
SIAM J. DISCRETE MATH. c© 2015 Society for Industrial and Applied Mathematics
Vol. 29, No. 1, pp. 122–144

FIXED-PARAMETER TRACTABILITY OF MULTICUT IN
DIRECTED ACYCLIC GRAPHS∗

STEFAN KRATSCH† , MARCIN PILIPCZUK‡ , MICHA�L PILIPCZUK§ , AND

MAGNUS WAHLSTRÖM¶

Abstract. The Multicut problem, given a graph G, a set of terminal pairs T = {(si, ti) | 1 ≤
i ≤ r}, and an integer p, asks whether one can find a cutset consisting of at most p nonterminal
vertices that separates all the terminal pairs, i.e., after removing the cutset, ti is not reachable
from si for each 1 ≤ i ≤ r. The fixed-parameter tractability of Multicut in undirected graphs,
parameterized by the size of the cutset only, has been recently proved by Marx and Razgon [SIAM
J. Comput., 43 (2014), pp. 355–388] and, independently, by Bousquet, Daligault, and Thomassé
[Proceedings of STOC, ACM, 2011, pp. 459–468], after resisting attacks as a long-standing open
problem. In this paper we prove that Multicut is fixed-parameter tractable on directed acyclic
graphs when parameterized both by the size of the cutset and the number of terminal pairs. We
complement this result by showing that this is implausible for parameterization by the size of the
cutset only, as this version of the problem remains W [1]-hard.

Key words. fixed-parameter tractability, multicut, directed acyclic graph, important separa-
tors, shadow removal

AMS subject classifications. 05C85, 68R10, 68W05

DOI. 10.1137/120904202

1. Introduction. Parameterized complexity is an approach for tackling hard
problems by designing algorithms that perform robustly, when the input instance
is in some sense simple; its difficulty is measured by an integer that is additionally
appended to the input, called the parameter . Formally, we say that a problem is
fixed-parameter tractable (FPT) if it can be solved by an algorithm that runs in time
f(k)nc for n being the length of the input and k being the parameter, where f is some
computable function and c is a constant independent of the parameter.

The search for fixed-parameter algorithms resulted in the introduction of a num-
ber of new algorithmic techniques and gave fresh insight into the structure of many
classes of problems. One family that has received a lot of attention recently is the
so-called graph cut problems, where the goal is to make the graph satisfy a global
separation requirement by deleting as few edges or vertices as possible (depending on

∗Received by the editors January 2, 2013; accepted for publication (in revised form) October 21,
2014; published electronically January 15, 2015. A preliminary version of this paper was presented
at the 39th International Colloquium on Automata, Languages and Programming (ICALP 2012).

http://www.siam.org/journals/sidma/29-1/90420.html
†Technische Universität Berlin, 10623 Berlin, Germany (stefan.kratsch@tu-berlin.de). This re-

search was done while the author was at the University of Utrecht, Netherlands, and was supported
by the Netherlands Organization for Scientific Research (NWO), project “KERNELS: Combinatorial
Analysis of Data Reduction.”

‡University of Warwick, Coventry CV4 7AL, UK (malcin@mimuw.edu.pl). This research was
done while the author was at the University of Warsaw, Poland, and was supported by NCN grant
N206567140 and the Foundation for Polish Science.

§University of Warsaw, Krakowskie Przedmiescie 26/28, 00-927 Warszawa, Poland (michal.
pilipczuk@mimuw.edu.pl). This research was done while the author was at the University of Bergen,
Norway, and was supported by European Research Council (ERC) grant “Rigorous Theory of Pre-
processing,” reference 267959.

¶Royal Holloway University of London, Egham Hill, Egham, Surrey TW20 0EX, UK
(Magnus.Wahlstrom@rhul.ac.uk). This research done while the author was at the Max-Planck Insti-
tute for Informatics, Saarbrücken, Germany.

122

http://www.siam.org/journals/sidma/29-1/90420.html
mailto:stefan.kratsch@tu-berlin.de
mailto:malcin@mimuw.edu.pl
mailto:michal.pilipczuk@mimuw.edu.pl
mailto:michal.pilipczuk@mimuw.edu.pl
mailto:Magnus.Wahlstrom@rhul.ac.uk

FIXED-PARAMETER TRACTABILITY OF MULTICUT IN DAGs 123

the variant). Graph cut problems in the context of fixed-parameter tractability were
to our knowledge first introduced explicitly in the seminal work of Marx [12], where
it was proved that (i) Multiway Cut (separate all terminals from each other by
a cutset of size at most p) in undirected graphs is FPT when parameterized by the
size of the cutset; (ii) Multicut in undirected graphs is FPT when parameterized
by both the size of the cutset and the number of terminal pairs. Fixed-parameter
tractability of Multicut parameterized by the size of the cutset only was left open
by Marx [12] and resolved only much later (see below).

Probably the most fruitful contribution of the work of Marx [12] is the concept of
important separators , which proved to be a tool almost perfectly suited to capturing
the bounded-in-parameter character of sensible cutsets. The technique proved to be
extremely robust and serves as the key ingredient in a number of FPT algorithms
[13, 12, 4, 8, 14, 3, 10, 11, 6]. In particular, the fixed-parameter tractability of Skew
Multicut in directed acyclic graphs (DAGs), obtained via a simple application of
important separators, enabled the first FPT algorithm for Directed Feedback

Vertex Set [4], resolving another long-standing open problem.
However, important separators have a drawback in that not all graph cut problems

admit solutions with “sensible” cutsets in the required sense. This is particularly true
in directed graphs, where, with the exception of the aforementioned Skew Multicut

problem in DAGs, for a long time few FPT graph cut problems were known; in fact,
up until very recently it was open whether Multiway Cut in directed graphs admits
an FPT algorithm even in the restricted case of two terminals. The same complication
arises in the undirected Multicut problem parameterized by the size of the cutset.

After a long struggle, Multicut was shown to be FPT by Marx and Razgon [13]
and, independently, by Bousquet, Daligault, and Thomassé [2]. The key component in
the algorithm of Marx and Razgon [13] is the technique of shadow removal, which, in
some sense, serves to make the solutions to cut problems more well-behaved. This was
adapted to the directed case by Chitnis, Hajiaghayi, and Marx [6], who proved that
Multiway Cut, parameterized by the size of the cutset, is FPT for an arbitrary
number of terminals, by a simple and elegant application of the shadow removal
technique. A subsequent work by Chitnis et al. [5] improves the complexity bounds
of the shadow removal technique and applies it to show fixed-parameter tractability
of Directed Subset Feedback Vertex Set. This gives hope that, in general,
shadow removal may be helpful for the application of important separators to the
directed world.

As for the directed Multicut problem, it was shown by Marx and Razgon [13]
to be W [1]-hard when parameterized only by the size of the cutset but otherwise had
unknown status, even for a constant number of terminals in a DAG. We note that
this case is known to be NP-hard and APX-hard [1].

Our results. The main result of this paper is the proof of fixed-parameter tractabil-
ity of the Multicut in DAGs problem, formally defined as follows:

Multicut in DAGs Parameter: p+ r
Input: DAG G, set of terminal pairs T = {(si, ti) | 1 ≤ i ≤ r}, si, ti ∈ V (G) for
1 ≤ i ≤ r, and an integer p.
Question: Does there exist a set Z of at most p nonterminal vertices of G, such
that for any 1 ≤ i ≤ r the terminal ti is not reachable from si in G \ Z?

More precisely, we prove the following theorem.
Theorem 1.1. Multicut in DAGs can be solved in O∗(2O(rp(r+p2))) time.

124 KRATSCH, PILIPCZUK, PILIPCZUK, AND WAHLSTRÖM

Note that throughout the paper we use O∗-notation to suppress polynomial fac-
tors. Note also that we focus on vertex cuts; it is well known that in the directed
acyclic setting the arc- and vertex-deletion variants are equivalent (cf. [6]).

Our algorithm makes use of the shadow removal technique introduced by Marx
and Razgon [13], adjusted to the directed setting by Chitnis, Hajiaghayi, and Marx [6]
with the improved bounds of [5], as well as the basic important separators toolbox
that can be found in [6]. We remark that the shadow removal is but one of a number of
ingredients of our approach: in essence, the algorithm combines the shadow removal
technique with a degree reduction for the sources in order to carefully prepare the
structure of the instance for a simplifying branching step. For a more detailed overview
of a single step of the algorithm we also refer to Figure 1 later in this work.

We complement the main result with two lower bounds. First, we show that the
dependency on r in the exponent is probably unavoidable.

Theorem 1.2. Multicut in DAGs, parameterized by the size of the cutset
only, is W [1]-hard.

Thus, we complete the picture of parameterized complexity of Multicut in

DAGs. We hope that it is a step toward fully understanding the parameterized
complexity of Multicut in general directed graphs.

As a related result, we establish NP-completeness of Skew Multicut, which is
the special case of Multicut in DAGs where we are given d sources (si)

d
i=1 and d

sinks (ti)
d
i=1, and the set of terminal pairs is defined as T = {(si, tj) : 1 ≤ i ≤ j ≤

d}. The significance of this problem is mainly that it is used as a core subroutine
in the FPT algorithm for Directed Feedback Vertex Set of Chen et al. [4].
A polynomial-time algorithm for Skew Multicut might have given new insights
into Directed Feedback Vertex Set, with potential consequences both for the
running time of the FPT algorithm and, arguably, for the existence of a polynomial
kernel (which is now one of the major open problems in kernelization; see, e.g., [9]).

Theorem 1.3. Skew Multicut is NP-complete even in the restricted case of
two sinks and two sources.

Organization of the paper. In section 2 we introduce some notation and recall
the framework of important separators and shadow removal. Section 3 contains our
algorithm for Multicut in DAGs and the proof of Theorem 1.1, whereas section 4
contains the proofs of Theorems 1.2 and 1.3. We conclude with a discussion on open
problems in section 5.

2. Preliminaries. For a directed graph G, by V (G) and E(G) we denote its
vertex and arc set, respectively. For a vertex v ∈ V (G), we define its in-neighborhood
N−

G (v) = {u : (u, v) ∈ E(G)} and out-neighborhood N+
G (v) = {u : (v, u) ∈ E(G)};

these definitions are extended to sets X ⊆ V (G) by N−
G (X) = (

⋃
v∈X N−

G (v)) \ X

and N+
G (X) = (

⋃
v∈X N+

G (v)) \X . The in-degree and out-degree of v are defined as

|N−
G (v)| and |N+

G (v)|, respectively. In this paper we consider simple directed graphs
only; if at any point a modification of the graph results in a multiple arc, we delete
all copies of the arc except for one. By Grev we denote the graph G with all the arcs
reversed, i.e., Grev = (V (G), {(v, u) : (u, v) ∈ E(G)}).

A path in G is a sequence of pairwise distinct vertices P = (v1, v2, . . . , vd) such
that (vi, vi+1) ∈ E(G) for any 1 ≤ i < d. If v1 is the first vertex of the path P and
vd is the last vertex, we say that P is a v1vd-path. We extend this notion to sets of
vertices: if v1 ∈ X and vd ∈ Y for some X,Y ⊆ V (G), then P is an XY -path as
well. For a path P = (v1, v2, v3, . . . , vd) the vertices v2, v3, . . . , vd−1 are the internal
vertices of P . The set of internal vertices of a path P is the interior of P . We say

FIXED-PARAMETER TRACTABILITY OF MULTICUT IN DAGs 125

that a vertex v is reachable from a vertex u in G if there exists a uv-path in G. As
the considered digraphs are simple, each path P = (v1, v2, . . . , vd) has a unique first
arc (v1, v2) and a unique last arc (vd−1, vd).

Let (G, T , p) be a Multicut in DAGs instance with a set of r terminal pairs
T = {(si, ti) : 1 ≤ i ≤ r}. We call the terminals si source terminals and the terminals
ti sink terminals. We let T s = {si : 1 ≤ i ≤ r}, T t = {ti : 1 ≤ i ≤ r} and T = T s∪T t.

Fix a topological order � of G. For any sets X,Y ⊆ V (G), we may order the
vertices of X and Y with respect to � and compare X and Y lexicographically; we
refer to this order on subsets of V (G) as the lexicographical order.

A set Z ⊆ V (G) is called a multicut in (G, T , p) if Z contains no terminals, but
for each 1 ≤ i ≤ r, ti is not reachable from si in G \Z. Given a Multicut in DAGs

instance I = (G, T , p) a multicut Z is called a solution if |Z| ≤ p. A solution Z
is called a lex-min solution if Z is lexicographically minimum solution in I among
solutions of minimum possible size.

Consider the following easy reduction.
Lemma 2.1. There exists a polynomial-time algorithm that, given a Multicut

in DAGs instance (G, T , p), computes an equivalent instance (G′, T ′, p′) such that
1. |T | = |T ′| and p = p′;
2. T ′ = {(s′i, t′i) : 1 ≤ i ≤ r} and all terminals s′i and t′i are pairwise distinct;
3. for each 1 ≤ i ≤ r we have N−

G′(s′i) = 0 and N+
G′(t′i) = 0.

Proof. To construct the graphG′, start with the graphG and for each terminal v of
T replace v with p+1 copies of v (i.e., vertices with the same in- and out-neighborhoods
as v; these copies are not terminals in T ′). Moreover, for each 1 ≤ i ≤ r, add to G′

a new terminal s′i with arcs {(s′i, u) : u ∈ N+
G (si)} and a new terminal t′i with arcs

{(u, t′i) : u ∈ N−
G (ti)}. Finally, take T ′ = {(s′i, t′i) : 1 ≤ i ≤ r} and p′ = p.

To see the equivalence, first take a multicut Z in (G, T , p) and an arbitrary s′it
′
i-

path P ′ = (s′i, v
′
1, v

′
2, . . . , v

′
d, t

′
i) in G′. Assume without loss of generality (w.l.o.g.)

that P ′ visits at most one copy of each terminal v in T , or else P ′ contains a shorter
s′it

′
i-path as a strict subpath. The path P ′ induces a path P = (si, v1, v2, . . . , vd, ti)

in G: vk = v′k if v′k is present in G, and vk = v if v′k is one of the p + 1 copies of a
terminal v in T . The path P is intersected by Z on some nonterminal vertex vk; as
vk = v′k, Z intersects P ′. We infer that Z is a multicut in (G′, T ′, p′) as well.

In the other direction, let Z be a multicut in (G′, T ′, p′) of size at most p and
let P = (si, v1, v2, . . . , vd, ti) be an arbitrary siti-path in G. Construct a path P ′ =
(s′i, v

′
1, v

′
2, . . . , v

′
d, t

′
i) by taking v′k = vk if vk is a nonterminal in (G, T , p) and taking

v′k to be one of the copies of vk that is not contained in Z otherwise; note that at
least one copy is not contained in Z, as |Z| ≤ p. As Z is a multicut in (G′, T ′, p′),
Z intersects P ′. By the choice of the internal vertices of P ′, Z intersects P ′ on some
vertex v′k = vk for vk being a nonterminal in (G, T , p). Therefore Z ∩ V (G) is a
multicut in (G, T , p).

In our algorithm, the set of terminal pairs T is never modified, and we never add
an arc into a source or out of a sink. Thus, we may assume that during the course of
our algorithm all terminals are pairwise distinct and that N−

G (si) = N+
G (ti) = ∅ for

all 1 ≤ i ≤ r.
For v ∈ V (G), by S(G, v) we denote set of source terminals si for which there

exists an siv-path in G. For a set S ⊆ T s by V (G,S) we denote the set of nonterminal
vertices v for which S(G, v) = S.

2.1. Important separators and shadows. In the rest of this section we recall
the notion of important separators by Marx [12], adjusted to the directed case by

126 KRATSCH, PILIPCZUK, PILIPCZUK, AND WAHLSTRÖM

Chitnis, Hajiaghayi, and Marx [6], as well as the shadow removal technique of Marx
and Razgon [13] and Chitnis, Hajiaghayi, and Marx [6, 5].

Definition 2.2 (separator [6, Definition 2.2]). Let G be a directed graph with
terminals T ⊆ V (G). Given two disjoint nonempty sets X,Y ⊆ V (G), we call a set
Z ⊆ V (G) an X − Y separator if (i) Z ∩ T = ∅, (ii) Z ∩ (X ∪ Y) = ∅, (iii) there is
no path from X to Y in G \Z. An X − Y separator Z is called minimal if no proper
subset of Z is an X − Y separator.

By cutG(X,Y) we denote the size of a minimumX−Y separator in G; cutG(X,Y)
= ∞ if G contains an arc going directly from X to Y (recall that in our instances all
terminals have in- or out-degree zero). By Menger’s theorem, cutG(X,Y) equals the
maximum possible size of a family of XY -paths with pairwise disjoint interiors.

Definition 2.3 (important separator [6, Definition 4.1]). Let G be a directed
graph with terminals T ⊆ V (G) and let X,Y ⊆ V (G) be two disjoint nonempty
sets. Let Z and Z ′ be two X − Y separators. We say that Z ′ is behind Z if any
vertex reachable from X in G \ Z is also reachable from X in G \ Z ′. A minimal
X−Y separator Z is an important separator if no other X−Y separator Z ′ satisfies
|Z ′| ≤ |Z| while being also behind Z.

We also need some known properties of minimum size cuts (cf. [3, 6]).
Lemma 2.4 ([6, Lemma B.4]). Let G be a directed graph with terminals T ⊆

V (G). For two disjoint nonempty sets X,Y ⊆ V (G), there exists exactly one mini-
mum size important X − Y separator.

Definition 2.5 (closest mincut). Let G be a directed graph with terminals
T ⊆ V (G). For two disjoint nonempty sets X,Y ⊆ V (G), the unique minimum
size important X − Y separator is called the X − Y mincut closest to Y . The X − Y
mincut closest to X is the Y −X mincut closest to X in Grev.

Lemma 2.6. Let G be a directed graph with terminals T ⊆ V (G) and let X,Y ⊆
V (G) be two disjoint nonempty sets. Let B be the unique minimum size important
X−Y separator, that is, the X−Y mincut closest to Y , and let v ∈ B be an arbitrary
vertex. Construct a graph G′ from G as follows: delete v from G and add an arc (x,w)
for each x ∈ X and w ∈ N+

G (v) \ X ′, where X ′ is the set of vertices reachable from
X in G \B. Then the size of any X − Y separator in G′ is strictly larger than |B|.

Proof. The claim is obvious if Y ∩ N+
G (v)
= ∅, as then G′ contains a direct arc

from X to Y . Therefore, let us assume that Y ∩N+
G (v) = ∅.

We prove the lemma by exhibiting more than |B| XY -paths in G′ that have
pairwise disjoint interiors. Recall that X ′ ⊇ X is the set of vertices reachable from
X in G \ B; note that N+

G (X ′) = B. Since B is a minimum size X − Y separator,
there exist a set of XY -paths (Pu)u∈B such that Pu intersects B only in u and the
interiors of paths Pu are pairwise disjoint. Note that each path Pu can be split into
two parts: PX

u , between X and u, with all vertices except for u contained in X ′, and
PY
u , between u and Y , with all vertices except for u contained in Y ′ = V (G)\(X ′∪B).

Consider a graph G′′ defined as follows: we take the graph G′[V (G′) \ X ′] and
add a terminal s and arcs (s, w) for all w ∈ N+

G′(X ′) = (B \ {v})∪ (N+
G (v) \X ′). Let

B′ be a minimum size s− Y separator in G′′.
We claim that B′ is an X − Y separator in G. Let P be an arbitrary XY -path

in G and let u be the last (closest to Y) vertex of B on P . Then in G′′ there exists
a shortened version P ′ of P : if u = v and w is the vertex directly after u on P , then
P ′ starts with the arc (s, w) and then follows P to Y (observe that w /∈ X ′, as v was
the last vertex of B on P), while if u
= v, then P ′ starts with the arc (s, u) and then
follows P to Y . As B′ has to intersect P ′, then B′ also intersects P .

FIXED-PARAMETER TRACTABILITY OF MULTICUT IN DAGs 127

Moreover, we claim that B′ is behind B. This follows directly from the fact that
G′′ does not contain X ′, so X ′ is still reachable from X in G \B′.

As B is an important separator, B′ is behind B, and B′
= B (as v ∈ B \B′), we
have that |B′| > |B|. Therefore, there exists a family P of at least |B|+ 1 sY -paths
in G′′ that have pairwise disjoint interiors. Observe that all these paths are disjoint
with X ′ by the construction of G′′. Each path from P that starts with an arc (s, w)
for w ∈ N+

G (v) \X ′ is present (with the first vertex replaced by an arbitrary vertex
of X) in G′ as well. Moreover, each other path starts with an arc (s, u) for u ∈ B;
in G′ such a path can be concatenated with the Xu-path PX

u . All paths PX
u are

entirely contained in X ′ except for the endpoint u, so we obtain the desired family of
XY -paths in G′.

We use the technique of shadows [13, 6, 5] to identify vertices separated from all
sources in a given Multicut in DAGs instance. We note that we do not use the
full power of the shadow removal technique in directed graphs: the delicate part of
the results of Chitnis, Hajiaghayi, and Marx [6, 5] is to remove forward and reverse
shadows at once; in our work we need to remove only one type of shadows, namely,
forward ones.

We now recall the necessary definitions of the shadow removal technique from [6]
and the improved bounds of [5]. Although we give full definitions for completeness,
we will chiefly need Definition 2.10 and Lemma 2.11 in the rest of the paper.

Definition 2.7 (shadow [6, Definition 2.3]). Let G be a directed graph and T ⊆
V (G) be a set of terminals. Let Z ⊆ V (G) be a subset of vertices. Then for v ∈ V (G)
we say that

1. v is in the forward shadow of Z (with respect to T) if Z is a T − v separator
in G, and

2. v is in the reverse shadow of Z (with respect to T) if Z is a v − T separator
in G.

Definition 2.8 (thin [6, Definition 4.4]). Let G be a directed graph and T ⊆
V (G) a set of terminals. We say that a set Z ⊆ V (G) is thin in G if there is no
v ∈ Z such that v belongs to the reverse shadow of Z \ {v} with respect to T .

Theorem 2.9 (derandomized random sampling [5]1). There is an algorithm that,
given a directed graph G, a set of terminals T ⊆ V (G), and an integer p, produces in

time O∗(2O(p2)) a family A of size 2O(p2) log |V (G)| of subsets of V (G) \ T such that
the following holds. Let Z ⊆ V (G) \ T be a thin set with |Z| ≤ p and let Y be a set
such that for every v ∈ Y there is an important v − T separator Zv ⊆ Z. For every
such pair (Z, Y) there exists a set A ∈ A such that A ∩ Z = ∅ but Y ⊆ A.

We use Theorem 2.9 to identify vertices separated from all sources in a given
Multicut in DAGs instance.

Definition 2.10 (source shadow). Let (G, T , p) be a Multicut in DAGs

instance and Z ⊆ V (G) be a set of nonterminals in G. We say that v ∈ V (G) is in
source shadow of Z if Z is a T s − v separator.

Lemma 2.11 (derandomized random sampling for source shadows). There is
an algorithm that, given a Multicut in DAGs instance (G, T , p), produces in time

O∗(2O(p2)) a family A of size 2O(p2) log |V (G)| of subsets of nonterminals of G such
that if (G, T , p) is a YES instance and Z is the lex-min solution to (G, T , p), then
there exists A ∈ A such that A ∩ Z = ∅ and all vertices of source shadows of Z in G
are contained in A.

1We cite here improved yet unpublished bounds of [5]. See [6, Theorem 4.1 and section 4.3] for
the same result but with double-exponential bounds.

128 KRATSCH, PILIPCZUK, PILIPCZUK, AND WAHLSTRÖM

Proof. Let Y be the set of vertices in source shadow of Z. To prove the lemma it
is sufficient to apply Theorem 2.9 for the graph Grev with terminals T s and budget p.
Thus, we need to prove that the pair (Z, Y) satisfies properties given in Theorem 2.9.

First, assume that Z is not thin in Grev w.r.t. T s. Let v ∈ Z be a witness: Z \{v}
is a v − T s separator in Grev. We infer that S(G \ (Z \ {v}), v) = ∅ and Z \ {v} is a
multicut in (G, T), a contradiction to the choice of Z.

Second, take an arbitrary vertex u ∈ Y , that is, u is in source shadow of Z in
G. Let B ⊆ Z be the set of those vertices v ∈ Z for which there exists a vu-path
in G \ (Z \ {v}). Clearly, B is a u − T s separator in Grev. We claim that it is an
important one.

If B is not a minimal u− T s separator in Grev, let v ∈ B be such that B \ {v} is
a u − T s separator in Grev; then B \ {v} is a v − T s separator in Grev (as there is a
vu-path in G \ (Z \ {v})) and Z \ {v} is a multicut in (G, T), a contradiction to the
choice of Z.

Assume then that there exists a u−T s separator B′ in Grev that is behind B and
|B′| ≤ |B|, B′
= B. We claim that Z ′ = (Z \ B) ∪ B′ is a multicut in (G, T). This
would lead to a contradiction with the choice of Z, as |Z ′| ≤ |Z| and Z ′ is smaller in
the lexicographical order than Z. Assume then that Z ′ is not a multicut in (G, T),
that is, there is an siti-path P in G \ Z ′ for some 1 ≤ i ≤ r. As Z is a multicut in
(G, T), P contains at least one vertex v ∈ B \ B′ = Z \ Z ′. By the choice of B and
the fact that B′ is behind B in Grev, we infer that there exists a vu-path in G \ Z ′.
As P contains v, there exists an siu-path in G \Z ′, a contradiction to fact that B′ is
an u− T s separator in Grev. This concludes the proof of the lemma.

3. The algorithm. We now present the FPT algorithm forMulticut in DAGs.
The algorithm is an intricate, multistep branching process using several tools, hence
we split the presentation into several parts. In section 3.1, we give the basic notions
and results and introduce the potential function we will use to analyze the branching
process. In section 3.2, we present an important degree reduction process, by which we
can arrange so that the source terminals have bounded degree. Section 3.3 contains
an overview of the branching process, and finally section 3.4 gives the full details and
correctness proofs. A diagram of the algorithm is given in Figure 1.

3.1. Potential function and simple operations. Our algorithm consists of
a number of branching steps. To measure the progress of the algorithm, we introduce
the following potential function.

Definition 3.1 (potential). Given a Multicut in DAGs instance I = (G, T , p),
we define its potential φ(I) as φ(I) = (r + 1)p−

∑r
i=1 cutG(si, ti).

Observe that if I = (G, T , p) is a Multicut in DAGs instance, in which
cut(si, ti) > p for some (si, ti) ∈ T , then we can immediately conclude that I is
a NO instance. Therefore, w.l.o.g. we can henceforth assume that cut(si, ti) ≤ p for
all (si, ti) ∈ T in all the appearing instances of Multicut in DAGs.

In many places we perform the following simple operations on Multicut in

DAGs instances (G, T , p). We formalize their properties in subsequent lemmata.
Definition 3.2 (killing a vertex). For a Multicut in DAGs instance (G, T , p)

and a nonterminal vertex v of G, by killing the vertex v we mean the following oper-
ation: we delete the vertex v and decrease p by one.

Definition 3.3 (bypassing a vertex). For a Multicut in DAGs instance
(G, T , p) and a nonterminal vertex v of G, by bypassing the vertex v we mean the
following operation: we delete the vertex v and for each in-neighbor v− of v and each
out-neighbor v+ of v we add an arc (v−, v+).

FIXED-PARAMETER TRACTABILITY OF MULTICUT IN DAGs 129

Lemma 3.4. Let I ′ = (G′, T , p − 1) be obtained from Multicut in DAGs

instance I = (G, T , p) by killing a vertex v. Then I ′ is a YES instance if and only if
I is a YES instance that admits a solution that contains v. Moreover, φ(I ′) < φ(I).

Proof. Let Z be a multicut in I that contains v. As G\Z = G′ \(Z \{v}), Z \{v}
is a multicut in I ′ of size |Z| − 1. In the other direction, if Z is a multicut in I ′, then
G′ \Z = G \ (Z ∪ {v}) and Z ∪ {v} is a multicut in I of size |Z|+ 1. To see that the
potential strictly decreases, note that cutG′(si, ti) ≥ cutG(si, ti) − 1 for all 1 ≤ i ≤
r.

Lemma 3.5. Let I ′ = (G′, T , p) be obtained from Multicut in DAGs instance
I = (G, T , p) by bypassing a vertex v. Then

1. any multicut in I ′ is a multicut in I as well;
2. any multicut in I that does not contain v is a multicut in I ′ as well;
3. S(G, u) = S(G′, u) for any u ∈ V (G′) = V (G) \ {v};
4. φ(I ′) ≤ φ(I).

Proof. The lemma follows from the following observations on relations between
paths in G and G′. For a path P in G whose first and last points are different from
v, we define PG′ as P with a possible occurrence of v removed. By the definition of
G′, PG′ is a path in G′. In the other direction, for a path P in G′, we define PG as
a path obtained from P by inserting the vertex v between any consecutive vertices
vi, vi+1 for which (vi, vi+1) ∈ E(G′) \E(G). Since G and G′ are acyclic, the vertex v
is inserted at most once. By the construction of G′, PG is a path in G.

Now, for a multicut Z in I ′ and an arbitrary siti-path P in G, the path PG′ is
intersected by Z; thus P is intersected by Z as well and Z is a multicut in I. For
a multicut Z in I with v /∈ Z, and an arbitrary siti-path P in G′, the path PG is
intersected by Z. As v /∈ Z, we infer that P is intersected by Z as well and Z is a
multicut in I ′.

To prove the third claim, note that for any u ∈ V (G′), any siu-path P in G
yields an siu-path PG′ in G′ and vice versa. Finally, the last claim follows from
the fact that any family P of siti-paths in G with pairwise disjoint sets of internal
vertices can be transformed into a similar family P ′ = {PG′ : P ∈ P} in G′. Thus
cutG′(si, ti) ≥ cutG(si, ti) for 1 ≤ i ≤ r.

We note that bypassing a vertex corresponds to the torso operation of Chitnis,
Hajiaghayi, and Marx [6] and, if we perform a series of bypass operations, the result
does not depend on their order.

Lemma 3.6. Let I = (G, T , p) and X ⊆ V (G) be a subset of nonterminals of G.
Let I ′ = (G′, T , p) be obtained from I by bypassing all vertices of X in an arbitrary
order. Then (u, v) ∈ E(G′) for u, v ∈ V (G′) = V (G) \X if and only if there exists a
uv-path in G with internal vertices from X (possibly consisting only of an arc (u, v)).
In particular, I ′ does not depend on the order in which the vertices of X are bypassed.

Proof. We perform induction with respect to the size of the set X . For X = ∅
the lemma is trivial.

Let I ′′ = (G′′, T , p) be an instance obtained by bypassing all vertices of X\{w} in
I in an arbitrary order for some w ∈ X . Take u, v ∈ V (G′) = V (G)\X . Assume first
that (u, v) ∈ E(G′). By the definition of bypassing, (u, v) ∈ E(G′′) or (u,w), (w, v) ∈
E(G′′). In the first case there exists a uv-path in G with internal vertices from X\{w}
by the induction hypothesis. In the second case, by the induction hypothesis, there
exist a uw-path and a wv-path in G, both with internal vertices from X \ {w}; their
concatenation is the desired uv-path (recall that G is acyclic).

In the other direction, let P be a uv-path in G with internal vertices in X . If w
does not lie on P , by the induction hypothesis (u, v) ∈ E(G′′). Otherwise, P splits

130 KRATSCH, PILIPCZUK, PILIPCZUK, AND WAHLSTRÖM

into a uw-path and a wv-path, both with internal vertices inX\{w}. By the induction
hypothesis (u,w), (w, v) ∈ E(G′′). By the definition of bypassing, (u, v) ∈ E(G′) and
the lemma is proved.

3.2. Degree reduction. We now introduce the second main tool used in the
algorithm (the first one being the source shadow reduction of Lemma 2.11). In an
instance (G, T , p), let Bi be the si − ti mincut closest to si and let Z be a solution.
If we know that a vti-path survives in G \ Z for some v ∈ Bi, we may add an arc
(v, ti) and then bypass the vertex v, strictly increasing the value cutG(si, ti) (and thus
decreasing the potential) by Lemma 2.6. Therefore, we can branch: we either guess
the pair (i, v) or guess that none such exist; in the latter branch we do not decrease
potential but instead we may modify the set of arcs incident to the sources to get
some structure, as formalized in the following definition.

Definition 3.7 (degree-reduced graph). For a Multicut in DAGs instance
(G, T , p) the degree-reduced graph G∗ is a graph constructed as follows. For 1 ≤ i ≤ r,
let Bi be the si − ti mincut closest to si. We start with V (G∗) = V (G), E(G∗) =
E(G \ T s) and then, for each 1 ≤ i ≤ r, we add an arc (si, v) for all v ∈ Bi and for
all v ∈

⋃
1≤i′≤r Bi′ for which si ∈ S(G, v) but v is not reachable from Bi in G.

The following two lemmata formalize the properties of the degree-reduced graph
and the aforementioned branching step. Recall that we assume that each vertex si
(ti) has in- (out-) degree zero.

Lemma 3.8 (properties of the degree-reduced graph). For any Multicut in

DAGs instance I = (G, T , p) and the degree-reduced graph G∗ of I, the following
holds:

1. |N+
G∗(T s)| ≤ rp.

2. For each 1 ≤ i ≤ r, Bi is the si − ti mincut closest to si in G∗.
3. φ(I ′) = φ(I), where I ′ = (G∗, T , p).
4. Z ⊆ V (G) is a multicut in (G∗, T) if and only if Z is a multicut in (G, T)

satisfying the following property: for each 1 ≤ i ≤ r, for each v ∈ Bi, the
vertex v is either in Z or Z is an v− ti separator; in particular, I ′ is a YES
instance if and only if I is a YES instance that admits a solution satisfying
the above property.

5. For each v ∈ V (G) we have S(G∗, v) ⊆ S(G, v); moreover, if (si, v) is an arc
in G∗ for some 1 ≤ i ≤ r, then S(G∗, v) = S(G, v).

Proof. For claim 1, note that for each 1 ≤ i ≤ r, N+
G∗(si) ⊆

⋃
1≤i′≤r Bi′ and

|Bi′ | = cutG(si′ , ti′) ≤ p.
For Claim 2, we first prove that Bi is an si−ti separator in G∗. Assume otherwise;

let P be an siti-path in G∗ that avoids Bi. Let (si, v) be the first arc on P . By the
construction of G∗, in G the vertex v is reachable from si but not from Bi. Therefore,
there exists an siv-path in G\Bi; together with P truncated by si it gives an siti-path
in G \Bi, a contradiction.

Now note that for each 1 ≤ i ≤ r, there exist cutG(si, ti) siti-paths in G with
pairwise disjoint interiors; each path visits a different vertex of Bi. These paths can
be shortened in G∗ using arcs (si, v) for v ∈ Bi; thus, Bi is an si − ti separator in G∗

of minimum size. The fact that it is an important ti − si separator in Grev follows
from the fact that Bi ⊆ N+

G∗(si).
Claim 3 follows directly from claim 2, as cutG(si, ti) = cutG∗(si, ti) for all 1 ≤

i ≤ r.
For claim 4, let Z be a multicut in (G∗, T). Take arbitrary 1 ≤ i ≤ r and let P

be an arbitrary siti-path in G. This path intersects Bi; let v be the last (closest to

FIXED-PARAMETER TRACTABILITY OF MULTICUT IN DAGs 131

ti) vertex of Bi on P . Let P ∗ be an siti-path in G∗ defined as follows: we start with
the arc (si, v) and then we follow P from v to ti. As Z is a multicut in (G∗, T), Z
intersects P ∗. We infer that Z intersects P and Z is a multicut in G. Moreover, for
each 1 ≤ i ≤ Bi and v ∈ Bi, if v /∈ Z, then Z is a v − ti separator in G∗ (and in G as
well, as G and G∗ differ only on arcs incident to the sources), as otherwise Z would
not intersect an siti-path in G∗ that starts with the arc (si, v).

In the second direction, let Z be a multicut in (G, T) that satisfies the conditions
given in claim 4. Let P ∗ be an arbitrary siti-path in G∗. As Bi is an si− ti separator
in G∗, P ∗ intersects Bi; let v be the last (closest to ti) vertex of Bi on P ∗. Note that
the part of the path P ∗ from v to ti (denote it by Pv) is present also in the graph G.
By the properties of Z, v ∈ Z or Z intersects Pv. Thus Z intersects P ∗ and Z is a
multicut in (G∗, T).

To see the first part of claim 5 note that if (si, v) is an arc in G∗, then si ∈ S(G, v):
clearly this is true for v ∈ Bi, and otherwise si ∈ S(G, v) is one of the conditions
required to add arc (si, v). The second part follows directly from the construction: if
(si, v) is an arc in G∗, then v ∈ Bi′ for some 1 ≤ i′ ≤ r. If si′′ ∈ S(G, v), then either
v is reachable from some vertex of Bi′′ in G∗ or the arc (si′′ , v) is present in G∗.

We note that in the definition of the degree-reduced graph, the arcs between a
source si and vertices in Bi′ for i
= i′ are added only to ensure claim 5. For the
remaining claims, as well as the branching described at the beginning of the section
(formalized in the subsequent lemma) it would suffice to add only arcs (si, v) for
1 ≤ i ≤ r and v ∈ Bi.

Lemma 3.9. There exists an algorithm that, given a Multicut in DAGs in-
stance I = (G, T , p), in polynomial time generates a sequence of instances (Ij =
(Gj , Tj , pj))dj=1 satisfying the following properties. Let I0 = (G∗, T , p);

1. if Z is a multicut in Ij for some 0 ≤ j ≤ d, then Z ⊆ V (G) and Z is a
multicut in I too;

2. for any multicut Z in I, there exists 0 ≤ j ≤ d such that Z is a multicut in
Ij too;

3. for each 1 ≤ j ≤ d, pj = p, Tj = T and φ(Ij) < φ(I);
4. d ≤ rp.

Proof. Let Bi be as in Definition 3.7. Informally speaking, we guess an index 1 ≤
i ≤ r and a vertex v ∈ Bi such that ti is reachable from v in G\Z, where Z is a solution
to I (in particular, v /∈ Z). If we have such v, we can add an arc (v, ti) and then bypass
ti; by the choice ofBi and Lemma 2.6, the value cut(si, ti) strictly increases during this
operation. The last branch—where such a choice (i, v) does not exists—corresponds
to the degree-reduced graph G∗. We now proceed to the formal arguments.

For 1 ≤ i ≤ r and v ∈ Bi we define the graph Gi,v as follows: we first add an arc
(v, ti) to G and then bypass the vertex v. We now apply Lemma 2.6 for ti− si cuts in
the graph Grev: Bi is the unique minimum size important ti − si separator, v ∈ Bi,
and Grev

i,v contains the same set of vertices and a superset of arcs of the graph G′

from the statement of the lemma. Therefore cutGi,v(si, ti) > cutG(si, ti). Moreover,
cutGi,v (si′ , ti′) ≥ cutG(si′ , ti′) for i′
= i, as adding an arc and bypassing a vertex
cannot decrease the size of the minimum separator. Therefore φ((Gi,v , T , p)) < φ(I);
we output (Gi,v , T , p) as one of the output instances Ij . Clearly, d =

∑r
i=1 |Bi| ≤ rp.

To finish the proof of the lemma we need to show the equivalence stated in the first
two points of the statement.

In one direction, note that as the graphs Gi,v are constructed from G by adding
an arc and bypassing a vertex, any multicut in (Gi,v, T) is a multicut in (G, T) as
well. Moreover, by Lemma 3.8, claim 4, any multicut of I0 is a multicut of I as well.

132 KRATSCH, PILIPCZUK, PILIPCZUK, AND WAHLSTRÖM

In the other direction, let Z be a solution to I. Consider two cases. First assume
that there exists 1 ≤ i ≤ r and v ∈ Bi such that v /∈ Z and Z is not a v− ti separator.
As Z is a multicut in (G, T), Z is a si − v separator in G. Therefore Z is also a
multicut in a graph G with the arc (v, ti) added. As v /∈ Z, by Lemma 3.5, Z is a
multicut in (Gi,v, T). In the second case, if for each 1 ≤ i ≤ r and v ∈ Bi, we have
v ∈ Z or Z is a v − ti separator in G, we conclude that Z is a multicut in (G∗, T) by
Lemma 3.8, claim 4.

3.3. Overview on the branching step. In order to prove Theorem 1.1, we
show the following lemma that encapsulates a single branching step of the algorithm.

Lemma 3.10. There exists an algorithm that, given a Multicut in DAGs

instance I = (G, T , p) with |T | = r, in time O∗(2r+O(p2)) either correctly concludes
that I is a NO instance or computes a sequence of instances (Ij = (Gj , Tj , pj))dj=1

such that
1. I is a YES instance if and only if at least one instance Ij is a YES instance;
2. for each 1 ≤ j ≤ d, V (Gj) ⊆ V (G), pj ≤ p, Tj = T , and φ(Ij) < φ(I);
3. d ≤ 2r+O(p2)rp log |V (G)|.

The algorithm of Theorem 1.1 applies Lemma 3.10 and solves the output instances
recursively.

Proof of Theorem 1.1. Let I = (G, T , p) be a Multicut in DAGs instance.
Clearly, if φ(I) < 0, then cut(si, ti) > p for some 1 ≤ i ≤ r and the instance is a NO
instance. Otherwise, we apply Lemma 3.10 and solve the output instances recursively.
Note that the potential of I is an integer bounded by (r + 1)p; thus the search tree
of the algorithm has depth at most (r+ 1)p. Using a simple fact that for k, n > 1 we
have

logk n = 2k log logn ≤ 2
2
3k

3/2+ 1
3 (log logn)3 = 2

2
3k

3/2

no(1),

we obtain that the number of leaves of the search tree is bounded by

(
2r+O(p2)rp log |V (G)|

)(r+1)p

= 2O(r2p) · 2O(rp3) · 2O(r3/2p3/2)|V (G)|o(1)

= O∗(2O(rp(r+p2))).

The last equality follows from the fact that r3/2p3/2 ≤ r2p+ rp3.
In rough overview of the proof of Lemma 3.10, we describe a sequence of steps,

as illustrated in Figure 1, where in each step, either the potential of the instance
is decreased or more structure is forced onto the instance. For example, consider
Lemma 3.9. The result is a branching into polynomially many branches, where in
every branch but one the potential strictly decreases, and in the remaining branch,
the degrees of the source terminals are bounded. Thus we may treat this step as
“creating” a degree-reduced instance. The ultimate goal is to pin down a set of not
too many vertices, at least one of which is guaranteed to be deleted in an optimal
solution. In total, the entire process can be seen as producing some f(p, r) branches
with new instances, with a strictly decreased potential in each branch.

In somewhat more detail, let Z be the lex-min solution to I. To illustrate the
principles, consider first a single terminal s ∈ T s, and assume that we know (or have
guessed) that there is a vertex v ∈ Z such that S(G, v) = {s}. Let us suppose
that V (G, {s}) is too large to branch on directly; we reduce its size by a sequence
of modifications. We first observe that for every v ∈ V (G, {s}) with v /∈ Z, either s

FIXED-PARAMETER TRACTABILITY OF MULTICUT IN DAGs 133

Fig. 1. A summary of one branching step.

reaches v in G \ Z or v is in source shadow of Z. Lemma 2.11 lets us guess a set A
which contains all vertices of the latter type; we apply this lemma, bypass the vertices
A, and assume in what follows that every v ∈ V (G, {s}) is either contained in Z or
reached by s in G \ Z.

The next observation is that under this assumption, we may (1) add an arc sv
for every v ∈ V (G, {s}), and (2) remove every arc uv where u, v ∈ V (G, {s}). It can
be verified that this preserves Z as a (lex-min) solution, without creating any new

134 KRATSCH, PILIPCZUK, PILIPCZUK, AND WAHLSTRÖM

solutions. Furthermore we get that for every v ∈ V (G, {s}), the unique in-neighbor
of v is s. Now we apply the degree reduction of section 3.2. This leads to a graph G0

where at most p vertices are out-neighbors of s; the remaining vertices from V (G, {s})
now belong to V (G0, ∅) and can be discarded. We may now as a final branching select
one remaining out-neighbor of s and kill it, yielding at most p further branches with
strictly decreased potential. (This sketch corresponds roughly to steps 2, 6, and 8–10
of the branching process.)

For the general case, assume that we have guessed a set S ⊆ T s such that there
is some v ∈ Z with S(G, v) = S, but no v′ ∈ Z with S(G, v′) � S; we may bypass
any vertex u with S(G, u) � S. By appropriately combining degree reduction with
shadow removal, we may further assume that no vertex in V (G,S) is in source-shadow
of Z and that the sources S have bounded degree. We wish to follow the scheme
outlined above for a single terminal s. However, it is not yet safe to add an arc sv
for every s ∈ S and v ∈ V (G,S), as there may be some vertices v ∈ V (G,S) such
that S(G \ Z, v) = S′, where S′
= ∅, S′ � S. Let us refer to such a vertex v′ where
furthermore v′ /∈ Z, as being modified by Z.

We now reach a key point of the paper (Lemma 3.12 and Branching Rule 7). Let
v be the earliest vertex of V (G,S) which is modified by Z, as measured by �; assume
that such a vertex exists. We make a few observations. First, if u is a non-terminal in-
neighbor of v, then u ∈ Z, as otherwise S(G \Z, u) = S by assumption, contradicting
that S(G \ Z, v) � S. Second, v must have at least one terminal in-neighbor, as
otherwise S(G \ Z, v) = ∅, contradicting that v is not in source shadow. Finally,
not every s ∈ S is an in-neighbor of v, hence v must have at least one non-terminal
in-neighbor u in G, as S(G, v) = S. Hence, if any modified vertex exists in V (G,S),
then the earliest such vertex is contained in N+(S), which has bounded size by degree
reduction, and furthermore the identification of this vertex v allows us to kill at least
one vertex u ∈ N−(v), thereby strictly decreasing the potential of the instance. This
finishes the case where V (G,S) contains some modified vertex.

Now, if V (G,S) contains no modified vertices, then we can indeed follow the
scheme set out for the single-terminal case: Add all arcs sv for s ∈ S, v ∈ V (G,S);
remove all arcs within V (G,S); use degree reduction to move the majority of V (G,S)
into V (G0, ∅); and branch over the killing of one vertex from the set of at most rp
remaining vertices. This finishes the branching process.

3.4. Branchings and reductions. We now proceed with the formal proof of
Lemma 3.10. The proof contains a sequence of branching rules (when we generate
a number of subcases, some of them already ready to output as one instance Ij)
or reduction rules (when we reduce the graph without changing the answer). To
make the algorithm easier to follow, we embed all branching and reduction rules in
appriopriately numbered environments. Moreover, a diagram of the branching step is
given in Figure 1.

If the input instance I is YES instance, by Z we denote its lex-min solution.
Whenever we perform a branching or reduction step, in the new instance we consider
the topological order that is induced by the old one; all the reductions and branchings
add arcs only directed from vertices smaller in � to bigger. This also ensures that
during the course of the algorithm all the directed graphs in the instances are acyclic.

We start with the obvious rule that was already mentioned in section 3. Then,
we roughly localize one vertex of Z.

Reduction rule 1. If cutG(si, ti) > p (in particular, if (si, ti) ∈ E(G)) for
some 1 ≤ i ≤ r, conclude that I is a NO instance.

FIXED-PARAMETER TRACTABILITY OF MULTICUT IN DAGs 135

Branching rule 2. Branch into 2r − 1 subcases, labeled by nonempty sets
S ⊆ T s. In the case labeled S we assume that Z contains a vertex v with S(G, v) = S,
but no vertex v′ with S(G, v′) being a proper subset of S.

As Z is a lex-min solution (in case of I being a YES instance), Z cannot contain
any vertex v with S(G, v) = ∅. In each branch we can bypass some vertices.

Reduction rule 3. In each subcase, as long as there exists a nonterminal vertex
u ∈ V (G) with S(G, u) � S bypass u. Let (G1, T , p) be the reduced instance.

By Lemma 3.5, an application of the above rule cannot turn a NO instance into
a YES instance. Moreover, in the branch where S is guessed correctly, Z remains the
lex-min solution to (G1, T , p). By Lemma 3.5, φ((G1, T , p)) ≤ φ(I).

We now apply the reduction of source degrees.
Branching rule 4. In each subcase, let S be its label and (G1, T , p) be the

instance. Invoke Lemma 3.9 on the instance (G1, T , p). Output all instances Ij for
1 ≤ j ≤ d as part of the output instances in Lemma 3.10. Keep the instance I0 for
further analysis in this subcase and denote I0 = (G2, T , p); G2 is the degree-reduced
graph G1.

Let us summarize what Lemma 3.9 implies on the outcome of Branching Rule 4.
We output at most 2rrp instances and keep one instance for further analysis in each
branch. Each output instance has strictly decreased potential, while φ((G2, T , p)) ≤
φ(G1, T , p)). If I is a NO instance, all the generated instances—both the output and
kept ones—are NO instances. If I is a YES instance, then it is possible that all the
output instances are NO instances only if in the branch where the set S is guessed
correctly, the solution Z is a solution to (G2, T , p) as well. Moreover, as any solution
to (G2, T , p) is a solution to I as well by Lemma 3.8, in this case Z is the lex-min
solution to (G2, T , p).

Let us now investigate more deeply the structure of the kept instances.
Lemma 3.11. In a branch, let S be its label, (G1, T , p) the instance on which

Lemma 3.9 is invoked, and (G2, T , p) the kept instance. For any v ∈ V (G1) = V (G2)
with S(G, v) = S, we have S(G1, v) = S and S(G2, v) ∈ {∅, S}.

Proof. Note that the operation of bypassing a vertex u does not change whether a
vertex v is reachable from a fixed source; thus S(G, v) = S(G1, v) = S. By Lemma 3.8,
we have S(G2, v) ⊆ S(G1, v) = S. Assume that S(G2, v)
= ∅, let si ∈ S(G2, v), let
P be a siv-path in G2, and let (si, w) be the first arc on this path. Since G2 differs
from G1 only on the set of arcs incident to the set of sources, the subpath P ′ of P
from w to v is present in G1 as well. Therefore S(G1, w) ⊆ S(G1, v) = S. As w was
not bypassed by Reduction Rule 3, we have S(G,w) = S. Using again the fact that
bypassing a vertex u does not change whether w is reachable from a fixed source, we
have that S(G1, w) = S. By Lemma 3.8, S(G1, w) = S(G2, w) = S. By the presence
of P ′ in G2, we have S ⊆ S(G2, v). This finishes the proof of the lemma.

Recall that if I is a YES instance and all instances output so far are NO instances,
then in some subcase S the set Z is the lex-min solution to (G2, T , p). In this case Z
does not contain any vertex from V (G2, ∅) and we can remove these vertices, as they
are not contained in any siti-path for any 1 ≤ i ≤ r.

Reduction rule 5. In each branch, let S be its label and (G2, T , p) the kept
instance. As long as there exists a nonterminal vertex v ∈ V (G2) with S(G2, v) = ∅,
delete v. Denote the output instance by (G3, T , p).

Reduction Rule 5 does not interfere with any siti-paths, thus φ((G3, T , p)) =
φ((G2, T , p)). Again, if I is a NO instance, all instances (G3, T , p) are NO instances
as well, and if I is a YES instance, but all output instances produced so far are NO
instances, Z is the lex-min solution to (G3, T , p) in some branch S. Moreover, in G3

136 KRATSCH, PILIPCZUK, PILIPCZUK, AND WAHLSTRÖM

each source has out-degree at most rp and there is no vertex v with S(G3, v) � S
(note that Reduction Rule 5 does not change reachability of a vertex from a fixed
source). We apply the source shadow reduction to (G3, T , p).

Branching rule 6. In each branch, let S be its label and (G3, T , p) be the
remaining instance. Invoke Lemma 2.11 on (G3, T , p), obtaining a family AS. Branch
into |AS | subcases, labeled by pairs (S,A) for A ∈ AS . In each subcase, obtain a graph
(G4, T , p) by bypassing (in arbitrary order) all vertices of A \N+

G3(T s).
Note that the graph G4 does not depend on the order in which we bypass vertices

of A \N+
G3(T s). By Lemma 3.5, bypassing some vertices cannot turn a NO instance

into a YES instance. Moreover, by Lemma 2.11, if (G3, T , p) is a YES instance and
Z is the lex-min solution to (G3, T , p), then there exists A ∈ AS that contains all
vertices of source shadows of Z, but no vertex of Z. Note that no out-neighbor of
a source may be contained in a source shadow; therefore, A \ N+

G3(T
s) contains all

vertices of source shadows of Z as well. We infer that in the branch (S,A), (G4, T , p)
is a YES instance and, as bypassing a vertex only shrinks the set of solutions, Z is
still the lex-min solution to (G4, T , p). Moreover, there are no source shadows of Z
in (G4, T , p), and due to not bypassing N+

G3(T
s) we have |N+

G4(T
s)| ≤ rp.

At this point we have at most 2r+O(p2) log |V (G)| subcases and at most 2rrp
already output instances. In each subcase, we have φ((G4, T , p)) ≤ φ((G3, T , p)) by
Lemma 3.5. The following observation is crucial for further branching.

Lemma 3.12. Take an instance (G4, T , p) obtained in a branch labeled with (S,A).
Assume that (G4, T , p) is a YES instance and let Z be its lex-min solution. Moreover,
assume that there are no source shadows of Z in (G4, T , p). Then the following holds:
if there exists a vertex v′ ∈ (V (G,S)∩V (G4))\Z with S(G4 \Z, v′)
= S, then the first
such vertex in the topological order � (denoted v) belongs to N+

G4(T s). Moreover, v
has at least one in-neighbor in G4 that is not in T s, and all such in-neighbors belong
to Z.

Proof. Let v be as in the statement of the lemma. Assume there exists an in-
neighbor w of v that is not in T s nor in Z. From the previous steps of the algorithm
we infer that S(G4, v) = S(G4, w) = S. Moreover, w ∈ V (G,S) as v ∈ V (G,S): the
vertex v is reachable from w in G (possibly via vertices bypassed in Branching Rule 6),
but all vertices u with S(G, u) � S are bypassed in Reduction Rule 3. Since w is earlier
in � than v, from the minimality of v, we have S(G4 \ Z,w) = S, a contradiction.

As there are no source shadows of Z in (G4, T , p), there exists si ∈ S and an
siv-path in G4 that avoids Z. As v has no in-neighbors outside T s and Z, this path
consists of a single arc (si, v) and v ∈ N+

G4(T
s). Moreover, if all in-neighbors of v in

G4 are sources, S(G4 \ Z, v) = S(G4, v) = S, a contradiction.
Branching rule 7. In each branch, let (S,A) be its label and (G4, T , p) the

remaining instance. Output at most rp instances Iv, labeled by vertices v ∈ N+
G4(T

s)∩
V (G,S) for which N−

G4(v)
⊆ T s: the instance Iv is created from (G4, T , p) by killing
all nonterminal in-neighbors of v and bypassing v. Moreover, create one remaining
instance (G5, T , p) as follows: delete from G4 all arcs that have their ending vertices
in V (G,S)∩V (G4) and for each v ∈ V (G,S)∩V (G4) and si ∈ S add an arc (si, v).

By Lemmata 3.4 and 3.5, the output instances have strictly smaller potential
than (G4, T , p) and are NO instances if (G4, T , p) is a NO instance. On the other
hand, assume that (G4, T , p) is a YES instance with lex-min solution Z such that
there are no source shadows of Z. If there exist vertices v′ and v as in the statement
of Lemma 3.12, then the instance Iv is computed and Z \N−

G4(v) (i.e., Z without the
killed vertices) is a solution to Iv. Otherwise, we claim that (G5, T , p) represents the
remaining case.

FIXED-PARAMETER TRACTABILITY OF MULTICUT IN DAGs 137

Lemma 3.13. Let (G4, T , p) be an instance obtained in the branch (S,A).
1. φ((G5, T , p)) ≤ φ((G4, T , p)).
2. Any multicut Z in (G5, T , p) is a multicut in (G4, T , p) as well.
3. Assume additionally that (G4, T , p) is a YES instance whose lex-min solution

Z satisfies the following properties: there are no source shadows of Z and for
each v ∈ V (G,S)∩V (G4), either v ∈ Z or S(G4 \Z, v) = S. Then (G5, T , p)
is a YES instance and Z is its lex-min solution.

Proof. For the first and second claims, consider an arbitrary siti-path P in
(G4, T , p) for some 1 ≤ i ≤ r. If P does not contain any vertex from V (G,S)∩V (G4),
P is present in G5 as well and Z intersects P . Otherwise, as V (G,S) ∩ V (G4) ⊆
V (G4, S), we have that si ∈ S. Let v be the last (closest to ti) vertex on P that
belongs to V (G,S) ∩ V (G4). Note that (si, v) is an arc of G5; therefore a path P ′

that starts with (si, v) and then follows P to ti is present in G5. To prove the second
point, note that as Z is a multicut in (G5, T , p), Z intersects P ′, and we infer that Z
intersects P . To prove the first point, note that the above reasoning shows that any
set P of siti-paths in G4 with pairwise disjoint interiors yields a family of the same
number of siti-paths in G5, again with pairwise disjoint interiors. Therefore, for any
1 ≤ i ≤ r we have cutG4(si, ti) ≤ cutG5(si, ti).

For the third claim, it is sufficient to prove that in the considered case the set Z
is a multicut in (G5, T , p); its minimality follows from the second point. Consider an
arbitrary siti-path P ′ in (G5, T , p) for some 1 ≤ i ≤ r. Again, if P ′ does not contain
any vertex from V (G,S) ∩ V (G4), P ′ is present in G4 as well and Z intersects P ′.
Otherwise, si ∈ S and P ′ starts with an arc (si, v) for some v ∈ V (G,S)∩V (G4). Note
that for any v′ ∈ V (G,S) ∩ V (G4), by construction we have N−

G5(v
′) = S. Therefore

v is the only vertex of P ′ that belongs to V (G,S) ∩ V (G4).
If v ∈ Z, P ′ is intersected by Z in G5 and we are done. Otherwise, by the as-

sumptions on Z, there exists an siv-path P in G4 \ Z. A concatenation of P and P ′

without the arc (si, v) yields an siti-path in G4. As Z is a multicut in (G4, T , p),
we infer that P ′ is intersected by Z outside V (G,S) ∩ V (G4) and the lemma is
proved.

The structure of V (G,S) ∩ V (G5) is quite simple in (G5, T , p). Recall that, if
I is a YES instance, but no instance output so far is a YES instance, then in at
least one branch (S,A) we have that the lex-min solution Z to I is the lex-min
solution to (G5, T , p) and Z ∩ V (G,S) ∩ V (G5)
= ∅. We would like to guess one
vertex of Z ∩ V (G,S) ∩ V (G5). Although, V (G,S) ∩ V (G5) may still be large, each
vertex v ∈ V (G,S) ∩ V (G5) has N−

G5(v) = S. Therefore we may limit the size of
V (G,S) ∩ V (G5) by applying once again the degree reduction branching.

Branching rule 8. In each branch, let (S,A) be its label and (G5, T , p) the
remaining instance. Apply Lemma 3.9 on (G5, T , p), obtaining a sequence of instances
(Ij)dj=1 and the remaining instance (G6, T , p), where G6 is the degree-reduced graph

G5. Output all instances Ij for 1 ≤ j ≤ d and keep (G6, T , p) for further analysis.
By Lemma 3.9, if (G5, T , p) is a NO instance, all the output instances as well

as (G6, T , p) are NO instances. Otherwise, if (G5, T , p) is a YES instance with the
lex-min solution Z, but the instances Ij are all NO instances, then Z is the lex-min
solution to (G6, T , p).

Note that by Lemma 3.9, all output instances have potential strictly smaller
than φ((G5, T , p)), whereas φ((G6, T , p)) = φ((G5, T , p)). Moreover, applications of

Branching Rule 8 in all subcases output at most 2r+O(p2)rp log |V (G)| instances in
total.

We are left with the final observation.

138 KRATSCH, PILIPCZUK, PILIPCZUK, AND WAHLSTRÖM

Lemma 3.14. In each subcase, let (S,A) be its label and (G6, T , p) the remaining
instance. Then at most rp vertices v ∈ V (G,S) ∩ V (G6) have S(G6, v)
= ∅.

Proof. Note that V (G4) = V (G5) = V (G6). Take v ∈ V (G,S) ∩ V (G6). Recall
that N−

G5(v) = S and G6 differs from G5 only on the set of arcs incident to the sources,

so S(G6, v) = N−
G6(v). The lemma follows from Lemma 3.8, claim 1.

We may now perform once again Reduction Rule 5:
Reduction rule 9. In each branch, let (S,A) be its label and (G6, T , p) be the

remaining instance. As long as there exists a nonterminal vertex v ∈ V (G6) with
S(G6, v) = ∅, delete v. Denote the output instance by (G7, T , p).

As in the case of Reduction Rule 5, Z is the lex-min solution to (G6, T , p) if and
only if Z is the lex-min solution to (G7, T , p). Moreover, φ((G6, T , p)) = φ((G7, T , p)).

By Lemma 3.14, |V (G,S) ∩ V (G7)| ≤ rp. Now we can perform final branching.
Branching rule 10. In each subcase, let (S,A) be its label and (G7, T , p) the

remaining instance. For each v ∈ V (G,S)∩V (G7) output an instance Iv created from
(G7, T , p) by killing the vertex v.

Note that if V (G,S) ∩ V (G7) = ∅, then this rule results in no branches created.
By Lemma 3.4, if (G7, T , p) is a NO instance, so are the output instances Iv. On

the other hand, assume that I is a YES instance with the lex-min solution Z. Then
in at least one subcase (S,A), if no previously output instance is a YES instance, then
the instance (G7, T , p) is a YES instance, Z is its lex-min solution, and Z ∩V (G,S)∩
V (G7)
= ∅. Then the instance Iv for any v ∈ Z ∩V (G,S)∩V (G7) is a YES instance;
in particular, V (G,S) ∩ V (G7) is nonempty. To conclude the proof of Lemma 3.10
note that φ(Iv) < φ((G7, T , p)) for each output instance Iv.

We conclude with a short summary of the branching step:
1. Branching Rule 2 results in 2r − 1 subcases.
2. Branching Rule 4 outputs at most rp instances and leaves one remaining

instance in each subcase, less than 2rrp output instances in total.
3. Branching Rule 6 results in 2O(p2) log |V (G)| further subcases in each subcase;

we have less than 2r+O(p2) log |V (G)| subcases at this point.
4. Branching Rule 7 outputs at most rp instances in each subcase and leaves

one remaining instance, less than 2r+O(p2)rp log |V (G)| output instances in
total.

5. Branching Rule 8 outputs at most rp instances in each subcase and leaves
one remaining instance, less than 2r+O(p2)rp log |V (G)| output instances in
total.

6. Branching Rule 10 outputs at most rp instances in each subcase and leaves
no remaining instances, less than 2r+O(p2)rp log |V (G)| output instances in
total.

4. Lower bounds.

4.1. W[1]-hardness of MULTICUT in DAGs parameterized by the size
of the cutset. The proof of Theorem 1.2 closely follows the lines of the proof of W[1]-
hardness of the general case of Multicut in directed graphs of Marx and Razgon
[13]. We simply need to replace the gadget Gi,j (which is basically a long cycle) with
its acyclic variant (depicted in Figure 2). For the sake of completeness, we include
here a full proof.

Proof of Theorem 1.2. We show a polynomial-time reduction from the Clique

problem, known to be W [1]-hard. Let (G, t) be a Clique instance (i.e., we ask for a
clique of size t in the graph G). Denote |V (G)| = n and |E(G)| = m.

FIXED-PARAMETER TRACTABILITY OF MULTICUT IN DAGs 139

∞

w0,1
i,j

w0,2
i,j

∞

w1,1
i,j

w1,2
i,j

∞

w2,1
i,j

w2,2
i,j

∞

wn2,1
i,j

wn2,2
i,j

∞

D or ∞ D or ∞
. . .

D or ∞ D or ∞
. . .

Fig. 2. An acyclic variant of the gadget Gi,j. Dashed arc represents the terminal pair.

Similarly as in [13], we prove W[1]-hardness of a weighted edge-deletion variant
of Multicut in DAGs. The edge- and node-deletion variants are easily seen to
be equivalent (cf. [6]). In our construction we use three weights: light (one), heavy
(polynomial in t), and infinite (which could be implemented as budget for cuts, p,
plus one; p will be polynomial in t). Therefore, all weights are polynomial in t, and
the weighted variant can be easily reduced to the unweighted one by replacing arc
(u, v) of weight ω with ω uv-paths of length two.

For each ordered pair (i, j), 1 ≤ i, j ≤ t, i
= j, we construct a gadget Gi,j that
has 2m states that encode a choice of one pair of adjacent vertices (vi, vj) of the
desired clique in G. We would like to ensure that the gadgets Gi,j encode a clique
{v1, v2, . . . , vt} in G. As discussed in [13], it suffice to connect the gadgets in a way
to ensure that

1. if Gi,j represents (vi, vj), then Gj,i represents (vj , vi);
2. if Gi,j represents (vi, vj) and Gi,j′ represents (ui, uj), then vi = ui.

In particular, it follows from the above that if Gi,j represents (vi, vj) and Gi′,j repre-
sents (ui, uj), then vj = uj .

Let D = 2(t + 1)2 be the weight of a heavy arc. We set the budget for cuts as
p := 2t(t − 1)D + t(t + 1)/2. Note that p < 2t(t − 1)D +D; thus we are allowed to
cut only 2t(t− 1) heavy arcs.

We now describe the gadget Gi,j , depicted in Figure 2. Assume V (G) = {0, 1, . . . ,
n− 1} and let ι(x, y) = xn+ y be a bijection from V (G)×V (G) to {0, 1, . . . , n2 − 1}.
The gadget Gi,j consists of 2n2 + 2 vertices ws,ξ

i,j for 0 ≤ s ≤ n2 and ξ ∈ {1, 2}. For

ξ ∈ {1, 2}, 0 ≤ s < n2, and ι−1(s) = (x, y) ∈ V (G)×V (G) we add an arc (ws,ξ
i,j , w

s+1,ξ
i,j)

of weight D if xy ∈ E(G) and ∞ otherwise. Moreover, we add an arc (wn2,1
i,j , w0,2

i,j)

and arcs (ws,1
i,j , w

s,2
i,j) for 0 ≤ s ≤ n2, all of weight ∞. We define a terminal pair

(w0,1
i,j , w

n2,2
i,j) in Gi,j .

Let us now analyze the gadget Gi,j . The terminals (w0,1
i,j , w

n2,2
i,j) are connected

by two edge-disjoint paths w0,1
i,j , w

1,1
i,j , . . . , w

n2,1
i,j , wn2,2

i,j and w0,1
i,j , w

0,2
i,j , w

1,2
i,j , . . . , w

n2,2
i,j .

Therefore any solution needs to cut one edge (ws,1
i,j , w

s+1,1
i,j) for some 0 ≤ s < n2

and one edge (ws′,2
i,j , ws′+1,2

i,j) for some 0 ≤ s′ < n2. As the cut budget p allows

us to cut only 2t(t − 1) heavy arcs (and no infinite ones), any solution cuts only
the aforementioned two heavy arcs in each gadget Gi,j and, apart from these, at
most t(t + 1)/2 light arcs. Note that, moreover, we have that s ≤ s′, as otherwise

there remains a path w0,1
i,j , w

1,1
i,j , . . . , w

s′+1,1
i,j , ws′+1,2

i,j , ws′+2,2
i,j , . . . , wn2,2

i,j . The index s

represents the choice made in gadget Gi,j , that is, if ι(x, y) = s, then we say that Gi,j

represents the pair (x, y). Note that if Gi,j represents s and s2 < s1, then ws2,2
i,j is

140 KRATSCH, PILIPCZUK, PILIPCZUK, AND WAHLSTRÖM

reachable from ws1,1
i,j if and only if s2 ≤ s′ and s < s1; in particular, ws,2

i,j is reachable

from ws+1,1
i,j .

We now add connections between the gadgets to ensure the aforementioned prop-
erties, in a very similar fashion to [13].

In order to ensure the first property, for every 1 ≤ i < j ≤ t and for every ordered

pair (x, y) ∈ V (G) × V (G), such that xy ∈ E(G), we introduce two vertices a
(x,y)
i,j ,

b
(x,y)
i,j , an arc (a

(x,y)
i,j , b

(x,y)
i,j) of weight 1, two arcs (w

ι(x,y),2
i,j , a

(x,y)
i,j), (w

ι(y,x),2
j,i , a

(x,y)
i,j) of

weight ∞, and two terminal pairs (w
ι(x,y)+1,1
i,j , b

(x,y)
i,j) and (w

ι(y,x)+1,1
j,i , b

(x,y)
i,j). Observe

that if Gi,j represents (x, y), then w
ι(x,y),2
i,j is reachable from w

ι(x,y)+1,1
i,j and the arc

(a
(x,y)
i,j , b

(x,y)
i,j) needs to be cut; similarly, if Gj,i represents (y

′, x′), then (a
(x′,y′)
i,j , b

(x′,y′)
i,j)

needs to be cut. If we are allowed to cut only one arc per choice of 1 ≤ i < j ≤ t, then
x = x′ and y = y′. Thus, if we have only

(
t
2

)
cuts of light arcs for the connections

introduced in this paragraph, the first property is ensured.
In order to ensure the second property, for each 1 ≤ i ≤ n and x ∈ V (G) introduce

two vertices cxi and dxi connected by an arc (cxi , d
x
i) of weight 1. Furthermore, for

every 1 ≤ j ≤ n, j
= i we add an arc (w
ι(x,0),2
i,j , cxi) of weight ∞ and a terminal pair

(w
ι(x+1,0),1
i,j , dxi). Note that if Gi,j represents (x, y), then w

ι(x,0),2
i,j is reachable from

w
ι(x+1,0),1
i,j and the arc (cxi , d

x
i) needs to be cut. If we are allowed only one cut per

index 1 ≤ i ≤ n (i.e., t cuts in total for connections introduced in this paragraph),
then the second property would be satisfied. This concludes the description of the
reduction.

To see that the constructed graph is acyclic, note that each gadget Gi,j admits a
topological order

w0,1
i,j , w

1,1
i,j , . . . , w

n2,1
i,j , w0,2

i,j , w
1,2
i,j , . . . , w

n2,2
i,j .

Moreover, all connections between the gadgets contain outgoing edges only; there-
fore a sequence that first contains all vertices of all gadgets (in the aforementioned

order within each gadget), then all pairs a
(x,y)
i,j , b

(x,y)
i,j , and finally all pairs cxi , d

x
i is a

topological order of the constructed graph.
Let us now formally prove the equivalence. Let {v1, v2, . . . , vt} be a set of vertices

that induce a clique in G. Consider a set of arcs

{
(w

ι(vi,vj),ξ
i,j , w

ι(vi,vj)+1,ξ
i,j) : 1 ≤ i, j ≤ t, i
= j, 1 ≤ ξ ≤ 2

}

∪
{
(a

(vi,vj)
i,j , b

(vi,vj)
i,j : 1 ≤ i < j ≤ t

}

∪ {(cvii , dvii) : 1 ≤ i ≤ t}

of weight exactly p. By the discussion on the gadgets Gi,j , the first group of arcs
ensures that the terminal pair in each gadget Gi,j is separated; note that the con-
nections between the gadgets contain only arcs outgoing from the gadgets Gi,j , so
all the paths between considered pairs of terminals have to be entirely contained in
the corresponding gadget. Moreover, for any 0 ≤ s2 < s1 ≤ n2, in gadget Gi,j

the vertex ws2,2
i,j is reachable from ws1,1

i,j if and only if s2 ≤ ι(vi, vj) < s1. There-
fore, if (x, y)
= (vi, vj), then the first group of arcs ensures that the terminal pair

FIXED-PARAMETER TRACTABILITY OF MULTICUT IN DAGs 141

(w
ι(x,y)+1,1
i,j , b

(x,y)
i,j) (or (w

ι(x,y)+1,1
i,j , b

(y,x)
j,i) if i > j) is separated; the second group sep-

arates the remaining pair for (x, y) = (vi, vj). Similarly, if x
= vi, the first group

of arcs ensures that the terminal pair (w
ι(x+1,0),1
i,j , dxi) is separated; the third group

separates the remaining pair for x = vi. We infer that the constructed graph admits
a multicut of size p.

In the other direction, let Z be a multicut in the constructed graph of size at most
p. As discussed, Z needs to contain exactly two arcs of weight D from each gadget
Gi,j and each gadget Gi,j represents some pair (x, y). This leaves us with a budget
of t(t+1)/2 =

(
t
2

)
+ t cuts of light arcs. We infer that we can spend one cut of an arc

(a
(x,y)
i,j , b

(x,y)
i,j) per a pair 1 ≤ i < j ≤ t and only one cut of an arc (cxi , d

x
i) per an index

1 ≤ i ≤ t. Therefore, both properties of what the gadgets Gi,j may represent are
satisfied, so there are distinct vertices v1, v2, . . . , vt such that gadget Gi,j represents
(vi, vj). As in each gadget a finite weight was assigned only to an arc that corresponds
to an edge in G, we obtain a clique of size t in G.

4.2. NP-hardness of SKEW MULTICUT. In this section we prove Theorem
1.3.

Proof of Theorem 1.3. We provide a reduction from the NP-complete Max-Cut

problem. Let us recall that the Max-Cut instance (G, t) is an undirected graph
together with an integer t and we ask for a subset of vertices X ⊆ V (G) such that
there are at least t edges of G with exactly one endpoint in X . Denote |V (G)| = n
and |E(G)| = m.

We construct an equivalentMulticut in DAGs instance again in the arc-deletion
setting; recall that the arc- and vertex-deletion variants are equivalent (cf. [6]). For
clarity, we allow arcs to have weights: in our construction, we use infinite (of weight
p+1, denoted ∞; p, the budget for cuts, will be polynomial in the size of G), heavy (of
weight D = 2m+1), and light (of weight 1) arcs. As again the weights are polynomial
in the size of G, we can easily reduce the weighted variant to the unweighted one by
replacing an arc uv of weight ω with ω uv-paths of length two.

We start a construction of an equivalent Skew Multicut instance by setting the
cut budget p = nD+ 2m− t (as p < nD+D, we can delete only n heavy edges) and
by introducing two sources s1, s2 and two sinks t1, t2; recall that the set of terminal
pairs is defined as T = {(s1, t1), (s1, t2), (s2, t2)}.

For each vertex v ∈ V (G) we introduce two vertices av and dv, as well as two arcs
(s1, a

v) and (dv, t2) of weight D and an arc (av, dv) of weight ∞. We denote the path
s1, a

v, dv, t2 as Pv; note that any solution needs to cut one of the heavy arcs (s1, a
v)

or (dv, t2). As p < nD+n, each path Pv is cut exactly once and the choice of the cut
arc corresponds to the choice whether v ∈ X or v ∈ V (G) \X .

We now connect the paths Pv in such a way that for an edge uv ∈ E(G) we
profit if the paths Pu and Pv are cut in a different manner. For each edge uv ∈ E(G)
we introduce four vertices buvα , cuvα for α ∈ {1, 2}, two arcs (buv1 , cuv1) and (buv2 , cuv2) of
weight 1, and eight arcs: (s2, b

uv
α), (cuvα , t1) for α ∈ {1, 2} as well as (au, buv1), (av, buv2),

(cuv2 , du), (cuv1 , dv) of weight ∞. Note that the construction is symmetric with regard
to u and v (i.e., changing the names of u and v results in changing the names of buv1
and cuv1 with buv2 and cuv2). The intuition behind this construction is as follows: if the
paths Pu and Pv are cut in a different manner, we need to cut only one arc of weight
1 for the edge uv, and otherwise we need to cut both arcs. Part of the construction,
with paths Pu, Pv and the connection corresponding to the edge uv, is depicted in
Figure 3.

142 KRATSCH, PILIPCZUK, PILIPCZUK, AND WAHLSTRÖM

s1 s2

t1t2

au

du

av

dv

buv
1

cuv
1

buv
2

cuv
2

D D

∞ ∞

D D

∞ ∞

1 1

∞ ∞

∞ ∞

∞
∞

Fig. 3. A part of the construction in the proof of Theorem 1.3 with paths Pu and Pv and their
connection due to an edge uv.

The following topological order of the constructed graph proves that we indeed
construct an acyclic graph (within each set, we order the vertices arbitrarily):

〈
s1, s2,{av : v ∈ V (G)}, {buvα : 1 ≤ α ≤ 2, uv ∈ E(G)},

{cuvα : 1 ≤ α ≤ 2, uv ∈ E(G)}, {dv : v ∈ V (G)}, t1, t2
〉
.

Let us now formally prove the equivalence of the input and output instances.
Let X ⊆ V (G) be such that there are at most m − t edges in E(G[X]) ∪ E(G \X).
Consider the following set:

Z = {(s1, av) : v ∈ X} ∪ {(dv, t2) : v ∈ V (G) \X}

∪ {(buv1 , cuv1) : u ∈ V (G) \X ∨ v ∈ X}

∪ {(buv2 , cuv2) : u ∈ X ∨ v ∈ V (G) \X}.

Intuitively, if v ∈ X , then we take the arc (s1, a
v) to the solution, and otherwise we

take the arc (dv, t2). If u ∈ X and v ∈ V (G) \X , then we only need to include the
arc (buv2 , cuv2) in the solution; similarly, if u ∈ V (G)\X and v ∈ X , then we only need
to include the arc (buv1 , cuv1). However, if u ∈ X and v ∈ X , or u ∈ V (G) \ X and
v ∈ V (G) \ X , then both the arcs (buvα , cuvα) for α ∈ {1, 2} need to be taken. As at
least t edges in G have exactly one endpoint in X , we infer that the weight of Z is at
most p. It remains to check that Z is a multicut in the constructed Skew Multicut

instance.
First, consider the terminal s1. Its out-arc (s1, a

u) is not in Z if and only if
u ∈ V (G)\X . The out-neighbors of au are du and buv1 , bwu

2 for all edges uv, wu ∈ E(G).
From the construction of Z we infer that (du, t2) ∈ Z and (buv1 , cuv1), (bwu

2 , cwu
2) ∈ Z,

thus Z is a s1 − {t1, t2} separator. Symmetrically we show that Z is an {s1, s2} − t2
separator, and the constructed instance is a YES-instance to Skew Multicut.

In the other direction, let Z be a solution to the constructed instance of weight
at most p. As discussed, Z needs to contain exactly one heavy arc for each v ∈ V (G),
(s1, a

v) or (dv, t2), and we are left with a budget of at most 2m − t light arcs. Let
X ⊆ V (G) be defined as the set of those vertices v ∈ V (G) for which (s1, a

v) ∈ Z.

FIXED-PARAMETER TRACTABILITY OF MULTICUT IN DAGs 143

Consider an edge uv ∈ E(G). If u ∈ X , then Z needs to intersect the path
s2−buv2 −cuv2 −du− t2 in (buv2 , cuv2), and if u ∈ V (G)\X , then Z needs to intersect the
path s1−au−buv1 −cuv1 −t1 in (buv1 , cuv1). Similarly, if v ∈ X , then Z needs to intersect
the path s2, b

uv
1 , cuv1 , dv, t2 in (buv1 , cuv1), and if v ∈ V (G)\X , then Z needs to intersect

the path s1, a
v, buv2 , cuv2 , t1 in (buv2 , cuv2). We infer that for each edge uv ∈ E(G), Z

needs to contain at least one arc (buvα , cuvα) for α ∈ {1, 2} and both of them if u, v ∈ X
or u, v ∈ V (G) \X . As Z contains at most 2m− t light edges, X is a solution to the
Max-Cut instance (G, t).

5. Conclusions. In this paper we have proved that Multicut in DAGs, pa-
rameterized by the size of the cutset and the number of terminal pairs, admits an
FPT algorithm working in time 2O(rp(r+p2))|V (G)|O(1). This result is complemented
by a proof that parameterization by the size of the cutset only is W [1]-hard. Thus,
we obtain a full picture of the parameterized complexity of Multicut in DAGs.

A natural follow-up question is the complexity of Multicut in general directed
graphs, parameterized by the size of the cutset and the number of terminal pairs.
So far, parameterization by the size of the cutset only has been proved to be W [1]-
hard by Marx and Razgon [13]. Although for two terminal pairs the problem can be
easily reduced to Multiway Cut, to the best of our knowledge for three pairs its
parameterized complexity remains open.

On the other hand, after designing an FPT algorithm one usually asks for exis-
tence of a polynomial kernel for the problem. The polynomial kernelization of many
graph cut problems in directed graphs can be immediately refuted by the result of a
superset of current authors that Multiway Cut, parameterized by the size of the
cutset, does not admit a polynomial kernel in directed graphs even for two terminals,
unless NP ⊆ coNP/poly [7]. However, this does not cover the case of Multicut

in DAGs. Hence, can a polynomial kernel for this problem also be proved to be
implausible?

REFERENCES

[1] C. Bentz, On the hardness of finding near-optimal multicuts in directed acyclic graphs, The-
oret. Comput. Sci., 412 (2011), pp. 5325–5332.

[2] N. Bousquet, J. Daligault, and S. Thomassé, Multicut is FPT, in Proceedings of STOC,
L. Fortnow and S. P. Vadhan, eds., ACM, 2011, pp. 459–468.

[3] J. Chen, Y. Liu, and S. Lu, An improved parameterized algorithm for the minimum node
multiway cut problem, Algorithmica, 55 (2009), pp. 1–13.

[4] J. Chen, Y. Liu, S. Lu, B. O’Sullivan, and I. Razgon, A fixed-parameter algorithm for the
directed feedback vertex set problem, J. ACM, 55 (2008).

[5] R. H. Chitnis, M. Cygan, M. T. Hajiaghayi, and D. Marx, Directed subset feedback vertex
set is fixed-parameter tractable, in ICALP 2012, Volume I, Lecture Notes in Comput. Sci.
7391, A. Czumaj, K. Mehlhorn, A. M. Pitts, and R. Wattenhofer, eds., Springer, New
York, 2012, pp. 230–241.

[6] R. H. Chitnis, M. T. Hajiaghayi, and D. Marx, Fixed-parameter tractability of directed mul-
tiway cut parameterized by the size of the cutset, SIAM J. Comput., 42 (2013), pp. 1674–
1696.

[7] M. Cygan, S. Kratsch, M. Pilipczuk, M. Pilipczuk, and M. Wahlström, Clique cover and
graph separation: New incompressibility results, Trans. Comput. Theory, 6 (2014).

[8] M. Cygan, M. Pilipczuk, M. Pilipczuk, and J. O. Wojtaszczyk, Subset feedback vertex set
is fixed-parameter tractable, SIAM J. Discrete Math., 27 (2013), pp. 290–309.

[9] M. R. Fellows, J. Guo, D. Marx, and S. Saurabh, Data reduction and problem kernels,
Dagstuhl Reports, 2 (2012), pp. 26–50.

[10] S. Guillemot, FPT algorithms for path-transversal and cycle-transversal problems, Discrete
Optim., 8 (2011), pp. 61–71.

144 KRATSCH, PILIPCZUK, PILIPCZUK, AND WAHLSTRÖM

[11] D. Lokshtanov and D. Marx, Clustering with local restrictions, Inf. Comput., 222 (2013),
pp. 278–292.

[12] D. Marx, Parameterized graph separation problems, Theoret. Comput. Sci., 351 (2006),
pp. 394–406.

[13] D. Marx and I. Razgon, Fixed-parameter tractability of multicut parameterized by the size
of the cutset, SIAM J. Comput., 43 (2014), pp. 355–388.

[14] I. Razgon and B. O’Sullivan, Almost 2-SAT is fixed-parameter tractable, J. Comput. Systems
Sci., 75 (2009), pp. 435–450.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

