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assume initial abundance negligible

® Although inferactions are feeble they lead to some X production

e Dominant production of X occurs at 1" ~ M x IR dominant

® Increasing the interaction strength increases the yield

opposite to Freeze-out...
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Equilibrium yield
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for freeze-in
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My,

® Lifetime of LOSP is long - signals at LHC, BBN...
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Toy Model continued...

® Second case LOSP (=LSP) DM: Mx > My, + My,
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My,
e X lifetime can be long - implications for BBN, indirect DM detection
Another source of boost factors
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FIMP Candidates and generating tiny A

® Any long lived particle that is coupled to the thermal bath
with a feeble coupling - needs to be a SM gauge singlet

® Hidden sector feebly coupled to MSSM

® Moduli and Modulinos associated with SUSY breaking

mgusy( )¢T¢ mSUSy <1 g ) ng(/b $ m;\;sy

® Dirac neutrino masses with SUSY - RH sneutrino FIMPs

L:Dirac =~ )\I/LHU,N >\1/ o 10_12

® FIMPs from kinetic mixing: hidden sector particles coupling to the
MSSM via mixing of U(1)v and hidden U(1) tiny mixing tiny coupling

® Ofthers...
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Long lived LOSPs at the LHC: FIMPs frozen in by decay of
LOSP - LOSP produced at LHC will be long lived
could be electrically charged or even coloured
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® Signals for BBN: FIMPs or LOSPs decaying late could have
implications for BBN

® Enhanced indirect and direct detection: Relic abundance and
DM annihilation cross section no longer related.
Freeze-in dominantly produces DM abundance annihilation cross
section must be large - freeze-out abundance is small
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Conclusions and Outlook

® Freeze-in can provide attractive alternative fo Freeze-out

@ It is an IR dominated process and in simple scenarios relic
abundance can be found analytically

® Experimental implications of Freeze-in include:
potentially spectacular signals at the LHC, signals at BBN and
boosts factors for indirect DM detection

® Many applications for model building in dark matter theories

Much more to come...



Freeze-in vs Freeze-out

® For a TeV scale mass particle we have the following picture.
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Example Model 11

® Many applications and variations of the Freeze-in mechanism

® Assume FIMP is lightest particle carrying some stabilising
symmetry - FIMP is the DM

® Consider quartic coupling of FIMP with three bath scalars

Assuming
Lo=AXDB1B>B
{ @ g My > MpB,, MB,, MB,
B .
I Qh% ~ 1.01 x 1021)2
Bl "B For correct DM o)~ 10-1
abundance

e NOTE: Abundance in this case is independent of the FIMP mass



