ResNSn (R)×NSn (R)(c
Sn).

In particular we deduce that V · cSn 6= 0 and so that V lies in the block cSn . This

implies that cSn = B(γ,w) and by part (ii) we obtain

B(γ,w) = cSn = (b⊗B(γ, t))Sn = B(γ, t+ r).

Clearly we must have γ = γ and t = w − r, as required. 2

We conclude the section stating the following important result (see [45, Theorem

6.2.45]) describing the defect groups of blocks of the symmetric group.
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Theorem 1.3.14 The defect group of a block of the symmetric group of weight w

is a Sylow p-subgroup of Swp.

In particular Theorem 1.3.14 implies that a p-block B(γ,w) of FSn has abelian defect

group if and only if w < p.

In [70], Scopes studied the Morita equivalence classes of blocks of symmetric

groups. In particular in [70, Theorem 1] it is proved that for any w ∈ N there are

only finitely many distinct families of Morita equivalent blocks of p-weight w. It

follows immediately that the Donovan conjecture holds for blocks of the symmetric

group.

1.3.5 The decomposition matrices of symmetric groups

Let F be a field of prime characteristic p. A partition λ of a natural number n is said

to be p-regular (λ `p n) if it has at most p− 1 parts of any given size. The simple

FSn-modules are labelled by the p-regular partitions of n. In particular we can find

each simple FSn-module Dλ as the top composition factor of the Specht module SλF

defined over F. More precisely, we have the following fundamental theorem.

Theorem 1.3.15 Let F be a field of prime characteristic p. If λ is a p-regular parti-

tion of n then the FSn-module SλF has a unique top composition factor, SλF/rad(SλF) =

Dλ. Moreover, the set {Dλ | λ `p n} is a complete set of non isomorphic simple

FSn-modules.

A central open problem in the representation theory of symmetric groups is to

determine for all λ ` n and for all µ `p n the multiplicity dλµ of the simple FSn-

module Dµ as a composition factor of the Specht module SλF . Such non-negative

integers dλµ (equivalently denoted by [Sλ : Dµ]) are called decomposition numbers

of Sn. Decomposition numbers are usually recorded in a matrix Dn(p) known as the

decomposition matrix of the symmetric group Sn in prime characteristic p.

We collect below some of the main properties of decomposition matrices.

Theorem 1.3.16 Let λ be a p-regular partition of n and let µ be a partition of n

that is not dominated by λ. Then dλλ = 1 and dµλ = 0.

Proof: See [39, Theorem 12.1]. 2

Another easy and very important fact is implied by Theorem 1.3.12.

Theorem 1.3.17 Let λ be a p-regular partition of n and let µ be a partition of n.

Suppose that the p-core γ(λ) of λ is not equal to γ(µ). Then dµλ = 0.
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Proof: By Theorem 1.3.12 we deduce that SµF and Dλ lie in different p-blocks of

FSn. Therefore Dλ can not be a composition factor of SµF . 2

We refer the reader to Chapter 3 for further properties of the decomposition

matrix and for a detailed account of the state of the art concerning the determination

of decomposition numbers.

1.4 Young modules and Foulkes modules

1.4.1 Motivation

An interesting problem in the representation theory of finite groups is the study of

the properties shared by indecomposable summands of permutation modules, namely

indecomposable p-permutation modules. In the case of the symmetric group the first

major achievement in this sense is the description of the indecomposable summands

of the family of Young permutation modules {Mλ | λ ` n}. Young permutation

modules were deeply studied by James in [40], Klyachko in [49] and Grabmeier in

[32]. In their work, they completely parametrized the indecomposable summands

(known as Young modules) of such modules and developed a Green correspondence

for those summands. Their original description of the modular structure of Young

modules was based on Schur algebras. More recently Erdmann in [18] described

completely the Young modules using only the representation theory of the symmetric

groups. (The proof of Lemma 3 of [18] contains some errors. A correction to that

proof was later given by Erdmann and Schroll in [19]). We would like to state here

Erdmann’s result. In order to do this we need to introduce the following definition.

Let λ be a partition of a natural number n. We say that λ is a p-restricted partition

if the conjugate partition λ′ is p-regular. Moreover notice that if a partition λ is

not p-restricted, then there exist a unique natural number k and unique p-restricted

partitions λ(0), λ(1), . . . , λ(k) 6= ∅, such that

λ =
k∑

m=0

λ(m)pm.

The above expression is called the p-adic expansion of λ. We will denote by rm the

degree |λ(m)| of λ(m) for each m ∈ {0, 1, . . . , k}.

Theorem 1.4.1 (Theorems 1 and 2 of [18]) Let n be a natural number and F
a field of prime characteristic p. There is a set of indecomposable FSn-modules Y µ,

one for each partition µ of n, such that the following holds for all partitions λ of n.
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1. Mλ is isomorphic to a direct sum of Young modules Y µ with µ � λ and with

Y λ appearing exactly once.

2. Y λ ∼= Y µ if and only if λ = µ.

3. The Young module Y λ is projective if and only if λ is p-restricted.

4. Let λ be not p-restricted and suppose that λ =
∑k

m=0 λ(m)pm is the p-adic

expansion of λ. Consider ρ to be the partition of n which has rm parts equal

to pm for every m ∈ {0, 1, . . . , k}, where rm = |λ(m)|. Then Y λ has vertex a

Sylow p-subgroup of Sρ.

In this thesis we will begin a systematic study of a new family of permutation

modules, the Foulkes modules. In this section we will give the definition and we will

describe the main properties of Foulkes modules. Motivated by the problem known

as the Foulkes Conjecture (see 2.1.1 for the statement), in Chapter 2 we will analyse

the ordinary character afforded by Foulkes modules. In Chapters 3 and 4 we will

study the modular structure of Foulkes modules. In particular in Chapter 3 we will

use some properties of this family of permutation modules to determine parts of the

decomposition matrix of Sn. On the other hand, in Chapter 4 we will focus on the

indecomposable summands of these permutation modules. More precisely we will

give a precise description of their vertices and Green correspondents. We will also

compare the obtained results with the known structure of Young modules; this will

allow us to disprove a modular version of Foulkes Conjecture, in Proposition 4.2.11.

1.4.2 Definitions and preliminary results

The purpose of this paragraph is to introduce the definition and some of the basic

properties of Foulkes modules. We will also introduce the main pieces of notation

that we will frequently use in Chapters 2, 3 and 4.

Let F be a field (of arbitrary characteristic) and a, n two non-zero natural num-

bers. Let Ω(an) be the collection of all set partitions of {1, 2, . . . , an} into n sets of

size a. We will denote an arbitrary element ω ∈ Ω(an) by

ω = {ω1, ω2, · · · , ωn},

where ωj ⊆ {1, 2, · · · , an}, |ωj | = a and ωi ∩ ωj = ∅ for all 1 6 i < j 6 n. We will

call ωj a set of ω. For example the set partition {{1, 2, 3}, {4, 5, 6}} is an element of

Ω(32). Observe that given two natural numbers a and n we have that

|Ω(an)| = (an)!

(a!)n(n!)
.
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The symmetric group San acts transitively in a natural way on Ω(an) by permut-

ing the numbers in each set of every set partition. LetH(an) be the FSan-permutation

module generated as a F-vector space by the elements of Ω(an), with the action of

San defined as the natural linear extension of the action on Ω(an). The module

H(an) is called the Foulkes module of parameters a and n. Since the action of San is

transitive on Ω(an) and the stabilizer of any set partition ω ∈ Ω(an) is isomorphic to

Sa o Sn it is finally easy to deduce that

H(an) ∼= IndSanSaoSn(F).

An easy application of Lemma 1.2.17 clarifies the relation between the Foulkes

module H(an) and the Young permutation module Mµ where µ is the partition of

an having n parts of size a.

Proposition 1.4.2 If the field F has characteristic 0 or it has prime characteristic

p strictly greater than n then the Foulkes module H(an) is a direct summand of the

Young permutation module Mµ.

Proof: If the characteristic of the field F is p > 0 then let K be the Young subgroup

of San defined by

K = Sa × · · · × Sa︸ ︷︷ ︸
n

.

By definition Mµ is the module obtained by inducing the trivial FK-module to the

full symmetric group San. Moreover p does not divide n! = |Sa o Sn : K|, therefore

by Lemma 1.2.17 we deduce the statement. We leave the characteristic 0 case to

the reader. 2

In particular we deduce that when the underlying field F has prime characteristic

p strictly greater than n, then every indecomposable summand of H(an) is a Young

module. In Chapter 4 we will show that the situation is completely different when

a < p 6 n. More precisely, in Corollary 4.2.10 we will prove that no non-projective

indecomposable summand of H(an) is a Young module.
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Chapter 2

Foulkes’ Conjecture

2.1 Introduction and outline

Foulkes’ Conjecture is a long standing open problem in the areas of ordinary rep-

resentation theory of the symmetric group, algebraic combinatorics and invariant

theory. It was stated by H.O.Foulkes in 1950 as an invariant theoretic problem.

We need to introduce some notation and definitions to state an equivalent character

theoretical version of the conjecture.

As alredy mentioned in Chapter 1 (Section 1.4), for a and b natural numbers, we

denote by Ω(ab) the collection of all set partitions of {1, 2, . . . , ab} into b sets each

of size a. Throughout this chapter H(ab) denotes the corresponding CSab-Foulkes

module. Let φ(ab) be the permutation character of Sab afforded by H(ab).

At the end of Section 1 of [26], Foulkes made a conjecture which can be stated

as follows.

Conjecture 2.1.1 (Foulkes’ Conjecture) Let a and b be natural numbers such

that a > b. Then the CSab-module H(ab) is a direct summand of the CSab-module

H(ba).

The conjecture has been only proved to be true when b = 2 by Thrall (see [74]),

when b = 3 by Dent (see [15, Main Theorem]), when b = 4 by McKay (see [57,

Theorem 1.2]) and when b is very large compared to a by Brion (see [8, Corollary

1.3]).

It is also possible to restate Foulkes’ Conjecture as an inequality between mul-

tiplicities, namely that, for all a and b natural numbers such that a > b and for all

partitions λ of ab, 〈
φ(ab), χλ

〉
6
〈
φ(ba), χλ

〉
,
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where χλ is the irreducible character of Sab canonically labelled by λ. From this

point of view the decomposition of the Foulkes module as a direct sum of simple

modules becomes central. Except in the case when a = 2 or b = 2 (see [74, Chapter

2] and [69]) and when b = 3 (see [15, Theorem 4.1]), little is known about the

multiplicities of simple modules in this decomposition. In [45, Theorem 5.4.34] an

explicit fomula is given for the specific case of simple modules labelled by two-row

partitions: in this case Foulkes’ Conjecture holds with equality. In [64] Paget and

Wildon gave a combinatorial description of the minimal partitions that label simple

modules appearing as summands of Foulkes modules.

In this chapter, we will prove a number of new results on when these multiplicities

vanish. We start in Section 2.2 below, by proving some properties of the Foulkes

character. In particular we will describe its restriction to the subgroups Sr × Sab−r
of Sab. In Section 2.3 we prove by using only the character theory of symmetric

groups the following result which shows that no Specht module labelled by a hook

partition (ab − r, 1r) is a direct summand of the Foulkes module H(ab). The result

was already proved, with the language of Schur functions by Langley and Remmel

in [54]. We call r the leg length of the hook partition.

Theorem 2.1.2 If a, b and r are natural numbers such that 1 6 r < ab, then

〈
φ(ab), χ(ab−r,1r)

〉
= 0.

In Section 2.4 we extend this result, by giving a sufficient condition on a partition

λ of ab for 〈φ(ab), χλ〉 to equal zero.

We need the following notation: let α = (α1, . . . , αt) be a partition of m ∈ N, let

k ∈ N be such that k > t and ab− k −m > α1 + 1. Denote by [k : α] the partition

of ab defined by

[k : α] = (ab− k −m,α1 + 1, . . . , αt + 1, 1k−t).

Notice that the value of ab will be always clear from the context. It is obvious that

every partition of ab can be expressed uniquely in the form [k : α]. We will call α

the inside-partition of [k : α] (see figure 2.1).

The main result of the chapter is as follows.

Theorem 2.1.3 Let a, b and k be natural numbers and let [k : α] be a partition of

ab with α = (α1, . . . , αt) and t 6 k. Let n :=
∑t

j=2 αj. Suppose that k > n and
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ab− k −m

k

α ` m

Figure 2.1: The shape of [k : α]

α1 <
1
2(k − n)(k − n+ 1). Then

〈
φ(ab), χ[k:α]

〉
= 0.

Notice that for every simple CSab-module labelled by λ, a partition of ab sat-

isfying the hypothesis of Theorem 2.1.3, Foulkes’ Conjecture holds with equality.

Indeed for all a > b we have

〈
φ(ab), χλ

〉
= 0 =

〈
φ(ba), χλ

〉
,

since there is not any restriction on a and b in the statement of the theorem.

By Proposition 2.2.1 below, if 〈φ(ab), χλ〉 6= 0 then λ has at most b parts. When

we consider only characters labelled by such partitions, it occurs that a significant

proportion of the characters appearing with zero multiplicity in φ(ab) satisfy the hy-

potheses of Theorem 2.1.3. For example, computations using the computer algebra

package magma [5] show that there are 1909 partitions λ of 30 with at most 10 parts

such that 〈φ(310), χλ〉 = 0; of these 492 satisfy the hypotheses of Theorem 2.1.3.

For an important subclass of partitions to which Theorem 2.1.3 applies we refer

the reader to Corollary 2.4.4.

2.2 More on the ordinary Foulkes character

Here we present some properties of the Foulkes CSab-module H(ab) that will be

needed to prove the two main theorems.
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Proposition 2.2.1 Let λ be a partition of ab such that p(λ) > b. Then

〈
φ(ab), χλ

〉
= 0.

Proof: By the characteristic 0 part of Proposition 1.4.2 we have that H(ab) is a direct

summand of M (ab). Moreover by Theorem 1.3.3 we deduce that no Specht module

labelled by a partition with more than b parts can possibly be a summand of M (ab).

This concludes the proof. 2

Definition 2.2.2 Let r, a and b be natural numbers. We define P (r)ba to be the set

of all partitions of r with at most b parts and first part of size at most a.

An element of Ω(ab) can be denoted by {A1, . . . , Ab}, where for each 1 6 j 6 b,

Aj is a subset of {1, 2, . . . ab} of size a and for all i, j such that 1 6 i < j 6 b it holds

that Ai ∩Aj = ∅.

Definition 2.2.3 Let r be a natural number such that r < ab and let λ be in P (r)ba.

We will say that an element

{A1, . . . , Ab} ∈ Ω(ab)

is linked to λ if the composition of r whose parts are

∣∣{1, 2, . . . , r} ∩Ai∣∣ for 1 6 i 6 b

has underlying partition λ.

Definition 2.2.4 Let r be a natural number, such that r < ab and let λ be in P (r)ba.

We denote by O(λ) the set of all the set partitions in Ω(ab) linked to λ and by V λ the

transitive permutation module for C
(
Sr×Sab−r

)
linearly spanned by the elements of

O(λ).

In the following proposition we show how the restriction

ResSr×Sab−r(H
(ab))

of the Foulkes module decomposes into a direct sum of transitive permutation mod-

ules. Such decompositions will be used in all the proofs of the main theorems of this

chapter.
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Proposition 2.2.5 Let r be a natural number such that r < ab. Then

ResSr×Sab−r(H
(ab)) =

⊕
λ∈P (r)ba

V λ.

Proof: Let G = Sr × Sab−r. The restriction of H(ab) to G decomposes as a direct

sum of transitive permutation modules, one for each orbit of G on Ω(ab). Observe

that two set partitions P, Q ∈ Ω(ab) are in the same orbit of G on Ω(ab) if and only

if P and Q are linked to the same partition λ ∈ P (r)ba. The result follows. 2

An immediate corollary of Proposition 2.2.5 is the following result about the mul-

tiplicity of characters labelled by two-row partitions, proved by a different argument

in [45, Theorem 5.4.34].

Corollary 2.2.6 Let r, a and b be natural numbers. Then

1.
〈
φ(ab), π(ab−r,r)〉 =

〈
φ(ba), π(ab−r,r)〉 =

∣∣P (r)ba
∣∣

2.
〈
φ(ab), χ(ab−r,r)〉 =

〈
φ(ba), χ(ab−r,r)〉 =

∣∣P (r)ba
∣∣− ∣∣P (r − 1)ba

∣∣
Proof: By definition of Young permutation module (see Section 1.3.2) we have that

π(ab−r,r) = 1Sab−r×Sr
xSab .

Therefore, by Frobenius reciprocity and Proposition 2.2.5 we have

〈
φ(ab), π(ab−r,r)

〉
=
〈
φ(ab)

y
Sab−r×Sr

, 1Sab−r×Sr

〉
=

∑
λ∈P (r)ba

〈
χV λ , 1Sab−r×Sr

〉
=

∑
λ∈P (r)ba

1 =
∣∣∣P (r)ba

∣∣∣ .
To complete the proof of part (i), it suffices to observe that the conjugation of

partitions induces a bijective map between P (r)ba and P (r)ab for all r, a and b natural

numbers.

Part (ii) follows from (i) since χ(ab−r,r) = π(ab−r,r) − π(ab−(r−1),r−1). 2

We conclude this section with the definition and a description of a generalized

Foulkes module that will be used in the proof of Theorem 2.1.3.

Definition 2.2.7 Let η = (ab11 , . . . , a
br
r ) be a partition of n, where a1 > a2 > ... >
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ar > 0, and let G = Sa1b1 × · · · × Sarbr 6 Sn. We define

Hη = IndSnG
(
H(a

b1
1 ) �H(a

b2
2 ) � · · ·�H(abrr )

)
We denote by ψη the character of the generalized Foulkes module Hη.

Definition 2.2.8 Let η = (η1, . . . , ηr) be a partition of n. Define Ωη to be the

collection of all the set partitions of {1, 2, . . . , n} into r sets of sizes η1, η2, . . . , ηr.

The symmetric group Sn acts naturally on Ωη by permuting the numbers in each

set of any set partition. The proof of the following proposition is left to the reader.

Proposition 2.2.9 Let η = (η1, . . . , ηr) be a partition of n. Then Hη ∼= CΩη, as

CSn-modules.

2.3 The multiplicities of hook characters are zero

In this section we will prove that no Specht module labelled by a hook partition

(ab− r, 1r) appears in the Foulkes module H(ab).

Definition 2.3.1 Let U be a CSn-module affording the character χ. For all k ∈ N
we denote by

∧k U the kth exterior power of U , and by
∧k χ the corresponding

character.

Let sgnk be the sign character of the symmetric group Sk for any natural number

k. We leave to the reader the proof of the following well known result.

Lemma 2.3.2 Let n and k be natural numbers, then

k∧
π(n−1,1) = (sgnk×1n−k)

xSn .
Lemma 2.3.3 Let n and k be natural numbers such that 1 6 k 6 n. Then

χ(n−k,1k) =

k∧
χ(n−1,1) and

k∧
π(n−1,1) = χ(n−k,1k) + χ(n−(k−1),1k−1).

Proof: The first equality follows from [59, Proposition 2.3]. The second equality is

a straightforward application of Theorem 1.3.5. 2

In the following proposition we will calculate the inner product between the

Foulkes character φ(ab) and the character
∧k π(n−1,1). This is a fundamental step in

the proof of Theorem 2.1.2.
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Proposition 2.3.4 Let a, b and k be natural numbers and let ψ := π(ab−1,1). Then

〈
φ(ab),

k∧
ψ

〉
=


0 if k > 2

1 if k = 0, 1.

Proof: Firstly consider the case k > 2. Let K = S{1,2,...,k} × S{k+1,...,ab} ∼= Sk ×
Sab−k 6 Sab. By Lemma 2.3.2

〈
φ(ab),

k∧
ψ

〉
=
〈
φ(ab), (sgnk×1ab−k) ↑Sab

〉
=
〈
φ(ab) ↓K , sgnk×1ab−k

〉
.

The final inner product is not equal to zero only if there exist CK-submodules of

ResK(H(ab)) whose associated character is sgnk×1Sn−k . By Proposition 2.2.5 it

suffices to show that if λ ∈ P (k)ba then V λ has no submodule affording the character

sgnk×1ab−k. Suppose that u ∈ V λ spans such a submodule. Let u =
∑
P cPP,

where the sum is over all set partitions P ∈ O(λ). Choose Q such that cQ 6= 0.

If λ1 > 1 then there exist x, y 6 k such that x and y appear in the same set

in Q. Hence Q(x y) = Q and u(x y) = −u, therefore cQ = −cQ = 0 which is a

contradiction. Therefore λ = (1k).

If λ = (1k) then

Q =
{
{1, x1

2, . . . , x
1
a}, {2, x2

2, . . . , x
2
a}, . . . , {k, xk2, . . . , xka}, . . .

}
for some xij ∈ {k + 1, . . . , ab}. Taking τ = (1 2)(x1

1 x2
1) · · · (x1

a x
2
a), we obtain a

contradiction again, sinceQτ = Q but uτ = −u. Hence there are no CK-submodules

of ResK(H(ab)) having character sgnk×1Sab−k . The two cases k = 0 and k = 1 are

easy and are left to the reader. 2

We are now ready to prove Theorem 2.1.2. This theorem follows at once from

Proposition 2.3.4, since, from Lemma 2.3.3 we have that

χ(ab−r,1r) =
r∧
χ(ab−1,1) = (−1)r

r∑
k=0

(−1)k
k∧
ψ.

We end this section with a corollary of Theorem 2.1.2 that will be needed in the

proof of Theorem 2.1.3. Recall that ψη is the character of the generalized Foulkes

module Hη, as defined in Definition 2.2.7.

Corollary 2.3.5 Let η = (ab11 , . . . , a
bt
t ) be a partition of n, where a1 > . . . > at. If
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r ≥ t then 〈
ψη, χ(n−r,1r)

〉
= 0.

Proof: From the definition of generalized Foulkes module, we can write ψη as a

character induced from

φ(a
b1
1 ) × · · · × φ(a

bt
t ).

It follows from Theorems 1.3.7 and 2.1.2 that in order to obtain χ(n−r,1r) as an

irreducible constituent of the induced character, we have to take the trivial character

in each factor. Therefore

〈
ψη, χ(n−r,1r)

〉
=
〈(

1Sa1b1 × · · · × 1Satbt
)xSn , χ(n−r,1r)

〉
.

Observe that the right-hand side is the multiplicity of χ(n−r,1r) in the Young per-

mutation character π(a1b1,...,atbt). By Theorem 1.3.3, the constituents of π(a1b1,...,atbt)

are labelled by partitions with at most t parts, so we need t ≥ r+1 to get a non-zero

multiplicity. 2

2.4 A sufficient condition for zero multiplicity

In this section we will prove Theorem 2.1.3 by an inductive argument. Part of the

section will be devoted to the proof of the base step of such induction.

Firstly we need to state two technical lemmas. Let β < ab be a natural number.

Denote by K the subgroup S{1,2,...,β}×S{β+1,...,ab} ∼= Sβ ×Sab−β. Let λ be in P (β)ba

and let V λ and O(λ) be as in Definition 2.2.4. Then by a standard result on orbit

sums we have the following lemma.

Lemma 2.4.1 The largest CK-submodule of V λ on which Sβ acts trivially is

U :=
〈∑
σ∈Sβ

Pσ | P ∈ O(λ)
〉
C
.

With the next lemma we will understand precisely the structure of this particular

module U .

Lemma 2.4.2 Let λ ∈ P (β)ba and denote by CSβ the trivial CSβ-module. If λ =

(λ1, . . . , λr) then

U ∼= CSβ �H
η

where η = (a(b−r), a−λr, . . . , a−λ2, a−λ1) and Hη is a generalized C(Sab−β)-Foulkes
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module.

Proof: By Proposition 2.2.9 it suffices to show that the set

W :=
{∑
σ∈Sβ

Pσ | P ∈ O(λ)
}

is isomorphic as a Sab−β-set to the set Ωη of all η-partitions of {β + 1, . . . , ab}.
Let X = {β + 1, β + 2, . . . , ab}. We define a map fλ : O(λ) −→ Ωη by

Pfλ = {A1 ∩X,A2 ∩X, . . . , Ab ∩X}

where P = {A1, . . . , Ab}.
It is easy to see that fλ is well defined since O(λ)fλ ⊆ Ωη by definition of O(λ).

The map fλ is surjective, and for all P and Q in O(λ) we have that Pfλ = Qfλ if

and only if P and Q are in the same Sβ-orbit of O(λ). It is easy to see that fλ is an

Sab−β-map and that for all τ ∈ S{1,...,β} we have that (Pτ)fλ = Pfλ, since τ fixes

the numbers greater than β.

To conclude the proof we define

f̃λ :W −→ Ωη

by ( ∑
σ∈Sβ

Pσ
)
f̃λ = Pfλ

for all P ∈ O(λ). The map f̃λ is well defined and the surjectivity of f̃λ follows

directly from the surjectivity of fλ. The map f̃λ is also injective since

( ∑
σ∈Sβ

Pσ
)
f̃λ =

( ∑
σ∈Sβ

Qσ
)
f̃λ ⇐⇒ Pfλ = Qfλ ⇐⇒ P = Qτ ⇐⇒

∑
σ∈Sβ

Pσ =
∑
σ∈Sβ

Qσ

for some τ ∈ Sβ.

Finally f̃λ is an Sab−β-map since fλ is an Sab−β-map and στ = τσ for all σ ∈ Sβ
and τ ∈ Sab−β. Therefore f̃λ is the desired isomorphism. 2

In the following proposition we use the notation [k : α] as defined in the in-

troduction of the chapter. In particular we consider partitions [k : α] of ab with

trivial inside-partition α (one row). The proposition is actually the base step of the

inductive proof of Theorem 2.1.3.
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Proposition 2.4.3 Let a, b and k be natural numbers. For all β < 1
2k(k + 1) we

have 〈
φ(ab), χ[k:(β)]

〉
= 0.

Proof: By Theorem 1.3.5 and Frobenius reciprocity, we have

〈
φ(ab), χ[k:(β)]

〉
6

〈
φ(ab),

(
1Sβ × χ(ab−(k+β),1k)

)xSab
Sβ×Sab−β

〉
=

〈
φ(ab)

y
Sβ×Sab−β

, 1Sβ × χ(ab−(k+β),1k)
〉
.

Let K := Sβ × Sab−β. By Proposition 2.2.5 we have:

ResK(H(ab)) =
⊕

λ∈P (β)ba

V λ.

Fix λ = (λm1
1 , λm2

2 , . . . , λmss ) ∈ P (β)ba. Let r :=
∑s

i=1mi be the number of parts

of λ. We are now interested in submodules U ⊆ V λ such that S{1,2,...,β} ∼= Sβ

acts trivially on U . By Lemmas 2.4.1 and 2.4.2, the largest submodule U of V λ is

isomorphic to Hη � CSβ , where η = (a(b−r), (a− λs)ms , . . . , (a− λ1)m1). From now

on we will denote ζ = ((a− λs)ms , . . . , (a− λ1)m1). Note that

U ∼= Hη � CSβ ∼= IndSab−β
(
H(ab−r) �Hζ

)
� CSβ .

Hence

〈
χV λ , χ

(ab−(k+β),1k) × 1Sβ

〉
=
〈
χU , χ

(ab−(k+β),1k) × 1Sβ

〉
=
〈(
φ(a(b−r)) × ψζ

)xSab−β × 1Sβ , χ
(ab−(k+β),1k) × 1Sβ

〉
=
〈(
φ(a(b−r)) × ψζ

)xSab−β , χ(ab−(k+β),1k)
〉

=
∑
ν,µ

dµν

〈
(χν × χµ)

xSab−β , χ(ab−(k+β),1k)
〉

where χν is an irreducible character of Sa(b−r) with non zero multiplicity in φ(a(b−r)),

χµ is an irreducible character of Sar−β having non zero multiplicity in ψζ , and

dµν is the multiplicity of their tensor product in the decomposition of Hη. Notice

that the last sum is not equal to zero if and only if there exist ν and µ such that

(χν×χµ)
xSab−β contains a hook character of Sab−β having leg length equal to k in its

decomposition. By Theorem 1.3.7, we have that both ν and µ must be subpartitions

of (ab − (k + β), 1k). This means that ν and µ are hooks or trivial partitions. In

particular we deduce from Theorem 2.1.2 that ν = (a(b − r)). Hence, again from
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Theorem 1.3.7, we need µ to be a hook with leg length at least k − 1 to have

〈
(χν × χµ)

xSab−β , χ(ab−(k+β),1k)
〉
6= 0.

On the other hand

ψζ =
(
φ((a−λ1)m1 ) × · · · × φ((a−λs)ms )

)xSar−β
So by Corollary 2.3.5 we have that the hooks that have non-zero multiplicity in the

decomposition of ψζ have at most s parts, where s is the number of different parts

of λ.

We observe that the smallest number β̃ having a partition λ with k different

parts is k(k+1)
2 , with λ = (k, k − 1, . . . , 2, 1). So under our hypothesis β < k(k+1)

2 we

obtain that χµ cannot be a hook character with leg length at least k− 1. Hence for

all λ ∈ P (β)ba we have that

〈
χV λ , χ

(ab−(k+β),1k) × 1Sβ

〉
= 0.

This completes the proof. 2

We are now ready to prove Theorem 2.1.3.

Proof: [Theorem 2.1.3] We proceed by induction on t, the number of parts of the

inside-partition α. If t = 1 then

〈
φ(ab), χ[k:(α1)]

〉
= 0

by Proposition 2.4.3.

Suppose now that t > 1 and the theorem holds when the inside-partition has

less then t parts. Denote by ν the partition defined by

ν = (α1, α2, α3, . . . , αt−1).
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By Theorem 1.3.5, Lemma 2.4.2 and Frobenius reciprocity we have that

〈
φ(ab), χ[k:α]

〉
6
〈
φ(ab),

(
χ[k:ν] × 1Sαt

)xSab〉
=
〈
φ(ab)

y
Sab−αt×Sαt

, χ[k:ν] × 1Sαt

〉
=

∑
λ∈P (αt)ba

〈
χV λ , χ

[k:ν] × 1Sαt

〉
=

∑
λ∈P (αt)ba

〈
χUλ , χ

[k:ν] × 1Sαt

〉
=

∑
λ∈P (αt)ba

〈(
φ(a(b−p(λ))) × ψ(a−λp(λ),...,a−λ1)

)xSab−αt , χ[k:ν]
〉

=
∑

λ∈P (αt)ba

(∑
ζ,µ

dλζµ

〈(
χζ × χµ

)xSab−αt , χ[k:ν]
〉 )
,

where, for each λ ∈ P (αt)
b
a, U

λ is the largest C(Sab−αt × Sαt) submodule of V λ on

which Sαt acts trivially and
∑

ζ,µ d
λ
ζµ(χζ ×χµ) is the decomposition into irreducible

characters of the character φ(a(b−p(λ))) × ψ(a−λp(λ),...,a−λ1).

For every λ ∈ P (αt)
b
a, observe that every simple summand Sµ ofH(a−λp(λ),...,a−λ1)

is a simple summand of the Young permutation module M (a−λp(λ),...,a−λ1). Hence by

Theorem 1.3.3 we have that the partition µ has at most p(λ) parts; in particular it

has at most αt parts. It follows that, by Theorem 1.3.7, we need ζ to have at least

k + 1− αt parts, and to be a subpartition of [k : ν] in order to have

〈(
χζ × χµ

)xSab−αt , χ[k:ν]
〉
6= 0.

Therefore ζ must be of the form

[kζ : β] ` a(b− p(λ)).

By Theorem 1.3.7 we must have that

• β = (β1, . . . , βs) ⊆ ν, and

• kζ > k − αt.

We conclude proving that such a ζ cannot label any irreducible summand of the

Foulkes character φ(a(b−p(λ))).

Define nζ :=
∑s

j=2 βj ; if s = 1 then let nζ = 0. We observe that such a partition

ζ has inside-partition β having s 6 t− 1 parts and it satisfies the initial hypothesis,

since
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• kζ > k − αt > n− αt > nζ , and

• β1 6 α1 <
(k−n)(k−n+1)

2 6
(kζ−

∑t−1
j=2 αj)(kζ−

∑t−1
j=2 αj+1)

2 6 (kζ−nζ)(kζ−nζ+1)
2 .

Hence χζ has zero multiplicity in φ(a(b−p(λ))) by induction. Therefore

〈
φ(ab), χ[k:α]

〉
6

∑
λ∈P (αt)ba

(∑
ζ,µ

dλζµ

〈(
χζ × χµ

)xSab−αt , χ[k:ν]
〉 )

= 0.

The theorem is then proved. 2

As mentioned in the introduction, and as we will prove in the following corol-

lary, a consequence of our main theorem is that every Specht module labelled by a

partition having leg length equal to k and at most k boxes inside the hook has zero

multiplicity, except when the k boxes are column-shaped (i.e. the inside-partition

is (1k)). In that particular case we are able to prove that the multiplicity equals

1, for all the values of k < b. The proof is similar to that of Proposition 2.4.3 and

is omitted. In [15, Lemma 3.3] Dent proved the same result in the specific case

k = b− 1.

Corollary 2.4.4 Let a, b, k and m be natural numbers. Let m 6 k and α be a

partition of m not equal to (1k). Then

〈
φ(ab), χ[k:α]

〉
= 0

Proof: Let α be an arbitrary partition of m not equal to (1k). Then

α = (α1, α2, . . . , αt).

Write n :=
∑t

j=2 αj . We will show that χ[k:α] satisfies the hypothesis of Theorem

2.1.3 that:

• k > n, and

• α1 <
1
2(k − n)(k − n+ 1).

The first condition is trivial since

k > m = α1 + n.

To prove the second condition proceed by contradiction: suppose that

α1 >
(k − n)(k − n+ 1)

2
.
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Then

k − n > (k − n)(k − n+ 1)

2
.

This implies k − n = 0 or k − n = 1. The first situation is impossible because

0 = k − n > α1 > 0. The second is also impossible because 0 < α1 6 k − n = 1

implies α1 = 1 and α1 + n = k with α = (1k). 2
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Chapter 3

The decomposition matrix of

the symmetric group

This chapter is based on the paper [29]. The results were obtained in collaboration

with my Ph.D. supervisor Dr Mark Wildon. We equally contributed to prove all the

main theorems of the chapter, except for Corollary 3.5.6 which was a very good idea

of Dr Mark Wildon alone.

3.1 Introduction and outline

A central open problem in the representation theory of finite groups is to find the

decomposition matrices of symmetric groups. The main result of this chapter gives

a combinatorial description of certain columns of these matrices in odd prime char-

acteristic. This result applies to certain blocks of arbitrarily high weight. Another

notable feature is that it is obtained almost entirely by using the methods of local

representation theory.

As already explained in Section 1.3.5, we recall that the rows of the decompo-

sition matrix of the symmetric group Sn of degree n in prime characteristic p are

labelled by the partitions of n, and the columns by the p-regular partitions of n,

that is, partitions of n with at most p− 1 parts of any given size. The entry dµν of

the decomposition matrix records the number of composition factors of the Specht

module Sµ, defined over a field of characteristic p, that are isomorphic to the simple

module Dν , first defined by James in [41] as the unique top composition factor of

Sν .

Given an odd number p, a p-core γ and k ∈ N0, let wk(γ) denote the minimum

number of p-hooks that when added to γ give a partition with exactly k odd parts.
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Let Ek(γ) denote the set of partitions with exactly k odd parts that can be obtained

from γ by adding wk(γ) disjoint p-hooks. Our main theorem is as follows.

Theorem 3.1.1 Let p be an odd prime. Let γ be a p-core and let k ∈ N0. Let

n = |γ|+ wk(γ)p. If k > p suppose that

wk−p(γ) 6= wk(γ)− 1.

Then Ek(γ) is equal to the disjoint union of subsets X1, . . . , Xc such that each Xj
has a unique maximal partition νj in the dominance order. Each νj is p-regular and

the column of the decomposition matrix of Sn in characteristic p labelled by νj has

1s in the rows labelled by partitions in Xj, and 0s in all other rows.

We leave it as a simple exercise to show that wk(γ) is well-defined. It may clarify

the main hypothesis in Theorem 3.1.1 to remark that since wk(γ) ≤ wk−p(γ) + 1,

we have wk−p(γ) 6= wk(γ)− 1 if and only if wk−p(γ) > wk(γ)− 1.

In particular Theorem 3.1.1 implies that if λ is a maximal partition in Ek(γ)

under the dominance order, then the only non-zero entries of the column of the

decomposition matrix labelled by λ are 1s in rows labelled by partitions in Ek(γ).

We give some examples of Theorem 3.1.1 in Example 3.5.2.

Much of the existing work on decomposition matrices of symmetric groups has

concentrated on giving complete information about blocks of small weight. In con-

trast, Theorem 3.1.1 gives partial information about blocks of arbitrary weight. In

Proposition 3.5.4 we show that there are blocks of every weight in which Theo-

rem 3.1.1 completely determines some columns of the decomposition matrix.

We prove Theorem 3.1.1 by studying certain twists by the sign character of the

Foulkes module H(2m). For m, k ∈ N0, let

H(2m;k) = Ind
S2m+k

S2m×Sk

(
H(2m) � sgnSk

)
.

Thus when k = 0 we have H(2m;k) = H(2m), and when m = 0 we have H(2m;k) =

sgnSk ; if k = m = 0 then H(2m;k) should be regarded as the trivial module for the

trivial group S0. We call H(2m;k) a twisted Foulkes module. It is known that the

ordinary characters of these modules are multiplicity-free (see Lemma 3.2.1), but

as one might expect, when F has prime characteristic, their structure can be quite

intricate. Our main contribution is Theorem 3.1.2 below, which characterizes the

vertices of indecomposable summands of H(2m;k) when F has odd characteristic. The

outline of the proof of Theorem 3.1.1 given at the end of this introduction shows

how the local information given by Theorem 3.1.2 is translated into our result on
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decomposition matrices. This step, from local to global, is the key to the argument.

Theorem 3.1.2 Let m ∈ N and let k ∈ N0. If U is an indecomposable non-

projective summand of H(2m;k), defined over a field F of odd characteristic p, then U

has as a vertex a Sylow p-subgroup Q of (S2 o Stp) × S(r−2t)p for some t ∈ N0 and

r ∈ N with tp ≤ m, 2t ≤ r and (r−2t)p ≤ k. Moreover the Green correspondent of U

admits a tensor factorization V �W as a module for F
(
(NSrp(Q)/Q)× S2m+k−rp

)
,

where V and W are projective, and W is an indecomposable summand of the twisted

Foulkes module H(2m−tp;k−(r−2t)p).

Theorem 3.1.2 is a significant result in its own right. For odd primes p, it gives

the first infinite family of indecomposable p-permutation modules for the symmetric

group (apart from Scott modules, which always lie in principal blocks) whose vertices

are not Sylow p-subgroups of Young subgroups of symmetric groups.

An important motivation for the proof of Theorem 3.1.2 is [18], in which Erd-

mann uses similar methods to determine the p-local structure of Young permutation

modules and to establish their decomposition into Young modules. Also relevant

is [63], in which Paget shows that H(2m) has a Specht filtration for any field F.

Using Theorem 11 of [75], it follows that H(2m;k) has a Specht filtration for every

k ∈ N0. The local behaviour of H(2m) in characteristic 2, which as one would expect

is very different to the case of odd characteristic, was analysed in [11]; the projective

summands of H(2m;k) in characteristic 2 are identified in [61, Corollary 9].

Background on decomposition numbers

The problem of finding decomposition numbers for symmetric groups in prime char-

acteristic has motivated many deep results relating the representation theory of

symmetric groups to other groups and algebras. Given the depth of the subject we

give only a brief survey, concentrating on results that apply to Specht modules in

blocks of arbitrarily high weight.

Fix an infinite field F of prime characteristic p. In [48] James proved that the

decomposition matrix for Sn modulo p appears, up to a column reordering, as a

submatrix of the decomposition matrix for polynomial representations of GLd(F) of

degree n, for any d > n. In [34, 6.6g] Green gave an alternative proof of this using

the Schur functor from representations of the Schur algebra to representations of

symmetric groups. James later established a similar connection with representations

of the finite groups GLd(Fq), and the Hecke algebras HF,q(Sn), in the case when p

divides q−1 (see [46]). In [17] Erdmann proved, conversely, that every decomposition

number for GLd(F) appears as an explicitly determined decomposition number for

some symmetric group.
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In [41] James proved that if Dν is a composition factor of Sµ then ν dominates µ,

and that if µ is p-regular then dµµ = 1. This establishes the characteristic ‘wedge’

shape of the decomposition matrix of Sn with 1s on its diagonal, shown in the

diagram in [39, Corollary 12.3]. In [65] Peel proved that the hook Specht modules

(n− r, 1r) are irreducible when p does not divide n, and described their composition

factors for odd primes p when p divides n. The p-regular partitions labelling these

composition factors can be determined by James’ method of p-regularization [44],

which gives for each partition µ of n a p-regular partition ν such that ν dominates

µ and dµν = 1. In [43] and [42], James determined the decomposition numbers

dµν for µ of the form (n − r, r) and, when p = 2, of the form (n − r − 1, r, 1).

These results were extended by Williams in [79]. In [47, 5.47] James and Mathas,

generalizing a conjecture of Carter, conjectured a necessary and sufficient condition

on a partition µ for the Specht module Sµ, defined for a Hecke algebra HF,q(Sn) over

a field F, to be irreducible. The necessity of this condition was proved by Fayers [22]

for symmetric groups (the case q = 1), building on earlier work of Lyle [55]; later

Fayers [21] proved that the condition was sufficient for symmetric groups, and also for

Hecke algebras whenever F has characteristic zero. In [51, Theorem 1.10], Kleshchev

determined the decomposition numbers dλµ when µ is a p-regular partition whose

Young diagram is obtained from the Young diagram of λ by moving a single box.

In [78], Wildon proved that in odd characteristic the rows of any decomposition

matrix of a symmetric group are distinct, and so a Specht module is determined,

up to isomorphism, by its multiset of composition factors; in characteristic 2 the

isomorphism (Sµ)? = Sµ
′
, where µ′ is the conjugate partition to µ, accounts for all

pairs of equal rows in the decomposition matrix.

In [24] Fayers proved that the decomposition numbers in blocks of weight 3 of

abelian defect are either 0 or 1. This chapter includes a valuable summary of the

many techniques for computing decomposition numbers and references to earlier

results on blocks of weights 1 and 2. For results on weight 3 blocks of non-abelian

defect, and blocks of weight 4, the reader is referred to [25] and [23]. For further

general results, including branching rules and row and column removals theorems,

see [56, Chapter 6, Section 4].

Outline

The main tool used to analyse the structure of twisted Foulkes modules over fields

of odd characteristic is the Brauer correspondence for p-permutation modules, as

described in Section 1.2.4.

In Section 3.2 below, we collect the general results we need on twisted Foulkes
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modules. In particular, Lemma 3.2.1 gives their ordinary characters. The twisted

Foulkes modules H(2m;k) are p-permutation modules, but not permutation modules

(except when k ≤ 1), and so some care is needed when applying the Brauer corre-

spondence. Our approach is to use Lemma 3.2.3 to construct explicit p-permutation

bases: for more theoretical results on monomial modules for finite groups the reader

is referred to [4].

The main part of the proof begins in Section 3.3 where we prove Theorem 3.1.2.

In Section 3.4, we prove Theorem 3.1.1, by filling in the details in the following

sketch. The hypotheses of Theorem 3.1.1, together with Lemma 3.2.1 on the ordinary

character of H(2m;k), imply that H(2m;k) has a summand in the block of S2m+k with

p-core γ. If this summand is non-projective, then it follows from Theorem 3.1.2,

using Theorem 1.3.13 on the Brauer correspondence between blocks of symmetric

groups, that either H(2m;k−p) has a summand in the block of S2m+k−p with p-core γ,

or one of H(2m−p;k) and H(2m;k−2p) has a summand in the block of S2m+k−2p with p-

core γ. All of these are shown to be ruled out by the hypotheses of Theorem 3.1.1.

Hence the summand is projective. A short argument using Lemma 3.2.1, Brauer

reciprocity and Scott’s lifting theorem then gives Theorem 3.1.1. We also obtain

the proposition below, which identifies a particular projective summand of H(2m;k)

in the block of S2m+k with p-core γ.

Proposition 3.1.3 Let p be an odd prime, let γ be a p-core and let k ∈ N0. If k > p

suppose that wk−p(γ) 6= wk(γ) − 1. Let 2m + k = |γ| + wk(γ)p. If λ is a maximal

partition in the dominance order on Ek(γ) then λ is p-regular and the projective

cover of the simple module Dλ is a direct summand of H(2m;k), where both modules

are defined over a field of characteristic p.

In Section 3.5, we give some further examples and corollaries of Theorem 3.1.1

and Proposition 3.1.3. In Lemma 3.5.3 we show that given any odd prime p, any

k ∈ N0, and any w ∈ N, there is a p-core γ such that wk(γ) = w. We use these p-cores

to show that the lower bound cλλ > w+1 on the diagonal Cartan numbers in a block

of weight w, proved independently by Richards [66, Theorem 2.8] and Bessenrodt

and Uno [3, Proposition 4.6(i)], is attained for every odd prime p in p-blocks of

every weight. Since the endomorphism algebra of each H(2m;k) is commutative (in

any characteristic), it also follows that for any odd prime p and any w ∈ N, there

is a projective module for a symmetric group lying in a p-block of weight w whose

endomorphism algebra is commutative.
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3.2 Twisted Foulkes modules

Throughout this section let F be a field and let m ∈ N, k ∈ N0. Denote, as usual, by

Ω(2m) the collection of all set partitions of {1, . . . , 2m} into m sets each of size two.

We have already defined the Foulkes module H(2m) to be the permutation module

with F-basis Ω(2m), and the twisted Foulkes module H(2m;k) to be Ind
S2m+k

S2m×Sk

(
H(2m)�

sgnSk
)
.

Let χλ denote the irreducible character of Sn corresponding to the partition λ

of n. When F has characteristic zero the ordinary character of H(2m) was found by

Thrall [74, Theorem III] to be
∑

µ χ
2µ where the sum is over all partitions µ of m

and 2µ is the partition obtained from µ by doubling each part.

Lemma 3.2.1 The ordinary character of H(2m;k) is
∑

λ χ
λ, where the sum is over

all partitions λ of 2m+ k with exactly k odd parts.

Proof: This follows from Theorem 1.3.6 applied to the ordinary character of H(2m).

2

We remark that an alternative proof of Lemma 3.2.1 with minimal pre-requisites

can be found in [37]; the main result of [37] uses the characters of twisted Foulkes

modules to construct a ‘model’ character for each symmetric group containing each

irreducible character exactly once.

In the remainder of this section we suppose that F has odd characteristic p and

define a module isomorphic to H(2m;k) that will be used in the calculations in Section

3.2. Let SX denote the symmetric group on the set X. Let ∆(2m;k) be the set of all

elements of the form

{
{i1, i′1}, . . . , {im, i′m}, (j1, . . . , jk)

}
where {i1, i′1, . . . , im, i′m, j1, . . . , jk} = {1, . . . , 2m+k}. Given δ ∈ ∆(2m;k) of the form

above, we define

S(δ) =
{
{i1, i′1}, . . . , {im, i′m}

}
,

T (δ) = {j1, . . . , jk}.

The symmetric group S2m+k acts transitively on ∆(2m;k) by

δg =
{
{i1g, i′1g}, . . . , {img, i′mg}, (j1g, . . . , jkg)

}
for g ∈ S2m+k. Let F∆(2m;k) be the permutation module for FS2m+k with F-basis
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∆(2m;k). Let K(2m;k) be the subspace of F∆(2m;k) spanned by

{
δ − sgn(g)δg : δ ∈ ∆(2m;k), g ∈ ST (δ)

}
.

Since this set is permuted by S2m+k, it is clear that K(2m;k) is an FS2m+k-submodule

of F∆(2m;k). For δ ∈ ∆(2m;k), let δ ∈ F(∆(2m;k)/K(2m;k)) denote the image δ+K(2m;k)

of δ under the quotient map. Let Ω(2m;k) be the subset of ∆(2m;k) consisting of those

elements of the form above such that j1 < . . . < jk. In the next lemma we use

Ω(2m;k) to identify F(∆(2m;k)/K(2m;k)) with H(2m;k).

Lemma 3.2.2

(i) For each δ ∈ ∆(2m;k) there exists a unique ω ∈ Ω(2m;k) such that δ ∈ {ω,−ω}.
Moreover, for this ω we have S(δ) = S(ω) and T (δ) = T (ω) and there exists a

unique h ∈ ST (δ) such that δh = ω.

(ii) The set {ω : ω ∈ Ω(2m;k)} is an F-basis for F(∆(2m;k)/K(2m;k)).

(iii) The FS2m+k-modules H(2m;k) and F(∆(2m;k)/K(2m;k)) are isomorphic.

Proof: For brevity we write K for K(2m;k). Let

δ =
{
{i1, i′1}, . . . , {im, i′m}, (j1, . . . , jk)

}
∈ ∆(2m;k).

The unique h ∈ ST (δ) such that δh ∈ Ω(2m;k) is the permutation such that

j1h < j2h < · · · < jkh.

Set ω = δh. Since S(ω) = S(δ) and T (ω) = T (δ) we have the existence part of

(i). Since δ − sgn(h)δh ∈ K, it follows that δ = sgn(h)ω, and that F(∆(2m;k)/K) is

spanned by {ω : ω ∈ Ω(2m;k)}. Set x = h−1. If g ∈ ST (δ) then

δ − sgn(g)δg = − sgn(x)
(
ω − sgn(x)ωx

)
+ sgn(x)

(
ω − sgn(xg)ωxg

)
.

Since T (δ) = T (ω) we have x, xg ∈ ST (ω). It follows that K is spanned by

{ω − sgn(y)ωy : ω ∈ Ω(2m;k), y ∈ ST (ω)}.

Hence dim(F(∆(2m;k)/K)) ≤ |Ω(2m;k)| and dimK ≤ |Ω(2m;k)|(k!− 1). Since

dim(F∆(2m;k)) = |Ω(2m;k)|(k!) ,
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we have equality in both cases. This proves part (ii). Moreover, if ω = ±ω′ for

ω, ω′ ∈ Ω(2m;k) then S(ω) = S(ω′) and T (ω) = T (ω′), and so ω = ω′. This proves

the uniqueness in (i).

For (iii), let

ω =
{
{1, 2}, . . . , {2m− 1, 2m}, (2m+ 1, . . . , 2m+ k)

}
∈ Ω(2m;k).

Write S2m × Sk for S{1,...,2m} × S{2m+1,...,2m+k}, thought of as a subgroup of S2m+k.

Given h ∈ S{1,...,2m} and x ∈ S{2m+1,...,2m+k} we have ωhx = sgn(x)ωh. By (ii) the

set {ωh : h ∈ S2m} is linearly independent. Hence the F(S2m × Sk)-submodule of

F(∆(2m;k)/K) generated by ω is isomorphic to H(2m) � sgnSk . Since

dim(F(∆(2m;k)/K)) = |Ω(2m;k)| =
(

2m+ k

k

)
dimH(2m)

and the index of S2m × Sk in S2m+k is
(

2m+k
k

)
, it follows that

F(∆(2m;k)/K) ∼= Ind
S2m+k

S2m×Sk

(
H(2m) � sgnSk

)
as required. 2

Since p is odd, Lemma 1.2.17 implies that

Ind
(S2oSm)×Sk
(S2oSm)×Ak(F) = F(S2oSm)×Sk ⊕

(
FS2oSm � sgnSk

)
where Ak denotes the alternating group on {2m+1, . . . , 2m+k}. Therefore H(2m;k) is

a direct summand of the module induced from the trivial F
(
(S2 o Sm)×Ak

)
-module,

and so, by Proposition 1.2.16, H(2m;k) is a p-permutation module.

In the following lemma we construct a p-permutation basis for H(2m;k).

Lemma 3.2.3 Let P be a p-subgroup of S2m+k.

(i) There is a choice of signs sω ∈ {+1,−1} for ω ∈ Ω(2m;k) such that

{sωω : ω ∈ Ω(2m;k)}

is a p-permutation basis for H(2m;k) with respect to P .

(ii) Let ω =
{
{i1, i′1}, . . . , {im, i′m}, (j1, . . . , jk)} ∈ Ω(2m;k) and let g ∈ P . Then ω

is fixed by g if and only if
{
{i1, i′1}, . . . , {im, i′m}

}
is fixed by g.
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Proof: For ω ∈ Ω(2m;k) let γ(ω) =
(
S(ω), T (ω)

)
. Let

Γ(2m;k) =
{
γ(ω) : ω ∈ Ω(2m;k)

}
.

Notice that the map

γ : Ω(2m;k) −→ Γ(2m;k)

associating to each ω ∈ Ω(2m;k) the element γ(ω) ∈ Γ(2m;k) is a bijection. The

set Γ(2m;k) is acted on by S2m+k in the obvious way. Let γ1, . . . , γc ∈ Γ(2m;k) be

representatives for the orbits of P on Γ(2m;k). For each b ∈ {1, . . . , c}, let ωb ∈ Ω(2m;k)

be the unique element such that γb = γ(ωb). Given any ω ∈ Ω(2m;k) there exists a

unique b such that γ(ω) is in the orbit of P on Γ(2m;k) containing γb. Choose g ∈ P
such that γ(ω) = γbg. Then ω and ωbg are equal up to the order of the numbers in

their k-tuples, and so there exists h ∈ ST (ω) such that ωbgh = ω. By Lemma 3.2.2(i)

we have

ωbg = sωω

for some sω ∈ {+1,−1}. If g̃ ∈ P is another permutation such that γ(ω) = γbg̃ then

ωbgg̃
−1 = ±ωb. Hence the F-span of ωb is a 1-dimensional representation of the cyclic

p-group generated by gg̃−1. The unique such representation is the trivial one, so

ωbg = ωbg̃. The sign sω is therefore well-defined. Now suppose that ω, ω′ ∈ Ω(2m;k)

and h ∈ P are such that sωωh = ±sω′ω′. By construction of the basis there exists

ωb ∈ Ω(2m;k) and g, g′ ∈ P such that sωω = ωbg and sω′ω′ = ωbg
′. Therefore

ωbgh = sωωh = ±sω′ω′ = ±ωbg′

and so ωbghg
′−1 = ±ωb. As before, the plus sign must be correct. This proves (i).

For (ii), suppose that ωg = ω. Setting δ = ωg, and noting that δ = ω, it

follows from Lemma 3.2.2(i) that S(ωg) = S(δ) = S(ω). Hence the condition in

(ii) is necessary. Conversely, if
{
{i1, i′1}, . . . , {im, i′m}

}
is fixed by g then g permutes

{j1, . . . , jk} and so ωg ∈ {ω,−ω}. Since g ∈ P , it now follows from (i) that ωg = ω,

as required. 2

In applications of Lemma 3.2.3(ii) it will be useful to note that there is an

isomorphism of S2m-sets between Ω(2m) and the set of fixed-point free involutions

in S2m, where the symmetric group acts by conjugacy. Given ω ∈ Ω(2m;k) with

S(ω) =
{
{i1, i′1}, . . . , {im, i′m}

}
, we define

I(ω) = (i1, i
′
1) · · · (im, i′m) ∈ S2m+k.

59



By Lemma 3.2.3(ii), if g ∈ S2m+k is a p-element then g fixes ω if and only if g com-

mutes with I(ω). Corollary 1.2.19 and Lemma 3.2.3 therefore implies the following

proposition, which we shall use repeatedly in the next section.

Proposition 3.2.4 Let R be a p-subgroup of S2m+k and let P be a Sylow p-subgroup

of S2m+k containing a Sylow p-subgroup of NG(R). There is a choice of signs sω ∈
{+1,−1} for ω ∈ Ω(2m;k) such that

{
sωω : ω ∈ Ω(2m;k), I(ω) ∈ CS2m+k

(R)
}
.

is a p-permutation basis for the Brauer correspondent H(2m;k)(R) with respect to

P ∩NG(R).

3.3 The local structure of H(2m;k)

In this section we prove Theorem 3.1.2. Throughout we let F be a field of odd

characteristic p and fix m ∈ N, k ∈ N0. Any vertex of an indecomposable non-

projective summand of H(2m;k) must contain, up to conjugacy, one of the subgroups

Rr = 〈z1z2 · · · zr〉

where zj is the p-cycle (p(j − 1) + 1, . . . , pj) and rp ≤ 2m + k, so we begin by

calculating H(2m;k)(Rr). In the second step we show that, for any t ∈ N such

that 2t ≤ r, the Brauer correspondent H(2tp;(r−2t)p)(Rr) is indecomposable as an

FNSrp(Rr)-module and determine its vertex; in the third step we combine these

results to complete the proof.

First step: Brauer correspondent with respect to Rr

Let r ∈ N be such that rp ≤ 2m+ k. We define

Tr = {t ∈ N0 : tp 6 m, 2t ≤ r, (r − 2t)p ≤ k}.

For t ∈ Tr let

A2t =
{
ω :

ω ∈ Ω(2m;k), I(ω) ∈ CS2m+k
(Rr)

supp I(ω) contains exactly 2t orbits of Rr of length p

}
.
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Lemma 3.3.1 There is a direct sum decomposition of FNS2m+k
(Rr)-modules

H(2m;k)(Rr) ∼=
⊕
t∈Tr

〈A2t〉.

Proof: By Proposition 3.2.4 the FNS2m+k
(Rr)-module H(2m;k)(Rr) has as a basis

A =
{
ω : ω ∈ Ω(2m;k), I(ω) ∈ CS2m+k

(Rr)
}
.

Let ω ∈ Ω(2m;k) be such that I(ω) ∈ CS2m+k
(Rr). Then I(ω) permutes, as blocks

for its action, the orbits of Rr. It follows that the number of orbits of Rr of length

p contained in supp I(ω) is even. Suppose this number is 2t. Clearly 2t ≤ r and

2tp ≤ 2m. The remaining r − 2t orbits of length p are contained in T (ω). Thus

(r − 2t)p ≤ k, and so t ∈ Tr and ω ∈ A2t.

Let the p-cycles corresponding to the 2t orbits of Rr that are contained in

supp I(ω) be zj1 , . . . , zj2t . Let g ∈ NS2m+k
(Rr). Let ω? ∈ Ω(2m;k) be such that

ω? = ±ωg. The p-cycles zgj1 , . . . , zgj2t correspond precisely to the orbits of Rr con-

tained in supp I(ω?). Hence ω? ∈ A2t, and so the vector space 〈A2t〉 is invariant

under g. Since A =
⋃
t∈Tr A2t the lemma follows. 2

There is an obvious factorization NS2m+k
(Rr) = NSrp(Rr)×S{rp+1,...,2m+k}. The

next proposition establishes a corresponding tensor factorization of the NS2m+k
(Rr)-

module 〈A2t〉. The shift required to make the second factor H(2m−tp;k−(r−2t)p) a

module for FS{rp+1,...,2m+k} is made explicit in the proof.

Proposition 3.3.2 If t ∈ Tr then there is an isomorphism

〈A2t〉 ∼= H(2tp;(r−2t)p)(Rr)�H
(2m−tp;k−(r−2t)p)

of F(NSrp(Rr)× S{rp+1,...,2m+k})-modules.

Proof: In order to simplify the notation we shall write K for the FS2m+k-submodule

K(2m;k) of F∆(2m;k) defined just before Lemma 3.2.2. Recall that if ω ∈ Ω(2m;k) then,

by definition, ω = ω + K. Let J = K(2tp;(r−2t)p). It follows from Proposition 3.2.4,

in the same way as in Lemma 3.3.1, that H(2tp;(r−2t)p)(Rr) has as a basis

{ω + J : ω ∈ Ω(2tp;(r−2t)p), I(ω) ∈ CSrp(Rr)}.

Define ∆+ by shifting the entries in each of the elements of ∆(2m−tp,k−(r−2t)p) by rp,

so that F∆+ is an FS{rp+1,...,2m+k}-module, and similarly define Ω+ ⊆ ∆+ by shifting
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Ω(2m−tp,k−(r−2t)p) and J+ ⊆ F∆+ by shifting the basis elements of K(2m−tp,k−(r−2t)p).

Then, by Lemma 3.2.2, H+ = F∆+/J+ is an FS{rp+1,...,2m+k}-module with basis

{ω+ + J+ : ω+ ∈ Ω+}.

We shall define a linear map f : 〈A2t〉 → H(2tp;(r−2t)p)�H+. Given ω+K ∈ A2t

where

ω =
{
{i1, i′1}, . . . , {im, i′m}, (j1, . . . , jk)} ∈ Ω(2m;k)

and the notation is chosen so that

{i1, i′1, . . . , itp, i′tp, j1, . . . , j(r−2t)p} = {1, . . . , rp},

we define (ω +K)f = (α+ J)⊗ (α+ + J+) where

α =
{
{i1, i′1}, . . . , {itp, i′tp}, (j1, . . . , j(r−2t)p)

}
α+ =

{
{itp+1, i

′
tp+1}, . . . , {imp, i′mp}, (j(r−2t)p+1, . . . , jk)

}
.

This defines a bijection betweenA2t and the basis for H(2tp;(r−2t)p)(Rr)�H
+ afforded

by the bases for H(2tp;(r−2t)p)(Rr) and H+ just defined. The map f is therefore a

well-defined linear isomorphism.

Suppose that ω ∈ Ω(2m;k) is as above and let g ∈ NS2m+k
(Rr). Let h ∈ ST (ωg)

be the unique permutation such that (j1gh, . . . , jkgh) is increasing. Let ω? = ωgh,

so ω? ∈ Ω(2m;k) and ωg = sgn(h)ω?. Since g permutes {1, . . . , rp} we may factorize

h as h = xx+ where x ∈ ST (αg) and x+ ∈ ST (α+g). By definition of f we have

(ω? +K)f = (αgx+ J)⊗ (α+gx+ + J+).

Hence

(ω +K)gf = sgn(h)(ω? +K)f

= sgn(h) sgn(x) sgn(x+)(αg + J)⊗ (α+g + J+)

= (ω +K)fg.

The map f is therefore a homomorphism of FNS2m+k
(Rr)-modules. Since f is a

linear isomorphism, the proposition follows. 2
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Second step: the vertex of H(2tp;(r−2t)p)(Rr)

Fix r ∈ N and t ∈ N0 such that 2t ≤ r. In the second step we show that the

FNSrp(Rr)-module H(2tp;(r−2t)p)(Rr) is indecomposable and that it has the subgroup

Qt defined below as a vertex.

To simplify the notation, we denote H(2tp;(r−2t)p)(Rr) by M . Let C and Et be

the elementary abelian p-subgroups of NSrp(Rr) defined by

C = 〈z1〉 × 〈z2〉 × · · · × 〈zr〉,

Et = 〈z1zt+1〉 × · · · × 〈ztz2t〉 × 〈z2t+1〉 × · · · × 〈zr〉,

where the zj are the p-cycles defined at the start of this section. For i ∈ {1, . . . , tp},
let i′ = i + tp, and for g ∈ S{1,...,tp}, let g′ ∈ S{tp+1,...,2tp} be the permutation

defined by i′g′ = (ig)′. Note that if 1 ≤ j ≤ t then z′j = zj+t. Let L be the group

consisting of all permutations gg′ where g lies in a Sylow p-subgroup of S{1,...,tp}

containing the group 〈z1, . . . , zt〉, chosen so that z1 · · · zt is in its centre. Let L+ be a

Sylow p-subgroup of S{2tp+1,...,rp} containing the group 〈z2t+1, . . . , zr〉, chosen so that

z2t+1 · · · zr is in its centre. (The existence of such Sylow p-subgroups follows from the

construction of Sylow p-subgroups of symmetric groups described in Section 1.3.3.

In particular we have that z1 · · · zt is a product of the central elements identified

after Definition 1.3.8. Moreover we observe that the non-zero powers of z2t+1, . . . , zr

are the unique p-cycles in L+, by Remark 1.3.11.) Let

Qt = L× L+.

Observe that Qt normalizes C and so 〈C,Qt〉 is a p-group contained in CSrp(Rr).

Let P be a Sylow p-subgroup of CSrp(Rr) containing 〈Qt, C〉. Since there is a Sylow

p-subgroup of Srp containing Rr in its centre, P is also a Sylow p-subgroup of Srp.

Clearly Et ≤ C and

Rr ≤ Et ≤ Qt ≤ P ≤ CSrp(Rr).

If t = 0 then M is the sign representation of NSrp(Rr), with p-permutation basis

B = {ω} where ω is the unique element of Ω(20;rp). It is then clear that M has the

Sylow p-subgroup Q0 of CSrp(Rr) as a vertex. We may therefore assume that t ∈ N
for the rest of this step.

By Proposition 3.2.4 there is a choice of signs sω ∈ {+1,−1} for ω ∈ Ω(2tp;(r−2t)p)

such that

B = {sωω : ω ∈ Ω(2tp;(r−2t)p), I(ω) ∈ CSrp(Rr)}

63



is a p-permutation basis for M with respect to P . Let

Oj = {(j − 1)p+ 1, . . . , jp}

be the orbit of zj on {1, . . . , rp} of length p. If I(ω) ∈ CSrp(Rr) then I(ω) permutes

these orbits as blocks for its action; let

IO(ω) ∈ S{O1,...,Or}

be the involution induced by the action of I(ω) on the set of orbits.

Proposition 3.3.3 The FNSrp(Rr)-module M is indecomposable and has a vertex

containing Et.

Proof: For each involution h ∈ S{O1,...,Or} that fixes exactly r − 2t of the orbits Oj ,
and so moves the other 2t, define

B(h) = {sωω ∈ B : IO(ω) = h}.

Clearly there is a vector space decomposition

M =
⊕
h

〈B(h)〉.

If g ∈ C then IO(ωg) = IO(ω) since g acts trivially on the set of orbits {O1, . . . ,Or}.
Therefore C permutes the elements of each B(h).

Let

h? = (O1,Ot+1) · · · (Ot,O2t) ∈ S{O1,...,Or}

and let sω?ω? ∈ B(h?) be the unique basis element such that

I(ω?) = (1, tp+ 1)(2, tp+ 2) · · · (tp, 2tp)

(Equivalently, I(ω?) is the unique involution in S2tp that preserves the relative orders

of the elements in Oj for 1 ≤ j ≤ 2t and satisfies IO(ω?) = h?.) By Lemma 3.2.3(ii)

we see that the stabiliser of ω? in C is the subgroup Et. Let sδδ ∈ B(h?), then

I(δ) = I(ω?) = h?. Without loss of generality we have that

I(δ) = (1, i1)(2, i2) · · · (tp, itp),
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where {i(j−1)p+1, i(j−1)p+2, . . . , ijp} = Ot+j for all j ∈ {1, . . . , t}. Hence, there exist

k1, k2, . . . , kt ∈ {0, 1, . . . , p− 1} and a permutation

g = zk1t+1z
k2
t+2 · · · zkt2t ,

such that (tp+(j−1)p+1)g = i(j−1)p+1 for all j ∈ {1, . . . , t}. Since sδδ is fixed by Rr,

it follows that sω?ω?g = sδδ. Therefore any basis element in B(h?) can be obtained

from ω? by permuting the members of Ot+1, . . . , O2t by an element of C. It follows

that B(h?) has size pt and is equal to the orbit of sω?ω? under C. Therefore there

is an isomorphism of FC-modules 〈B(h?)〉 ∼= IndCEt(F). By Lemma 1.2.28, 〈B(h?)〉
is an indecomposable FC-module with vertex Et.

For each involution h ∈ S{O1,...,Or}, the FC-submodule 〈B(h)〉 of M is sent to

〈B(h?)〉 by an element of NSrp(Rr) normalizing C. It follows that if U is any sum-

mand of M , now considered as an FNSrp(Rr)-module, then the restriction of U to C

is isomorphic to a direct sum of indecomposable p-permutation FC-modules with

vertices conjugate in NSrp(Rr) to Et. Applying Theorem 1.2.18 to these summands,

we see that there exists g ∈ NSrp(Rr) such that U(Egt ) 6= 0. Now by Theorem 1.2.18,

this time applied to the FNSrp(Rr)-module U , we see that U has a vertex contain-

ing Egt . Hence every indecomposable summand of M has a vertex containing Et.

We now calculate the Brauer correspondent M(Et). Let sωω ∈ B. It follows

from Lemma 3.2.3(ii) that ω is fixed by Et if and only if IO(ω) is the involution h?.

Hence, by Corollary 1.2.19 and Lemma 3.2.3, we have M(Et) = 〈B(h?)〉. We have

already seen that 〈B(h?)〉 is indecomposable as an FC-module. Since C normalizes

Et and centralizes Rr, it follows that M(Et) is indecomposable as a module for

the normalizer of Et in NSrp(Rr). We already know that every indecomposable

summand of M has a vertex containing Et, so it follows from Corollary 1.2.25 that

M is indecomposable. 2

Note that if ω? is as defined in the proof of Proposition 3.3.3, then Qt is a

Sylow p-subgroup of CSrp

(
I(ω?)

) ∼= (S2 oStp)×S(r−2t)p. Using this observation and

the p-permutation basis B for M it is now straightforward to prove the following

proposition.

Proposition 3.3.4 The indecomposable FNSrp(Rr)-module M has Qt as a vertex.

Proof: By Corollary 1.2.19, if Q is a subgroup of P maximal subject to BQ 6= ∅
then Q is a vertex of M . By Lemma 3.2.3(ii), a basis element sωω ∈ B is fixed by a

p-subgroup Q of P if and only if Q ≤ CSrp

(
I(ω)

)
. Taking ω = ω? we see that there

is a vertex of M containing Qt. On the other hand, CSrp

(
I(ω)

)
is conjugate in Srp

to CSrp

(
I(ω?)

)
, and so if Q ≤ CSrp

(
I(ω)

)
then |Q| ≤ |Qt|. It follows that Qt is a
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vertex of M . 2

Third step: proof of Theorem 3.1.2

For the remainder of the proof we shall regard S(r−2t)p as acting on {2tp+1, . . . , rp}.
We denote by Dt the p-group C ∩NSrp(Qt). Notice that 〈Dt, Qt〉 is a p-group since

it is a subgroup of 〈C,Qt〉 6 P . We shall need the following lemma to work with

modules for NSrp(Qt).

Lemma 3.3.5 The unique Sylow p-subgroup of NSrp(Qt) is the subgroup 〈Dt, Qt〉 of

P .

Proof: Let x ∈ NSrp(Qt). If 2t + 1 ≤ j ≤ r then the conjugate zxj of the p-cycle

zj ∈ Et is a p-cycle in Qt. Since Qt normalizes Et, it permutes the orbits O1, . . . ,

Or of Et as blocks for its action. No p-cycle can act non-trivially on these blocks,

so zxj ∈ 〈z2t+1, . . . , zr〉. Hence if 1 ≤ j ≤ t then (zjzj+t)
x ∈ 〈z1zt+1, . . . , ztz2t〉. It

follows that NSrp(Qt) factorizes as

NSrp(Qt) = NS2tp(L)×NS(r−2t)p
(L+)

where L and L+ are as defined at the start of the second step. Moreover, we see

that NSrp(Qt) permutes, as blocks for its action, the sets O1 ∪ Ot+1, . . . ,Ot ∪ O2t

and O2t+1, . . . ,Or.
Let h ∈ NSrp(Qt) be a p-element. We may factorize h as gg+ where g ∈ NS2tp(L)

and g+ ∈ NS(r−2t)p
(L+) are p-elements. Since 〈L+, g+〉 is a p-group and L+ is a Sylow

p-subgroup of S(r−2t)p, we have g+ ∈ L+. Let

X = {O1 ∪ Ot+1, . . . ,Ot ∪ O2t}.

The group 〈L, g〉 permutes the sets in X as blocks for its action. Let

π : 〈L, g〉 → SX

be the corresponding group homomorphism. By construction L acts on the sets

O1, . . . ,Ot as a Sylow p-subgroup of S{O1,...,Ot}; hence Lπ is a Sylow p-subgroup of

SX . Since 〈L, g〉 is a p-group, there exists g̃ ∈ L such that gπ = g̃π. Let y = gg̃−1.

Since y acts trivially on X, we may write

y = g1 . . . gt
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where gj ∈ SOj ∪Oj+t for each j. The p-group 〈L, y〉 has as a subgroup 〈zjzj+t, y〉.
The permutation group induced by this subgroup on Oj ∪Oj+t, namely 〈zjzj+t, gj〉,
is a p-group acting on a set of size 2p. Since p is odd, the unique Sylow p-subgroup of

SOj ∪Oj+t containing zjzj+t is 〈zj , zj+t〉. Hence gj ∈ 〈zj , zj+t〉 for each j. Therefore

y ∈ 〈z1, . . . , zt, zt+1, . . . , z2t〉 ≤ C. We also know that y ∈ 〈L, g〉 6 NS2tp(L) 6

NSrp(Qt). Therefore y ∈ Dt, and since g̃ ∈ Qt, it follows that g ∈ 〈Dt, Qt〉. Hence

h = gg+ ∈ 〈Dt, Qt〉 6 〈C,Qt〉 6 P .

Conversely, the subgroup 〈Dt, Qt〉 is contained in NSrp(Qt) because both Dt and

Qt are. It follows that 〈Dt, Qt〉 is the unique Sylow p-subgroup of NSrp(Qt). 2

We are now ready to prove Theorem 3.1.2. We repeat the statement below for

the reader’s convenience.

Theorem 3.1.2 Let m ∈ N and let k ∈ N0. If U is an indecomposable non-

projective summand of H(2m;k), defined over a field F of odd characteristic p, then U

has as a vertex a Sylow p-subgroup Q of (S2 o Stp) × S(r−2t)p for some t ∈ N0 and

r ∈ N with tp ≤ m, 2t ≤ r and (r−2t)p ≤ k. Moreover the Green correspondent of U

admits a tensor factorization V �W as a module for F
(
(NSrp(Q)/Q)× S2m+k−rp

)
,

where V and W are projective, and W is an indecomposable summand of the twisted

Foulkes module H(2m−tp;k−(r−2t)p).

Proof: Let r ∈ N be maximal such that the subgroup Rr is contained in a vertex of U .

Let K = NSrp(Rr). By Lemma 3.3.1 and Proposition 3.3.2 there is an isomorphism

of NS2m+k
(Rr)-modules

H(2m;k)(Rr) ∼=
⊕
t∈Tr

(
H(2tp;(r−2t)p)(Rr)�H

(2m−tp;k−(r−2t)p)
)

compatible with the factorization NS2m+k
(Rr) = K × S2m+k−rp, where we regard

S2m+k−rp as acting on {rp+ 1, . . . , 2m+k} and shift each module H(2m−tp;k−(r−2t)p)

appropriately.

For t ∈ Tr, let Mt = H(2tp;(r−2t)p)(Rr). By Proposition 3.3.4, each Mt is inde-

composable as an FK-module. Hence, by the Krull–Schmidt Theorem, there is a

subset T ′ ⊂ Tr, and for each t ∈ T ′, a non-zero summand Wt of H(2m−tp;k−(r−2t)p),

such that

U(Rr) ∼=
⊕
t∈T ′

Mt �Wt

as F(K × S2m+k−rp)-modules. By Proposition 3.3.4, Mt has Qt as a vertex for each

non-zero t ∈ T ′. It is clear that M0 = sgnSrp(Rr) has vertex Q0 as an FNSrp(Rr)-

module. Let ` be the least element of T ′. If t > ` then Qt does not contain a
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conjugate of the subgroup E` of Q`. Hence, by Theorem 1.2.18, we have Mt(Q`) = 0.

It now follows from Lemmas 1.2.23 and 1.2.24 that there is an isomorphism of

F(NK(Q`)× S2m+k−rp)-modules

U(Q`) ∼=
(
U(Rr)

)
(Q`) ∼= M`(Q`)�W`.

Since M` has Q` as a vertex, we have M`(Q`) 6= 0. It follows that U has a vertex Q

containing Q`.

Let B be the p-permutation basis for M` defined in the second step. Since B
is permuted by the Sylow p-subgroup P of K, it follows from Corollary 1.2.19 and

Lemma 3.3.5 that C = BQ` is a p-permutation basis for the FNK(Q`)-module M`(Q`)

with respect to the Sylow p-subgroup 〈D`, Q`〉 of NK(Q`). Since W` is isomorphic

to a direct summand of the p-permutation module H(2m−`p;k−(r−2`)p) it has a p-

permutation basis C+ with respect to a Sylow p-subgroup P+ of S{rp+1,...,2m+k}.

Therefore

C × C+ = {v ⊗ v+ : v ∈ C, v+ ∈ C+}

is a p-permutation basis for M`(Q`) � W` with respect to the Sylow subgroup

〈D`, Q`〉 × P+ of NK(Q`)× S2m+k−rp.

Suppose, for a contradiction, that Q strictly contains Q`. Since Q is a p-group

there exists a p-element g ∈ NQ(Q`) 6 NS2m+k
(Q`) such that g 6∈ Q`. Now Q` has

orbits of length at least p on {1, . . . , rp} and fixes {rp + 1, . . . , 2m + k}. Since g

permutes these orbits as blocks for its action, we may factorize g as g = hh+ where

h ∈ NSrp(Q`) and h+ ∈ S2m+k−rp. By Lemma 3.3.5 we have that 〈Q`, h〉 ≤ NK(Q`).

Corollary 1.2.19 now implies that (C × C+)〈Q`,g〉 6= ∅. Let v ⊗ v+ ∈ C × C+ be

such that (v ⊗ v+)g = v ⊗ v+. Then v ∈ B〈Q`,h〉. But Q` is a vertex of M`, so it

follows from Corollary 1.2.19 that h ∈ Q`. Hence h+ is a non-identity element of Q.

By taking an appropriate power of h+ we find that Q contains a product of one or

more p-cycles with support contained in {rp+ 1, . . . , 2m+ k}. This contradicts our

assumption that r was maximal such that Rr is contained in a vertex of U .

Therefore U has vertex Q`. We saw above that there is an isomorphism U(Q`) ∼=
M`(Q`) �W` of F(NK(Q`) × S2m+k−rp)-modules. This identifies U(Q`) as a vec-

tor space on which NS2m+k
(Q`) = NSrp(Q`) × S2m+k−rp acts. It is clear from the

isomorphism in Proposition 3.3.2 that NSrp(Q`) acts on the first tensor factor and

S2m+k−rp acts on the second. Hence the action of NK(Q`) on M`(Q`) extends to an

action of NSrp(Q`) on M`(Q`) and we obtain a tensor factorization V �W` of U(Q`)

as a NSrp(Q`)×S2m+k−rp-module. An outer tensor product of modules is projective

if and only if both factors are projective, so by Theorem 1.2.20, V is a projective
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F(NSrp(Q`)/Q`)-module, W` is a projective FS2m+k−rp-module, and U(Q`) is the

Green correspondent of U . 2

3.4 Proofs of Theorem 3.1.1 and Proposition 3.1.3

In this section we prove Proposition 3.1.3, and hence Theorem 3.1.1. It will be

convenient to assume that H(2m;k) is defined over Fp. Proposition 3.1.3 then follows

for an arbitrary field of characteristic p by change of scalars. We assume the common

hypotheses for these results, so γ is a p-core such that 2m+ k = |γ|+wk(γ)p and if

k > p then

wk−p(γ) 6= wk(γ)− 1.

Let λ be a maximal element of Ek(γ) under the dominance order.

Write H
(2m;k)
Q for the twisted Foulkes module defined over the rational field. This

module has an ordinary character given by Lemma 3.2.1. In particular it has χλ as

a constituent, and so the rational Specht module SλQ is a direct summand of H
(2m;k)
Q .

Therefore, by reduction modulo p, each composition factor of Sλ (now defined over

Fp) appears in H(2m;k). In particular H(2m;k) has non-zero block component for the

block B(γ,wk(γ)) with p-core γ and weight wk(γ). We now use Theorem 3.1.2 to

show that any such block component is projective.

Proposition 3.4.1 The block component of H(2m;k) for the block B(γ,wk(γ)) of

S2m+k is projective.

Proof: Suppose, for a contradiction, that H(2m;k) has a non-projective indecompos-

able summand U in B(γ,wk(γ)). By Theorem 3.1.2, the vertex of U is a Sylow

subgroup Qt of (S2 o Stp)× S(r−2t)p for some r ∈ N and t ∈ N0 such that tp ≤ m,

2t ≤ r and (r − 2t)p ≤ k.

Suppose first of all that 2t < r. In this case there is a p-cycle g ∈ Qt. Replacing

Qt with a conjugate, we may assume that g = (1, . . . , p) and so 〈g〉 = R1 where

R1 is as defined at the start of the first step in Section 3.3. By Lemma 3.3.1 and

Proposition 3.3.2, we have that k > p and U(R1) is a direct summand of

H(2m;k)(R1) = sgnSp(〈g〉)�H(2m;k−p).

Hence there exists an indecomposable summand W of H(2m;k−p) such that

sgnSp(〈g〉)�W | U(R1).
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By Theorem 1.3.13, W lies in the block B(γ,wk(γ) − 1) of S2m+k−p. In particu-

lar, this implies that H(2m;k−p) has a composition factor in this block. Therefore

there is a constituent χµ of the ordinary character of H(2m;k−p) such that Sµ lies in

B(γ,wk(γ)−1). But then, by Lemma 3.2.1, µ is a partition with p-core γ having ex-

actly k−p odd parts and weight wk(γ)−1. Adding a single vertical p-hook to µ gives

a partition of weight wk(γ) with exactly k odd parts. Hence wk−p(γ) = wk(γ)− 1,

contrary to the hypothesis on wk−p(γ).

Now suppose that 2t = r. Let g = (1, . . . , p)(p + 1, . . . , 2p). Then g ∈ Qt by

definition and 〈g〉 = R2. By Lemma 3.3.1 and Proposition 3.3.2 we have that U(R2)

is a direct summand of

H(2m;k)(R2) =
(
H(2p)(〈g〉)�H(2m−p;k)

)⊕(
sgnS2p

(〈g〉)�H(2m;k−2p)
)

where the second summand should be disregarded if k < 2p. It follows that either

there is an indecomposable summand V of H(2m−p;k) such that

H(2p)(〈g〉)� V | U(R2),

or k > 2p and there is an indecomposable summand W of H(2m;k−2p) such that

sgnS2p
(〈g〉)�W | U(R2).

Again we use Theorem 1.3.13. In the first case the theorem implies that V lies

in the block B(γ,wk(γ)− 2) of S2m+k−2p. Hence there is a constituent χµ of the

ordinary character of H(2m−p;k) such that µ is a partition with p-core γ and weight

wk(γ)− 2 having exactly k odd parts. This contradicts the minimality of wk(γ). In

the second case W also lies in the block B(γ,wk(γ) − 2) of S2m+k−2p and there is

a constituent χµ of the ordinary character of H(2m;k−2p) such that µ is a partition

with p-core γ and weight wk(γ) − 2 having exactly k − 2p odd parts. But then

by adding a single vertical p-hook to µ we reach a partition with weight wk(γ) − 1

having exactly k − p odd parts. Once again this contradicts the hypothesis that

wk−p(γ) 6= wk(γ)− 1. 2

For ν a p-regular partition, let P ν denote the projective cover of the simple mod-

ule Dν . To finish the proof of Proposition 3.1.3 we must show that if λ is a maximal

element of Ek(γ) then P λ is one of the projective summands of H(2m;k) in the block

B(γ,wk(γ)). For this we need a lifting result for summands of the monomial mod-

ule H(2m;k), which we prove using the analogous result for permutation modules, as

stated in Theorem 1.2.27. Let Zp denote the ring of p-adic integers and let H
(2m;k)
Zp
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denote the twisted Foulkes module defined over Zp.

Lemma 3.4.2 If U is a direct summand of H(2m;k) then there is a ZpS2m+k-module

UZp, unique up to isomorphism, such that UZp is a direct summand of H
(2m;k)
Zp and

UZp ⊗Zp Fp ∼= U .

Proof: Let Ak denote the alternating group on {2m + 1, . . . , 2m + k}. Let M =

Ind
S2m+k

S2oSm×Ak(Fp) be the permutation module of S2m+k acting on the cosets of S2 o
Sm×Ak and let MZp = Ind

S2m+k

S2oSm×Ak(Zp) be the corresponding permutation module

defined over Zp. Since p is odd, the trivial Zp(S2 o Sm × Sk) module is a direct

summand of IndS2oSm×Sk
S2oSm×Ak(Zp). Hence, inducing up to S2m+k (as in the remark after

Lemma 3.2.2), we see that MZp = H
(2m;k)
Zp ⊕M ′Zp where M ′Zp is a complementary

ZpS2m+k-module, and M = H(2m;k) ⊕ M ′ where M ′ is the reduction modulo p

of M ′Zp .

By Scott’s lifting theorem (see Theorem 1.2.27), reduction modulo p is a bijection

between the summands of MZp and the summands of M . By the same result,

this bijection restricts to a bijection between the summands of the permutation

module M ′Zp and the summands of M ′. Since U is a direct summand of M there is

a summand UZp of MZp , unique up to isomorphism, such that UZp ⊗Zp Fp ∼= U . By

the remarks just made, UZp is isomorphic to a summand of H
(2m;k)
Zp . 2

Let P νZp be the Zp-free ZpS2m+k-module whose reduction modulo p is P ν . By

Brauer reciprocity (see for instance [71, §15.4]), the ordinary character of P νZp is

ψν =
∑
µ

dµνχ
µ. (?)

By Theorem 1.3.16, we have that if dµν 6= 0 then ν dominates µ. Therefore the sum

above may be taken over those partitions µ dominated by ν.

Proof: [Proposition 3.1.3] We have seen that each summand of H(2m;k) in the

block B(γ,wk(γ)) is projective and that there is at least one such summand. Let

P ν1 , . . . , P νc be the summands of H(2m;k) in B(γ,wk(γ)). Using Lemma 3.4.2 to lift

these summands to summands of H
(2m;k)
Zp we see that the ordinary character of the

summand of H
(2m;k)
Zp lying in the p-block of S2m+k with core γ and weight wk(γ) is

ψν1 + · · ·+ ψνc . By Lemma 3.2.1 we have

ψν1 + · · ·+ ψνc =
∑

µ∈Ek(γ)

χµ. (†)

By hypothesis λ is a maximal partition in the dominance order on Ek(γ), and by (?)

each ψνj is a sum of ordinary irreducible characters χµ for partitions µ dominated
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by νj . Therefore one of the partitions νj must equal λ, as required. 2

We are now ready to prove Theorem 3.1.1. We repeat the statement below for

the reader’s convenience.

Theorem 3.1.1 Let p be an odd prime. Let γ be a p-core and let k ∈ N0. Let

n = |γ|+ wk(γ)p. If k > p suppose that

wk−p(γ) 6= wk(γ)− 1.

Then Ek(γ) is equal to the disjoint union of subsets X1, . . . , Xc such that each Xj
has a unique maximal partition νj in the dominance order. Each νj is p-regular and

the column of the decomposition matrix of Sn in characteristic p labelled by νj has

1s in the rows labelled by partitions in Xj, and 0s in all other rows.

Proof: Suppose that the indecomposable projective summands of H(2m;k) lying in

the block B(γ,wk(γ)) are P ν1 , . . . , P νc . Then by (†) above, Ek(γ) has a partition

into disjoint subsets X1, . . . ,Xc such that νj ∈ Xj and

ψνj =
∑
µ∈Xj

χµ

for each j. It now follows from (?) that the column of the decomposition matrix of

Sn in characteristic p labelled by νj has 1s in the rows labelled by partitions in Xj ,
and 0s in all other rows. 2

3.5 Applications of Theorem 3.1.1 and Proposition 3.1.3

We begin with a precise statement of the result on diagonal Cartan numbers men-

tioned in the introduction of this chapter after Proposition 3.1.3.

Theorem 3.5.1 ([66, Theorem 2.8] or [3, Proposition 4.6(i)]) Let ν be a p-

regular partition of n such that ν has weight w; then dµν 6= 0 for at least w + 1

distinct partitions µ.

If |Ek(γ)| ≤ 2wk(γ) + 1 then it follows from Theorems 3.1.1 and 3.5.1 that Ek(γ)

has a unique maximal partition, say λ, and the only non-zero entries of the column

of the decomposition matrix of Sn labelled by λ are 1s in rows labelled by partitions

in Ek(γ). In these cases Theorem 3.1.1 becomes a sharp result.
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Example 3.5.2 Firstly let p = 3 and let γ = (3, 1, 1). We leave it to the reader to

check that w0(γ) = 3 and

E0(γ) = {(8, 4, 2), (6, 6, 2), (6, 4, 4), (6, 4, 2, 2)}.

Hence the column of the decomposition matrix of S12 in characteristic 3 labelled

by (8, 4, 2) has 1s in the rows labelled by the four partitions in E0(γ) and no other

non-zero entries.

Secondly let p = 7 and let γ = (4, 4, 4). Then w6(γ) = 2 and E6(γ) = X ∪ X ′

where

X = {(11, 4, 4, 3, 14), (11, 4, 4, 2, 15), (10, 5, 4, 3, 14), (10, 5, 4, 2, 15)},

X ′ = {(9, 5, 5, 5, 1, 1), (9, 5, 5, 4, 1, 1, 1), (8, 5, 5, 5, 1, 1, 1)}.

The partitions in X and X ′ are mutually incomparable under the dominance order.

Thus Theorem 3.1.1 determines the columns of the decomposition matrix of S26 in

characteristic 7 labelled by (11, 4, 4, 3, 14) and (9, 5, 5, 5, 1, 1).

Finally let p = 5 and let γ = (5, 4, 2, 14). Then w6(γ) = 3, and

E6(γ) =

{
(15, 9, 2, 14), (15, 6, 5, 14), (13, 11, 2, 14)

(13, 6, 5, 3, 13), (10, 9, 7, 14), (10, 9, 5, 3, 13)

}
.

It is easily seen that w1(γ) > 2. (In fact w1(γ) = 8.) Therefore Theorem 3.1.1

determines the column of the decomposition matrix of S30 in characteristic 5 labelled

by (15, 9, 2, 14).

We now use the following combinatorial lemma to prove that the bound in The-

orem 3.5.1 is attained in blocks of every weight. Note that when p = 3 and e = 2

the core used is (3, 1, 1), as in the first example above.

Lemma 3.5.3 Let p be an odd number, let e ∈ N0, and let γ be the p-core represented

by the p-abacus with two beads on runner 1, e+1 beads on runner p−1, and one bead

on every other runner. If 0 ≤ k ≤ e+1 then wk(γ) = e+1−k and |Ek(γ)| = wk(γ)+1.

Proof: The p-core γ is represented by the abacus A shown in Figure 3.1 overleaf.

Moving the lowest e+ 1− k beads on runner p− 1 down one step leaves a partition

with exactly k odd parts. Therefore wk(γ) ≤ e+ 1− k.

Suppose that λ is a partition with exactly k odd parts that can be obtained by a

sequence of single step bead moves on A in which exactly e− r beads are moved on

runner p− 1 and at most e+ 1− k moves are made in total. We may suppose that
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. . .

e+ 1 beads

0 1 2 . . . p− 1

row 0
row 1

row e

Figure 3.1: Abacus A representing the p-core γ in Lemma 3.5.3.

r > k and that the beads on runner p − 1 are moved first, leaving an abacus A?.

Numbering rows as in Figure 3.1, so that row 0 is the highest row, let row ` be the

lowest row (i.e. labelled by the greatest number) of A? to which any bead is moved

in the subsequent moves. Let B be the abacus representing λ that is obtained from

A? by making these moves. The number of spaces before each beads on runner p−1

in rows `, `+1, . . . , r is the same in both A? and B, and is clearly odd in A?. Hence

the parts corresponding to these beads are odd. Therefore ` > r − k + 1.

If B has a bead in row ` on a runner other than runner 1 or runner p− 1, then

this bead has been moved down from row 0, and so has been moved at least ` times.

The total number of moves made is at least (e−r)+` > e−k+1, and so ` = r−k+1.

But now B has beads corresponding to odd parts of λ on runner p− 1 in row 0, as

well as rows `, `+ 1, . . . , r, giving k + 1 odd parts in total, a contradiction.

It follows that the sequence of bead moves leading to B may be reordered so that

the first e− r moves are made on runner p− 1, and then the lowest bead on runner

1 is pushed down r − k times to row r − k + 1. The partition after these moves has

k + 1 odd parts. Moving the bead on runner 1 down one step from row r − k + 1

reduces the number of odd parts by one, and is the only such move that does not

move a bead on runner p− 1. Therefore Ek(γ) contains the partition constructed at

the start of the proof, and one further partition for each r ∈ {0, 1, . . . , e− k}. 2

Given an arbitrary weight w ∈ N and k ∈ N0, Lemma 3.5.3 gives an explicit

partition λ satisfying the hypothesis of Theorem 3.1.1 and such that wk(γ) = w.

We use this in the following proposition.

Proposition 3.5.4 Let p be an odd prime and let k, w ∈ N0 be given. There exists

a p-core γ and a partition λ with p-core γ and weight w such that λ has exactly k

odd parts and the only non-zero entries in the column of the decomposition matrix

labelled by λ are 1s lying in the w + 1 rows labelled by elements of Ek(γ).

74



Proof: If w = 0 and k = 0 then take λ = (2). Otherwise let γ be the p-core in

Lemma 3.5.3 when e = w + k − 1. By this lemma we have wk(γ) = w. Moreover,

if k > p then wk−p(γ) = w + p. Taking λ to be a maximal element of Ek(γ), the

proposition follows from Theorem 3.1.1 and Theorem 3.5.1. 2

We now turn to an application of Proposition 3.1.3. Write H
(2m;k)
R for the twisted

Foulkes module defined over a commutative ring R. Since the ordinary character

of H
(2m;k)
Q is multiplicity-free, the endomorphism algebra of H

(2m;k)
F is commutative

whenever the field F has characteristic zero. Hence the endomorphism ring of H
(2m;k)
Z

is commutative. This ring has a canonical Z-basis indexed by the double cosets of

the subgroup S2 o Sm × Sk in S2m+k. This basis makes it clear that the canonical

map

EndZS2m+k
(H

(2m;k)
Z )→ EndFpS2m+k

(H
(2m;k)
Fp )

is surjective, and so EndFS2m+k
(H

(2m;k)
F ) is commutative for any field F. This fact

has some strong consequences for the structure of twisted Foulkes modules.

Proposition 3.5.5 Let U and V be distinct summands in a decomposition of H(2m;k),

defined over a field F, into direct summands. Then EndFS2m+k
(U) is commutative

and HomFS2m+k
(U, V ) = 0.

Proof: Let πU be the projection map from H(2m;k) onto U along V and let ιU

and ιV be the inclusion maps of U and V respectively into H(2m;k). Suppose that

φ ∈ HomFS2n(U, V ) is a non-zero homomorphism. Then ιV φπU does not commute

with ιUπU . Moreover sending θ ∈ EndFS2m+k
(U) to ιUθπU defines an injective mul-

tiplicative (but not unital) map from EndFS2m+k
(U) into the commutative algebra

EndFS2m+k
(H(2m;k)). 2

Proposition 3.5.5 implies that if λ is a p-regular partition and P λ is a direct sum-

mand of H(2m;k), defined over a field of characteristic p, then there are no non-zero

homomorphisms from P λ to any other summand of H(2m;k). Thus every composi-

tion factor of H(2m;k) isomorphic to Dλ must come from P λ. We also obtain the

following corollary.

Corollary 3.5.6 Let F be a field of odd characteristic. Given any w ∈ N there

exists n ∈ N and an indecomposable projective module P λ for FSn lying in a block

of weight w such that EndFSn(P λ) is commutative.

Proof: Let γ be the p-core in Lemma 3.5.3 when e + 1 = w. Taking k = 0 we see

that w0(γ) = w. If λ is a maximal element of E0(γ) then, by Proposition 3.1.3, P λ

is a direct summand of H(2m), where 2m = |λ| and both modules are defined over

the field F. The result now follows from Proposition 3.5.5. 2
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Chapter 4

The modular structure of the

Foulkes module

4.1 Introduction and outline

The main goal of this chapter is to generalize part of the work done in Chapter 3

on the permutation module H(2n), in order to obtain a complete description of the

Green vertices and Green correspondents of the complete family of Foulkes modules

H(an) for any n ∈ N and any a < p where p is the fixed prime characteristic of the

underlying field F. In particular in Section 4.2 we will prove the following theorem:

Theorem 4.1.1 Let p be an odd prime and let a and n be natural numbers such that

a < p 6 n. Let U be an indecomposable non-projective summand of the FSan-module

H(an) and let Q be a vertex of U . Then there exists s ∈ {1, 2, . . . , bnp c} such that Q

is conjugate to a Sylow p-subgroup of Sa oSsp. Moreover the Green correspondent of

U admits a tensor factorization V �Z as a module for F((NSasp(Q)/Q)×Sa(n−sp)),

where V is isomorphic to the projective cover of the trivial F(NSasp(Q)/Q)-module

and Z is an indecomposable, projective summand of H(an−sp).

This result is a generalization of Theorem 3.1.2. The structure of the proof is

similar to the one given in Section 3.3 but different ideas and ad hoc arguments will

be needed in this case.

In Section 4.3 we will use this new information on the modular structure of the

Foulkes modules to derive corollaries on the decomposition matrices of the symmetric

groups. To present our main result we need to introduce the following definition.

Let γ be a p-core partition and let φ(an) be the ordinary character afforded by the

Foulkes module H(an). Denote by F0(γ) the set containing all the partitions µ of an
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such that the p-core γ(µ) of µ is equal to γ and such that the irreducible ordinary

character of San labelled by µ has non-zero multiplicity in the decomposition of φ(an)

as a sum of irreducible characters. In general, for any s ∈ {0, 1, . . . , bnp c} denote by

Fsp(γ) the set defined by

Fsp(γ) = {µ ` a(n− sp) : γ(µ) = γ and
〈
χµ, φ(an−sp)

〉
6= 0}.

The new results obtained in Theorem 4.1.1 will lead us to prove the following

theorem.

Theorem 4.1.2 Let a and n be natural numbers and let p be an odd prime such

that a < p 6 n. Let λ be a p-regular partition of na. Denote by γ the p-core of

λ. Suppose that for all s ∈ {1, 2, . . . , bnp c}, Fsp(γ) = ∅. If λ is maximal under the

dominance order in F0(γ), then the only non-zero entries in the column labelled by λ

of the decomposition matrix of San are in the rows labelled by partitions µ ∈ F0(γ).

Moreover

[Sµ : Dλ] 6
〈
φ(an), χµ

〉
.

Dealing with partitions of small p-weight we obtain the following sharper result.

Corollary 4.1.3 Let a and n be natural numbers and let p be an odd prime such

that a < p 6 n. Let λ be a p-regular partition of na such that λ has p-weight w < a.

Denote by γ the p-core of λ. If λ is maximal in F0(γ), then the only non-zero entries

in the column labelled by λ of the decomposition matrix of San are in the rows labelled

by partitions µ ∈ F0(γ). Moreover

[Sµ : Dλ] 6
〈
φ(an), χµ

〉
.

Theorem 4.1.2 and Corollary 4.1.3 allow us to detect new information on decom-

position numbers from the study of the ordinary structure of the Foulkes character.

In particular the study of the zero-multiplicity characters in the decomposition of

φ(an) leads to some new non-obvious zeros in certain columns of the decomposition

matrix of San (see Corollary 4.3.2 and Example 4.3.3).

4.2 The indecomposable summands of H(an)

This section is devoted to the proof of Theorem 4.1.1. We start by fixing some

notation. Let p be an odd prime number and let a and n be natural numbers such

that a < p 6 n. Let F be a field of prime characteristic p and let Sa o Sn be the
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subgroup of San acting transitively and imprimitively on {1, 2, . . . , an} and having

as blocks of imprimitivity the sets

Tj = {j, n+ j, 2n+ j, . . . , (a− 1)n+ j}

for all j ∈ {1, . . . , n}. In this setting we have that for any Sylow p-subgroup P of

Sa o Sn there exists a Sylow p-subgroup Q of S{1,...,n}, such that P is conjugate to

Q = {x | x ∈ Q},

where (j + kn)x = (j)x + kn for all j ∈ {1, . . . , n} and all k ∈ {0, 1, . . . , a − 1}.
Let ρ be an element of order p in Sa o Sn. By the above remarks there exists

s ∈ {1, 2, . . . , bnp c} such that ρ has sa orbits of order p and a(n− sp) fixed points in

its natural action on {1, 2, . . . , an}.
For all j ∈ N such that pj 6 an let zj be the p-cycle of San defined by

zj = (p(j − 1) + 1, p(j − 1) + 2, . . . , pj).

Denote by R` the cyclic subgroup of San of order p generated by z1z2 · · · z`. We

will call O1, . . . ,O` the p-orbits of R` in order to have Oj = supp(zj) for all j ∈
{1, 2, . . . , `}.

In the following lemma we will study the Broué correspondence for H(an) with

respect to R`.

Lemma 4.2.1 Let a and n be natural numbers and p an odd prime such that a <

p 6 n. Let ` be a natural number such that `p 6 an. If ` = as for some natural

number s, then

H(an)(Ras) ∼= H(asp)(Ras)�H
(an−sp)

as FNSan(Ras)-modules. If ` is not an integer multiple of a then H(an)(R`) = 0.

Proof: We already noticed that the number of p-orbits of an element of order p in

Sa o Sn must be a multiple of a. Therefore if ` is not an integer multiple of a then

R` is not conjugate to any subgroup of Sa o Sn. This implies that H(an)(R`) = 0 by

Theorem 1.2.18.

Suppose now that ` = as for some s ∈ N. Let ω = {ω1, ω2, . . . , ωn} ∈ Ω(an) be

fixed by Ras. Then there exist ωj1 , . . . , ωjsp sets of ω such that

sp⋃
i=1

ωji = supp(Ras)
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since no set of a fixed set partition can contain two numbers x and y such that

x ∈ supp(Ras) and y /∈ supp(Ras). So we can write each fixed set partition ω ∈
Ω(an)(Ras) as ω = uω ∪ vω where

uω =
{
ωj1 , . . . , ωjsp

}
∈ Ω(asp)(Ras),

and vω is a set partition in Ω
(an−sp)
+ , that is the collection of all the set partitions

of {asp + 1, . . . , an} into n − sp sets of size a. We will also denote by H
(an−sp)
+ the

FS{asp+1,...,an}-permutation module generated by Ω
(an−sp)
+ as a vector space. The

map

ψ : Ω(an)(Ras) −→ Ω(asp)(Ras)× Ω
(an−sp)
+

that associates to each ω ∈ Ω(an)(Ras) the element uω×vω ∈ Ω(asp)(Ras)×Ω
(an−sp)
+ is

a well defined bijection. This factorization of the linear basis of H(an)(Ras) induces

an isomorphism of vector spaces between H(an)(Ras) and H(asp)(Ras) � H
(an−sp)
+ ,

that is compatible with the action of NSan(Ras) ∼= NSasp(Ras)×Sa(n−sp). Therefore

we have that

H(an)(Ras) ∼= H(asp)(Ras)�H
(an−sp)
+

as F(NSan(Ras))-modules. The proposition follows after identifying S{asp+1,...,an}

with Sa(n−sp) and H
(an−sp)
+ with H(an−sp). 2

Lemma 4.2.1 allow us to restrict for the moment our attention to the study of the

Broué correspondent H(asp)(Ras) of H(asp). In particular we will now give a precise

description of its canonical basis Ω(asp)(Ras) constitued by the set partitions fixed

under the action of Ras. In order to do this we need to introduce a new important

concept.

Let δ = {δ1, δ2, . . . , δs} be a set partition of {1, 2, . . . , as} into s sets of size a

(namely δ ∈ Ω(as)). Let A1, A2, . . . , As be subsets of {1, 2, . . . , asp} of size a such

that

|Ai ∩ Oj | =


1 if j ∈ δi.

0 if j /∈ δi.

In particular each set Ai contains at most one element of a given orbit of Ras.

Consider now ω to be the element of Ω(asp)(Ras) of the form

ω = {A1, A1σ,A1σ
2, . . . , A1σ

p−1, A2, . . . , A2σ
p−1, . . . . . . , As, . . . , Asσ

p−1},

where σ = z1z2 · · · zas. In this situation we will say that the set partition ω is of
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type δ. Notice that from the type we can read how the orbits of Ras are relatively

distributed in the sets of the set partition ω.

In the following lemma we will show that the set partitions of Ω(asp) that are

fixed by the action of Ras are precisely the ones of the form described above.

Lemma 4.2.2 Let the set partition ω = {ω1, . . . , ωsp} be an element of Ω(asp).

Then ω is fixed by Ras if and only if there exists a corresponding set partition

δ = {δ1, . . . , δs} ∈ Ω(as) and s sets A1, . . . , As of ω such that

|Ai ∩ Oj | =


1 if j ∈ δi

0 if j /∈ δi

and

ω = {A1, A1σ,A1σ
2, . . . , A1σ

p−1, A2, . . . , A2σ
p−1, . . . . . . , As, . . . , Asσ

p−1},

where σ = z1z2 · · · zas.

Proof: Suppose that ω is fixed by Ras = 〈σ〉. Let Oj be an orbit of Ras for some j ∈
{1, 2, . . . , as} and let ωj1 , ωj2 , . . . , ωjl be the sets of ω such that ωji ∩Oj 6= ∅. Clearly

l 6 p because |Oj | = p. Since ωσ = ω we have that for all x ∈ {j1, . . . , jl} there

exists y ∈ {j1, . . . , jl} such that ωjxσ = ωjy and no ωji is fixed by σ because a < p. In

particular we have that Ras acts without fixed points on the set {ωj1 , ωj2 , . . . , ωjl},
therefore there exists a number k > 1 such that

kp = |{ωj1 , ωj2 , . . . , ωjl}| = l 6 p.

This immediately implies that l = p and therefore that |ωji ∩ Oj | = 1 for all i ∈
{1, 2, . . . , l}. This argument holds for all the Ras-orbits O1,O2, . . . ,Oas. Hence for

all x ∈ {1, 2, . . . , sp} the set ωx of ω contains a numbers no two of which are in the

same Ras-orbit. Consider one of those sets, say A1, of ω. Define the correspondent

set δ1 of size a as follows: for all i ∈ {1, 2, . . . , as} let i ∈ δ1 if and only if |A1∩Oi| = 1.

Observe that since ωσ = ω we have that A1, A1σ, . . . , A1σ
p−1 are p distinct sets of

ω such that for all k ∈ {0, 1, . . . , p− 1} we have that

|A1σ
k ∩ Oj | =


1 if j ∈ δ1

0 if j /∈ δ1.
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We repeat now the above construction by considering a set A2 of ω such that A2 6=
A1σ

k for any k ∈ {0, 1, . . . , p − 1} and defining the corresponding set δ2 exactly as

above. After s iterations of the process we obtain the claim, where the set partition

δ ∈ Ω(as) corresponding to ω is δ = {δ1, δ2, . . . , δs}.
The converse is trivial since an ω of the form described in the hypothesis is

clearly fixed by the action of σ. 2

From Lemma 4.2.2 we obtain that every ω ∈ Ω(asp)(Ras) is of a well defined type

δ ∈ Ω(as). In the next lemma we will fix a δ ∈ Ω(as) and we will calculate explicitly

the number of set partitions of type δ in Ω(asp)(Ras).

Lemma 4.2.3 For every δ ∈ Ω(as) there are exactly p(a−1)s distinct set partitions in

Ω(asp)(Ras) of type δ.

Proof: Define δ? ∈ Ω(as) by

δ? =
{
{1, 1 + s, . . . , 1 + (a− 1)s}, {2, 2 + s, . . . , 2 + (a− 1)s}, · · · , {s, 2s, . . . , as}

}
.

By Lemma 4.2.2 we have that given any set partition ω = {ω1, . . . , ωsp} ∈ Ω(asp)(Rs)

of type δ?, each set ωj contains exactly one element lying in {1, 2, . . . , sp}, the union

of the first s orbits O1,O2, . . . ,Os of Ras. Therefore, without loss of generality, we

can relabel the indices of the sets of ω in order to have ω = {ω1, . . . , ωsp} and for

all j ∈ {1, 2, . . . , sp}
ωj = {j, x1

j , x
2
j , . . . , x

a−1
j },

where xij is a number lying in the Ras-orbit of j + isp for all i ∈ {1, 2, . . . , a − 1}.
Notice that this implies that there are p possible different choices for each xij . If

we fix j ∈ {1, 2, . . . , sp} such that j is not divisible by p then there exist unique

natural numbers t and k in {0, 1, . . . , s − 1} and {1, 2, . . . , p − 1} respectively, such

that j = tp+ k. Moreover, by definition of σ it follows that ((t+ 1)p)σk = j. Since

ωσk = ω, we must have ω(t+1)pσ
k = ωj . Therefore for all i ∈ {1, 2, . . . , a − 1} we

have that

xij = xi(t+1)pσ
k

Hence the set partition ω is uniquely determined by its sets ωp, ω2p, . . . , ωsp. This

implies that there are exactly p(a−1)s different set partitions of type δ? in Ω(asp)(Ras).

It is an easy exercise to verify that, changing the labels, the argument above works

for any other type δ in Ω(as). 2
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Consider now the subgroup C of NSasp(Ras) defined by

C = 〈z1〉 × 〈z2〉 × . . .× 〈zas〉 .

Notice that C preserves the type in its action on Ω(asp)(Ras). Therefore we have

that the subvectorspace Kδ of H(asp)(Ras) generated by all the fixed set partitions

of type δ is an FC-submodule of H(asp)(Ras) for any given δ. Moreover, we deduce

the following result:

Proposition 4.2.4 The following isomorphism of FC-modules holds:

ResC
(
H(asp)(Ras)

) ∼= ⊕
δ∈Ω(as)

Kδ.

Proof: For any given δ ∈ Ω(as) denote by Bδ the subset of Ω(asp)(Ras) consisting of

all the set partitions of type δ. Clearly H(asp)(Ras) decomposes as a vector space

into the direct sum of all the Kδ for δ ∈ Ω(as). Moreover we observe that the orbits

of C on {1, 2, . . . , asp} are exactly the same as the orbits of Ras, therefore if ω ∈ Bδ
then ωc ∈ Bδ for any c ∈ C. This implies that

ResC(H(asp)(Ras)) ∼=
⊕

δ∈Ω(as)

Kδ

as FC-modules, as desired. 2

We will now define three p-subgroups of Sasp that will play a central role in the

next part of the section. For all j ∈ {1, 2, . . . , s} denote by πj the p-element of C

given by

πj = zjzj+szj+2s · · · zj+(a−1)s.

Let Es be the elementary abelian subgroup of C of order ps defined by

Es = 〈π1〉 × · · · × 〈πs〉.

Let Ps be a Sylow p-subgroup of S{1,...,sp} with base group 〈z1, . . . , zs〉, chosen so

that z1z2 · · · zs is in its centre. (The existence of such Sylow p-subgroup follows from

the construction of Sylow p-subgroups of symmetric groups described in Section

1.3.3. In particular we have that z1z2 · · · zs is a product of the central elements

identified after Definition 1.3.8. Moreover we observe that the non-zero powers of

z1, z2, . . . , zs are the unique p-cycles in Ps, by Remark 1.3.11.)

Let Qs be the group consisting of all permutations g where g lies in Ps. For
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the reader’s convenience we recall that for all k ∈ {0, 1, . . . , a − 1} and all j ∈
{1, 2, . . . , sp}, we have that

(j + ksp)g = (j)g + ksp.

In particular we observe that this implies that g = g0g1 · · · ga−1, where for all

k ∈ {0, 1, . . . a − 1}, gk is the element of Sasp that fixes all the numbers outside

{ksp + 1, ksp + 2, . . . , (k + 1)sp} and such that (j + ksp)gk = (j)g + ksp for all

j ∈ {1, 2, . . . , sp}. In particular we have that zi = πi for all i ∈ {1, 2, . . . , s}. Notice

that Qs has Es as normal subgroup by construction and clearly Ras E Es E C and

Ras E Qs.

We are now very close to deduce the indecomposability of H(asp)(Ras) as an

FNSasp(Ras)-module. In order to prove this we need to observe an important struc-

tural property of the FC-modules Kδ for all δ ∈ Ω(as).

Proposition 4.2.5 For any δ ∈ Ω(as) there exists g ∈ NSasp(Ras) such that

Kδ
∼= IndCEgs (F)

Proof: As usual, define δ? ∈ Ω(as) by

δ? = {δ1, δ2, . . . , δs},

where δi = {i, i+ s, i+ 2s, . . . , i+ (a− 1)s} and let ω? be any fixed element of Bδ? .

Then by Lemma 4.2.2 we have that

ω? = {A1, A1σ, . . . , A1σ
p−1, A2, A2σ, . . . , A2σ

p−1, . . . . . . , As, Asσ . . . , Asσ
p−1},

for some sets A1, A2, . . . , As such that

|Ai ∩ Oj | =


1 if j ∈ δ?i

0 if j /∈ δ?i .

This implies that we can equivalently rewrite ω? as

ω? = {A1, A1π1, . . . , A1π
p−1
1 , A2, A2π2 . . . A2π

p−1
2 , . . . . . . , As, . . . , Asπ

p−1
s }.

Therefore ω? is fixed by the action of Es. Moreover if we denote by L the stabilizer
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in C of ω? we have that as FC-modules

Kδ?
∼= IndCL (F)

since C acts transitively on the elements of Bδ? .

Lemma 4.2.3 implies that dimF(Kδ?) = ps(a−1), therefore by [1, Corollary 3, page

56] we have that

ps(a−1) = |C : L| 6 |C : Es| = ps(a−1).

Hence Es = L and Kδ?
∼= IndCEs(F) as FC-modules. Since NSasp(Ras) acts as the

full symmetric group on the set {O1,O2, . . . ,Oas}, we obtain that for any δ ∈ Ω(as)

there exists g ∈ NSasp(Ras) such that any set partition of type δ in Ω(asp)(Ras) is

fixed by Egs . With an argument completely similar to the one used above we deduce

that Kδ
∼= IndCEgs (F). 2

The following corollary of Proposition 4.2.5 will be extremely useful in the last

part of the section.

Corollary 4.2.6 Every indecomposable summand of H(asp)(Ras) has vertex con-

taining Es.

Proof: Let U be an indecomposable summand of H(asp)(Ras). By Lemma 1.2.28,

Proposition 4.2.4 and Proposition 4.2.5 we observe that the restriction of U to C

is isomorphic to a direct sum of indecomposable p-permutation FC-modules with

vertices conjugate in NSasp(Ras) to Es. Therefore by the first part of Corollary

1.2.22 we obtain that Es is contained in a vertex of U . 2

It is now possible to prove that H(asp)(Ras) is indecomposable and to determine

a vertex of H(asp)(Ras) as an FNSasp(Ras)-module.

Proposition 4.2.7 The FNSasp(Ras)-module H(asp)(Ras) is indecomposable and

has vertex Qs ∈ Sylp(Sa o Ssp).

Proof: Let δ? be the set partition of Ω(as) defined at the beginning of the proof of

Proposition 4.2.5. Since ω ∈ Ω(asp)(Ras) is fixed by Es if and only if ω ∈ Bδ? and

since Es E C, we have that

ResC
(
(H(asp)(Ras))(Es)

)
= ResC

(
H(asp)(Ras)

)
(Es) = Kδ?(Es) ∼= IndCEs(F),

as FC-modules. By Lemma 1.2.28 we have that ResC
(
(H(asp)(Ras))(Es)

)
is inde-

composable, hence also (H(asp)(Ras))(Es) is indecomposable. Therefore by Propo-
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sition 1.2.25 there exists a unique summand of H(asp)(Ras) with vertex containing

Es, but this implies that H(asp)(Ras) is indecomposable by Corollary 4.2.6.

Let Q 6 NSasp(Ras) be a vertex of H(asp)(Ras). Consider ω? to be the set

partition in Ω(asp)(Ras) defined by

ω? = {ω1, ω2, . . . , ωsp},

where ωj = {j, j + sp, j + 2sp, . . . , j + (a − 1)sp}, for all j ∈ {1, 2, . . . , sp}. By

construction we have that Qs fixes ω?. Therefore a conjugate of Qs is a subgroup

of Q. On the other hand by Corollary 1.2.19 there exists ω ∈ Ω(asp)(Ras) such that

Q fixes ω. Since the stabilizer of ω in Sasp is isomorphic to Sa o Ssp, we deduce that

Q is isomorphic to a subgroup of a Sylow p-subgroup of Sa o Ssp. In particular this

implies that |Q| 6 |Qs| and therefore we obtain that Qs is a vertex of H(asp)(Ras).

2

Corollary 4.2.8 The Foulkes module H(asp) has a unique indecomposable sum-

mand U with vertex Qs ∈ Sylp(Sa o Ssp). Moreover, any other indecomposable sum-

mand of H(asp) has vertex conjugate to a subgroup of Qs. In particular, U is the

Scott module Sc(Sasp, Sa o Ssp) and we have that

H(asp)(Qs) = U(Qs) ∼= PF

as F(NSasp(Qs)/Qs)-modules, where PF denotes the projective cover of the trivial

module.

Proof: Since H(asp) is isomorphic to the permutation module induced by the action

of Sasp on the cosets of Sa o Ssp, it is clear that any vertex of an indecomposable

summand is contained in a Sylow p-subgroup of SaoSsp and therefore is conjugate to a

subgroup of Qs. From Proposition 4.2.7 we have that H(asp)(Ras) is indecomposable.

Therefore by Proposition 1.2.25 we deduce that exists a unique indecomposable

summand U of H(asp) such that Ras is contained in a vertex of U . We know that

Ras 6 Qs and for sure the Scott module Sc(Sasp, Sa o Ssp) = Sc(Sasp, Qs) is an

indecomposable summand of H(asp), with vertex Qs. Therefore U = Sc(Sasp, Qs)

and by Theorem 1.2.29 we have that

H(asp)(Qs) = U(Qs) ∼= PF,

as F(NSasp(Qs)/Qs)-modules. 2
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In order to prove Theorem 4.1.1 we need the following technical lemma. Denote

by Ds the group C ∩NSasp(Qs).

Lemma 4.2.9 Let p be a prime and let a and s be natural numbers such that

a < p. Then the unique Sylow p-subgroup of NSasp(Qs) is the subgroup 〈Ds, Qs〉
of NSasp(Ras).

Proof: Keeping the notation introduced after Proposition 4.2.4, for j ∈ {1, 2, . . . , as}
let Oj = {(j − 1)p+ 1, . . . , jp} and for k ∈ {1, . . . , s} let

Xk =
a−1⋃
l=0

Ols+k.

Since Qs normalizes Es, it permutes the sets X1, . . . , Xs as blocks for its action.

Moreover given x ∈ NSasp(Qs) we have that πxj ∈ 〈π1, . . . , πs〉 for all j ∈ {1, . . . , s}
(this follows from Remark 1.3.11). Therefore also NSasp(Qs) permutes as blocks for

its action the sets X1, . . . , Xs.

Let g be a p-element of NSasp(Qs). The group 〈Qs, g〉 permutes the sets in

X := {X1, . . . , Xs} as blocks for its action. Let

π : 〈Qs, g〉 → SX

be the corresponding group homomorphism. By construction Qs acts on the sets

X1, . . . , Xs as a Sylow p-subgroup of S{X1,...,Xs}; hence Qsπ is a Sylow p-subgroup

of SX . Therefore, since 〈Qs, g〉 is a p-group, there exists g̃ ∈ Qs such that gπ = g̃π.

Let y = gg̃−1. Since y acts trivially on the sets in X, we may write

y = g1 . . . gs

where gj ∈ SXj for each j. The p-group 〈Qs, y〉 has as a subgroup 〈πj , y〉. The per-

mutation group induced by the subgroup on Xj , namely 〈πj , gj〉, is a p-group acting

on a set of size ap. Since p > a, the unique Sylow p-subgroup of SXj containing πj is

〈zj , zj+s, . . . , zj+(a−1)s〉. Hence gj ∈ 〈zj , zj+s, . . . , zj+(a−1)s〉 for each j ∈ {1, . . . , s}.
Therefore y ∈ 〈z1, z2 . . . , zas〉 = C. We also know that y ∈ 〈Qs, g〉 6 NSasp(Qs).

Therefore y ∈ Ds, and since g̃ ∈ Qs, it follows that g ∈ 〈Ds, Qs〉, as required. Con-

versely, the subgroup 〈Ds, Qs〉 is contained in NSasp(Qs) because both Ds and Qs

are. It follows that 〈Ds, Qs〉 is the unique Sylow p-subgroup of NSasp(Qs). 2

We are now ready to prove Theorem 4.1.1.

Proof: [Theorem 4.1.1] In order to simplify the notation we denote by Ks the group
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NSasp(Ras). Let U be an indecomposable summand of H(an) with vertex Q. Let

` ∈ {1, 2, . . . , banp c} be maximal with respect to the property that R` is a subgroup of

(a conjugate of) the vertex Q. The Broué correspondent U(R`) is a non-zero direct

summand of H(an)(R`) by Theorem 1.2.12. Therefore we deduce by Lemma 4.2.1

that there exist a natural number s such that ` = as and Z a non-zero summand of

H(an−sp) such that

U(Ras) ∼= H(asp)(Ras)� Z

as F(Ks×Sa(n−sp))-modules (where Ks = NSasp(Ras)). Since Ras is normal in Qs, it

follows from Lemmas 1.2.23 and 1.2.24 that there is an isomorphism of F(NKs(Qs)×
Sa(n−sp))-modules

U(Qs) ∼= (U(Ras))(Qs) ∼= (H(asp)(Ras))(Qs)� Z.

By Proposition 4.2.7 we deduce that
(
H(asp)(Ras)

)
(Qs) � Z 6= 0. Hence we have

that Qs 6 Q.

Let B be a p-permutation basis for the FKs-module H(asp)(Ras) with respect

to a Sylow p-subgroup of Ks containing Qs. It follows from Corollary 1.2.19 and

Lemma 4.2.9 that C = BQs is a p-permutation basis for the FNKs(Qs)-module

(H(asp)(Ras))(Qs) with respect to the unique Sylow p-subgroup P := 〈Ds, Qs〉 of

NKs(Qs). Let C′ be a p-permutation basis for Z with respect to P ′, a Sylow p-

subgroup of S{asp+1,...,an} ∼= Sa(n−sp). Hence

C × C′ = {v ⊗ v′ : v ∈ C, v′ ∈ C′}

is a p-permutation basis for (H(asp)(Ras))(Qs) � Z with respect to the Sylow p-

subgroup P × P ′ of NKs(Qs)× Sa(n−sp).

Suppose, for a contradiction, that Q strictly contains Qs. Since Q is a p-group

there exists a p-element g ∈ NQ(Qs) such that g 6∈ Qs. Notice that Qs has orbits of

length at least p on {1, . . . , asp} and fixes {asp+ 1, . . . , an}. Since g permutes these

orbits as blocks for its action, we may factorize g as g = hh+ where h ∈ NSasp(Qs)

and h+ ∈ Sa(n−sp). By Lemma 4.2.9 we have that 〈Qs, h〉 ≤ NKs(Qs).

Corollary 1.2.19 now implies that (C ×C′)〈Qs,g〉 6= ∅. Let v ⊗ v′ ∈ C × C′ be such

that (v ⊗ v′)g = v ⊗ v′. Then v ∈ B〈Qs,h〉. But Qs is a vertex of H(asp)(Ras), so

it follows from Corollary 1.2.19 that h ∈ Qs. Hence h′ is a non-identity element

of Q. By taking an appropriate power of h′ we find that Q contains a product of

one or more p-cycles with support contained in {asp+ 1, . . . , an}. This contradicts

our assumption that l = as was maximal such that Ras is contained in a vertex of
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U . Therefore U has vertex Qs.

We saw above that there is an isomorphism

U(Qs) ∼= (H(asp)(Ras))(Qs)� Z

of F(NKs(Qs)×Sa(n−sp))-modules. This identifies U(Qs) as a vector space on which

NSan(Qs) = NSasp(Qs)× Sa(n−sp) acts. It is clear from the isomorphism in Lemma

4.2.1 that NSasp(Qs) acts on the first tensor factor and Sa(n−sp) acts on the second.

Hence the action of NKs(Qs) on (H(asp)(Ras))(Qs) extends to an action of NSasp(Qs)

on (H(asp)(Ras))(Qs) and we obtain a tensor factorization V � Z of U(Qs) as an

F
(
NSasp(Qs)× Sa(n−sp)

)
-module. An outer tensor product of modules is projective

if and only if both factors are projective, so by Theorem 1.2.20 and Corollary 4.2.8,

V is isomorphic to the projective cover of the trivial F(NSasp(Qs)/Qs)-module, Z is

a projective FSa(n−sp)-module, and U(Qs) is the Green correspondent of U . 2

An interesting consequence of Theorem 4.1.1 is proved in the following corollary.

Corollary 4.2.10 Let F be a field of prime characteristic p. Let a and n be natural

numbers such that a < p 6 n. If U is an indecomposable and non-projective direct

summand of the FSan-module H(an), then U is not a Young module.

Proof: From Theorem 4.1.1 there exists t ∈ {1, 2, . . . , bnp c} such that U has vertex

Qt, a Sylow p-subgroup of Sa o Stp. It is easy to notice that Qt has support of size

atp. Moreover, since a < p we have that Qt is isomorphic as an abstract group to

a Sylow p-subgroup of Stp. Suppose, for a contradiction, that U is a non-projective

Young module. By Theorem 1.4.1 there exists a partition ρ of the form

ρ = (pk, . . . , pk, pk−1, . . . , pk−1, . . . , p, . . . , p),

such that Sρ 6 San and Qt is conjugate to a Sylow p-subgroup of Sρ. This implies

that Sρ and Stp have isomorphic Sylow p-subgroups. Therefore the support of the

Young subgroup Sρ must have size tp, as a subgroup of San. This is a contradiction

since supp(Qt) = atp and a > 2. 2

Corollary 4.2.10 immediately implies that the the modular version of Foulkes’

Conjecture is false.

Proposition 4.2.11 Let F be a field of prime characteristic p. Let a and n be

natural numbers such that a < p 6 n. The FSan-module H(na) is not a direct

summand of the FSan-module H(an).
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Proof: By definition we have that H(na) is isomorphic to IndSanSnoSa(F). Therefore the

Scott module Y := Sc(San, Sn o Sa) is a non-projective direct summand of H(na).

By Proposition 1.4.2 we deduce that Y is a Young module, therefore we have that

Y can not be a direct summand of H(an), by Corollary 4.2.10. This completes the

proof. 2

4.3 One corollary on decomposition numbers

In this section we will give upper bounds to the entries of some columns of the

decomposition matrix of FpSan when a < p. In particular we will prove Theorem

4.1.2.

For the rest of the section let Fp be the finite field of size p and let a be a natural

number such that a < p. Let B := B(γ,w) be a block of the group algebra FpSan
such that F0(γ) 6= ∅ and Fsp(γ) = ∅ for all s ∈ {1, 2, . . . , bnp c}, where Fsp(γ) are

the sets defined in section 4.1, before the statement of Theorem 4.1.2. For every

p-regular partition ν of an, we will denote by P ν the projective cover of the simple

FpSan-module Dν .

An essential step towards the proof of Theorem 4.1.2 is the following proposition.

Proposition 4.3.1 The block component of H(an) for the block B is projective.

Proof: We start by considering the special case where n = rp for some r ∈ N and

B = B(∅, ar). In this situation the hypotheses of Theorem 4.1.2 are never satisfied

since the trivial partition (a(n − sp)) is always in Fsp(∅). Hence we can rule out

this case. For all the other possibilities we use the following argument: let U be

an indecomposable summand of H(an) lying in the block B. Suppose that U is

non-projective. Then by Theorem 4.1.1 there exists t ∈ {1, . . . , bnp c}, such that

Qt ∈ Sylp(Sa o Stp) is a vertex of U . Moreover, we have that U(Qt) ∼= PFp � V ,

where V is an indecomposable projective summand of H(an−tp) lying in the block

B(γ,w − at), by Theorem 1.3.13. Using Theorem 1.2.27 to lift V to a summand of

H
(an−tp)
Zp lying in the p-block of Sa(n−tp) with p-core γ, we deduce that the ordinary

character of the summand VZp of H
(an−tp)
Zp is of the form

χV = χµ1 + · · ·+ χµs ,

for some µ1, . . . , µs partitions of a(n−tp) such that
〈
χµj , φ(an−tp)

〉
6= 0 and γ(µj) = γ

for all j ∈ {1, . . . , s}. This is a contradiction since Ftp(γ) = ∅. 2

We are now ready to prove Theorem 4.1.2.
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Proof: [Theorem 4.1.2] Since F0(γ) 6= ∅ the block component W of H(an) lying B is

non zero. By Proposition 4.3.1 we have that W is projective. Let ζ1, . . . , ζs be the

p-regular partitions of an such that

W = P ζ1 ⊕ P ζ2 ⊕ · · · ⊕ P ζs .

We can now use Theorem 1.2.27 to lift W to the summand WZp of H
(an)
Zp . It follows

that the ordinary character of the summand of H
(an)
Zp lying in the p-block of San

with p-core γ is

ψζ1 + · · ·+ ψζs =
∑

µ∈F0(γ)

( s∑
i=1

dµζi
)
χµ.

By hypothesis λ is a maximal partition in the dominance order on F0(γ). Therefore,

arguing exactly as in the proof of Proposition 3.1.3 in Section 3.4, we deduce that

one of the partitions ζj must equal λ, as required.

Therefore P λ is a direct summand of H(an) and ψλ is a summand of the Foulkes

character φ(an). Hence

dµλ =
〈
ψλ, χµ

〉
6
〈
φ(an), χµ

〉
,

for all µ ` an. In particular if µ /∈ F0(γ) then dµλ = 0. 2

In order to prove Corollary 4.1.3 it will be enough to show that whenever the

partition λ ∈ F0(γ) has p-weight w < a then Fsp(γ) = ∅ for all s ∈ {1, . . . , bnp c}.

Proof: [Corollary 4.1.3] The p-core γ of λ is a partition of an − wp. Suppose for a

contradiction that exist s ∈ {1, . . . , bnp c} and µ ` a(n− sp) such that µ ∈ Fsp(γ). It

follows that

|γ| = an− wp > a(n− p) > a(n− sp) = |µ|.

Hence the p-core γ(µ) of µ can not be equal to γ. This yields a contradiction. Since

λ is maximal in F0(γ), by Theorem 4.1.1 we obtain the statement. 2

As already mentioned in the introduction, Theorem 4.1.2 and Corollary 4.1.3

allow us to recover new information on the decomposition numbers via the study of

the ordinary Foulkes character φ(an). An example of this possibility is the following

result.

Corollary 4.3.2 Let λ be a p-regular partition of na. Denote by γ the p-core of λ.

If λ is maximal in F0(γ) and Fsp(γ) = ∅ for all s ∈ {1, . . . , bnp c}, then [Sµ : Dλ] = 0

for all µ ` na such that µ has more than n parts.
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Proof: It is a well known fact (see for instance Proposition 2.2.1) that if µ has more

than n parts then 〈
φ(an), χµ

〉
= 0.

The statement now follows from Theorem 4.1.2. 2

We conclude with an explicit example.

Example 4.3.3 Let a = 4, n = p = 5 and let λ = (18, 2) be a weight 3 partition

of 20. The 5-core of λ is γ = (3, 2) and the multiplicity of χλ as an irreducible

constituent of φ(45) is 1, by Corollary 2.2.6. Therefore λ ∈ F0(γ) and it is clearly

maximal under the dominance order on F0(γ). By Corollary 4.3.2 we obtain a

number of non-trivial zeros in the column labelled by λ of the decomposition matrix

of S20 in characteristic 5. For instance, all the partitions µ obtained from (3, 2, 15)

by adding two 5-hooks have 5-core γ and are such that [Sµ : Dλ] = 0.
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Chapter 5

The vertices of Specht modules

5.1 Introduction and outline

One of the mainstream themes in the representation theory of finite groups has

been to determine global information about the p-modular representation theory of

a group G by studying its local structure, namely representations of its p-subgroups

and their normalizers. An interesting topic is the investigation of the vertices of

indecomposable modules over group algebras. In the case of the symmetric group

the study of the modular structure of Specht modules is one of the important open

problems in the area.

The vertices of Specht modules were first considered by Murphy and Peel in [60];

their work focused on hook Specht modules in the case p = 2. In [76], Wildon made

some progress on the topic by characterizing the vertices of hook Specht modules

for FSn when F is a field of prime characteristic p and n is not divisible by p. Müller

and Zimmermann described vertices and sources of some hook Specht and simple

modules in [59]. In [50] Lim gave a necessary condition for a Specht module to have

an abelian vertex and characterized the possible abelian vertices of Specht modules.

The vertices of irreducible Specht modules are completely described by the work of

Hemmer [36] and Donkin [16]. In particular, in [36] it is shown that every irreducible

Specht module is a signed Young module and in [16] a complete characterization of

the vertices of signed Young modules is given. Danz and Erdmann in [13] described

the vertices of S(n−2,2) and D(n−2,2) defined over a field of characteristic 2. Wildon

gave a general structural description of the vertices of all Specht modules; more

precisely in [77] he proved the following result.

Theorem 5.1.1 Let λ be a partition of n, let t be a λ-tableau and denote by H(t)

the subgroup of R(t) (i.e. the row-stabilising group of t) which permutes, as blocks
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for its action, the columns of equal length of t. If the Specht module Sλ, defined

over a field of characteristic p, is indecomposable, then it has a vertex containing a

subgroup isomorphic to a Sylow p-subgroup of H(t).

For example, if λ = (5, 5, 2, 2, 2, 2) and t is the λ-tableau shown in Figure 5.1 below,

1

6

11

13

15

17

2

7

12

14

16

18

3

8

4

9

5

10

t =

Figure 5.1: The most dominant (5,5,2,2,2,2)-tableau

then R(t) = S{1,2,3,4,5}×S{6,7,8,9,10}×S{11,12}×S{13,14}×S{15,16}×S{17,18} and H(t)

is the subgroup generated by the permutations

(3, 4, 5)(8, 9, 10), (3, 4)(8, 9) and (1, 2)(6, 7)(11, 12)(13, 14)(15, 16)(17, 18).

Considered as an abstract group we have that H(t) ∼= S3 × S2.

In the first part of this chapter we will generalize and improve the lower bound

on the vertex given in 5.1.1 for Specht modules Sλ defined over any field of prime

characteristic p. Given a partition λ of a natural number n and a λ-tableau t, we

denote by t′ the transposed tableau of t (as defined in Section 1.3.1). In Section 5.2

we will show that the subgroup of Sn generated by H(t) and H(t′) is in fact equal

to the direct product H(t)×H(t′). This is one of the key ideas that will lead to the

proof of the following theorem.

Theorem 5.1.2 Let n be a natural number and let F be a field of prime charac-

teristic p. Let λ be a partition of n and let t be a λ-tableau. If the Specht module

Sλ defined over F is indecomposable, then each of its vertices contains a subgroup

conjugate to a Sylow p-subgroup of H(t)×H(t′).

In Section 5.3, we will use dimensional arguments to determine the vertices of

the particular family of Specht modules labelled by partitions λ of n of the form

λ = (m,x1, x2, . . . , xk),
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where the partition γ := (x1, x2, . . . , xk) is a p-core partition of n−m.

Theorem 5.1.3 Let n be a natural number and let λ = (m,x1, . . . , xk) be a partition

of n such that the partition γ = (x1, . . . , xk) is a p-core partition of n−m. Denote

by ρ and w the p-core and the p-weight of λ respectively. Then the vertex of Sλ is

equal to the defect group of the corresponding block B(ρ, w).

5.2 A lower bound on the vertices of Specht modules

The main goal of this section is to prove Theorem 5.1.2. In order to do this, we need

to prove some preliminary results. We start with a general lemma.

Lemma 5.2.1 Let G be a finite group and let H and K be subgroups of G such that

H 6 NG(K) and K 6 NG(H). If H ∩K = {1}, then

〈H,K〉 = H ×K.

Proof: It is sufficient to prove that for all h ∈ H and for all k ∈ K we have that

hk = kh. Consider the commutator [h, k] = h−1k−1hk. By hypothesis we have that

[h, k] ∈ H ∩K = {1}. 2

We immediately use Lemma 5.2.1 to prove the proposition below.

Proposition 5.2.2 Let λ be a partition of a natural number n and let t be a λ-

tableau. Then the following equality between subgroups of Sn holds:

〈
H(t), H(t′)

〉
= H(t)×H(t′).

Proof: Let r be the number of rows of t and let s be the number of columns of t.

For every i ∈ {1, . . . , r} let Ri be the set consisting of all the entries of the ith row

of t. Similarly, for all j ∈ {1, . . . , s} let Cj be the set consisting of all the entries of

the jth column of t. Denote by R and C the sets defined by

R = {R1, . . . , Rr} and C = {C1, . . . , Cs}.

It is easy to observe that H(t′) is the collection of all the elements of C(t) that

permute the rows of equal length of t as blocks for their action. In particular H(t′)

permutes R and acts trivially on C. Similarly H(t) permutes the set C and acts

trivially on R. Consider g ∈ H(t) and h ∈ H(t′). For all i ∈ {1, . . . , r} there exists
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a unique k ∈ {1, . . . , r} such that Rih = Rk. In particular we observe that

Ri(ghg
−1) = Ri(hg

−1) = Rk(g
−1) = Rk.

Hence ghg−1 permutes R. Moreover for all j ∈ {1, . . . , s} there exists a unique

` ∈ {1, . . . , s} such that Cjg = C`. In particular we have that

Cj(ghg
−1) = C`(hg

−1) = Cj(g
−1) = Cj .

Therefore ghg−1 acts trivially on C. This implies that ghg−1 ∈ H(t′) and so that

H(t) 6 NSn(H(t′)). In a complete similar way we obtain that H(t′) 6 NSn(H(t)).

Let now g be an element of H(t) ∩ H(t′). For all x ∈ {1, 2, . . . , n} there exist

i ∈ {1, . . . , r} and j ∈ {1, . . . , s} such that Ri∩Cj = {x}. Therefore xg ∈ Rig∩Cjg =

Ri ∩ Cj = {x}. Hence g = 1Sn .

The proof is now an easy consequence of Lemma 5.2.1. 2

Example 5.2.3 Let λ = (5, 5, 2, 2, 2, 2) and let t be the λ-tableau shown in Figure

5.1. In this case we have that H(t) and H(t′) are the subgroups of S18 defined by

H(t) = 〈(3, 4, 5)(8, 9, 10), (3, 4)(8, 9)〉 × 〈(1, 2)(6, 7)(11, 12)(13, 14)(15, 16)(17, 18)〉

and

H(t′) = 〈(13, 15, 17)(14, 16, 18), (11, 13)(12, 14)〉 × 〈(1, 6)(2, 7)(3, 8)(4, 9)(5, 10)〉 .

In particular we have that, as an abstract group, H(t)×H(t′) ∼= S3 × S2 × S4 × S2.

We observe that, by construction, H(t)×H(t′) permutes both rows and columns

of t as blocks for its action. Notice also that for all u and t λ-tableaux, we have

that H(t)×H(t′) is a conjugate of H(u)×H(u′) in Sn. In fact if u = tg, for some

g ∈ Sn, then H(u)×H(u′) = (H(t)×H(t′))g.

The following lemma is a fundamental step towards the proof of Theorem 5.1.2.

Lemma 5.2.4 Let λ be a partition of n and t a λ-tableau. Let P be a Sylow p-

subgroup of H(t)×H(t′). Then ety = et, for all y ∈ P .

Proof: Since P is a Sylow p-subgroup of H(t) ×H(t′), there exist Q and Q′ Sylow

p-subgroups of H(t) and H(t′) respectively such that P = Q × Q′. Therefore for

any element y ∈ P there exist unique h ∈ Q and k ∈ Q′ such that y = hk. Hence it

suffices to prove that eth = et for all h ∈ Q and etk = et for all k ∈ Q′.
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Let h ∈ Q 6 H(t) 6 R(t). By definition h permutes the columns of t as blocks

for its action, therefore C(t)h = C(t) and of course {t}h = {t}. Hence

eth =
∑
g∈C(t)

sgn(g){t}gh =
∑

x∈C(t)h

sgn(x){t}hx =
∑
x∈C(t)

sgn(x){t}x = et.

Let k ∈ Q′. Since k ∈ H(t′) 6 C(t) we have that etk = sgn(k)et. If the characteristic

p of the underlying field F is 2 then clearly etk = et. On the other hand, if the prime

characteristic p > 2 then by definition Q′ 6 C(t) ∩ An, hence we have again that

etk = et, as required. 2

To proceed with the proof of Theorem 5.1.2 we will denote by t? the greatest

standard λ-tableau in the dominance order (as defined at the end of Section 1.3.1).

In particular if λ = (ρ1, . . . , ρk), we have that for all i ∈ {1, 2, . . . , k} the entries in

the ith row of t? are

Ri = {1 +
i−1∑
j=0

ρj , 2 +
i−1∑
j=0

ρj , . . . ,
i∑

j=0

ρj},

where we take ρ0 = 0. For example, the standard tableau shown in Figure 5.1 is the

most dominant (5, 5, 2, 2, 2, 2)-tableau.

Proof: [Theorem 5.1.2] Since the subgroups H(t) × H(t′) for different tableaux t

are all conjugate in Sn, without loss of generality, it suffices to prove that a Sylow

p-subgroup of H(t?) × H((t?)′) is contained in a vertex of Sλ. Let P be a Sylow

p-subgroup of H(t?) × H((t?)′). Lemma 5.2.4 implies that et? ∈ (Sλ)P . In order

to apply Proposition 1.2.13 and complete the proof, we need to show that et? /∈
TrP (Sλ), as defined in Section 1.2.3. Consider V to be the subspace of Sλ generated

by all the elements of the form

es + esg + · · ·+ esg
p−1,

where s is any standard λ-tableau and g is any element of P . Since any maximal

subgroup of P has index p in P , we have that TrP (Sλ) 6 V , therefore it will suffice

to show that et? /∈ V . Suppose by contradiction that

et? =
∑
s,g

as,g(es + · · ·+ esg
p−1), for some as,g ∈ F.

By Theorem 1.3.1 we have that the standard polytabloids are linearly independent,

therefore there exists a standard tableau s and some g ∈ P such that, when es +
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· · ·+esgp−1 is expressed as a linear combination of standard polytabloids, et? appears

with non zero coefficient. This implies that there exists i ∈ {0, 1, . . . , p − 1} such

that et? appears in the expression of esg
i. Let u be the column-standard tableau

whose columns are setwise equal to the columns of sgi. Clearly esgi = ±eu and by

Theorem 1.3.1 we have that eu = eu + x, where u is the row-straightening of u and

x is a linear combination of standard polytabloids ev with v / u E t?. We deduce

that t? = u because t? is the greatest standard tableau in the dominance order.

Observe that if a, b ∈ {1, 2, . . . , n} are in the same row of t? then they lie in the

same row of u and since the columns of u agree setwise with the columns of sgi

we obtain that a and b lie in different columns of sgi. Let a, b be two elements of

{1, 2, . . . , n} lying in the same row Rj of t?. Suppose for a contradiction that a and b

are also lying in the same column of s. Since gi ∈ P 6 H(t?)×H((t?)′) permutes the

rows of t? as blocks for its action, we have that agi, bgi belong to the same row Rjg
i

of t?. In particular, agi and bgi lie in the same row of u and therefore in different

columns of sgi. This is in clear contradiction with the assertion that a and b are

lying in the same column of s. We have just proved that no two numbers in the

same row of t? can possibly lie in the same column of s. More precisely we have that

for each j ∈ {1, 2, . . . , p(λ)}, the elements of Rj lie in different columns of s. Since s

is standard, we deduce that the first row of s must contain exactly the elements of

R1. Similarly we deduce that row j of s equals Rj for all j. Hence we obtain that

s = t?. Therefore es = et? and by Lemma 5.2.4 we deduce that et?g = et? . It follows

that

es + esg + · · ·+ esg
p−1 = pet? = 0.

This contradicts our initial assumption. Therefore et? /∈ V , as required. We have

proved that Sλ(P ) 6= 0 and therefore we have that P is contained in a vertex of Sλ.

2

Theorem 5.1.2 clearly generalizes Theorem 5.1.1. In particular we observe that

every Sylow p-subgroup of H(t) is contained in a Sylow p-subgroup of H(t)×H(t′)

therefore we obtain Theorem 5.1.1 as a corollary of Theorem 5.1.2. Moreover, for

all the partitions λ of n such that p divides the order of H(t′) we have that every

Sylow p-subgroup of H(t)×H(t′) properly contains a Sylow p-subgroup of H(t). In

all these cases our Theorem 5.1.2 strictly improves the lower bound on a vertex of

Sλ given by Wildon. One explicit example for the prime 3 is λ = (5, 5, 2, 2, 2, 2) and

t the λ-tableau shown in Figure 5.1.

In the following remark we show that in the case of hook-partitions of a natural

number n that is not divisible by p, our theorem gives a complete description of the

vertices of the corresponding Specht modules.
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Remark 5.2.5 Let λ = (n − k, 1k) be a hook partition of a natural number n such

that p does not divide n and such that the corresponding Specht module Sλ is inde-

composable. The lower bound on the vertex of Sλ obtained from Theorem 5.1.2 is

attained. In fact, in this case we have

H(t)×H(t′) ∼= Sk × Sn−k−1.

By [76, Theorem 2] we have that the vertex of Sλ is isomorphic to a Sylow p-subgroup

of Sk × Sn−k−1.

It is also interesting to notice that using Theorem 5.1.2 we are able to give an

independent and alternative proof of the above mentioned Theorem 2 of [76], in

the case where p does not divide n − k. It is enough to observe that when p does

not divide both n and n − k the Specht module S(n−1,1) is a direct summand of

the natural FSn-module M (n−1,1). Moreover by [59, Proposition 2.3] we have that

S(n−k,1k) ∼=
∧k(S(n−1,1)), for all k ∈ {0, 1, . . . , n− 1}. Therefore we have that

S(n−k,1k) ∼=
k∧

(S(n−1,1))
∣∣ k∧

(M (n−1,1)) ∼= IndSnSn−k×Sk(S(n−k) � S(1k)).

Hence S(n−k,1k) is relatively (Sn−k×Sk)-projective. By Lemma 1.2.3 we deduce that

S(n−k,1k) is relatively P -projective for some

P ∈ Sylp(Sn−k × Sk) = Sylp(Sn−k−1 × Sk).

If Q is a vertex of S(n−k,1k) contained in P , by Theorem 5.1.2 we deduce that

P g 6 Q 6 P,

for some g ∈ Sn. This clearly implies that Q = P , as required.

5.3 A family of Specht modules with maximal vertex

In this section we will prove Theorem 5.1.3. In order to do this we need to introduce

some further notation and definitions. Let λ = (λ1, . . . , λk) be a partition of n and let

[λ] be the associated Young diagram. For all a ∈ {1, 2, . . . , k} and b ∈ {1, 2, . . . , λa}
denote by h(a,b) the length of the hook associated to the box of [λ] lying in row a

and column b. More precisely we have that

h(a,b) = 1 + (λa − b) + (λ′b − a).
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In [45, 2.7.40] the following fact is proved.

Proposition 5.3.1 The p-weight of a partition λ of n is equal to the number of

boxes in [λ] whose associated hook has length divisible by p.

We immediately use Proposition 5.3.1 to prove the following key lemma.

Lemma 5.3.2 Let λ be a partition of n and let w be the weight of λ. Denote by

(a1, b1), (a2, b2), . . . , (aw, bw) the boxes of [λ] such that p divides h(ai,bi). Suppose

that h(ai,bi) < h(ai+1,bi+1) for all i ∈ {1, 2, . . . , w − 1}. Then h(ai,bi) = ip for all

i ∈ {1, 2, . . . , w} and the vertices of Sλ coincides with the defect groups of the p-

block B(γ(λ), w).

Proof: Let Q be a vertex of Sλ, let D be a defect group of B(γ(λ), w) and let Pn

be a Sylow p-subgroup of Sn such that Q 6 D 6 Pn. For all i ∈ {1, . . . , w} let

phi = h(ai,bi). By Theorem 1.3.14 we have that

|D| = (wp!)p = pw(w!)p.

Moreover, by Theorem 1.2.7 and Theorem 1.3.2 we deduce that

|Pn : D| · |D : Q| = |Pn : Q|
∣∣ (dim(Sλ))p =

(n!)p
pw
∏w
i=1(hi)p

.

Therefore there exists r ∈ N0 such that

(n!)p
pw(w!)p

· |D||Q| · p
r =

(n!)p
pw
∏w
i=1(hi)p

.

This in particular implies that (w!)p >
∏w
i (hi)p. On the other hand for all i ∈

{1, . . . , w} we have that hi > i, hence (w!)p =
∏w
i (hi)p. Therefore we deduce that

hi = i and h(ai,bi) = ip for all i ∈ {1, 2, . . . , w}. We conclude that |D : Q|pr = 1 that

necessarily implies D = Q as desired. 2

We are now ready to prove Theorem 5.1.3.

Proof: [Theorem 5.1.3] Let λ = (m, γ), where m ∈ N and γ is a p-core partition of

n −m. Let w be the weight of λ. Since γ is p-core partition all the boxes (a, b) of

[λ] such that p | h(a,b) must lie in the first row. Let 1 6 b1 < b2 < . . . < bw 6 m be

such that p | h(1,bi) for all i ∈ {1, . . . , w}. Let now i, j ∈ {1, . . . , w} with i < j. Then

h(1,bi) − h(1,bj) = (bj − bi)︸ ︷︷ ︸
>0

+ (λ′bi − λ
′
bj

)︸ ︷︷ ︸
>0

> 0.
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We just proved that λ satisfies the hypothesis of Lemma 5.3.2. 2

We conclude the section with a small example.

Example 5.3.3 Let F be a field of characteristic 3 and let λ be the partition of 13

defined by

λ = (5, 4, 2, 1, 1).

Notice that λ has weight equal to 3 and core equal to (3, 1). By Theorem 1.3.14 the

block B((3, 1), 3) of FS13 has defect group D equal to a Sylow 3-subgroup of S9. In

particular D ∼= C3 oC3. Since (4, 2, 1, 1) is a 3-core partition of 8, our Theorem 5.1.3

implies that Sλ has vertices conjugate to D in S13.
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Chapter 6

Vertices of simple modules

labelled by hook partitions

This chapter is based on the paper [14]. The results were obtained in collaboration

with Prof. Susanne Danz. We equally contributed to achieve all the main theorems

of the chapter. Susanne Danz’s knowledge of the structure of Sylow p-subgroups of

Sn was fundamental to prove Proposition 6.3.5

6.1 Introduction and outline

The aim of this chapter is to complete the description of the vertices of a distin-

guished class of simple modules of symmetric groups. Then, as already mentioned

in Section 1.3.5, the isomorphism classes of simple FSn-modules are labelled by the

p-regular partitions of n. We denote the simple FSn-module corresponding to a

p-regular partition λ by Dλ. If λ = (n − r, 1r), for some r ∈ {0, . . . , p − 1}, then λ

is called a p-regular hook partition of n. Whilst, in general, even the dimensions of

the simple FSn-modules are unknown, one has a neat description of an F-basis of

D(n−r,1r); we shall comment on this in 6.2 below.

The problem of determining the vertices of the simple FSn-module D(n−r,1r) has

been studied before by Wildon in [76], by Müller and Zimmermann in [59], and by

Danz in [12]. In consequence of these results, the vertices of D(n−r,1r) have been

known, except in the case where p > 2, r = p−1 and n ≡ p (mod p2). In Section 6.4

we shall prove the following theorem.

Theorem 6.1.1 Let p > 2, let F be a field of characteristic p, and let n ∈ N be such

that n ≡ p (mod p2). Then the vertices of the simple FSn-module D(n−p+1,1p−1) are
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precisely the Sylow p-subgroups of Sn.

In [59], Müller and Zimmermann stated the following conjecture.

Conjecture 6.1.2 Let p be an odd prime, let r and n be a natural numbers such

that n is divisible by p, n 6= p and r < p. Denote by Pn a Sylow p-subgroup of Sn.

Let λ = (n− r, 1r).

(a) If r = p− 1, then Pn is a vertex of Dλ.

(b) For all r > 1 we have that ResPn(Dλ) is a source of Dλ.

Theorem 6.1.1 together with [12, Corollary 5.5] proves part (a) of Conjecture 6.1.2.

Our key ingredients for proving Theorem 6.1.1 will be the Brauer construction

as described in Section 1.2.3 and Wildon’s result in [76]. Both of these will enable

us to obtain lower bounds on the vertices of D(n−p+1,1p−1), which together will then

provide sufficient information to deduce Theorem 6.1.1.

To summarize, the abovementioned results in [12, 59, 76] and Theorem 6.1.1 lead

to the following exhaustive description of the vertices of the modules D(n−r,1r):

Theorem 6.1.3 Let F be a field of characteristic p > 0, and let n ∈ N. Let further

r ∈ {0, 1 . . . , p− 1}, and let Q be a vertex of the simple FSn-module D(n−r,1r).

(a) If p - n then Q is Sn-conjugate to a Sylow p-subgroup of Sn−r−1 × Sr.
(b) If p = 2, p | n and (n, r) 6= (4, 1) then Q is a Sylow 2-subgroup of Sn.

(c) If p = 2, n = 4 and r = 1 then Q is the unique Sylow 2-subgroup of A4.

(d) If p > 2 and p | n then Q is a Sylow p-subgroup of Sn.

In the case where p - n, the simple module D(n−r,1r) is isomorphic to the Specht

FSn-module S(n−r,1r), by work of Peel [65]. Thus assertion (a) follows immediately

from [76, Theorem 2]. Assertions (b) and (c) have been established by Müller and

Zimmermann [59, Theorem 1.4]. Moreover, if p > 2, p | n and r < p − 1 then

assertion (d) can also be found in [59, Theorem 1.2]. The case where p > 2, p | n,

r = p− 1 was treated in [12, Corollary 5.5], except when n ≡ p (mod p2), which is

covered by Theorem 6.1.1 above.

We should also like to comment on the sources of the simple FSn-modules

D(n−r,1r). For r = 0, we get the trivial FSn-module D(n), which has of course

trivial source. If p | n, then the module D(n−1,1) restricts indecomposably to its

vertices, by [59, Theorems 1.3, 1.5], except when p = 2 and n = 4. For p = 2, the

simple FS4-module D(3,1) has trivial source, by [59, Theorem 1.5]. If p - n then

D(n−r,1r) ∼= S(n−r,1r) has always trivial sources; see, for instance [59, Theorem 1.3].
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However, in the case where p > 2, p | n and r > 1, we do not know the sources of

D(n−r,1r). In these latter cases, the restrictions of D(n−r,1r) to its vertices should,

conjecturally, be indecomposable, hence should be sources of D(n−r,1r); see part (b)

of Conjecture 6.1.2. This conjecture has been verified computationally in several

cases, see [12, 59], but remains still open in general.

6.2 Exterior powers of the natural FSn-module.

Throughout this chapter, let F be a field of characteristic p > 0. We begin by

introducing some basic notation that we shall use repeatedly throughout subsequent

sections. Whenever H and K are subgroups of G such that H is G-conjugate to

a subgroup of K, we write H 6G K. If H and K are G-conjugate then we write

H =G K.

In this section we shall recall some well-known properties of the simple FSn-

modules labelled by hook partitions (n − r, 1r), for r ∈ {0, . . . , p − 1}, that we

shall need repeatedly in the proof of Theorem 6.1.1. In particular, we shall fix a

convenient F-basis of D(n−r,1r). In light of Theorem 6.1.1 we shall only be interested

in the case where p | n and p > 2.

Let p > 2, let n ∈ N be such that p | n, and let M := M (n−1,1) be the natural

Young permutation FSn-module, with natural permutation basis Ω = {ω1, . . . , ωn}.
Since p | n, the module M is uniserial with composition series {0} ⊂M2 ⊂M1 ⊂M ,

where M1 = {∑n
i=1 aiωi : a1, . . . , an ∈ F,

∑n
i=1 ai = 0} and M2 = {a∑n

i=1 ωi : a ∈
F}; see, for instance, [39, Example 5.1].

Furthermore, M1 = S(n−1,1), and

M1/M2 = S(n−1,1)/rad(S(n−1,1)) =: Hd(S(n−1,1)) ∼= D(n−1,1);

in particular, dimF(D(n−1,1)) = n − 2. One sometimes calls D(n−1,1) the natural

simple module.

An F-basis of M1 is given by the elements ωi − ω1, where i ∈ {2, . . . , n}. In the

following, we shall identify the module D(n−1,1) with M1/M2. Consider the natural

epimorphism − : M1 →M1/M2, and set ei := ωi − ω1, for i ∈ {1, . . . , n}. Then

en = −e2 − e3 − · · · − en−1,

and the elements e2, . . . , en−1 form an F-basis of D(n−1,1).

Let r ∈ {0, . . . , n − 1}. By [59, Proposition 2.3], there is an FSn-isomorphism
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S(n−r,1r) ∼=
∧r S(n−1,1). Moreover, if r 6 n− 2 then, in consequence of [65],

Hd(S(n−r,1r)) ∼= Hd(
r∧
S(n−1,1)) ∼=

r∧
Hd(S(n−1,1)) ∼=

r∧
D(n−1,1) =: Dr

is simple. Thus Dr has F-basis

Br := {ei1 ∧ ei2 ∧ · · · ∧ eir : 2 6 i1 < i2 < · · · < ir 6 n− 1} . (6.1)

If r 6 p− 1 then
∧rD(n−1,1) ∼= D(n−r,1r).

6.3 The p-subgroups of symmetric groups

The aim of this section is to prove a number of properties of the Sylow p-subgroups

of Sn and their subgroups. In particular, the characterisation given in Proposition

6.3.5 will be particularly useful to prove our main Theorem 6.1.1. In order to do

this we will focus on the study of some particular elementary abelian p-subgroups

of Sn. Where necessary we will recall and use the notation introduced in Section

1.3.3.

6.3.1 Elementary abelian groups.

Let d be a natural number and let Ppd be the Sylow p-subgroup of Spd defined in

Section 1.3.3. We have that

Ppd = Ppd−1 o Pp = (Q1 × · · · ×Qp) o Cp,

where Qi is an Spd-conjugate to SpdPpd−1 , for all i ∈ {1, 2, . . . , p}. For the reader’s

convenience we recall that Ppd is generated by the elements g1, g2, . . . , gd defined by

gj =

pj−1∏
k=1

(k, k + pj−1, k + 2pj−1, . . . , k + (p− 1)pj−1),

for all j ∈ {1, 2, . . . , d}. Moreover, readopting the notation introduced in Section

1.3.3, for j ∈ {1, . . . , d− 1}, let

gj,j+1 :=

p−1∏
i=0

g−ij+1gjg
i
j+1,
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and for l ∈ {1, . . . , d− j − 1}, we inductively set

gj,j+1,...,j+l+1 :=

p−1∏
i=0

g−ij+l+1 · gj,j+1,...,j+l · gij+l+1 .

We denote by Epd the following elementary abelian p-subgroup of Ppd that acts

regularly (transitively and fixed point freely) on {1, 2, . . . , pd}:

Epd = 〈g1,...,d, g2,...,d, . . . , gd−1,d, gd〉 .

Example 6.3.1 Suppose that p = 3 and n = 27. Then En = E27 is generated by

the elements

g1,2,3 = (1, 2, 3)(4, 5, 6)(7, 8, 9)(10, 11, 12) · · · (22, 23, 24)(25, 26, 27) ,

g2,3 = (1, 4, 7)(2, 5, 8)(3, 6, 9)(10, 13, 16) · · · (20, 23, 26)(21, 24, 27) ,

g3 = (1, 10, 19)(2, 11, 20)(3, 12, 21)(4, 13, 22) · · · (8, 17, 26)(9, 18, 27) .

In the following lemma we will slightly extend the description of the lattice of

subgroups of the Sylow p-subgroups of Sn given in Lemma 1.3.10. In order to do

this will be very useful to denote by Pn the fixed Sylow p-subgroup of Sn defined in

Section 1.3.3 by

Pn := Pp,1 × · · · × Pp,n1 × · · · × Ppr,1 × · · · × Ppr,nr ,

where

Ppi,ji := (1, 1 + k(ji)) · · · (pi, pi + k(ji)) · Ppi · (1, 1 + k(ji)) · · · (pi, pi + k(ji))

and k(ji) :=
∑i−1

l=0 nlp
l + (ji − 1)pi for i ∈ {t ∈ N | nt 6= 0} and 1 6 ji 6 ni. Given

this convention, we shall then also write Pn =
∏r
i=0(Ppi)

ni , for simplicity.

Lemma 6.3.2 Let n be a natural number with p-adic expansion n =
∑r

i=0 nip
i.

Suppose that E 6 Pn is such that E =Sn Epi, for some i ∈ {1, . . . , r}. Then

E 6 Ppl,jl, for some l ∈ {i, . . . , r} and some 1 6 jl 6 nl. Moreover, we deduce that

E is contained in one of the pl−i subgroups of Ppl,jl that are Sn-conjugate to Ppi.

Proof: Since E has precisely one non-trivial orbit in its action on {1, 2, . . . , n} we

deduce that E 6 Ppl,jl for some l ∈ {1, 2, . . . , r}. The size of the non-trivial orbit of

E is pi, hence l ∈ {i, . . . , r}.
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To prove the second assertion we proceed by induction on l − i. If l = i then

the statement is clearly true since E 6 Ppi,ji =Sn Ppi . Suppose now that l > i. As

explained in Section 1.3.3 we have that

Ppl,jl = (Q1 × · · · ×Qp) o Cp,

where Q1, Q2, . . . , Qp are the only subgroups of Ppl,jl that are Sn-conjugate to Ppl−1 ,

by Lemma 1.3.10. Denote by B the base group of Ppl,jl , B = Q1 × · · · ×Qp. Since

l > i we have that supp(E) ( supp(Ppl,jl), therefore we deduce that E has at least

one fixed point in its action on supp(Ppl,jl). It follows that E 6 B. Moreover, as

already mentioned, E has a unique non-trivial orbit of size pi, hence E 6 Qs for

some s ∈ {1, 2, . . . , p}. Since Qs =Sn Ppl−1 , we can apply the inductive hypothesis

to deduce that E is contained in R, where R one of the pl−1−i subgroups of Qs that

are conjugate to Ppi in Sn. Again by Lemma 1.3.10 we deduce that R is one of the

pl−i subgroups of Ppl,jl that are conjugate to Ppi in Sn. The proof is now complete.

2

Lemma 6.3.3 Let n, d ∈ N, and let P 6 Ppd 6 Sn. Suppose that P contains an

Sn-conjugate of Ppd−1. Suppose further that P contains an elementary abelian group

E of order pd acting regularly on {1, . . . , pd}. Then P = Ppd.

Proof: If d = 1 then Ppd = Pp = E. From now on we may suppose that d > 2. Recall

that Ppd is generated by the elements g1, . . . , gd introduced in Section 1.3.3 (and

recalled at the beginning of this section). Moreover, Ppd acts imprimitively on the

set {1, . . . , pd}, a system of imprimitivity being given by ∆ := {∆1, . . . ,∆p}, where

∆s := {(s − 1)pd−1 + 1, . . . , spd−1}, for s ∈ {1, . . . , p}. Since E acts transitively on

{1, . . . , pd}, there is some g ∈ E such that (1)g = pd−1 +1; in particular, ∆1 ·g = ∆2.

Since pd−1 + 1 6= 1, we have g 6= 1, hence g is an element of order p. Moreover,

the group 〈g〉 acts on ∆, so that we obtain a group homomorphism ϕ : 〈g〉 →
Sym(∆) ∼= Sp. Since ∆1 · g = ∆2 6= ∆1, ϕ must be injective. Thus ϕ(g) has order p,

implying ∆1 · g = ∆2, ∆2 · g = ∆i3 , . . . ,∆ip · g = ∆1, for some i3, . . . , ip such that

{1, 2, i3, . . . , ip} = {1, . . . , p}.
Let R := P σ

pd−1 6 P , for some σ ∈ Sn. By Lemma 1.3.10, we know that

R = g−id Ppd−1gid, for some i ∈ {0, . . . , p − 1}. Thus supp(R) = ∆i+1. So, for

s ∈ {0, . . . , p − 1}, the group Rg
s

has support ∆i+1 · gs. As we have just seen, the

sets ∆i+1,∆i+1 · g, . . . ,∆i+1 · gp−1 are pairwise disjoint. Consequently, the groups

R, Rg, . . . , Rg
p−1

are precisely the different subgroups of Ppd that are Ppd-conjugate

to Ppd−1 , and are all contained in P . Therefore B :=
∏p−1
s=0 R

gs is the base group of

Ppd , and is contained in P . Clearly g /∈ B, since (1)g /∈ ∆1. Since [Ppd : B] = p, this
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implies Ppd = 〈B, g〉 6 P 6 Ppd , and the proof is complete. 2

We need now to introduce an important class of elementary abelian p-subgroups

of the symmetric group. The following definitions could be given for arbitrary n,

but we restrict our attention to the case where p | n, that is the setting required to

prove Theorem 6.1.1. Let n ∈ N be arbitrary with p | n, and let t,m1, . . . ,mt ∈ N0

be such that n =
∑t

i=1mip
i. For i ∈ {s ∈ N | ms 6= 0} and 1 6 ji 6 mi, we set

k(ji) :=
∑i−1

l=0 mlp
l + (ji − 1)pi and

Epi,ji := (1, 1 + k(ji)) · · · (pi, pi + k(ji)) ·Epi · (1, 1 + k(ji)) · · · (pi, pi + k(ji)) 6 Ppi,ji .

Denote by E(m1, . . . ,mt) the elementary abelian subgroup of Sn defined by

E(m1, . . . ,mt) = Ep,1 × · · · × Ep,m1 × · · · × Ept,1 × · · · × Ept,mt .

Notice that for i ∈ {1, . . . , t} and ji ∈ {1, . . . ,mi}, the direct factor Epi,ji of

E(m1, . . . ,mt) is determined by i and its support S(i, ji).

We emphasize that the integers m1, . . . ,mt need not be strictly less than p.

Lemma 6.3.4 Let n, t ∈ N and let m1, . . . ,mt ∈ N0 be such that mt 6= 0 and

n =
∑t

i=1mip
i. Suppose that m1 = 1 and t > 2. Let P be a maximal sub-

group of E(m1, . . . ,mt) such that Ep,1 66 P . Then P contains a subgroup Q 6∏t
i=2

∏mi
j=1Epi,j that acts fixed point freely on {p+ 1, . . . , n}.

Proof: For convenience, set E′ :=
∏t
i=2

∏mi
j=1Epi,j , so that

E(m1, . . . ,mt) = Ep × E′ > P.

By Goursat’s Lemma (see [53, Page 75]), we may identify P with the quintuple

(P1,K1, η, P2,K2), where P1 and P2 are the projections of P onto Ep and onto E′,

respectively, K1 := {g ∈ Ep : (g, 1) ∈ P} E P1, K2 := {h ∈ E′ : (1, h) ∈ P} E P2,

and η : P2/K2 → P1/K1 is a group isomorphism. Since |Ep| = p, there are precisely

three possibilities for the section (P1,K1) of Ep:

(i) P1 = K1 = Ep,

(ii) P1 = K1 = {1},
(iii) P1 = Ep and K1 = {1}.

Case (i) cannot occur, since we are assuming Ep 66 P . In case (ii) we get P = E′, so

that the assertion then holds with Q := P . So suppose that P1 = Ep and K1 = {1},
so that also [P2 : K2] = p. Next recall that P/(K1 ×K2) ∼= P1/K1

∼= P2/K2; see,

107



for instance, [6, 2.3.21]. This forces

|E′| = |P | = |K2| · |P1| = |K1| · |P2| = |P2|.

Thus P2 = E′, and K2 is a maximal subgroup of E′. Assume that K2 has a fixed

point x on {p + 1, . . . , n}. Then x ∈ supp(Epi,j), for some i > 2 with mi 6= 0 and

some j ∈ {1, . . . ,mi}. But then K2 has to fix the entire support of Epi,j , since Epi,j

acts regularly on its support. This implies [P2 : K2] > pi > p2, a contradiction.

Consequently, K2 must act fixed point freely on {p+ 1, . . . , n}, and the assertion of

the lemma follows with Q := {1} ×K2 6 P . 2

The next result will be one of the key ingredients of our proof of Theorem 6.1.1

in Section 6.4 below.

Proposition 6.3.5 Let n ∈ N with p-adic expansion n = p+
∑r

i=2 nip
i, where r > 2

and nr 6= 0. Let Q 6 Pn be such that Pn−2p 6Sn Q and E(1, n2, . . . , nr) 6Sn Q.

Then Q = Pn.

Proof: Let 2 6 s 6 r be minimal such that ns 6= 0. Then n − 2p has the following

p-adic expansion:

n− 2p =

s−1∑
j=1

(p− 1)pj + (ns − 1)ps +

r∑
i=s+1

nip
i.

Moreover, we have

Pn = Pp,1 ×
r∏
i=s

ni∏
j=1

Ppi,j and En = E(1, n2, . . . , nr) = Ep,1 ×
r∏
i=s

ni∏
j=1

Epi,j .

By our hypothesis, there is some g ∈ Sn such that

Egp,1 ×
r∏
i=s

ni∏
j=1

Eg
pi,j
6 Q 6 Pn.

In consequence of Lemma 1.3.10 and Lemma 6.3.2, we may suppose that Eg
pi,j
6

Ppi,j , for i > 2 and 1 6 j 6 ni, as well as Egp,1 = Ep,1 = Pp,1. Since also Pn−2p 6Sn Q,

there exists some R 6 Q 6 Pn of the form

R =
s−1∏
i=1

p−1∏
j=1

Rpi,j ×
ns−1∏
j=1

Rps,j ×
r∏

i=s+1

ni∏
j=1

Rpi,j ,
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where Rpk,l =Sn Ppk,l, for all possible k and l. By Lemma 1.3.10, we must have

r∏
i=s+1

ni∏
j=1

Rpi,j =

r∏
i=s+1

ni∏
j=1

Ppi,j 6 Pn.

Moreover, there is some k ∈ {1, . . . , ns} and some m ∈ {1, . . . , p− 1} such that

ns−1∏
j=1

Rps,j =
k−1∏
j=1

Pps,j ×
ns∏

l=k+1

Pps,l 6 Pn and Rps−1,m 6 Pps,k.

By Lemma 1.3.10, Rps−1,m is thus Pps,k-conjugate to one of the p subgroups of Pps,k

that are Sn-conjugate to Pps−1 . Since Q also contains the regular elementary abelian

group Egps,k 6 Pps,k, Lemma 6.3.3 now implies that Pps,k 6 Q. Altogether this shows

that indeed Pn 6 Q, and the assertion of the proposition follows. 2

6.4 The proof of Theorem 6.1.1

The aim of this section is to establish a proof of Theorem 6.1.1. To this end, let

F be a field of characteristic p > 2, and let n ∈ N be such that n ≡ p (mod p2).

The simple FSn-module D(n−p+1,1p−1) will henceforth be denoted by D. If p = n

then the Sylow p-subgroups of Sn are abelian, and are thus the vertices of D, by

Theorem 1.2.4. From now on we shall suppose that n > p2 + p. Let Pn be the

Sylow p-subgroup of Sn introduced in Section 1.3.3 (and recalled in Section 6.3.1).

In order to show that Pn is a vertex of D, we shall proceed as follows: suppose that

Q 6 Pn is a vertex of D. Then:

(i) Building on Wildon’s result in [76, Theorem 2], it was shown by Danz in [12,

Proposition 5.2] that Pn−2p = Pn−(p−1)−2 × Pp−1 <Sn Q.

(ii) Let n =
∑r

i=2 nip
i+p be the p-adic expansion of n, where r > 2 and nr 6= 0.

It is a corollary of Proposition 6.4.6 below that D(E(1, n2, . . . , nr)) 6= {0}. Here

E(1, n2, . . . , nr) denotes the elementary abelian subgroup of Pn defined in 6.3.1 and

D(E(1, n2, . . . , nr)) denotes the Brauer quotient ofD with respect to E(1, n2, . . . , nr)

as defined in Section 1.2.3. Thus, E(1, n2, . . . , nr) 6Sn Q, by Proposition 1.2.13.

(iii) Once we have verified (ii), we can apply Proposition 6.3.5, which then shows

that Q = Pn.

We begin by establishing (ii). To this end we fix some notation first.
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Let B := Bp−1 be the F-basis of D defined in (6.1), and let u ∈ D be such that

u =
∑
b∈B

λb · b, for λb ∈ F.

The basis element e2∧e3∧· · ·∧ep ∈ B will from now on be denoted by e. Moreover,

suppose that k, x ∈ {2, . . . , n−1}, and k 6 p. Then we denote by êk∧ex the element

of D defined by

êk ∧ ex = e2 ∧ · · · ∧ ek−1 ∧ ek+1 ∧ · · · ∧ ep ∧ ex.

In the case where êk∧ex ∈ B, the coefficient λe2∧···∧ek−1∧ek+1∧···∧ep∧ex will be denoted

by λk̂,x.

Similarly, if 2 6 k < l 6 p and x, y ∈ {2, . . . , n− 1}, then we set

êk,l ∧ ex ∧ ey := e2 ∧ · · · ∧ ek−1 ∧ ek+1 ∧ · · · ∧ el−1 ∧ el+1 ∧ · · · ∧ ep ∧ ex ∧ ey ∈ D.

In the case where êk,l ∧ ex ∧ ey ∈ B, then we denote by λ
k̂,l,x,y

the coefficient at

êk,l ∧ ex ∧ ey in u.

Let u ∈ D be such that u =
∑

b∈B λb · b, with λb ∈ F. We say that the basis

element b ∈ B occurs in u with coefficient λb. If λb 6= 0 then we also simply say that

b occurs in u.

For k1, k2 ∈ {2, . . . , n− 1}, we set

s(k1, k2) :=


k2 − (k1 − 1) if k1 6 k2 ,

0 if k2 < k1 .

(6.2)

Thus, if k1 6 k2 then

s(k1, k2) ≡


0 (mod 2) if k1 6≡ k2 (mod 2) ,

1 (mod 2) if k1 ≡ k2 (mod 2) .

From now on, let t,m2, . . . ,mt ∈ N be such that t2, mt 6= 0, and n = p +∑t
i=2mip

i. The elementary abelian group E(1,m2, . . . ,mt) 6 Sn will be denoted

by E. Note that, by our convention in Section 6.3.1, we have (1, 2, . . . , p) ∈ E.

In the case where t = r and mi = ni, for i = 2, . . . , r, we, in particular, get

E = E(1, n2, . . . , nr).
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In the course of this section we shall have to compute explicitly the actions of

elements in E on our chosen basis B of D. The following lemmas will be used

repeatedly in this section.

Lemma 6.4.1 Let α := (1, 2, . . . , p) ∈ Sn. Let further β := (x1, . . . , xp) ∈ Sn be

such that {x1, . . . , xp} ∩ {1, . . . , p} = ∅.
(a) For i ∈ {2, . . . , n− 1}, one has

eiα =


ei+1 − e2 if 2 6 i 6 p− 1 ,

−e2 if i = p ,

ei − e2 if i > p+ 1 .

Moreover, ep−(i−1)α
i = −ei+1, for all i ∈ {1, 2, . . . , p− 1}.

(b) If n /∈ supp(β) then, for i ∈ {2, . . . , n− 1}, one has

eiβ =


ei if i /∈ supp(β) ,

e(i)β if i ∈ supp(β) .

(c) If xp = n then, for i ∈ {2, . . . , n− 1}, one has

eiβ =


ei if i /∈ supp(β) ,

e(i)β if i ∈ {x1, . . . , xp−2} ,

−∑n−1
j=2 ej if i = xp−1 .

Proof: (a) If 2 6 i 6 p− 1, then

eiα =(ωi − ω1)α = (ωi − ω1)α

=ω(i)α − ω(1)α = ωi+1 − ω2

=(ωi+1 − ω1)− (ω2 − ω1) = ei+1 − e2.

If i = p, then eiα = (ωp − ω1)α = ω1 − ω2 = −e2.

Finally, if i > p+ 1, then we have

eiα = ωi − ω2 = (ωi − ω1)− (ω2 − ω1) = ei − e2 .
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The proofs of (b) and (c) are similar, and are left to the reader. 2

Lemma 6.4.2 Let k, l ∈ {2, . . . , p}, and let x ∈ {p+ 1, . . . , n− 1}. Then one has

(a) ek+1 ∧ · · · ∧ ep ∧ e2 ∧ · · · ∧ ek−1 ∧ ex = (−1)s(k+1,p)(k−2)êk ∧ ex;

(b) êk ∧ ek = (−1)s(k+1,p)e;

(c) if k < l then êk,l ∧ ex ∧ el = (−1)s(l+1,p)+1êk ∧ ex;

(d) if k < l then êk,l ∧ ex ∧ ek = (−1)s(k+1,p)êl ∧ ex.

Proof: (a) For k ∈ {2, . . . , p} and x ∈ {p+ 1, . . . , n− 1}, we have

s(k+1,p)+1︷ ︸︸ ︷
ek+1 ∧ · · · ∧ ep ∧ ex ∧ e2 ∧ · · · ∧ ek−1︸ ︷︷ ︸

k−2

=

= (−1)(s(k+1,p)+1)e2 ∧ ek+1 ∧ · · · ∧ ep ∧ ex ∧ e3 ∧ · · · ∧ ek−1

= (−1)(s(k+1,p)+1)(k−2) · êk ∧ ex.

The proofs of (b), (c) and (d) are similar, and are left to the reader. 2

Corollary 6.4.3 For e := e2 ∧ e3 ∧ · · · ∧ ep, we have e ∈ DPn; in particular,

e ∈ DP , for every P 6 Pn.

Proof: With the notation introduced in Section 1.3.3 we have Pn = Pp×
∏r
i=2(Ppi)

ni ,

and Pp = 〈α〉, where α := (1, 2, . . . , p). If β ∈ ∏r
i=2(Ppi)

ni then we clearly have

eβ = e. By Lemma 6.4.1 and Lemma 6.4.2(b), we also have

eα = (e3 − e2) ∧ (e4 − e2) ∧ · · · ∧ (ep − e2) ∧ (−e2)

= (−1)s(3,p)+1e = (−1)2e = e. 2

The following lemma will be a fundamental step in the proof of Case (2.2) of

Lemma 6.4.5.

Lemma 6.4.4 Let 1 6= σ ∈ E, and let q ∈ N be such that

σ = (x1
1, . . . , x

1
p) · · · (xq1, . . . , xqp) ,

where {xsi : 1 6 i 6 p , 1 6 s 6 q} = supp(σ) ⊆ {p + 1, . . . , n} and xqp = n. Let

further u ∈ D be such that u =
∑

b∈B λb · b, for λb ∈ F. Suppose that u ·σ = u. Then

one has the following:
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(a)
∑p

k=2(−1)k · λk̂,xqi = 0, for every i ∈ {1, . . . , p− 1};
(b)

∑p
k=2(−1)k+1 · λk̂,xsi =

∑p
k=2(−1)k+1λk̂,xs1

, for i ∈ {1, . . . , p} and 1 6 s 6

q − 1.

Proof: Let x ∈ {xsi : 1 6 i 6 p, 1 6 s 6 q − 1}, and let k ∈ {2, . . . , p}. Suppose that

b ∈ B is such that êk ∧ ex occurs with non-zero coefficient in b · σ. Then

(i) b = êk ∧ e(x)σ−1 , or

(ii) b = êk ∧ exqp−1
, or

(iii) b = êk,k2 ∧ e(x)σ−1 ∧ exqp−1
and (x)σ−1 < xqp−1, for some k < k2 6 p, or

(iv) b = êk1,k ∧ e(x)σ−1 ∧ exqp−1
and (x)σ−1 < xqp−1, for some 2 6 k1 < k, or

(v) b = êk,k2 ∧ exqp−1
∧ e(x)σ−1 and (x)σ−1 > xqp−1, for some k < k2 6 p, or

(vi) b = êk1,k ∧ exqp−1
∧ e(x)σ−1 and (x)σ−1 > xqp−1, for some 2 6 k1 < k.

If b is one of the basis elements in (i)–(vi) then the following table records bσ as well

as the coefficient at êk ∧ ex in bσ, which is obtained using Lemma 6.4.2.

b b · σ coefficient

êk ∧ e(x)σ−1 êk ∧ ex 1

êk ∧ exqp−1
êk ∧

∑n−1
y=2(−ey) −1

êk,k2 ∧ e(x)σ−1 ∧ exqp−1
êk,k2 ∧ ex ∧

∑n−1
y=2(−ey) (−1)1+s(k2+1,p)+1

êk1,k ∧ e(x)σ−1 ∧ exqp−1
êk1,k ∧ ex ∧

∑n−1
y=2(−ey) (−1)1+s(k1+1,p)

êk,k2 ∧ exqp−1
∧ e(x)σ−1 êk,k2 ∧

∑n−1
y=2(−ey) ∧ ex (−1)1+s(k2+1,p)

êk1,k ∧ exqp−1
∧ e(x)σ−1 êk1,k ∧

∑n−1
y=2(−ey) ∧ ex (−1)s(k1+1,p)

Now note that

(−1)1+s(k2+1,p)+1 = (−1)1+p−k2+1 = (−1)k2+1

and

(−1)1+s(k1+1,p) = (−1)1+p−k1 = (−1)k1 .

Since u · σ = u, this shows that

λk̂,x = λk̂,(x)σ−1−λk̂,xqp−1
+

p∑
k2=k+1

(−1)k2+1λ
k̂,k2,(x)σ−1,xqp−1

+
k−1∑
k1=2

(−1)k1λ
k̂1,k,(x)σ−1,xqp−1

(6.3)
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if (x)σ−1 < xqp−1 and

λk̂,x = λk̂,(x)σ−1−λk̂,xqp−1
−

p∑
k2=k+1

(−1)k2+1λ
k̂,k2,x

q
p−1,(x)σ−1−

k−1∑
k1=2

(−1)k1λ
k̂1,k,x

q
p−1,(x)σ−1

(6.4)

if σ−1(x) > xqp−1. Moreover,

p∑
k=2

(−1)k+1

 p∑
k2=k+1

(−1)k2+1λ
k̂,k2,(x)σ−1,xqp−1

+
k−1∑
k1=2

(−1)k1λ
k̂1,k,(x)σ−1,xqp−1


=

p∑
k=2

p∑
l=k+1

((−1)k+1(−1)l+1 + (−1)k(−1)l+1) · λ
k̂,l,(x)σ−1,xqp−1

= 0

if (x)σ−1 < xqp−1, and

p∑
k=2

(−1)k+1

− p∑
k2=k+1

(−1)k2+1λ
k̂,k2,x

q
p−1,(x)σ−1 −

k−1∑
k1=2

(−1)k1λ
k̂1,k,x

q
p−1,(x)σ−1


= −

p∑
k=2

p∑
l=k+1

((−1)k+1(−1)l+1 + (−1)k(−1)l+1)λ
k̂,l,xqp−1,(x)σ−1 = 0

if (x)σ−1 > xqp−1. Hence, from (6.3) and (6.4) we get

p∑
k=2

(−1)k+1λk̂,xsi
=

p∑
k=2

(−1)k+1λk̂,(xsi )σ−1 +

p∑
k=2

(−1)kλk̂,xqp−1
, (6.5)

for every i ∈ {1, . . . , p} and 1 6 s 6 q − 1.

We also have u · σi = u, for i = 1, . . . , p − 1. To compare the coefficient at

e in u and in u · σi, let i ∈ {1, . . . , p − 1} and suppose that b ∈ B is such that

e occurs in b · σi with non-zero coefficient. Then either b = e and e = e · σi, or

b = êk ∧ e(xqp)σ−i , for some k ∈ {2, . . . , p}. Moreover, in the latter case we have

b · σi = êk ∧ (−e2 − e3 − · · · − en−1), where e occurs with coefficient

(−1)s(k+1,p)+1 =


1 if 2 | k ,

−1 if 2 - k ,

by Lemma 6.4.2. So we obtain λe = λe+
∑p

k=2(−1)k ·λk̂,(xqp)σ−i , for i ∈ {1, . . . , p−1},
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that is,

0 =

p∑
k=2

(−1)kλk̂,xqj
, (6.6)

for j ∈ {1, . . . , p − 1}, which proves assertion (a). Now assertion (b) follows from

(6.5) and (6.6) with j = p− 1. 2

Next we shall show that D(E) 6= {0}, where E is the elementary abelian group

defined by

E = E(1,m2, . . . ,mt) for some m2, . . . ,mt ∈ N.

In order to do so, we want to apply Proposition 1.2.15 with b0 = e.

Lemma 6.4.5 Let P be a maximal subgroup of E. If u ∈ DP then e occurs in TrEP (u)

with coefficient 0.

Proof: Set α := (1, 2, . . . , p). Let u ∈ DP , and write u =
∑

b∈B λb · b, where λb ∈ F.

We shall treat the case where α ∈ P and the case where α /∈ P separately.

Case 1: α ∈ P . Then there is some 1 6= g ∈ ∏t
i=2

∏mi
j=1Epi,j with g /∈ P . Thus

{1, g, g2, . . . , gp−1} is a set of representatives of the right cosets of P in E, so that

we get

TrEP (u) = u+ ug + · · ·+ ugp−1 =
∑
b∈B

λb · (
p−1∑
i=0

bgi).

Since g 6= 1 and t > 2, we have

g = (x1
1, . . . , x

1
p) · · · (xq1, . . . , xqp) ,

for some q > p and {xsi : 2 6 i 6 p, 1 6 s 6 q} = supp(g) ⊆ {p+ 1, . . . , n}.
Suppose first that n /∈ supp(g), and let b ∈ B. Let further i ∈ {0, . . . , p− 1}, and

suppose that e occurs in bgi with non-zero coefficient. Then we must have b = e, in

which case
∑p−1

i=0 bg
i = pe = 0, by Corollary 6.4.3; in particular, e occurs in TrEP (u)

with coefficient 0.

So we may now suppose that n ∈ supp(g). Moreover, we may suppose that

xqp = n. Let i ∈ {0, . . . , p − 1}, and let b ∈ B be such that e occurs in bgi with

non-zero coefficient. If i = 0 then we must of course have b = e = eg0. If i > 1

then b = e, or b = êk ∧ e(xqp)g−i , for some k ∈ {2, . . . , p}. In the latter case, we have
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(êk ∧ e(xqp)g−i) · gi = êk ∧ (−e2 − e3 − · · · − en−1), in which e occurs with coefficient

(−1)s(k+1,p)+1 =


1 if 2 | k ,

−1 if 2 - k ,

by Lemma 6.4.2. Consequently, the coefficient at e in TrEP (u) equals

pλe +

p−1∑
i=1

 p∑
k=2
2|k

λk̂,xqi
−

p∑
l=2
2-l

λl̂,xqi

 =

p−1∑
i=1

p∑
k=2

(−1)kλk̂,xqi
. (6.7)

Next we use the fact that u ∈ DP to show that this coefficient is indeed 0. Since

α ∈ P , we, in particular, have u = uαi, for every i ∈ {1, . . . , p − 1}. So let

i ∈ {1, . . . , p−1}, and let x ∈ {xq1, . . . , xqp}. Suppose that b ∈ B is such that êi+1∧ex
occurs in bαi. Then from Lemma 6.4.1 we deduce that b = ê(1)α−i ∧ ex. Moreover,

we have

ê(1)α−i∧ex·αi = (ei+2−ei+1)∧· · ·∧(ep−ei+1)∧(e2−ei+1)∧· · ·∧(ei−ei+1)∧(ex−ei+1) .

Thus, by part (a) of Lemma 6.4.2, the coefficient of êi+1 ∧ ex in (ê(1)α−i ∧ ex) · αi

equals

(−1)s(i+2,p)(i−1) = 1.

Letting i vary over {1, . . . , p − 1} and comparing the coefficient of êi+1 ∧ ex in u

and in uαi, we deduce that λk̂,x = λ ̂p−k+2,x
, for k ∈ {2, . . . , (p + 1)/2} and every

x ∈ {xq1, . . . , xqp}. Since k is even if and only if p − k + 2 is odd, we conclude that

the right-hand side of (6.7) is 0, as claimed. This completes the proof in case 1.

Case 2: α /∈ P , so that {1, α, α2, . . . , αp−1} is a set of representatives for the

cosets of P in E, and we get TrEP (u) = u + uα + · · · + uαp−1. We determine the

coefficient at e in TrEP (u) = u+uα+ · · ·+uαp−1. Let i ∈ {0, . . . , p−1}, and let b ∈ B
be such that e occurs in bαi with non-zero coefficient. If i = 0 then b = e = eα0. So

let i > 1. Then, by Lemma 6.4.1, we either have b = e, or b = ê(1)α−i ∧ ex, for some

x ∈ {p+ 1, . . . , n− 1}. Moreover, in the latter case,

b·αi = (ei+2−ei+1)∧(ei+3−ei+1)∧· · ·∧(ep−ei+1)∧(e2−ei+1)∧· · ·∧(ei−ei+1)∧(ex−ei+1) .
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So the coefficient at e in (ê(1)α−i ∧ ex) · αi equals

(−1)s(i+2,p)(i−1)+s(i+2,p)+1 =


1 if 2 - i ,

−1 if 2 | i .

Since i is even if and only if (1)α−i is even, we deduce from this that the coefficient

at e in u+ uα+ · · ·+ uαp−1 equals

pλe +
n−1∑
x=p+1

p∑
k=2

(−1)k+1λk̂,x =
n−1∑
x=p+1

p∑
k=2

(−1)k+1λk̂,x . (6.8)

To show that this coefficient is 0, we again exploit the fact that u ∈ DP . In fact, we

shall show that ∑
x∈supp(E

pl,jl
)

x<n

p∑
k=2

(−1)k+1λk̂,x = 0 , (6.9)

for every l ∈ {2, . . . , t} and 1 6 jl 6 ml. For each such l and jl, there is, by

Lemma 6.3.4, some element σ(l, jl) ∈ P such that supp(Epl,jl) ⊆ supp(σ(l, jl)) ⊆
{p+ 1, . . . , n}. Fixing l and jl, we write

σ := σ(l, jl) = (x1
1, . . . , x

1
p) · · · (xq1, . . . , xqp) ,

for some q > |Epl,jl |/p and supp(σ) = {xji : 1 6 i 6 p, 1 6 j 6 q} ⊆ {p+ 1, . . . , n}.
Case 2.1: n /∈ supp(σ), or equivalently, supp(σ) ∩ supp(Ept,mt) = ∅. Let x ∈

supp(σ), let k ∈ {2, . . . , p}, and let b ∈ B be such that êk ∧ ex occurs in bσ with

non-zero coefficient. This forces b = êk ∧ e(x)σ−1 , and (êk ∧ e(x)σ−1) · σ = êk ∧ ex.

Thus, λk̂,x = λk̂,(x)σ−1 . This shows that λk̂,xs1
= λk̂,xsi

, for all i ∈ {1, . . . , p} and

s ∈ {1, . . . , q}. By rearranging commuting p-cycles in σ, we may assume that there

is some 1 6 q0 6 q such that supp(Epl,jl) = {xsi : 1 6 i 6 p, 1 6 s 6 q0}. Then

∑
x∈supp(E

pl,jl
)

p∑
k=2

(−1)k+1λk̂,x =

p∑
i=1

q0∑
s=1

p∑
k=2

(−1)k+1λk̂,xsi

=

q0∑
s=1

p ·
p∑

k=2

(−1)k+1λk̂,xs1
= 0 ,

(6.10)

as desired.

Case 2.2: n ∈ supp(σ). Then we may suppose that xqp = n. If (l, jl) 6= (t,mt),
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then we may further suppose that there is some 1 6 q1 < q such that supp(Epl,jl) =

{xsi : 1 6 i 6 p, 1 6 s 6 q1}. By Lemma 6.4.4(b), we then get

∑
x∈supp(E

pl,jl
)

p∑
k=2

(−1)k+1λk̂,x =

p∑
i=1

q1∑
s=1

p∑
k=2

(−1)k+1λk̂,xsi

=

q1∑
s=1

p ·
p∑

k=2

(−1)k+1λk̂,xs1
= 0 .

(6.11)

If (l, jl) = (t,mt) then we may suppose that there is 1 6 q2 6 q such that

supp(Ept,mt) = {xsi : 1 6 i 6 p, q2 6 s 6 q}. In this case, Lemma 6.4.4 gives

∑
x∈supp(Ept,mt

)

x<n

p∑
k=2

(−1)k+1 · λk̂,x =

p∑
i=1

q−1∑
s=q2

p∑
k=2

(−1)k+1λk̂,xsi
+

p−1∑
i=1

p∑
k=2

(−1)k+1λk̂,xqi

=

q−1∑
s=q2

p∑
k=2

(−1)k+1 · p · λk̂,xs1 −
p−1∑
i=1

p∑
k=2

(−1)kλk̂,xqi
= 0 .

To summarize, we have now verified equation (6.9), which together with (6.7)

shows that the coefficient at e in TrEP (u) is 0. This now completes the proof in case

2 and, thus, of the lemma. 2

As a direct consequence of Lemma 6.4.5, Proposition 1.2.15, and Proposition

1.2.13 we thus have proved the following

Proposition 6.4.6 Let n ∈ N be such that n = p +
∑t

i=2mip
i, for some t > 2,

m2, . . . ,mt ∈ N0 with mt 6= 0. Let further D := D(n−p+1,1p−1), and let Q 6 Sn be a

vertex of D. Then D(E(1,m2, . . . ,mt)) 6= {0}; in particular, E(1,m2, . . . ,mt) 6Sn

Q.

Remark 6.4.7 Again consider the p-adic expansion n = p+
∑r

i=2 nip
i, where r > 2

and nr 6= 0. Note that Proposition 6.4.6, in particular, holds for t = r and m1 =

1, . . . ,mr = nr. Thus the elementary abelian subgroup E(1, n2, . . . , nr) 6 Pn is Sn-

conjugate to a subgroup of every vertex of D. This settles item (ii) at the beginning

of this section. This also completes the proof of Theorem 6.1.1.
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