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Freeze-in overview
• Freeze-in is relevant for particles that are feebly coupled 

(Via renormalisable couplings) - 
Feebly Interacting Massive Particles (FIMPs)

Thermal Bath       
Temp                   

is thermally decoupled and we
assume initial abundance negligible 

•  Although interactions are feeble they lead to some     production X

•  Dominant production of     occurs at               IR dominantX

T > MX

•  Increasing the interaction strength increases the yield 
opposite to Freeze-out...
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• Lifetime of LOSP is long - signals at LHC, BBN...
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•    lifetime can be long - implications for BBN, indirect DM detectionX
Another source of boost factors
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FIMP Candidates and generating tiny  

• Moduli and Modulinos associated with SUSY breaking 

λ

• Dirac neutrino masses with SUSY - RH sneutrino FIMPs

• FIMPs from kinetic mixing: hidden sector particles coupling to the 
MSSM via mixing of U(1)Y and hidden U(1) tiny mixing tiny coupling 

• Any long lived particle that is coupled to the thermal bath 
with a feeble coupling - needs to be a SM gauge singlet

λ ∼ msusy

M

LDirac = λνLHuN λν ∼ 10−12

• Others...

• Hidden sector feebly coupled to MSSM 

See Moroi et	
  al 
for related
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Experimental Signatures
•  Long lived LOSPs at the LHC: FIMPs frozen in by decay of 

LOSP - LOSP produced at LHC will be long lived 
could be electrically charged or even coloured

• Signals for BBN: FIMPs or LOSPs decaying late could have 
implications for BBN

•  Enhanced indirect and direct detection: Relic abundance and 
DM annihilation cross section no longer related. 

Freeze-in dominantly produces DM abundance annihilation cross 
section must be large - freeze-out abundance is small

τLOSP = 7.7× 10−3sec
� mX

100 GeV

� �
300 GeV
mLOSP
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g∗(mLOSP)
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Conclusions and Outlook

• Freeze-in can provide attractive alternative to Freeze-out

• It is an IR dominated process and in simple scenarios relic 
abundance can be found analytically

•    Experimental implications of Freeze-in include:
 potentially spectacular signals at the LHC, signals at BBN and 

boosts factors for indirect DM detection 

•   Many applications for model building in dark matter theories

 Much more to come...
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• For a TeV scale mass particle we have the following picture.



Example Model II



Example Model II
• Many applications and variations of the Freeze-in mechanism



Example Model II
• Many applications and variations of the Freeze-in mechanism

• Assume FIMP is lightest particle carrying some stabilising 
symmetry - FIMP is the DM



Example Model II
• Many applications and variations of the Freeze-in mechanism

• Assume FIMP is lightest particle carrying some stabilising 
symmetry - FIMP is the DM

• Consider quartic coupling of FIMP with three bath scalars 

LQ = λXB1B2B3

B1 X

B2B3

λ



Example Model II
• Many applications and variations of the Freeze-in mechanism

• Assume FIMP is lightest particle carrying some stabilising 
symmetry - FIMP is the DM

• Consider quartic coupling of FIMP with three bath scalars 

LQ = λXB1B2B3

B1 X

B2B3

λ

Assuming
mx � mB1 , mB2 , mB3



Example Model II
• Many applications and variations of the Freeze-in mechanism

• Assume FIMP is lightest particle carrying some stabilising 
symmetry - FIMP is the DM

• Consider quartic coupling of FIMP with three bath scalars 

LQ = λXB1B2B3

B1 X

B2B3

Ωh2
X ≈ 1.01× 1021λ2

λ

Assuming
mx � mB1 , mB2 , mB3



Example Model II
• Many applications and variations of the Freeze-in mechanism

• Assume FIMP is lightest particle carrying some stabilising 
symmetry - FIMP is the DM

• Consider quartic coupling of FIMP with three bath scalars 

LQ = λXB1B2B3

B1 X

B2B3

Ωh2
X ≈ 1.01× 1021λ2

λ

⇒ λ ∼ 10−11

• NOTE: Abundance in this case is independent of the FIMP mass 

 For correct DM 
abundance

Assuming
mx � mB1 , mB2 , mB3


