Interpolating between the Arithmetic-Geometric Mean and Cauchy-Schwarz matrix norm inequalities

Koenraad M.R. Audenaert
Department of Mathematics, Royal Holloway University of London, Egham TW20 0EX, United Kingdom
Department of Physics and Astronomy, Ghent University, S9, Krijgslaan 281, B-9000 Ghent, Belgium

Abstract

We prove an inequality for unitarily invariant norms that interpolates between the Arithmetic-Geometric Mean inequality and the Cauchy-Schwarz inequality.

Key words: eigenvalue inequality, matrix norm inequality 1991 MSC: 15A60

1 Introduction

In this paper we prove the following inequality for unitarily invariant matrix norms:

Theorem 1 Let $|\|\cdot\|| \mid$ be any unitarily invariant norm. For all $n \times n$ matrices X and Y, and all $q \in[0,1]$,

$$
\begin{equation*}
\left\|\left\|X Y^{*}\right\|\right\|^{2} \leq\| \| q X^{*} X+(1-q) Y^{*} Y\left|\| \|(1-q) X^{*} X+q Y^{*} Y\right| \| . \tag{1}
\end{equation*}
$$

For $q=0$ or $q=1$, this reduces to the known Cauchy-Schwarz (CS) inequality for unitarily invariant norms [2, (IX.32)], [3], [6]

$$
\left\|\left\|X Y^{*}\right\|\right\|^{2} \leq\| \| X^{*} X\left|\|\quad\|\left\|Y^{*} Y \mid\right\| .\right.
$$

Email address: koenraad.audenaert@rhul.ac.uk (Koenraad M.R. Audenaert).

For $q=1 / 2$ on the other hand, this yields the arithmetic-geometric mean (AGM) inequality [2, (IX.22)], [4]

$$
\left|\left\|X Y^{*}\right\|\left\|\left.\leq \frac{1}{2} \right\rvert\,\right\| X^{*} X+Y^{*} Y\| \|\right.
$$

Thus, inequality (1) interpolates between the AGM and CS inequalities for unitarily invariant norms.

In Section 2 we prove an eigenvalue inequality that may be of independent interest. The proof of Theorem 1 follows easily from this inequality, in combination with standard majorisation techniques; this proof is given in Section 3.

2 Main technical result

For any $n \times n$ matrix A with real eigenvalues, we will denote these eigenvalues sorted in non-ascending order by $\lambda_{k}(A)$. Thus $\lambda_{1}(A) \geq \cdots \geq \lambda_{n}(A)$. Singular values will be denoted as $\sigma_{k}(A)$, again sorted in non-ascending order.

Our main technical tool in proving Theorem 1 is the following eigenvalue inequality, which may be of independent interest:

Theorem 2 Let A and B be $n \times n$ positive semidefinite matrices. Let q be a number between 0 and 1, and let $C(q):=q A+(1-q) B$. Then, for all $k=1, \ldots, n$,

$$
\begin{equation*}
\lambda_{k}(A B) \leq \lambda_{k}(C(q) C(1-q)) \tag{2}
\end{equation*}
$$

Putting $A=X^{*} X$ and $B=Y^{*} Y$, for $n \times n$ matrices X and Y, and noting that

$$
\lambda_{k}^{1 / 2}(A B)=\lambda_{k}^{1 / 2}\left(Y X^{*} X Y^{*}\right)=\sigma_{k}\left(X Y^{*}\right)
$$

we can write (2) as a singular value inequality:

$$
\begin{equation*}
\sigma_{k}^{2}\left(X Y^{*}\right) \leq \lambda_{k}\left(\left(q X^{*} X+(1-q) Y^{*} Y\right)\left((1-q) X^{*} X+q Y^{*} Y\right)\right) \tag{3}
\end{equation*}
$$

For $p=1 / 2$, Theorem 2 gives

$$
\begin{equation*}
\lambda_{k}^{1 / 2}(A B) \leq \frac{1}{2} \lambda_{k}(A+B) \tag{4}
\end{equation*}
$$

and (3) becomes the well-known AGM inequality for singular values [2, inequality (IX.20)]

$$
\sigma_{k}\left(X Y^{*}\right) \leq \frac{1}{2} \sigma_{k}\left(X^{*} X+Y^{*} Y\right)
$$

The following modification of inequality (2), proven by Drury for the case $q=1 / 2$ [5], does not hold for all $q \in[0,1]$:

$$
\sigma_{k}(A B) \leq \sigma_{k}(C(q) C(1-q))
$$

We are grateful to Swapan Rana for informing us about counterexamples.

Proof of Theorem 2. We first reduce the statement of the theorem to a special case using a technique that is due to Ando [1] and that was also used in [5, Section 4].

Throughout the proof, we will keep k fixed. If either A or B has rank less than k, then $\lambda_{k}(A B)=0$ and (2) holds trivially. We will therefore assume that A and B have rank at least k. By scaling A and B we can ensure that $\lambda_{k}(A B)=1$.

We will now try and find a positive semidefinite matrix B^{\prime} of rank exactly k with $B^{\prime} \leq B$ and such that $A B^{\prime}$ has k eigenvalues equal to 1 and all others equal to 0 . By hypothesis, $A B$ and hence $A^{1 / 2} B A^{1 / 2}$ have at least k eigenvalues larger than or equal to 1 . Therefore, there exists a rank- k projector P satisfying $P \leq A^{1 / 2} B A^{1 / 2}$. Let B^{\prime} be a rank- k matrix such that $A^{1 / 2} B^{\prime} A^{1 / 2}=P$. If A is invertible, we simply have $B^{\prime}=A^{-1 / 2} P A^{-1 / 2}$; otherwise the generalised inverse of A is required. Then $B^{\prime} \leq B$ and $A B^{\prime}$ has the requested spectrum.

Passing to an eigenbasis of B^{\prime}, we can decompose B^{\prime} as the direct sum $B^{\prime}=$ $B_{11} \oplus[0]_{n-k}$, where B_{11} is a $k \times k$ positive definite block. In that same basis, we partition A conformally with B^{\prime} as $A=\left(\begin{array}{ll}A_{11} & A_{12} \\ A_{12}^{*} & A_{22}\end{array}\right)$. Since $A^{1 / 2} B^{\prime} A^{1 / 2}=P$ is a rank k projector, so is

$$
R:=\left(B^{\prime}\right)^{1 / 2} A\left(B^{\prime}\right)^{1 / 2}=\left(B_{11}\right)^{1 / 2} A_{11}\left(B_{11}\right)^{1 / 2} \oplus[0]_{n-k} .
$$

The top-left block of R is a $k \times k$ matrix, and R is a rank $-k$ projector. Therefore, that block must be identical to the $k \times k$ identity matrix: $\left(B_{11}\right)^{1 / 2} A_{11}\left(B_{11}\right)^{1 / 2}=$ I. This implies that A_{11} is invertible and $B_{11}=\left(A_{11}\right)^{-1}$. We therefore have,
in an eigenbasis of B^{\prime},

$$
A=\left(\begin{array}{ll}
A_{11} & A_{12} \\
A_{12}^{*} & A_{22}
\end{array}\right), \quad B^{\prime}=\left(\begin{array}{cc}
\left(A_{11}\right)^{-1} & \\
& 0
\end{array}\right) \leq B .
$$

Clearly, $C^{\prime}(q):=q A+(1-q) B^{\prime}$ satisfies $C^{\prime}(q) \leq C(q)$, so that

$$
\lambda_{k}\left(C^{\prime}(q) C^{\prime}(1-q)\right) \leq \lambda_{k}(C(q) C(1-q))
$$

while still $\lambda_{k}\left(A B^{\prime}\right)=\lambda_{k}(A B)=1$. It is now left to show that $\lambda_{k}\left(C^{\prime}(q) C^{\prime}(1-\right.$ $q)) \geq 1$.

A further reduction is possible. Let

$$
A^{\prime}=\left(\begin{array}{cc}
A_{11} & A_{12} \\
A_{12}^{*} & A_{12}^{*}\left(A_{11}\right)^{-1} A_{12}
\end{array}\right)
$$

which has rank k and satisfies $0 \leq A^{\prime} \leq A$. Let also $C^{\prime \prime}(q):=q A^{\prime}+(1-q) B^{\prime}$, for which $0 \leq C^{\prime \prime}(q) \leq C^{\prime}(q)$. Then $\lambda_{k}\left(C^{\prime \prime}(q) C^{\prime \prime}(1-q)\right) \leq \lambda_{k}\left(C^{\prime}(q) C^{\prime}(1-q)\right)$.

Introducing $F:=A_{11}>0, G:=A_{12} A_{12}^{*} \geq 0$ and $s:=(1-q) / q>0$, we have

$$
\begin{aligned}
C^{\prime \prime}(q) & =q\left(\begin{array}{cc}
F & A_{12} \\
A_{12}^{*} & A_{12}^{*} F^{-1} A_{12}
\end{array}\right)+(1-q)\left(\begin{array}{cc}
F^{-1} & \\
& 0
\end{array}\right) \\
& =q\left(\begin{array}{ll}
I & \\
& A_{12}^{*}
\end{array}\right)\left(\begin{array}{cc}
F+s F^{-1} & I \\
& I \\
& F^{-1}
\end{array}\right)\left(\begin{array}{ll}
I & \\
& A_{12}
\end{array}\right)
\end{aligned}
$$

so that

$$
\begin{aligned}
& \lambda_{k}\left(C^{\prime \prime}(q) C^{\prime \prime}(1-q)\right) \\
& =q(1-q) \lambda_{k}\left(\binom{I}{G}\left(\begin{array}{cc}
F+s F^{-1} & I \\
I & F^{-1}
\end{array}\right)\binom{I}{G}\left(\begin{array}{cc}
F+s^{-1} F^{-1} & I \\
I & F^{-1}
\end{array}\right)\right),
\end{aligned}
$$

where each factor is a $2 k \times 2 k$ matrix. Noting that

$$
\left(\begin{array}{cc}
F+s F^{-1} & I \\
I & F^{-1}
\end{array}\right)=\left(\begin{array}{cc}
s^{1 / 2} F^{-1 / 2} & F^{1 / 2} \\
0 & F^{-1 / 2}
\end{array}\right)\left(\begin{array}{cc}
s^{1 / 2} F^{-1 / 2} & 0 \\
F^{1 / 2} & F^{-1 / 2}
\end{array}\right),
$$

we then have $\lambda_{k}\left(C^{\prime \prime}(q) C^{\prime \prime}(1-q)\right)=q(1-q) \lambda_{k}\left(Z^{*} Z\right)=q(1-q) \sigma_{k}^{2}(Z)$, where

$$
Z=\left(\begin{array}{cc}
s^{1 / 2} F^{-1 / 2} & 0 \\
F^{1 / 2} & F^{-1 / 2}
\end{array}\right)\binom{I}{G}\left(\begin{array}{cc}
s^{-1 / 2} F^{-1 / 2} & F^{1 / 2} \\
0 & F^{-1 / 2}
\end{array}\right)=\left(\begin{array}{cc}
F^{-1} & s^{1 / 2} \\
s^{-1 / 2} & F+H
\end{array}\right),
$$

and $H:=F^{-1 / 2} G F^{-1 / 2} \geq 0$. The singular values of Z are the same as those of

$$
X:=\left(\begin{array}{cc}
s^{1 / 2} & F^{-1} \\
F+H & s^{-1 / 2}
\end{array}\right) .
$$

By the Fan-Hoffman theorem [2, Proposition III.5.1], the singular values of X are bounded below by the ordered eigenvalues of the Hermitian part of X : $\sigma_{j}(X) \geq \lambda_{j}\left(\left(X+X^{*}\right) / 2\right)$ for $j=1, \ldots, 2 k$. Thus,

$$
\begin{aligned}
& \lambda_{k}\left(C^{\prime \prime}(q) C^{\prime \prime}(1-q)\right) \geq q(1-q) \lambda_{k}^{2}(Y) \\
& \text { with } Y:=\left(\begin{array}{cc}
s^{1 / 2} & K \\
K & s^{-1 / 2}
\end{array}\right) \text { and } K:=\left(F+H+F^{-1}\right) / 2
\end{aligned}
$$

Clearly, $K \geq\left(F+F^{-1}\right) / 2 \geq I$. It is easily checked that the k largest eigenvalues of Y are given by

$$
\lambda_{j}(Y)=\frac{1}{2}\left(s^{1 / 2}+s^{-1 / 2}+\sqrt{\left(s^{1 / 2}+s^{-1 / 2}\right)^{2}-4+4 \lambda_{j}^{2}(K)}\right), \quad j=1, \ldots, k
$$

As this expression is a monotonously increasing function of $\lambda_{j}(K)$, and $\lambda_{j}(K) \geq$ 1, we obtain the lower bound $\lambda_{k}(Y) \geq s^{1 / 2}+s^{-1 / 2}$. Then, finally,

$$
\begin{aligned}
\lambda_{k}\left(C^{\prime \prime}(q) C^{\prime \prime}(1-q)\right) & \geq q(1-q)\left(s^{1 / 2}+s^{-1 / 2}\right)^{2} \\
& =q(1-q)\left(\left(\frac{1-q}{q}\right)^{1 / 2}+\left(\frac{q}{1-q}\right)^{1 / 2}\right)^{2} \\
& =(1-q+q)^{2}=1,
\end{aligned}
$$

from which it follows that $\lambda_{k}\left(C^{\prime}(q) C^{\prime}(1-q)\right) \geq 1$.

3 Proof of Theorem 1

Using Theorem 2 and some standard arguments, the promised norm inequality is easily proven.

For all positive semidefinite matrices A and B, and any $r>0$, we have the weak majorisation relation

$$
\lambda^{r}(A B) \prec_{w} \lambda^{r}(A) \cdot \lambda^{r}(B),
$$

where '.' denotes the elementwise product for vectors. This relation follows from combining the fact that $A B$ has non-negative eigenvalues with Weyl's majorant inequality [2, (II.23)],

$$
|\lambda(A B)|^{r} \prec_{w} \sigma^{r}(A B)
$$

and with the singular value majorisation relation ([2], inequality (IV.41))

$$
\sigma^{r}(A B) \prec_{w} \sigma^{r}(A) \cdot \sigma^{r}(B) .
$$

From (3) we immediately get, for any $r>0$,

$$
\sigma^{2 r}\left(X Y^{*}\right) \prec_{w} \lambda^{r}\left(\left(q X^{*} X+(1-q) Y^{*} Y\right)\left((1-q) X^{*} X+q Y^{*} Y\right)\right) .
$$

Hence,

$$
\left.\sigma^{2 r}\left(X Y^{*}\right) \prec_{w} \lambda^{r}\left(q X^{*} X+(1-q) Y^{*} Y\right) \cdot \lambda^{r}\left((1-q) X^{*} X+q Y^{*} Y\right)\right)
$$

If we now apply Hölder's inequality for symmetric gauge functions Φ,

$$
\Phi(|x \cdot y|) \leq \Phi\left(|x|^{p}\right)^{1 / p} \Phi\left(|y|^{p^{\prime}}\right)^{1 / p^{\prime}}
$$

where $x, y \in \mathbb{C}^{n}$ and $1 / p+1 / p^{\prime}=1$, we obtain

$$
\begin{aligned}
\Phi\left(\sigma^{2 r}\left(X Y^{*}\right)\right) & \left.\leq \Phi\left(\lambda^{r}\left(q X^{*} X+(1-q) Y^{*} Y\right) \cdot \lambda^{r}\left((1-q) X^{*} X+q Y^{*} Y\right)\right)\right) \\
& \left.\leq \Phi\left(\lambda^{r p}\left(q X^{*} X+(1-q) Y^{*} Y\right)\right)^{1 / p} \Phi\left(\lambda^{r p^{\prime}}\left((1-q) X^{*} X+q Y^{*} Y\right)\right)\right)^{1 / p^{\prime}}
\end{aligned}
$$

Hence, for any unitarily invariant norm,

$$
\left|\left\|\left|X Y^{*}\right|^{2 r}\right\|\|\leq\|\left\|\left(q X^{*} X+(1-q) Y^{*} Y\right)^{r p}\right\|\left\|^{1 / p}\right\|\left\|\left((1-q) X^{*} X+q Y^{*} Y\right)^{r p^{\prime}}\right\| \|^{1 / p^{\prime}}\right.
$$

Theorem 1 now follows by setting $r=1 / 2$ and $p=p^{\prime}=2$.

Acknowledgments

We acknowledge support by an Odysseus grant from the Flemish FWO. We are grateful to Professor Bhatia for pointing out a serious mistake in an earlier circulated version of this paper.

References

[1] T. Ando, "Matrix Young inequalities", Operator Theory: Advances and Applications 75, 33-38 (1995).
[2] R. Bhatia, "Perturbation inequalities for the absolute value map in norm ideals of operators", Journal of Operator Theory 19, 129-136 (1988).
[3] R. Bhatia, Matrix Analysis, Springer, Heidelberg (1997).
[4] R. Bhatia and F. Kittaneh, "On the singular values of a product of operators", SIAM J. Matrix Analysis 11, 272-277 (1990).
[5] S.W. Drury, "On a question of Bhatia and Kittaneh", Linear Algebra Appl. 437, 1955-1960 (2012).
[6] R. Horn and R. Matthias, "Cauchy-Schwarz inequalities associated with positive semidefinite matrices", Linear Algebra Appl. 142, 63-82 (1990).

