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Preface

This PhD thesis is formed of work completed while studying at Royal Holloway,

University of London. The three chapters that form the majority of the thesis each

represent distinct projects that were studied in this time.

Chronologically, the research forming the first chapter, on factors in random

graphs was the first to be completed, in collaboration with my supervisor, Ste-

fanie Gerke. This culminated in the paper ‘Non-vertex balanced factors in random

graphs’, published by the Journal of Graph Theory in 2014 [30].

The second chapter, titled Complexity on Eulerian circuits, was work done in

collaboration with Iain Moffatt of Royal Holloway and Joanna A. Ellis-Monaghan

and Greta Pangborn of Saint Michael’s College, Colchester in the US. This work

is largely encapsulated by the paper ‘DNA origami and the complexity of Eulerian

circuits with turning costs’ published by the journal Natural Computing in 2014

[17].

The third chapter, on Adversarial resilience of matchings was work carried out in

collaboration with Stefanie Gerke and Paul Balister of the University of Memphis.

We aim to publish the results of this chapter in the near future.





Summary

In this thesis we are interested in a range of various results regarding various span-

ning structures of graphs. The problems have little in common other than this

shared global scale and graph setting.

In the first chapter we consider the problem of finding thresholds for the existence

of an H-factor in the Erdős-Rényi random graph G(n, p), for some fixed graph H.

An H-factor is a collection of disjoint copies of the graph H, such that every vertex of

G(n, p) is contained in exactly one copy of H. It is a natural extension of a perfect

matching and the study of threshold functions for these properties have been of

interest for some time.

We generalise a recent result in this area, which found the thresholds for strictly

balanced graphs, and use this generalisation to prove a conjecture from this paper

regarding the threshold function for non-strictly balanced graphs. Our results pro-

vide the correct threshold for all non-vertex balanced H, which are those H such

that at least one vertex of H lies only in less dense subgraphs of H than H itself.

We also provide improved bounds on the remaining class of graphs for which the

conjecture remains unproven, proving an upper bound on the threshold for all H to

within a polynomial log term of the known lower bound.

In addition, our generalisation of the original strictly balanced graph results are

themselves of interest, and we demonstrate that they provide an almost immediate

generalisation to finding the threshold for factors in directed random graphs.

In the second chapter, we analyse the computational complexity of finding a

minimum cost Eulerian circuit when possible transitions for the circuit at each vertex

in an Eulerian graph are assigned a cost.
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This problem arises from a design strategy problem in bio-computing, related to

DNA origami, a process by which artificial DNA is designed which will build itself

into desired nano-scale structures. This method is a relatively new technique, with

applications that have only begun to be explored and our results hopefully provide

an insight into the feasibility of applying these results to potential bio-computing

problems.

We demonstrate that the problem is, in general, NP-Hard by means of reduction

to the 3-SAT problem.

We also demonstrate that the problem remains NP-Hard when restricted to

graphs of bounded degree, in particular proving this is the case for 8-regular graphs.

We also demonstrate a polynomial time algorithm for 4-regular graphs.

We also consider a possibly related problem, the Eulerian super-path problem

which is that of finding whether an Eulerian circuit that respects certain pre-defined

paths exists in an Eulerian graph. This problem is known to be NP-Complete and

we believed it would remain so if all the pre-defined paths were of length 2, but we

prove the opposite, providing a polynomial time algorithm for this case.

In the third chapter we consider a problem of adversarial resilience of perfect

matchings in specific models of partially regular random bipartite graphs.

In our main result, we consider a graph with two partition sets of size n and

(1 + ε)n respectively, where each vertex in the first partition set has degree d, with

neighbours chosen uniformly at random from the second partition set. We consider

the case in which an adversary with the ability to remove a single edge incident

to each vertex of the first partition set of the bipartite graph, aims to destroy the

property of a perfect matching existing.

We demonstrate asymptotically tight thresholds for d and ε for which this ad-

versary can and cannot eliminate the perfect matching.
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Chapter 1

Introduction

Much of the study of graph theory is concerned with the analysis and understanding

of spanning structures of graphs. These are combinatorial objects that involve all

of the vertices or edges of a graph, and are often the most interesting and difficult

to study.

By a graph G we mean a set of vertices V (G) = {1, 2, . . . , n} and edges E(G)

between these vertices, consisting of pairs of vertices of G. Real world systems

modelled by graphs might include social networks, in which each vertex represents

a person, and there exists an edge between two people if they know each other.

Another simple example would be that of a train network, where the vertices are the

stations, and an edge exists between stations one stop away from each other. In this

thesis, we are not considering what the graph might represent, instead considering

the pure abstraction of a graph and what properties we can determine from its

structure.

The type of properties we are most interested in here are spanning structures of

graphs, which can be of great interest purely for their mathematical properties and

they can often yielding surprising and beautiful results. For example the existence

of such a global structure can be entirely determined by local properties, while they

in turn, often imply interesting local properties of a graph. Equally, many appli-

cations of graph theory involve finding or understanding the properties of spanning

structures to model or solve a real world problem.

The most classical example of both cases of interest, is also the origin of the

foundations of what we now call graph theory, namely the Königsberg bridge prob-

lem. The city of Königsberg (now Kaliningrad) is split by the river Pregel, then
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Figure 1.1: A graph representing the bridges of Königsberg.

connected by 7 bridges, into two shores, and two islands. An amusement among

locals was to wander the bridges, attempting to cross each one exactly once, never

doubling back. No solution was found and as many intellectual curiosities tend to,

the problem came to the attention of the mathematically minded.

Leonard Euler, undoubtedly one of the greatest mathematicians of all time,

published a solution to the problem in 1735 [45], demonstrating that no such route

was possible. He did this by realising that the islands and bridges were themselves

irrelevant. All that mattered was which island the traveller was on, and what paths

were open to them at each step of the journey. He modelled this problem using

vertices to represent the islands and edges for each bridge between them. The

observation that any circuit, as it enters and leaves a vertex, uses up two of the

edges adjacent to that vertex, meant that unless all of the vertices had even degree

(number of edges connected or adjacent to that vertex), a circuit using each edge

once would be impossible.

Surprisingly it turns out that this condition for a graph to possess what we now

call an Eulerian circuit is not only necessary but also sufficient. If the graph is

connected and all vertices are of even degree, then an Eulerian circuit not only can,

but must exist.

This is one of the most beautiful examples of how local properties are deeply

connected with the global structure of spanning structures and although it is a

structure as old as the field of graph theory itself, Eulerian circuits still provide

fertile ground for research and analysis today and we consider a problem derived

from them in this thesis.
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1.1 Research Questions and Thesis Structure

The second type of structure we consider is that of a matching, and its gener-

alisation, that of a factor. A matching is essentially a pairing up of vertices that

share an edge between them. This can also be thought of as a subgraph, formed

by non-overlapping (disjoint) copies of a single edge. We call a matching perfect if

every vertex is paired up with a unique neighbour.

A generalisation of this is to, instead of pairing up vertices which are connected,

look for disjoint sets of three vertices which all belong to a single triangle, in other

words, all three are pairwise connected by edges. If we can find disjoint triangles

such that every vertex is in exactly one triangle, we call this structure a triangle

factor. A further generalisation is, instead of a triangle, to look for an H-factor,

where H is any fixed graph. If H is a single edge, we have a perfect matching, while

if H is a triangle, then we have a triangle factor as before. Although matchings and

Figure 1.2: Two copies of the same graph, with a perfect matching and a triangle
factor respectively, highlighted with dotted lines.

factors are very different from Eulerian circuits, being analogous to a covering of

the vertices, rather than a journey that traverses all of the edges of the graph, both

have fascinating properties and provide mathematics with a wealth of questions to

consider. In the following chapters, we explore and answer a range of such questions,

proving a number of new results using and about these structures.

1.1 Research Questions and Thesis Structure

In this thesis we tackle a number of diverse questions regarding various spanning

structures of several different graph models.

The first chapter is focused on extending the work of Johansson, Kahn and Vu

3



1.1 Research Questions and Thesis Structure

who proved part of a conjecture that they themselves set in their seminal paper

Factors in random graphs [37]. This conjecture concerns the threshold for the exis-

tence of factors, a natural and interesting extension of perfect matchings, in random

graphs. We prove the conjectured threshold for a range of graphs not previously

proven and provide tighter bounds for all remaining cases. The proof of these re-

quired several theorems, which in themselves are also useful and applicable results.

The second chapter considers the computational complexity of finding optimal

Eulerian circuits in graphs where the paths the circuit may take are assigned costs at

each vertex, determined by the pairings of edges a circuit might follow. These models

arise from a physical process inherent in designing nano-machines from synthetic

DNA strands. It is shown that these problems are, in general and when restricted to

several sub-cases computationally difficult to solve while showing polynomial time

solutions to several sub-cases of the problem.

The final chapter considers the problem of finding thresholds for which perfect

matchings do or do not exist in random bipartite graphs, after an adversary is allowed

to delete a number of edges from this random graph. The interest in these models

arise from recent interest in ideas of network controllability and general problems of

local resilience in graphs.
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Chapter 2

Factors in random graphs

2.1 Matchings and factors

A matching on a graph G is a collection of disjoint edges such that every vertex of

G is covered by at most one edge and is one of the most studied types of spanning

structures. A perfect matching is a matching where every vertex lies within an edge

of the matching and they can be thought of as a pairing up of the vertices of the

graph, where every vertex has exactly one partner.

Matchings are one of the easiest structures to explain and see direct (or at least

simple) applications for and countless students have been introduced to the field of

graph theory by being presented the problem of pairing up dancers at a ball with a

graph representing the partners each dancer would be willing to dance with.

For such a bipartite graph, the problem of whether a matching exists is well

understood, and entirely determined by Hall’s condition [32], which states that a

perfect matching exists if and only if, for every subset of either of the partition

subsets, the neighbourhood of this set is at least as large as itself. Equally for

general graphs, Tutte’s Theorem [64] states that a graph G has a perfect matching

if and only if for every subset of U ⊆ V (G) the subgraph induced by V (G) \ U has

at most |U | connected components with an odd number of vertices.

A natural extension of a matching to consider is that of a factor. Rather than

having each vertex covered by a single edge, a factor is instead a covering of the

graph by disjoint copies of some other, smaller graph, for example a matching is an

example of a K2 factor while a triangle factor is a covering of the graph by disjoint

copies of triangles, or K3.

5



2.1 Matchings and factors

In this chapter, we are interested in random graphs, and in particular the Erdős-

Rényi random graph G(n, p). The study of matchings here too, has produced a range

of research and interesting results. The Erdős-Rényi random graph is, rather than

being a specific graph, in reality, a probability distribution or model for producing

randomly generated graphs. The graph has n vertices, and then edges are present

with some probability p. Most studies of these models are interested in finding what

properties graphs produced by this model are likely to have, for given values of p.

In general, p is allowed to be a function of the number, n, of vertices of the graph.

We are often interested in the ranges of p for which the properties considered

exist with probability tending to 0 or 1 as n→∞. The transition between these two

states is surprisingly small. We call a property monotone if adding edges to a graph

with the property always produces a new graph which also possesses the property.

An example of a monotone property is ‘containing a K3’, since adding edges cannot

remove a triangle that already exists, while having an even number of edges or an

induced 4-cycle are both examples of non-monotone properties. The properties of

possessing either matchings or factors are both clearly monotone properties.

For such monotone properties, we have the concept of a threshold function.

We formally define it in the next section, but essentially given a property and its

threshold function, the random graph G(n, p) with values of p that grow more slowly

(in terms of n) than this function does not possess the property, and if p grows faster

than the threshold it will possess it, both with probability tending to 1.

This small interval in which the property goes from almost certainly not existing

to almost certain existence means that finding threshold functions for given prop-

erties is of great interest and provides a great deal of insight into the structure of

these randomly generated graphs.

As an example, the threshold for the existence of a perfect matching is the same

as that for connectivity of the random graph (the existence of a path between any

two vertices in G(n, p)) or the existence of a Hamiltonian path (a single path which

contains every vertex). Threshold functions are equivalent up to constant factors
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2.2 Technical introduction

and but although more precise ‘sharp thresholds’ or ‘hitting time’ results can show

more precisely that these properties do not occur at exactly the same values of p (and

surprisingly that sometimes they do), the fact that they share a common threshold

gives an insight into the shape and nature of G(n, p) evolution as p is increased

towards 1.

In this chapter we are interested in finding the threshold function for a large class

of graphs, for which the function had previously been conjectured but not proven.

We prove these conjectures for a large class of graphs, and provide improved bounds

on the threshold function for the remaining graphs for which the conjecture remains

open. We also prove a generalisation of these and previous results to a directed form

of the Erdős-Rényi random graph.

2.2 Technical introduction

We will properly state our theorems later in the introduction, after introducing

necessary notation and background. However, for readers already familiar with the

background or willing to momentarily gloss over the details, let us immediately

sketch our main results and methods. In a recent breakthrough (winning a 2012

Fulkerson Prize), Johansson, Kahn, and Vu [37] determined the threshold for a

random graph G to be factorable by a strictly balanced fixed graph H, and they

conjectured the threshold for every H. Our main result, Theorem 2.1, establishes

their conjecture for ‘non-vertex-balanced’ graphs H, a class of graphs disjoint from

strictly balanced ones and a simple application of this result establishes bounds

on the threshold to within a polynomial log term of the known lower bound (and

conjectured value) for all H. The positive side, namely proving the existence of a

factor for values of p above the threshold, is the difficult one, and the main idea of

the proof is, to cover a fraction of G with copies of a densest subgraph of H, then

contract that subgraph to a point, extend the cover, and repeat. However, after the

first step, two things have changed: the graph H may have become a multigraph and,

more significantly, we have committed to correspondences between some vertices of

7



2.2 Technical introduction

G and H. We manage these difficulties through Theorem 2.2, asserting that, if the

vertices of the random graph G are partitioned into classes corresponding to vertices

of H, then G almost surely has an H-factor which respects the partitioning. Our

proof follows the steps of the proof in [37]; it is not especially inventive, but neither

is it easy. Krivelevich [43] needed a special case of this result, requiring the threshold

for a partition-respecting cycle factor, and verified it, but [43] does not include the

proof. The result is clearly useful, and it is therefore worth writing down the proof

details. We prove a similar result for directed graphs.

Formally, for graphs H and G, an H-factor of G is a collection of vertex-disjoint

copies of H in G such that the vertex sets of these copies of H, partition the vertices

of G. Clearly G can only contain an H-factor if |V (H)| divides |V (G)|. We are

mainly interested in large random graphs on n vertices and we assume throughout

the paper that |V (H)| divides n.

The Erdős-Rényi random graph, G(n, p), is defined to be the graph on n vertices

where each edge is present with probability p independently of the absence or pres-

ence of any other edge. We call a function f(n) a threshold for a graph property K

if,

Pr(G(n, p) satisfies K)→


1 if p(n) = ω(f(n)), and

0 if p(n) = o(f(n)).

Since containing an H-factor is an increasing property (that is, adding edges

does not destroy any H-factor) it is well known that a threshold function exists,

see for example [36]. Note that a threshold is unique up to multiplicative positive

constants so we will use Θ notation and with slight abuse of language we will speak

of “the” threshold. The study of thresholds for the existence of factors for various

classes of graphs H in G(n, p) has attracted considerable interest. The distinctions

center around density properties of H. We define the density of a graph H on at

least two vertices, as

d(H) =
|E(H)|
|V (H)| − 1

.

8



2.2 Technical introduction

Figure 2.1: A non-vertex balanced graph.

Let m(H) be the maximum density of any subgraph of H, that is,

m(H) = max
{
d(H ′) : H ′ ⊆ H, |H ′| ≥ 2

}
.

A graph H is called balanced if m(H) = d(H), i.e., if no subgraph of H has density

greater than that of H, and strictly balanced if every proper subgraph of H has

density smaller than that of H.

For any vertex v of H, define the local density at v to be the maximum density

restricted to subgraphs containing v,

m(v,H) = max
{
d(H ′) : H ′ ⊆ H, |H ′| ≥ 2, v ∈ V (H ′)

}
.

A graph H is vertex balanced if, for all v ∈ H, m(v,H) = m(H).

Note that if H is balanced then it is vertex balanced: a densest subgraph of

H is H itself, so m(v,H) and m(H) are both given by H ′ = H, for m(v,H) =

m(H) = d(H). Taking the contrapositive, if H is non-vertex balanced then it is

not balanced, and not strictly balanced. Graphs may thus be partitioned into those

that are non-vertex balanced, those that are strictly balanced, and the rest (those

that are vertex balanced but not strictly balanced). An example of a non-vertex

balanced graph is shown in Figure 2.1.

The thresholds for H-factors for various fixed graphs H have been of interest for a

long time. The case H = K2 is simply the threshold for G to have a perfect matching

which has been known since 1966 [21], see also [9] for a more precise result. The

next H-factor threshold result was for trees by  Luczak and Rucinski [49]. Note that

H = K2 (for a matching) and trees both are vertex-balanced. For sub-classes of

non-vertex-balanced graphs, the threshold is known for graphs H whose minimum

degree is less than m(H) [3, 36]. In 2008 the seminal paper by Johansson, Kahn,

9



2.2 Technical introduction

and Vu [37] determined the threshold for all strictly balanced graphs (also resolving

the so-called ‘Shamir’s problem’ on hypergraph matchings). The special case of

finding the threshold of an H-factor for the strictly balanced graph H = K3 had

been described by Janson,  Luczak and Ruciński as one of the two ‘most challenging,

unsolved problems in the theory of random structures’ [36, p. 96] and was first posed

by Ruciński in 1992 [57] (the second problem was ‘Shamir’s problem’).

In their paper Johansson, Kahn and Vu conjecture thresholds for all graphs H,

depending on whether H is vertex-balanced or not. We restate this formally as

Conjecture 1 in Section 2.3. Our first main result establishes this conjecture for all

non-vertex-balanced graphs. More precisely, let thH(n) be the threshold function

for G(n, p) to contain an H-factor. We prove the following.

Theorem 2.1

If H is non-vertex-balanced,

thH(n) = Θ
(
n−1/m(H)

)
.

The main idea of the proof is, first, to embed the dense subgraphs of H, giving

a ‘partial factor’ covering a corresponding proportion of the vertices of G(n, p). We

then collapse each such subgraph of H to a single vertex, giving a less dense strictly

balanced graph (or possibly multigraph). Finally, we extend the partial factor to

a full factor using Theorem 2.2, a generalisation to partitioned multigraphs of the

strictly balanced result of [37].

To state Theorem 2.2 we need some more notation. Let eH = |E(H)|, vH =

|V (H)| and V (H) = {x1, x2, . . . , xvH}. Define the r-fold blowup B(H, r) of H as

a vH -partite graph with parts V1, V2, . . . , VvH , each of size r, with an edge between

vi ∈ Vi and vj ∈ Vj iff there is an edge between xi and xj in H. In a slight abuse of

notation, let H(n, p) be the random subgraph of B(H,n/vH) obtained by retaining

each edge with probability p. Likewise, given a multigraph H, we define the random

multigraph H(n, p): the blowup B(H, n/vH) has as many edges between vi ∈ Vi and

vj ∈ Vj as there are edges between xi and xj in H, and again H(n, p) is the random

subgraph of B(H, n/vH) obtained by retaining each edge with probability p.

10



2.2 Technical introduction

The setup suggests looking for a ‘restricted’ H-factor of H(n, p) where, for each

copy of H, each vertex belongs to the corresponding part of H(n, p). The follow-

ing theorem shows that below some threshold there is no factor, while above the

threshold there is a factor of the restricted form.

Theorem 2.2

Fix a multigraph H(which may be a simple graph H). If H is strictly balanced, then

the threshold for H(n, p) to contain an H-factor is

thH(n) = Θ
(
n−1/m(H)(log n)1/|E(H)|

)
,

while if H is not strictly balanced, the threshold satisfies

thH(n) = O(n−1/m(H)+o(1)).

In both cases, above the threshold there is w.h.p. an H-factor in which, in every copy

of H, each vertex is in the corresponding part of H(n, p).

We note that there is a key difference between the partitioned and usual G(n, p)

thresholds for non-strictly balanced graphs. In G(n, p), we show that for non-vertex

balanced H, the o(1) term can be completely eliminated, while it remains in the form

of a log term for strictly balanced H. In the partitioned random graph however,

there will always be a log term. This can be seen by considering the graph consisting

of a triangle and a single isolated vertex.

In G(n, p), this graph is easy to embed, as it is equivalent to a partial factor

of triangles, taken over the whole graph, but only covering 3/4 of the vertices.

At this point, the remaining spare vertices immediately complete the factor. In

the partitioned case, by fixing the position of these triangles, we are implying the

existence of a full triangle factor over those corresponding partition sets, and as such,

11



2.3 Preliminaries

by the result for strictly balanced graphs, we will require a log term, corresponding

to the densest subgraphs.

Lastly we prove that the threshold for digraph factors coincides with that for

graphs which is an easy consequence of Theorem 2.2. We define the random directed

graph D(n, p) with vertex set V of size n, such that for each pair of vertices u and

v in V , there is an edge between them with probability p independently of all other

edges, and each such edge is either (u, v) or (v, u), with probability half each. We can

prove the threshold for both strictly balanced and non-vertex-balanced digraphs, in

D(n, p). Note that for strictly balanced graphs we can also prove the partitioned

form, i.e., the digraph form of Theorem 2.2 also holds.

Theorem 2.3

Fix a digraph H. If H is strictly balanced, then the threshold function thH(n), for

the random directed graph D(n, p) to contain an H-factor is

thH(n) = Θ
(
n−1/m(H)(log n)1/eH

)
,

while if H is non-vertex-balanced,

thH(n) = Θ
(
n−1/m(H)

)
.

2.3 Preliminaries

We first note the following known results which we will need later.

Theorem 2.4

(Ruciński [57]) Let H be a graph with at least one edge, and FH(ε, n) be the threshold

function for the property that G(n, p) contains a partial H-factor covering all but at

most εn vertices. Then for any fixed ε > 0 the threshold function satisfies,

FH(ε, n) = Θ
(
n−1/m(H)

)
.

Theorem 2.5

(Alon, Yuster [3], Ruciński [57]) Let H be a graph with minimum degree δ(H),

satisfying δ(H) < m(H). Then

thH(n) = Θ
(
n−1/m(H)

)
.
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2.3 Preliminaries

In their respective papers, stronger results than what is stated above are actually

proved, but we use threshold notation for consistency.

The following two results can be found as Theorems 2.1 and 2.2 in [37]. This

chapter’s aim is to provide a generalisation of the first result, which allows for

improved bounds on the second.

Theorem 2.6

[37] Let H be a strictly balanced graph with eH edges. Then the threshold function,

thH(n) for G(n, p) to contain an H-factor satisfies

thH(n) = Θ(n−1/d(H)(log n)1/eH ).

Theorem 2.7

[37] For H an arbitrary fixed graph, the threshold function thH(n) for G(n, p) to

contain a H-factor satisfies

thH(n) = O(n−1/m(H)+o(1)).

In [37], the authors define threshold functions th
[1]
H (n) and th

[2]
H (n), for a given

fixed graph H. Firstly, th
[1]
H (n) is defined as the threshold for every vertex in G to

be covered by at least one copy of H, while th
[2]
H (n) is the threshold for the property

of satisfying the following two conditions:

1. every vertex of G is covered by at least one copy of H, and

2. for each x ∈ V (H), there are at least n/vH vertices x′ ∈ V (G) for which some

homomorphism of H into G takes x to x′.

This threshold is clearly a lower bound for the threshold for finding a factor thH(n)

and in [37] the authors conjecture that they are, in fact, equal, proving this for

strictly balanced H. In this chapter, we will show this conjecture also holds for a

large class of non-strictly balanced graphs, including all non-vertex-balanced graphs.

The threshold th
[2]
H (n) is completely determined for all graphs and stated without

proof in [37]. For completeness we include a proof below. Let

sv = min{e(H ′) : H ′ ⊆ H, v ∈ V (H ′), d(H ′) = m(v,H)}

13



2.3 Preliminaries

and let s(H) be the maximum over all sv. Clearly m(v,H) ≤ m(H) for all v, with

equality for at least one v.

We are now ready to state and prove the following:

Lemma 2.8

If H is vertex-balanced, (i.e. for all v ∈ V (H), m(v,H) = m(H)) then

th
[2]
H (n) = Θ

(
n−1/m(H)(log(n))1/s(H)

)
.

Otherwise

th
[2]
H (n) = Θ

(
n−1/m(H)

)
.

Proof We clearly have 4 cases to consider, namely verifying the two conditions of

th
[2]
H (n) for vertex-balanced and non-vertex-balanced graphs.

Firstly we will look at vertex-balanced graphs, i.e. those that satisfy m(v,H) =

m(H) for all v ∈ V (H). Condition 1 of th
[2]
H (n), namely that each vertex of G is

covered by at least one copy of H, is well studied and exact thresholds can be found

as Theorem 3.22 in [36] and follow from results proved by Spencer in [62], and, in

this case they are equal to our required bound.

Now we simply have to prove that condition 2 is also satisfied for

p = ω(n−1/m(H)(log(n))1/s).

We note that Cp = ω(n−1/m(H)) for any constant C.

Let V (H) = {1, 2, . . . , vH}, our result will follow from partitioning the edge set

of G(n, p) into the union of random graphs G0, G1, . . . , GvH with edge probability

p′, where 1 − p =
∏vH
i=0(1 − p′) = (1 − p′)vH+1 and repeatedly applying Theorem

2.4 to find partial factors of H. We first apply it in G0, which has edge probability

p′ > p/(vH + 1) = ω
(
n−1/m(H)

)
, which is sufficient to apply Theorem 2.4 with

ε = 1/4. This gives us a partial H-factor covering 3n/4 of the vertices of G(n, p)

and hence (1− ε)n/vH = 3n/(4vH) vertices of G(n, p) are covered by each vertex of

H with high probability.

For each i ∈ {1, 2, . . . , vH} we consider vertex i of H and the vertices of G0,

that are already covered by vertex i in a homomorphism of H into G, and then, the
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2.3 Preliminaries

random graph induced by the edges of Gi on the vertex set of G0, without those

already covered vertices. This leaves us with a set of n′ = (1 − 3/(4vH))n vertices

in each Gi, that have not already been covered by a copy of the vertex i of H, with

an independent random edge set. We can consider this as equivalent to the random

graph G(n′, p′), where p′ > p/(vH + 1) = ω
(
(n′)−1/m(H)

)
(assuming |vH | > 2, since

the case where |vH | = 2 either corresponds to a trivial graph with no edges or a

matching in which case both properties are satisfied by the elimination of isolated

vertices which happens at p = Θ
(
n−1/1(log(n))1/1

)
as required). This allows us to

apply again Theorem 2.4 to find another set of partial factors on three quarters of

the remaining vertices, giving us in total (6/(4vH)−9/(16v2
H))n > n/vH , for vH > 1,

vertices covered by vertex i of H as required.

We now consider graphs that are non-vertex-balanced and so do not satisfy

m(v,H) = m(H) for all v ∈ V (H). As before, the threshold for covering is known,

and is in fact lower than our required threshold here.

The same argument for proving condition 2 as above applies since we only re-

quired p = ω(n−1/m(H)), so it follows that, for these graphs, both conditions are

satisfied for p = ω(n−1/m(H)). It only remains to show that the threshold is not

lower than this for such H. This follows from another result, proved by Ruciński

and Vince [58]. They prove, that for any vertex of G(n, p), the threshold for it being

covered by a particular vertex v of H is n−1/m(v,H).

With the result above in mind, we define the following; for a vertex vG ∈

V (G(n, p)), we let XvG be the indicator variable for vG being covered by a copy

of v, where v ∈ V (H) satisfies m(v,H) = m(H), namely XvG = 0 if it is not cov-

ered, and XvG = 1 if it is. Suppose that condition 2 is satisfied with high probability.

Therefore we have that

E

 ∑
vG∈G(n,p)

XvG

 =
∑

vG∈G(n,p)

E(XvG) > n/vH .

Suppose that p = o(n−1/m(v,H)). We know that for p in this range, XvG = 0,

with high probability, and therefore E(XvG) = o(1). Since there are only n choices
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2.4 Theorem 2.1

of vertex for vG, we have a contradiction. Therefore the threshold th
[2]
H (n) is not

o(n−1/m(H)), and so must be n−1/m(H), as required. �

In [37], it is conjectured that th
[2]
H (n) = thH(n), so in light of the above, this can

be restated as the following

Conjecture 1

[37] If H is vertex-balanced, i.e. if for all v ∈ V (H), m(v,H) = m(H), then

thH(n) = n−1/m(H)(log(n))1/s(H).

Otherwise

thH(n) = n−1/m(H).

2.4 Theorem 2.1

The first case of Conjecture 1 has been proved for strictly balanced H, and now we

will prove the second statement in its entirety, namely we prove that the threshold for

containing an H-factor is thH(n) = th
[2]
H (n) = n−1/m(H) for graphs where m(v,H) <

m(H) for some v ∈ V (H). We begin by demonstrating that the result follows from

Theorem 2.2, and then in Section 2.5, we return to prove Theorem 2.2.

In general terms, the main idea of this chapter, is to ‘collapse’ dense sub-graphs

of H to get a new graph (or possibly multigraph) H, which we will formally define

later.

Figure 2.2: The collapsing method.

Since, we have m(v,H) < m(H) for some v, we know that at least one vertex of

H does not belong to any dense subgraphs of H. As a result, we will only need to
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2.4 Theorem 2.1

Figure 2.3: A more complicated non-vertex balanced graph.

cover a linear fraction of the vertices of G(n, p) with these dense subgraphs, since

our factor will contain at least n/vH vertices to be covered by copies of these less

dense vertices.

Once we have embedded the dense subgraphs, we then use Theorem 2.2, treating

these (collapsed in H) embedded graphs as single vertices and finding a new, equally

or less denseH-factor on these collapsed vertices, along with the remaining uncovered

vertices of G(n, p). This will translate to the required factor in our original graph.

To do this for the graph in Figure 2.2, we would simply require a generalisation

that allows us to partition our vertices and choose which vertex of H will ‘cover’ the

vertices of G(n, p) in our factor. However, in a more general case, after collapsing

vertices in H we may no longer be left with a graph, but a multigraph, hence the

required level of generalisation to use this method.

In the example in Figure 2.3, the densest subgraph is clearly the K5, so we

would collapse this to a single vertex. However, one vertex of H contains edges to

two vertices of this subgraph, leaving us with a multigraph. It is also worth noting

that the density of K5 is 2.5 and since every vertex has degree at least 3, this is an

example of a non-balanced graph for which the threshold for the existence of a factor

could not be proven by the minimum degree result [3], and where we can provide

the optimal threshold, improved on that provided by Theorem 2.7.

To define our collapsing method formally, we begin with some observations on

the effects of vertex collapsing on the density of H. We know that m(v,H) = m(H)

for some vertices v, and these are the vertices that we collapse. For each such v,

we, in turn, choose a subgraph H ′ such that v ∈ H ′ and d(H ′) = m(H). We now

collapse all the vertices in H ′ into a single vertex. Giving us a new (possibly multi)

17



2.4 Theorem 2.1

graph, which we will call H1, which has the vertices of H\H ′, with an additional

vertex v1, and an edge for each edge of H with an endpoint in H\H ′. We continue

this process, going from Hi to Hi+1, at each stage, collapsing a subgraph of density

m(H) until none remain. The final graph which contains no subgraphs of density

m(H), we will call H. We prove the rigour of this statement in the following lemma.

Lemma 2.9

The collapsing process, described above, terminates after a finite number of steps,

producing a unique multigraph H, with m(H) < m(H).

Proof Firstly note that the density of H1, defined in the same way for multigraphs

as for graphs, is

d(H1) =
e(H1)

(v(H1)− 1)
=

e(H)− e(H ′)
v(H)− v(H ′) + 1− 1

=
e(H)− e(H ′)

(v(H)− 1)− (v(H ′)− 1)
. (2.1)

Noting that d(H) ≤ m(H) = d(H ′), we can see that the above gives us d(H1) ≤

d(H) ≤ m(H). If instead of H and H1, we consider any subgraph of H containing

the vertices we are going to collapse and the resulting subgraph of H1, the same

inequality shows that we have not created any subgraph in H1 of density greater

than m(H). In fact, considering the following for positive numbers a, b, c and d;

a− c
b− d

≥ a

b
⇐⇒ a

b
≥ c

d

(assuming b > d), and noting that we only have equality on one side if we have it

on both, it follows from (2.1) that any vertex that is in a subgraph of density m(H)

in Hi+1, must have also been in such a graph in Hi.

Since we are considering H such that at least one vertex, v satisfies m(v,H) <

m(H), the above shows that the collapsing process will never produce a subgraph

of density m(H) containing these vertices and hence they will never be collapsed.

This ensures that once all subgraphs have been collapsed, we will not be left with a

single point, and that m(H) < m(H).

The above also demonstrates that while the choice of dense subgraph to collapse

will result in different Hi, ultimately, this process will always terminate with the
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same final multigraph, which we call H. To see why this follows, suppose a vertex

lies in two different subgraphs, which we could choose to collapse. By (2.1) applied

to the subgraph induced by the union of the two dense subgraphs, the new subgraph,

formed by the collapsing process, will still have density m(H) and so the remaining

vertices will be collapsed at a later stage to the same point.

This implies the existence of an equivalence relation on the vertices of H, where

we say u, v ∈ V (H) satisfy u ∼ v if and only if they both lie in a subgraph of H

of density m(H). This is indeed an equivalence relation since supposing a vertex

lies in two subgraphs of density m(H), by the above the union of these subgraphs

also has density m(H) and clearly reflexivity and symmetry are also satisfied by

this definition. Formally H is the graph generated by collapsing these equivalence

classes into single vertices. �

It is clear that if we can embed the collapsed, dense subgraphs of H, required for

a factor, and then embed the edges of H we will have our required factor. Firstly,

we prove that we can embed these dense subgraphs as required. Consider the graph

H ′ with vertex set V (H) and edge set E(H) − E(H), (i.e. H ′ contains only those

edges collapsed by the above process). Let thH′(n) be the threshold for embedding

a factor of H ′ into G(n, p).

Figure 2.4: An example of an H and its respective H and H ′ graphs.

Lemma 2.10

For a non-vertex-balanced graph H, and the corresponding H ′ as defined above, the

threshold for the existence of an H ′-factor satisfies;

thH′(n) = Θ
(
n−1/m(H)

)
.
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Proof H ′ is a subgraph of H, and so m(H ′) ≤ m(H), and since H ′ contains copies

of the collapsed subgraphs of density m(H), it must itself satisfy m(H ′) = m(H).

The edges of H ′ are exactly those that were collapsed in the process that generated

H, and hence, any vertices of H that were not collapsed, will be isolated in H ′.

In other words, these vertices will have degree 0 in H ′. Such vertices must exist,

since we assumed that m(v,H) < m(H) for some vertex v. Since we then have

δ(H ′) < m(H ′), we can apply Theorem 2.5, completing the proof as required. �

We now have an H-factor, without the edges from each copy of H that are also

present in H. To embed these final edges, we now use our generalisation of Theorem

2.7, namely a specific application of Theorem 2.2 to find a factor of H, with the

collapsed subgraphs covered by the vertices we require from H.

As in [37], we work in (a multigraph generalised form of) G(n,M), the graph

chosen uniformly from all M -edge graphs on V (although we will use a multigraph

generalised form of G(n, p) to prove our results) and derive a generalised form of

Theorem 2.6. Since we will be operating with multigraphs and partitioned vertex

sets, we need to define some notation.

Let G be a graph on n vertices and let H be a fixed graph with vertex set

{x1, x2, x3, . . . , xvH}. Let H be the multigraph obtained by repeated applications

of vertex collapsing of subgraphs of H of density m(H), until no such subgraphs

remain. Let kH = |V (H)| and hH = |E(H)|.

We use the standard method of partitioning the edges of G(n, p) into G(n, p′) ∪

G(n, p′) where there is an edge in G(n, p) if and only if there is an edge in at least

one of the G(n, p′). Since we are only interested in threshold functions, which are

equivalent up to constant factors, and 1−p = (1−p′)2, which implies that p′ > p/2,

we can apply Lemma 2.10 without sacrificing randomness of the edges between these

embedded subgraphs. If H has vertex set {y1, y2, . . . , ykH}, we use Lemma 2.10 to

find partial factors consisting of n/vH copies of these collapsed subgraphs (or single

vertices, for those that were not collapsed) for each vertex in H. This leaves us

with kH separate classes of the vertices of G(n, p), each containing graphs of density
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m(H) or isolated vertices, each corresponding to a vertex of H.

We now wish to find an H-factor between these partitioned sets, but we are only

interested in factors that connect the ‘correct’ vertices together from each partition

set, and hence are not interested in the edges within each partition set, or those that

are not the prescribed edges between the subgraphs we have already embedded.

We can consider a random multigraph, which we call H(n, p), using the edges of

our second G(n, p′), such that if the required H-factor exists here, it will translate

into the required H-factor in G(n, p). Firstly, the vertex set of H(n, p) consists of a

single vertex for each of the isolated vertices and subgraphs of density m(H), that

we have embedded into G(n, p). We maintain the partition of these new vertices

into equal sets of size n/vH , according to the vertex of H, they correspond to in the

initial embedding. Note that this means that H(n, p) does not have n vertices, but

rather kHn/vH , which is however, a constant multiple of n.

For the edge set of H(n, p), we use the second set of edges G(n, p′), to ensure

independence. We consider a pair of vertices, v1 and v2 in H(n, p), noting that

we can also consider v1 and v2 as sets of vertices of G(n, p), and the mapping

σ : v(H) → G(n, p) that describes the already embedded subgraphs that form the

vertices ofH(n, p). For each x1 and x2 ∈ V (H), with (x1, x2) ∈ E(H) and σ(x1) ∈ v1

and σ(x2) ∈ v2, if (σ(x1), σ(x2)) ∈ e(G(n, p)), then we have an edge between v1 and

v2 in H(n, p), noting that we consider each such edge separately. In this way, any

factor ofH found inH(n, p) will automatically translate into a factor of H in G(n, p).

H(n, p) can also be thought of as a random kH-partite multigraph with kHn/vH

vertices, and edges between vertices x and y with probability p for each edge between

their origin vertices in H, and 0 otherwise. Essentially, a series of hH = |E(H)|

bipartite graphs, in the same ‘shape’ as H. We will work using this random graph

model (and the corresponding H(n, p) model), to prove our results.

It may be helpful for some readers to visualise this as a kH-partite random graph

with different edge probabilities for some of the edges between partition sets, rather

than a multigraph. For example, a single edge with probability p2, rather than two
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edges, each with probability p between vertices. The varying probabilities make this

model cumbersome to work with, however, and the multigraph notation is more

convenient for use.

For some choices of H it may simply be possible to set all edge probabilities

to the minimum of these values, and still find the factor, but our earlier graph,

containing a K5, is an example of a graph for which this method would fail.

At this point, we have the exact set-up for Theorem 2.2. As we have shown that

m(H) < m(H), it implies that for p = ω(n−1/m(H)) = ω(n−1/m(H)+o(1)) (or, if H is

strictly balanced p > ω(n−1/m(H)(log n)1/|E(H)|)) such an H-factor, a.a.s exists, and

hence our H-factor exists in our original G(n, p), as required.

2.5 Theorem 2.2

The proof of Theorem 2.2 largely follows the same steps as the original graph result

in [37]. To illustrate the key ideas, we outline the initial setup and then draw

out several of the key ideas of the proof, highlighting where they differ from [37].

We begin the proof of Theorem 2.2, with a multigraph generalised version of their

Theorem 3.1. This theorem essentially shows that the number of factors in H(n, p)

is close to expectation, by demonstrating that the equivalent process of removing

edges from the complete graph, does not remove too many factors at each step.

We state the following theorem for a general multigraph, not necessarily derived

from some collapsed graph. The only difference this causes is that in our use above

the vertex sets in each partition set are slightly smaller (i.e. of size n/vH rather

than n/kH since in our application we are not considering the vertices collapsed

by the collapsing process), but the proof follows in the same manner (and can be

found in the Arxiv version of the paper for this result [29]) with p = ω(n−1/m(H)) =

ω(n−1/m(H)+ε) as required.

Theorem 2.11

Let kH = v(H) and hH = e(H). If H is strictly balanced let

p = p(n) = ω
(
n−1/m(H)(log(n))1/s(H)

)
,
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and

p = ω
(
n−1/m(H)+ε

)
,

for some ε > 0 otherwise. Let M = M(n) = hH(n/kH)2p, and let Φ(G) be the

number of the H-factors in a graph G, then

Pr(Φ(H(n, p)) ≥ (nkH−1phH)n/kHe−O(n)) ≥ 1− n−ω(1).

Proof The proof follows the same steps as the original and we move between

models equivalent to G(n, p) and G(n,M) (the graph on n vertices chosen uniformly

at random from all such graphs with M edges) but with our required partitioned

and multi-edge structure to prove our results.

Let T = T (n) = hH(n/kH)2 −M . Let e1, e2, . . . , ehH(n/kH)2 be an independent,

uniformly random ordering of the edge set of the complete form of our multigraph (i.e

H(n, p) with p = 1), which we shall call KMn. Set Gi to be KMn−{e1, e2, . . . , ei}.

We can move between these models as H(n, p) has M edges with probability

Ω(1/n) and as such if H(n, p) possesses some property with probability 1 − n−ω(1)

then the equivalent Gi with M edges must therefore possess it with probability at

least 1−nn−ω(1) = 1−n−ω(1) as required. Equally the number of edges in H(n, p) is

between M/2 and 2M with probability 1−n−ω(1) which follows from using a simple

Chernoff bound on the (binomially distributed) number of edges. Therefore, if a

property holds with probability 1 − n−ω(1) for all Gi with M/2 ≤ M ′ ≤ 2M such

that Gi has M ′ edges, then the probability that it also holds for H(n, p) must be at

least 1 − 2n−ω(1) = 1 − n−ω(1) as required. As all our probability of failure terms

will be of the order of n−ω(1) we can move between these models as required.

Let F(G) be the set of H factors on G and we define Fi := F(Gi). We then

let ξi be the fraction of members of Fi−1 containing ei. Then, as for the standard

graph case, we have for any t,

|Ft| = |F0|
|F1|
|F0|

. . .
|Ft|
|Ft−1|

= |F0|(1− ξ1) . . . (1− ξt),

and that therefore, we have

log |Ft| = log |F0|+
t∑
i=1

log(1− ξi). (2.2)
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Here our sums start to differ somewhat from the standard graph case; we have

log |F0| = log((n/kH)!)kH−1 =
kH − 1

kH
n log n−O(n).

Also, we have

E ξi =
hHn/kH

hH(n/kH)2 − i+ 1
=: γi = E[ξi|e1, . . . , ei−1]

for any choice of e1, . . . , ei−1.

Therefore we have

t∑
i=1

Eξi =
t∑
i=1

γi =
hHn

kH
log

hH(n/kH)2

hH(n/kH)2 − t
+ o(1)

provided that hH(n/kH)2− t > ω(n). We use the same property as [37], namely At,

which is the event that{
log |Ft| > log |F0| −

t∑
i=1

γi −O(n)

}
.

As before, we aim to show that with high probability At does not fail, i.e.

for t ≤ T,Pr(At) = n−ω(1). (2.3)

This implies our theorem, since we then have

log Φ(H(n, p)) = log |FT | >
kH − 1

kH
n log n+

hHn

kH
log p−O(n)

(since M = hH(n/kH)2 − T = hH(n/kH)2p). To prove (2.3), we use the same

methods as [37], namely an Azuma’s inequality, martingale argument. As before,

we will define two auxiliary properties Bi and Ri for i ≤ 1 ≤ T − 1, that will allows

us to establish control over the concentration of our variables. We set our martingale

to have a difference sequence of

Zi =

 ξi − γi if Bj and Rj hold for all j < i

0 otherwise.

And so our martingale is Xt =
∑t

i=1 Zi. We leave the formal definitions of Bi

and Ri for Section 2.6.3, but in general terms, Ri states that each vertex is in a
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number of copies of H close to the expected value, along with a second technical

condition, while Bi states that the maximum number of factors using a particular

copy of H is close to the average over all copies of H. For all i ≤ T , we will have

that Bi−1 and Ri−1 imply

ξi = o(1/ log n). (2.4)

Our martingale analysis will give us that Pr(|Xt| > n) < n−ω(1) (i.e. |Xt| ≤ O(n)

w.h.p.), and if we have Bi and Ri for i < t ≤ T , we will then have that Xt =∑t
i=1 ξi − γi and therefore with probability tending to 1,

t∑
i=1

ξi <
t∑
i=1

γi +O(n) < O(n log n).

Using this, (2.2), (2.4) and the series expansion for log(1− x) we get that

log |Ft| > log |F0| −
t∑
i=1

(ξi + ξ2
i ) > log |F0| −

t∑
i=1

γi −O(n).

As in the graph case, we are left with three possibilities for the failure of this to

occur and hence,

Pr(At) <
∑
i<t

Pr(Ri) +
∑
i≤t

Pr(∧j<i(BjRj) ∧ Ai) +
∑
i<t

Pr(AiRiBi).

The previously mentioned martingale analysis shows that the second term is at

most n−ω(1), and we follow the same processes as [37] in Section 2.6 to show that,

for i ≤ T ,

Pr(Ri) < n−ω(1) (2.5)

and

Pr(AiRiBi) < n−ω(1). (2.6)

These three bounds give us the required result. �

In the next section, rather than just present a slightly modified reproduction

of [37], and to make this generalisation of more value to the reader, we have first

drawn out what Johansson, Kahn and Vu referred to as ‘the heart of the matter’

and presented it as a stand-alone result, with our required generalisation and then

continuing with the surrounding proofs in Section 2.6.
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As demonstrated above, the factor result follows from showing that

Pr(Ri) < n−ω(1)

and

Pr(AiRiBi) < n−ω(1).

In proving the second inequality, a second graph property C is introduced. The

following shows that the failure of C results in two sets differing by a single vertex,

such that the number of factors on the complement of these sets (subject to some

restrictions) vary significantly (which can be shown with high probability to not

occur). The proof of this revolves around the use of entropy results that we describe

below, while in Section 2.6.6, concentration results are used to demonstrate that the

resulting event, with high probability, does not occur.

2.5.1 Entropy

We follow the results of Chapter 6 of [37] but are left with a modification to make

to their Lemma 6.1. As in the original, we have H(X) to be the base entropy of a

discrete random variable X, i.e.,

H(X) =
∑
x

p(x) log
1

p(x)
,

where p(x) = Pr(x = X). Now, in our case, given a vertex y in a random multigraph

G, we use X(y,G) to be the copy of H in a randomly chosen H-factor, and h(y,G) =

H(X(y,G)). We will require a slightly different result than in the original, as we will

only be interested in vertices y from a single partition set of our random multigraph.

We suppose that our multigraph has the same structure as H(n, p), i.e. any copy of

H will contain one vertex from each partition set of G. Given V1, a partition set of

G, and recalling that Φ(G) is the number of H-factors in G, we have the following

Lemma 2.12

log Φ(G) ≤
∑
y∈V1

h(y,G).
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Proof This result follows in the same way as in the original, using a variant state-

ment of Shearer’s Lemma. Given a random vector Y = (Yi : i ∈ I), and S, a

collection of subsets of I, with repeats allowed, such that each element of I belongs

to at least t members of S, then for S ∈ S, let YS be the random vector Yi : i ∈ S.

Given this setup, the variant states that, H(Y ) ≤ t−1
∑

S∈S H(YS). If we let Y

be the indicator for the random H-factor (an H-factor chosen uniformly at random

from the set of all H-factors in the complete form of our multigraph), then I is the

set of copies of H in the complete form of our multigraph and S is the collection of

sets Sx, where Sx is the collection of copies of H containing a vertex x, taken only

over x ∈ V1. We have, therefore, that each copy of H belongs to exactly one Sx in

S, and so t = 1. It follows that;

H(Y ) =
∑
Φ(G)

1

Φ(G)
log(Φ(G)) = log(Φ(G))

and since H(YS) = h(y,G), the proof is complete. �

The second entropy result of [37], namely Lemma 6.2, is not specific to graphs,

and hence requires no generalisation for our uses. We state it below for reference.

We let S be a finite set, W : S → R+, and let X be the random variable taking

values in S with probability

Pr(X = x) = W (x)/W (S),

where, for a set A ⊆ S, W (A) is the sum of W over the members of A, i.e. W (A) =∑
x∈AW (x).

Lemma 2.13

If H(X) > log |S| − O(1), then there are a, b ∈ range(W ) with

a ≤ b < O(a)

such that for J = W−1[a, b] we have,

|J | = Ω(|S|)

and

W (J) > 0.7W (S).
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2.5.2 The heart of the matter

We let Φ(G) be the number ofH-factors on a partitioned multigraph G, V0 be the set

of vertex sets of size kH in H(n, p) with a vertex from each partition set, and H(x,G)

be the set of copies of H in G containing the vertex x, again with each vertex from

a separate partition set. We define D(x,G) = |H(x,G)| to be the number of copies

of H in G containing a vertex x, while D(p) is the expectation of D(x,H(n, p)) in

H(n, p) given a randomly chosen x.

For Z a disjoint union of elements of V0, we define w : V0 → R+ as w(Z) =

Φ(H(n, p)\Z), i.e. the number of partial H-factors in H(n, p) with only the vertices

in Z not covered.

Lastly, fixing a set of vertices, Y of size kH−1, taken from separate partition sets

and two vertices x and y, both from the remaining partition set in V (H(n, p)\Y ) we

define wx,y : H(x,H(n, p)−{Y ∪{y}})→ R+ as wx,y(K) = w(K∪Y ∪{y}). In simple

terms, wx,y can be thought of as the number of H-factors on H(n, p) \ {Y ∪ {y}}

that use K as the copy of H containing x in the H-factor.

Definition 2.1 (Condition A)

We say H(n, p) satisfies A(p) if the following holds

log(Φ(H(n, p))) >
kH − 1

kH
n log n+

hHn

kH
log p−O(n).

Definition 2.2 (Condition Rb)

We say that H(n, p) satisfies Rb(p) if the following condition holds.

For each x ∈ V , |D(x,H(n, p))−D(p)| = o(D(p)).

Informally, A(p) says that the number of factors is close to expectation, while Rb(p)

says the same for the number of copies of H that each vertex of H(n, p) is in.

For a (kH − 1) subset Y of V (H(n, p)), as always with each vertex taken from

different partition sets, let V0(Y ) be the set of kH-subsets containing Y , with the

final vertex taken from the remaining partition set.
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Definition 2.3 (Condition C)

We define C for H(n, p) as follows: H(n, p) satisfies C if for all (kH− 1) subsets Y of

H(n, p), we have the following:

maxw(V0(Y )) ≤ max{n−2(kH−1)Φ(H(n, p)), 2medw(V0(Y ))}.

We prove the following Theorem;

Theorem 2.14

ARbC implies that there exists a set of vertices Y , each taken from |Y | = vH − 1

different partition sets of H(n, p), and x, y in the remaining partition set, such that

we can find a collection J of elements of H(y,H(n, p) − (Y ∪ {x})) and J ′ from

H(x,H(n, p)− (Y ∪ {y})) with |J | > Ω(|H(y,H(n, p)− (Y ∪ {x}))|), and w−1
y,x|J | =

w−1
x,y|J ′| = [a, b] with a ≤ b < O(a) satisfying

∑
X∈J

wy,x(X) > 0.7w(Y ∪ {x})

and ∑
X∈J ′

wx,y(X) ≤ 0.5w(Y ∪ {x}).

Proof Suppose that A, Rb hold but that C fails. Therefore we can find at least one

set Y at which C fails. We therefore know that there exists x, such that w(Y ∪{x})

is maximum for choices of x and satisfies

w(Y ∪ {x}) > n−2(kH−1)Φ(H(n, p)).

We now choose y with w(Y ∪ {y}) ≤ med w(V0(Y )), and h(y,H(n, p)− (Y ∪ {x}))

maximal, given this constraint.

Given A, we know that

log(Φ(H(n, p))) >
kH − 1

kH
n log n+

hHn

kH
log p−O(n).

While the failure of C tells us that

w(Y ∪ {x}) = Φ(H(n, p)− (Y ∪ {x})) > n−2(kH−1)Φ(H(n, p)),
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hence, combining the two we have,

log Φ(H(n, p)− (Y ∪ {x})) > kH − 1

kH
n log n+

hHn

kH
log p−O(n). (2.7)

We use Lemma 2.12 and apply it to the graph H(n, p) − (Y ∪ {x}). Letting V1

be the partition set containing x and y, we have,

log Φ(H(n, p)− (Y ∪ {x})) ≤
∑
z∈V1

h(z,H(n, p)− (Y ∪ {x})). (2.8)

However, we know that we chose y to have maximal entropy, chosen from a set

of at least half of possible such z, and we also have that for any random variable X,

the entropy H(X) ≤ log(|range(X)|) (with equality only if the variable is uniformly

distributed).

The range of our random variable is contained in the set of copies of H containing

the fixed vertex z in H(n, p)−(Y ∪{x}), which by definition, is of size D(z,H(n, p)−

(Y ∪ {x})) ≤ D(z,H(n, p)). We know from Rb that this is less than (1 + o(1))D(p).

Hence, we have that at least half the z’s in (2.8) satisfy h(z,H(n, p)− (Y ∪ {x})) ≤

h(y,H(n, p) − (Y ∪ {x})) and the remaining, n/2kH all satisfy h(z,H(n, p) − (Y ∪

{x})) ≤ log((1 + o(1))D(p)). Therefore, (2.8) gives us,

log(Φ(H(n, p)− (Y ∪ {x}))) ≤
∑
z∈V1

h(z,H(n, p)− (Y ∪ {x}))

≤ n

2kH
(h(y,H(n, p)− (Y ∪ {x}) + log(1 + o(1))D(p)))

≤ n

2kH
(h(y,H(n, p)− (Y ∪ {x}) + (kH − 1) log n+ hH log p).

Rearranging, to get h(y,H(n, p)− (Y ∪ {x})) on the left, and substituting from

(2.7) we have,

h(y,H(n, p)− (Y ∪ {x})) ≥ (kH − 1) log n+ hH log p−O(1).

By Rb we have that

log(D(y,H(n, p)− (Y ∪ {x}))) ≤ logD(y,H(n, p)) ≤ log((1 + o(1))D(p))

= (kH − 1) log n+ hH log p+ log(1 + o(1)),
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and hence combining with the above, we have

h(y,H(n, p)− (Y ∪ {x})) > log(D(y,H(n, p)− (Y ∪ {x}))−O(1). (2.9)

We now use our functions wy,x and wx,y, previously defined as;

wy,x(K) = w(K ∪ Y ∪ {x}) and similarly wx,y(K) = w(K ∪ Y ∪ {y}).

With wy,x defined on H(y,H(n, p) − (Y ∪ {x})); the set of copies of H containing

y in H(n, p) − (Y ∪ {x}), and similarly, wx,y defined on H(x,H(n, p) − (Y ∪ {y})).

Simply put, for a copy of H containing y in H(n, p)− (Y ∪ {x}), wy,x is the number

of H-factors on this set, using that copy of H.

If we consider the random variable X(y,H(n, p)− (Y ∪ {x})), which is the copy

of H containing y in a uniformly at random chosen H-factor on H(n, p)− (Y ∪{x}),

we can see that the probability that X(y,H(n, p) − (Y ∪ {x})) = H′ for H′ ∈

H(y,H(n, p)− (Y ∪ {x})), is

wy,x(H′)/
∑

Z∈H(y,H(n,p)−(Y ∪{x}))

wy,x(Z).

Also note that the denominator is equal to w(H(n, p)−(Y ∪{x})), since by summing

only over copies of H, we are counting each H-factor exactly once.

Similarly, X(x,H(n, p)−(Y ∪{y})) is determined by wx,y, and the sum
∑

Z wx,y(Z)

is equal to w((Y ∪ {y})).

By the above, we have the setup used for Lemma 2.13, with S = H(y,H(n, p)−

(Y ∪ {x})). Noting that |S| = D(y,H(n, p)− (Y ∪ {x})), (2.9) gives us the required

condition, and we are able to apply the result to wy,x. This implies that there exist

a and b ∈ range(wy,x), for which we can set J := w−1
y,x([a, b]), and it will satisfy the

following:

|J | > Ω(|H(y,H(n, p)− (Y ∪ {x}))|)

and ∑
z∈J

wy,x(Z) > 0.7
∑

z∈H(y,G−(Y ∪{x})

wy,x(Z) = 0.7w(Y ∪ {x}).
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In simple terms, J is of the same magnitude in size as the whole pre-image of wy,x,

and its elements have overall weight at least a constant multiple of that of the whole

set.

Equally we can set J ′ = w−1
x,y([a, b]), and we know that∑

J ′

wx,y(Z) ≤ w(Y ∪ {y}) < 0.5w(Y ∪ {x}).

The first inequality follows from simply summing over the full set containing J ′, and

the second from our original definition of y and x. This completes the proof. �

Proving that the existence of Y , x and y with such properties in our random

multigraph is a.a.s. unlikely to happen, requires a range of concentration and tech-

nical lemmas, demonstrated in the following sections. In applying this result to

Shamir’s problem, if instead of considering factors, a matching of hyperedges is re-

quired, it has been shown that the proof follows with much more ease using a union

bound argument, reducing the technical complexity of the proof considerably [25].

2.6 Generalisation of remaining results from

[37]

The generalisation to partitioned structures and multigraphs of the remaining results

and properties of [37], follow largely from careful consideration of sums and bounds,

and formulation of polynomials. The following sections follow the structure of [37]

closely, and are largely a technical exercise, that offer little to those who have read

the original paper.

To broadly highlight why the generalisation should follow, we note that while

limiting the factors to these partitions appears to drastically limit the number of

possible copies of H, since each partition set is of size linear in n, we still have

O(nkH) = O
(
n
kH

)
possible choices of vertices for each H, as in the standard case.

We also address the threshold required for applying Theorem 2.2 in obtaining

Theorem 2.1. We are not guaranteed strict balance for the resulting H, but regard-

less, the collapsing process eliminates all subgraphs of density m(H), and hence,

32



2.6 Generalisation of remaining results from [37]

m(H) < m(H) and so for p > n−1/m(H), we have a greater probability than required

within the proof and so with Theorem 2.11, applied to H(n, p), on the partial factors

already embedded during the collapsing process, we have Theorem 2.1 as required.

Throughout the proofs, for clarity in understanding our main result, we treat

H as the graph formed by the collapsing process on some H, and that we have

p > n−1/m(H) as in Theorem 2.1, but for proving Theorem 2.2 in full generality, H

may not necessarily be derived from some H, and we only have p > n−1/m(H)+o(1) (or

with a log term for the strictly balanced case). In this case the proof is unchanged,

as throughout, as in [37], we only require that if p = O(p−1/a), H contains no

subgraphs of density equal to 1/a, and that nkH−1phH = ω(log n), which follows

immediately from the conditions in Theorem 2.2, given that the o(1) term decreases

sufficiently slowly.

2.6.1 Concentration Results

Firstly we address the usage of the various concentration results in Section 5 of [37].

These results are largely special cases of results by V. Vu that can be found in [41]

(with J.H.Kim), [65] and [66].

We will utilise the various polynomial results here without modification, and

hence will not repeat the proofs here again.

We will require some of the notation used in this section later, which we outline

now. We let f = f(t1, t2, . . . , tn), be a polynomial of degree d with real coefficients.

We say f is normal if its coefficients are positive, with the maximum coefficient being

1, and we note that the results here are also true for O(1) normal polynomials, which

simply means that the polynomial’s coefficients have some fixed bound.

We will consider polynomials that are multilinear which means we can express f

in the form f(t) =
∑
αU tU , where U ranges over subsets of [n] and tU :=

∏
u∈U tu.

Lastly, we need that for a set L ⊆ [n], the partial derivative of order |L| with re-

spect to the variables indexed by L is
∑

U⊇L αU tU\L, and its expectation, denoted EL

or ELf is
∑
{αU

∏
i∈U\L pi : U ⊇ L}, where ti ∼ Ber(pi). Set Ejf = max|L|=j ELf .
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We write E′L = E′Lf for the expectation of the non-constant part of the partial

derivative of f , with respect to L, noting that for homogeneous, f of degree d, and

0 < |L| < d, we have E′Lf = ELf .

We take the original example used to illustrate the usage of these results, namely

that we consider our polynomial f to be the number of copies of H in our random

multigraph H(n, p) containing a particular, fixed vertex x0.

We have that f =
∑

U tU where U runs over edge sets of copies of H in our

complete multigraph, containing our vertex x0. We have Ef = Θ(nkH−1phH), while

for any non empty subset L of edges from the complete graph, the partial derivative

will be ELf =
∑

U⊇L tU\L. This will be 0 for L that do not satisfy our multigraph

structure requirements (i.e. at most one edge from each bipartite pairing forming

the multigraph), in the same way that choosing an L not forming a subgraph of H

would do, in the standard graph case.

In all theorems in this section we are interested in ensuring that the maximum

value of the derivative does not exceed a certain magnitude, and so in this sense, we

are not interested in these cases, and so they cause no issue in this generalisation.

Given that our choice of L does satisfy our structure requirements, (and hence

will be contained within at least one copy of H in the complete graph), we can

consider the graph formed by the edges of L, and the vertex end-points of these

edges. Letting k′H and h′H be the number of vertices and edges respectively of L,

then if L contains x0, we have ELf = O(nkH−k
′
HphH−h

′
H), and O(nkH−k

′
H−1phH−h

′
H)

otherwise. Either way, we have,

Ef/ELf = Ω(nk
′
H−1ph

′
H).

While we do not have strict balance of H, we do have that it contains no subgraphs

of density m(H), and hence we have that h′H/(k
′
H − 1) < m(H) and recalling that

p = ω(n−1/m(H)), we have that Ef = Ω(1) and that Ef/ELf ≥ nΩ(1), as is required

for applying the results in this section.

For reference we include the results from the concentration section of [37] below.
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Theorem 2.15

The following holds for any fixed positive integer d and positive constant ε. Let

f be a multilinear, homogeneous, normal polynomial of degree d such that Ef ≥

nε max1≤j≤d Ejf . Then

Pr(|f − Ef | > εEf) = n−ω(1).

Theorem 2.16

The following holds for any fixed positive integer d and positive constant ε. Let f be

a multilinear, normal, homogeneous polynomial of degree d such that Ef = ω(log n)

and max1≤j≤d−1 Ejf ≤ nε. Then

Pr(|f − Ef | > εEf) = n−ω(1).

Theorem 2.17

The following holds for any fixed positive integer d and positive constant ε. Let f be

a multilinear, normal, homogeneous polynomial of degree d such that Ef = ω(log n)

and max1≤j≤d−1 Ejf ≤ nεEf . Then

Pr(|f − Ef | > εEf) = n−ω(1).

Corollary 2.18

The following holds for any fixed positive integer d and positive constant ε. Let f be

a multilinear, normal, homogeneous polynomial of degree d such that Ef ≤ A where

A = A(n) satisfies

A ≥ ω(log n) + nε max
0<j<d

Ejf,

then

Pr(f > (1 + ε)A) ≤ n−ω(1).

Theorem 2.19

The following holds for any fixed positive integer d and positive constant ε. Let f be

a multilinear, normal polynomial of degree d with Ef = ω(log n) and maxL6=∅ E
′
Lf ≤

nεEf . Then

Pr(|f − Ef | > εEf) ≤ n−ω(1).
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Corollary 2.20

The following holds for any fixed positive integer d and positive constant ε. Let f

be a multilinear, normal polynomial of degree d such that Ef ≤ A where A = A(n)

satisfies

A ≥ ω(log n) + nε max
L6=∅

E
′
Lf,

then

Pr(f > (1 + ε)A) ≤ n−ω(1).

Theorem 2.21

The following holds for any fixed positive integer d and positive constant ε. Let f

be a multilinear, normal polynomial of degree d with maxL E
′
Lf ≤ nε. Then for any

β(n) = ω(1),

Pr(f > β(n)) = n−ω(1).

2.6.2 Martingale

The proof of the bound on the martingale follows exactly as that for the original

paper. We have all the same bounds, namely that |Zi| < ε := log−1 n, and that∑t
i=1 γi = O(n log n). and the proof makes no use of the graph setting for the

problem. We include the steps below for reference.

We let Xt = Z1 + · · ·+ Zt, and aim to show that

Pr(Xt ≥ n) < n−ω(1).

We have that Zi is a function of the random sequence e1, . . . , ei, but that

E(Zi|e1, . . . , ei−1) = 0,

for any choice of the ej ’s. Using (2.4), it will follow from the properties R and B,

that |Zi| < ε := log−1 n. We can apply Markov’s inequality to derive the following,

for any positive h;

Pr(Xt ≥ n) = Pr(eh(Z1+···+Zt) ≥ ehn) ≤ E(eh(Z1+···+Zt))e−hn. (2.10)
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Using Zi = ξi − γi, we have that E(ξi|e1, . . . , ei−1) = γi. Using 0 ≤ ξi ≤ ε and

the convexity of ex, we have

E(ehZi |e1, . . . , ei−1) ≤ e−hγi
((

1− γi
ε

)
+
γi
ε
ehε
)
.

Taylor series expansions show that the right hand side is at most eh
2εγi , for any

0 ≤ h ≤ 1. Using induction on t we derive the following.

E(eh(Z1+···+Zt)) = E(E(eh(Z1+···+Zt)|e1, . . . , et−1))

= E(eh(Z1+···+Zt−1)E(ehZt |e1, . . . , et−1))

≤ E(eh(Z1+···+Zt−1)eh
2εγt)

≤ eh2ε
∑t
i=1 γi .

Combined with (2.10), we have

Pr(Xt ≥ n) ≤ eh2ε
∑t
i=1 γi−hn.

We have that
∑t

i=1 γi = O(n log n) and ε = log−1 n, and so setting h to be a

sufficiently small positive constant, leaves the right hand side as e−Ω(n) = n−ω(1), as

required.

2.6.3 The Properties B and R

We now define our slightly altered properties Bi and Ri. We note, as before that

in proving (2.5) and (2.6) we can operate in the random graph H(n, pi) rather than

Gi, where

pi = 1− i

hH(n/kH)2
.

We will define graph properties B andR(p) and then the event Bi will be {Gi satisfies

B} and Ri will be {Gi satisfies R(pi)}.

In defining B, we use the same notation for the functions W , namely that for a

finite set A and W : A→ [0,∞), set

W (A) = |A|−1
∑
a∈A

W (a),

maxW (A) = max
a∈A

W (a),
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and lastly that,

maxr W (A) = W (A)−1 maxW (A),

with med W (A) the median of W on A.

For a multigraph G with our required partition structure, and vertex set V , let

Z be a choice of kH vertices from V , with each element taken from a different vertex

partition set. We then let wG(Z) = Φ(G − Z). Therefore, wG(Z) is the number of

H-factors in the multigraph induced by G on the vertex set V \Z.

It could also be thought of as the number of H-factors in G, containing Z as a

copy of H, if all edges between the vertices of Z had been added in, where they are

not already present.

We also use wG(K) = wG(V (K)) for K ∈ H(G), the set of copies of H in G

(which will contain one vertex from each partition set of G).

We now define property B, for a multigraph G as for the graph case, namely

B(G) = {maxr wG(H(G))) = O(1)}. (2.11)

As in the graph case, B(G) states that no copy of H in G is contained in much more

than the average number of H-factors, for a copy of H.

We define R(p), for the most part, in the same manner as for a graph, with

two parts to the definition. For the first part, we use almost the same set-up.

We have G, our random multigraph and V its vertex set, and given A ⊆ V (H),

E′ ⊆ E(H)\E(H[A]), an injection ψ, from A to V (mapping vertices to the correct

partition set of V corresponding to their location in H). We let X(G) be the number

of injections φ : V (H)→ V with

φ ≡ ψ on A (2.12)

and

xy ∈ E′ ⇒ φ(x)φ(y) ∈ E(G).
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We can write X(H(n, p)) in an obvious way, as a polynomial in variables te =

1{e∈E(H(n,p))}, for e, an edge in the complete form of our multigraph:

X(H(n, p)) = q(t) =
∑
φ

tφ(E′),

where t is the indicator function for edges of the multigraph, and the sum is over all

injections φ satisfying (2.12).

As in the original paper, we have that this function q(t), is multilinear, O(1)-

normal and homogeneous of degree d = |E′|. We use the same definition for E∗;

E∗ = max{ELq : |L| < d}. (2.13)

We also use the same definition for D(p), using it as the expected number of

copies of H in H(n, p) using a given vertex x ∈ V , while D(x,G) is the actual

number of copies containing x in G. It is clear that

D(p) = (n/vH)kH−1phH = Θ(nkH−1phH).

We are now ready to define R(p), which is identical to the graph formulation, not

taking into account our slight changes to the above notation.

Definition 2.4 (Condition R)

We say that a random multigraph G satisfies R(p) if the following two conditions

hold.

(a) For A, E′ and ψ (and associated notation) as above: if E∗ = n−Ω(1), then for

any β(n) = ω(1), X(G) < β(n) for large enough n; if E∗ ≥ n−o(1), then for

any fixed ε > 0 and large enough n, X(G) < nεE∗.

(b) For each x ∈ V , |D(x,G)−D(p)| = o(D(p))

We can now prove that these conditions give the required bound on the size of

ξi. The proof follows in the same fashion as in the original paper:

Lemma 2.22

For i ≤ T = hH(n/kH)2 −M as defined in Section 2.4, Bi−1 and Ri−1 (i.e. that

Gi−1 satisfies B and R(pi)) imply (2.4)
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Proof Write w for wGi−1 . We aim to show that Bi−1 and Ri−1 imply that, for any

K ∈ H(Gi−1),

w(K)/Φ(Gi−1) = O(1/D(pi−1)).

As before, the left hand side of this equation is the fraction of H-factors in Gi−1

that use K, and we prove this result in the same fashion, since we have;

Φ(Gi−1) = kH
n w(H(Gi−1))

= kH
n Ω(|H(Gi−1)|maxw(H(Gi−1))

= Ω(D(pi−1)w(K)).

The first line follows, since eachH-factor will be counted n/vH times by summing the

w function over all copies of H. The second line follows from applying B, while the

third comes from part (b) of Ri−1, and noting that (kHn/kH)D(p) = kH|H(Gi−1)|.

We also have, using the same arguments as in the original, that part (a) of Ri−1

implies that the number of K ∈ H(Gi−1), containing a given edge e ∈ E(Gi−1) is

at most β(n), satisfying β−1D(pi−1) = ω(log n). Here we also use that D(pi−1) =

nkH−1phHi−1 = ω(log n), for i ≤ T . �

Lastly we state the required ‘p-version’ of At:

A(p) =

{
log |F(G)| > log |F0| −

t∑
i=1

γi −O(n)

}
,

where t = d(1 − p)hH(n/kH)2e. Recall from the end of Theorem 2.11, that our

required result will follow from the following lemmas

Lemma 2.23

For p > ω(n−1/m(H)),

Pr(H(n, p) satisfies R(p)) = 1− n−ω(1).

Lemma 2.24

For p > ω(n−1/m(H)),

Pr(H(n, p) satisfies A(p)R(p)B) = n−ω(1).

We prove these lemmas in the next subsections.
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2.6.4 Regularity

We now prove Lemma 2.23, i.e. that with probability 1 − n−ω(1), G = H(n, p)

satisfies both parts of the definition of R(p).

Part (a) follows easily in the same fashion as the original paper. There are only

nO(1) choice for each of A, E′ and ψ, so we simply show that the probability of

one of these violating (a) is n−ω(1). As we noted earlier, we can express the random

variable as a polynomial, and since it is homogeneous, multilinear, and O(1)-normal,

we can apply the probability results from the concentration chapter of [37] directly,

which gives us the result as required.

Proving (b) requires only slightly more adaptation to our scenario. We again

express D(x,G) as a polynomial of degree hH = |E(H)|, in the variables te =

1e∈E(G), where e belongs to the complete form of our random multigraph. Therefore

we have,

D(x,G) = f(t) :=
∑
{tK : K ∈ H0(x)},

where H0(x) is the set of copies of of H, containing x, in the complete multigraph,

and tK =
∏
e∈K te.

As noted earlier, we have,

Ef = (n/kH)kH−1phH = Θ(nkH−1phH) = ω(log n).

We aim to use one of the concentration results from [37], namely Theorem 2.17,

which requires the above and that max1≤j≤d−1 Ejf ≤ n−εEf . For L a subset of the

edges of the complete multigraph, with 1 ≤ |L| = l < hH, we have

ELf = phH−lN(L),

where N(L) is the number of K ∈ H0(x) with L ⊆ E(K). Let I = V (L) ∪ {x},

V (L) being the set of vertices incident to the edges of L, and k′H = |I|. Then

N(L) = Θ(nkH−k
′
H) if the graph H′ := (I, L) is isomorphic to a subgraph of H, and

zero otherwise. Therefore we have, recalling that p > n−1/m(H) (or p > n−1/m(H)+ε
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for a general multigraph) and d(H) = eH/(vH − 1),

Ef/ELf = Ω(nk
′
H−1pl) = Ω(n[(k′H−1)/l−1/m(H)]l)

= Ω(n[1/d(H′)−1/m(H)]l) = nΩ(1)
.

Using the fact that H contains no subgraphs of density m(H) (or denser). We

therefore have the required conditions to use the concentration theorem and the

result follows, which provides us with part (b) of R as required.

2.6.5 Proof of Lemma 2.24

We now begin the proof of Lemma 2.24, continuing in the same vein as the original

paper, we will prove that B is satisfied, using an auxiliary event, C. Most of these

results follow in an identical manner to the original, but with small conditions on

the choice of sets, and differing constant powers in the equations (largely from use of

kH rather than vH , a difference which is more pronounced in the collapsed form of

the theorems, presented in [29]). We include these modified results for completeness.

We write V0 to be the collection of kH-sets of V = V (H(n, p)), with a single vertex

from each partition set of H(n, p). For a set Y ⊆ V , with |Y | ≤ kH and at most

one vertex from each partition set, we write V0(Y ) for the set {Z ∈ V0 : Z ⊇ Y }.

We then extend our earlier weight function w = wH(n,p) to these sets Y , by setting

w(Y ) =
∑
{w(Z) : Z ∈ V0(Y )}.

We define our new property C for H(n, p) as follows: H(n, p) satisfies C if for all

such Y , as defined above, with |Y | = kH − 1,

maxw(V0(Y )) ≤ max{n−2(kH−1)Φ(H(n, p)), 2med w(V0(Y )}

We will then prove Lemma 2.24, by proving the two following results.

Lemma 2.25

Pr(ARC) = n−ω(1).

Lemma 2.26

Pr(RCB) = n−ω(1).
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We have already demonstrated the first part of the proof of Lemma 2.25 in

Section 2.5.2. For clarity, to follow the arguments of the original paper, we will first

prove Lemma 2.26, before returning to Lemma 2.25 in the next Section. We must

firstly show that

|{K ∈ V0 : w(K) ≥ δmaxw(V0)}| = Ω(|V0|) (2.14)

Noting that |V0| = Ω(nkH), and that this implies max rw(V0) = O(1). We now

need another small modification of a lemma from the graph case. We let ψ(X) =

maxw(V0(X)) and let B be a positive number, recall that V is the vertex set of

H(n, p), and is of size n, with kH partition sets of size n/kH.

Lemma 2.27

Suppose that for each Y ⊆ V , satisfying |Y | = kH − 1 and with at most one vertex

from each partition set of V , and ψ(Y ) ≥ B we have∣∣∣∣{Z ∈ V0(Y ) : w(Z) ≥ 1

2
ψ(Y )

}∣∣∣∣ ≥ n/kH − kH
2

.

Then for any X ⊆ V with |X| = kH − i, at most one vertex from each partition set

and ψ(X) ≥ 2i−1B, we have∣∣∣∣{Z ∈ V0(X) : w(X) ≥ 1

2i
ψ(X)

}∣∣∣∣ ≥ (n/kH − kH2

)i 1

(i− 1)!
. (2.15)

Proof We write Ni for the right hand side of the above equation, and proceed by

induction on i. The case i = 1 is the hypothesis of the lemma. We then assume X as

stated, and choose Z ∈ V0(X) with w(Z) = ψ(X) (i.e. Z such that w is maximal).

We let y ∈ Z\X and Y = X ∪ {y}. We then have that |Y | = kH − (i− 1) and that

ψ(Y ) = ψ(X) ≥ 2i−1B(≥ 2i−2B), and so, by the inductive hypothesis there are at

least Ni−1 sets Z ′ ∈ V0(Y ) with w(Z ′) ≥ 2−(i−1)ψ(Y ). For each such Z ′, Z ′\{y}

is a (kH − 1)-subset of V with ψ(Z ′\{y}) ≥ w(Z ′) ≥ B. So then for each such Z ′,

there are at least (n/vH − kH)/2 sets Z ′′ ∈ V0(Z ′\{y}) with

w(Z ′′) ≥ ψ(Z ′\{y})/2 ≥ 2−iψ(X).
�

Therefore the number of such pairs, (Z,Z ′′) is at least Ni−1(n/vH −kH)/2. Equally,

for each Z ′′, each corresponding Z ′ is Z ′′\{u} ∪ {y} for some u ∈ Z ′′\(X ∪ {y}).
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Therefore the number of such Z ′ is at most i− 1, providing our factorial term. This

completes the proof.

We now continue the proof of Lemma 2.26. We set δ = 2kH and then C implies

the hypothesis of the above lemma, with

B = (2n)−(kH−1)Φ(H(n, p)).

We also clearly have that

ψ(∅) ≥ n−(kH−1)Φ(H(n, p)) = 2kH−1B.

We also set γ = (2kH+1(kH − 1)!)−1, and using (2.15), we now have

|{K ∈ V0 : w(K) ≥ δmaxw(V0)}| > γnkH .

We let J be the largest power of 2, not exceeding maxw and

Z = {Z ∈ V0 : w(Z) > δJ}.

In a sense, Z can be thought of as the vertex sets of size kH, whose complement

has a relatively large number of factors. For any set X ⊆ V with |X| ≤ kH, with at

most a single vertex from each partition set, let Z(X) = {Z ∈ Z : X ⊂ Z}, and say

such a set X is good if |Z(X)| > γnkH−|X|. In particular we know that the empty

set is good. We then fix an ordering a1, . . . , akH of V (H). For distinct vertices,

x1, . . . , xr ∈ H(n, p), we define S(x1, . . . , xr) to be the collection of copies φ of H in

the complete multigraph KMn, for which

φ(ai) = xi for i ∈ [r],

φ(ai)φ(aj) ∈ E(H(n, p)) whenever i, j ≥ r and aiaj ∈ E(H)

and that φ(V (H)) ∈ Z.

For each r ∈ {0, . . . , kH} let Nr = N(ar)∩{ar+1, . . . , akH}, and dr = |Nr|, where

N(ar), means the neighbourhood of ar (in H). We now let Y(x1, . . . , xr) be the

event

{|S(x1, . . . , xr)| = Ω(pdr+···+dkH−1nkH−r)}.
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Note that in particular we have, dkH = 0, and, recalling that H(G), is the set of

copies of H in H(n, p),

S(∅) = {φ ∈ H(G) : w(φ(V (H))) > δJ}

and that Y(∅) is the event

{|S(∅)| = Ω(phHnkH)}.

Then, for v1, . . . , xr ∈ V , and from distinct partition sets, let Q(x1, . . . , xr) be the

event

{{x1, . . . , xr} is good} ∧ Y(x1, . . . , xr)}.

Since we have shown that C implies that the empty set is good, we have that BC ⊆

Q(∅) and therefore, we simply require to show that

Pr(RQ(∅)) = n−ω(1),

to prove Lemma 2.26, we continue (as always, in the same fashion as for the graph

case), by proving a slightly more general argument for induction purposes, namely,

that for any choice of r and vertices x1, . . . , xr,

Pr(RQ(x1, . . . , xr)) = n−ω(1). (2.16)

Our induction is on kH− r, with our initial step r = kH, trivially following since

the definition of being good for subsets of size kH is to belong to Z. For general

r < kH, we set X = {x1, . . . , xr}. and then let P be the event

{y ∈ V \X,X ∪ {y} good ⇒ Y(x1, . . . , xr, y)}.

By the inductive hypothesis we know that Pr(RP) = n−ω(1), so we only need to

show

Pr(RPQ(x1, . . . , xr)) < n−ω(1).

We also note that if X is good then,

|y : X ∪ {y} good| = Ω(n). (2.17)
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To ensure that the edges between xr and V \X are independent of the initial condi-

tioning, we use a relaxed form of R, RX , which we say is satisfied if it satisfies part

(a) of R, whenever A = {a1, . . . , ar}, ψ(ai) = xi (i ∈ [r]) and E′ ⊆ (H−A).

As for the graph case, if RP ∧ {X good} holds, but Y(x1, . . . , xr) does not,

then there must be some J = 2kH , with kH an integer not exceeding n log n (the

magnitude of the log of the number of H-factors in the complete multigraph), such

that with Z good, we have the following, (noting that throughout this chapter,

wherever we choose sets of vertices from V −X, we choose them from partition sets

that do not contain vertices of X),

(a) RX holds;

(b) There are at least Ω(n) y’s in V \X for which we have Y(x1, . . . , xr, y) (by

(2.17)), and lastly,

(c) Y(x1, . . . , xr) does not hold.

We note, that for a given J , the first two properties, depend only on G′ := G−X.

Since the number of possibilities for J is at most n log n, it is enough to show that

for any J and G′ satisfying (a) and (b) (with respect to J),

Pr(Y(x1, . . . , xr)|G′) = n−ω(1).

Given this fixed G′, we can express |S(x1, . . . , xr)| as a multilinear polynomial in

terms of the indicator variable for edges between xr and other vertices of H(n, p),

i.e.

tu := 1{xru∈E(H(n,p)} u ∈ V \X.

giving the polynomial,

|S(x1, . . . , xr)| = g(t) :=
∑
U

αU tU ,

where U ranges over dr subsets of V \X, with the vertices taken from the correct

partition sets, corresponding to the edges from ai = φ−1(xi) in H, and αU is the
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number of copies ψ of K := H− {a1, . . . , ar} in G′ with the induced subgraph,

ψ(Nr) = U

and

ψ({ar+1, . . . , akH}) ∪X ∈ Z.

We now apply a concentration result from Section 2.6.1, namely Theorem 2.17. To

apply this, we require a normal polynomial, so we normalise, and consider

f(t) = α−1g(t),

where α is the maximum of the αU ’s. The hypothesis requires that Ef = ω(log n)

and max1≤j≤d−1 Ejf ≤ n−εEf , and will allow us to say that it is close to expectation.

We rewrite:

g(t) =
∑

y∈V \X

∑
{tφ(Nr) : φ ∈ S(x1, . . . , xr, y)}.

Since we know that the indicator variables, tu, u ∈ V \X, are independent of G′,

which determines our sets S(x1, . . . , xr, y), and using property (b) our situation, we

have

Eg = pdr
∑

y∈V \X

|S(x1, . . . , xr, y)| = Ω(pdr+···+dkH−1nkH−r). (2.18)

Noting that if dr = 0, then there are no random edges to consider, and we have that

|S(x1, . . . , xr)| will equal

∑
y∈V \X

|S(x1, . . . , xr, y)| = Ω(pdr+···+dkH−1nkH−r),

as required, we will now assume that dr > 0.

We now set H′ = H− {a1, . . . , ar−1}, and so dr + · · ·+ dkH−1 = e(H′) and that

kH − r = v(H′)− 1. This gives us that the right hand side of the expectation of g,

is Ω(pe(H
′)nv(H′)−1). Using that p > n−1/m(H) and that H contains no subgraphs of

density m(H), we have

Eg =

 ω(log n) if r = 1

nΩ(1) if r > 1.
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We will now show that for the normalised polynomial f(t), that

Ef = ω(log n) (2.19)

and

max{ET f : T ⊆ V \X, 0 < |T | < dr} = n−Ω(1)Ef. (2.20)

With these conditions, the concentration theorem will tell us that f , and therefore g

is close to its expectation, which implies Y, as required. To prove the two conditions,

we will find it easier to consider the partial derivatives of g rather than f . We use

te = 1e∈E(H(n,p)), tS =
∏
e∈S te and t = (te : e ∈ E(KMV \X)), where KMV \X is the

multigraph induced by the ‘complete’ multigraph KMn on the the vertex set V \X.

Since we are only interested in establishing upper bounds on the partial deriva-

tives of g, we may now disregard the second requirement on αU , namely

ψ({ar+1, . . . , akH}) ∪X ∈ Z.

Therefore we are left with

p−(dr−l)ET g ≤ τ(t) :=
∑
φ

tφ(E(K)),

where we sum over φ, injections such that

φ : V (K)→ V \X with φ(Nr) ⊇ T.

We set E∗, as before to be E∗ = max{ELτ : L ⊆ E(KMV \X), |L| < |E(K)|}.

We will show that there is a positive constant ε (depending only on H), such that

(for large enough n),

pdr−lE∗ < n−εEg. (2.21)

This will give us the two requirements for our concentration theorem, as follows.

To prove (2.19), we need to show that

α−1Eg = ω(log n).
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We apply (2.21) with T = U , a dr-subset of V/X. We consider the two possible

conditions of RX , which gives two separate cases, firstly if Eg ≥ nε/2, (i.e. E∗ ≥

n−o(1)) then RX tells us that

αU = EUg < nε/4 max{1,E∗} ≤ n−ε/4Ef.

In the other case we are left with E∗ < n−ε/2, and hence E∗ = n−Ω(1). We know

that Eg = ω(log n), and hence we choose our β(n) = ω(1) (from R) such that

β(n)−1Eg = ω(log n). Since this does not depend on our choice of U , we have (2.19)

as required.

To prove the other requirement, we need ET g = n−Ω(1)Eg for any T , as we

defined in (2.20). We again apply (2.21), noting that we can decrease the ε without

violating the equation, and use this observation to assume that ε < 1/m(H). This

gives us

ET g < pdr−lnε/2 max{1,E∗} ≤ n−ε/2Eg

as we required.

We now return to prove (2.21). We fix L ⊆ E(KMV \X) and let hl = |E(K)|−|L|,

(recalling that K = H − {a1, . . . , ar}). We know that ELτ = phlNL, where again

NL is the number of φ, as defined just before (2.21), with φ(E(K)) ⊇ L. Each φ

satisfies φ(V (K)) ⊇ I := T ∪ V (L), where as earlier, V (L) ⊇ V \X is the set of

vertices incident to the edges of L. We let I = {i1, . . . , is}, then we have NL =∑
NL(b1, . . . , bs), where (b1 . . . , bs) range over s-tuples of distinct elements of V (K)

and we sum over the number of φ’s as above, with φ(bj) = ij for each 1 ≤ j ≤ s. We

only have O(1) choices for the bj ’s and hence the result will follow if we can show

that for any such choice,

pdr−l+hlNL(b1, . . . , bs) = n−Ω(1)Eg.

Given a fixed choice of bi’s, letH′′ = H[{ar, b1, . . . , bs}]. We know thatNL(b1, . . . , bs) <

nkH−r−s = nkH−r−(v(H′′)−1), and that hl ≥ l + dr+1 + · · · + dkH−1 − e(H′′), since

|E(K)| = dr+1 + · · ·+dkH−1 and E(H′′) contains φ−1(L) and at least l edges joining
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2.6 Generalisation of remaining results from [37]

ar to V (K). Therefore we have

pdr−l−hlNL(b1, . . . , bs) < pdr+···+dkH−1nkH−r[nv(H′′)−1pe(H
′′)]−1.

Noting that since p > n−1/m(H) and that H contains no subgraphs of density m(H),

we have that the expression in the square brackets is nΩ(1). Combined with our

earlier bound on Eg, from (2.18), we have the bound required above and hence

(2.21), completing the Lemma.

2.6.6 Proof of Lemma 2.25

We now begin the final step of the proof, namely that Pr(ARC) = n−ω(1). We

maintain our use of notation from the previous section with G = H(n, p), and R

and A. In Section 2.5.2, we have shown that ARC results in the following;

There exist x and y; vertices in the same partition set of G = H(n, p) and a set

Y with a single vertex from each of the remaining partition sets with R = Y ∪ {x}

and S = Y ∪ {y}, such that there exist, a, b ∈ range(wy)(= range(w′)), such that

J := w−1
y ([a, b]) satisfies

|J | > Ω(|H(y,G−R)),

and

wy(J) > 0.7wy(H(y,G−R)) = 0.7w(R).

With, J ′ = w−1
x ([a, b]), we also have,

wy(J) > 0.7w(R),

and

wx(J ′) ≤ w(S) < 0.5w(R).

All that remains is to show that the probability of this event is n−ω(1).

Once again, we can express wy(J) and wx(J ′) as evaluations of a multi-linear

polynomial in variables {tu : u ∈ W}, once we have conditioned on the value of

G[W ], in the following way. Given a set U ⊆ W with |U | ≤ kH − 1 and at most

one vertex from each partition set, let G∗U be the graph obtained from G[W ] by
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2.6 Generalisation of remaining results from [37]

adjoining a vertex w∗ say, with neighbourhood U . We let KU be the set of copies of

H in G∗U , containing {w∗u : u ∈ U}, and

αU =
∑
{w′(V (K)\{w∗}) : K ∈ KU , w′(V (K)\{w∗}) ∈ [a, b]}.

Our polynomial now becomes,

g(t) =
∑
U⊆W

αU tU ,

and wy(J) and wx(J ′) are simply g evaluated at the point t′ := 1{z∈W :yz∈E(G)} and

t′′ := 1{z∈W :xz∈E(G)}.

R tells us that DG(y) = Θ(nkH−1phH) and therefore, considering that at most

o(nkH−1phH) copies of H lie in G and contain y and meet R, we have |H(y,G−R)| =

Θ(nkH−1phH) = ω(log n).

We know from our conditioning of J , that it satisfies

|J | = Θ(nkH−1phH),

and

wy(J) = Θ(bnkH−1phH). (2.22)

We now apply a concentration result, namely Corollary 2.20. To apply it, we require

a bound on the expectation of f , namely, that if Ef ≤ A, where

A ≥ ω(log n) + nε max
l 6=∅

E′Lf.

then the corollary gives us Pr(f > (1+ε)A) = n−ω(1). We fix T ⊆W , with |T | = l <

kH, and as always, each vertex from a different partition set. For d = l, . . . , kH− 1,,

and t as t = (te : e ∈ E(KMW )), we consider the polynomial,

hd(t) =
∑
z

∑
φ

tφ(E(H−z)),

Where z ranges over vertices of H of degree d and φ over the injections V (H)\{z} →

W with φ(Nz) ⊇ T. Then we know that

αT ≤ b hl(t).

51



2.6 Generalisation of remaining results from [37]

Since hl(t) is the number of such sets, and we know that their values are bounded

by b, this also gives us

E′T g ≤ b
∑
d>l

pd−lhd(t),

where E′T is the non-constant part of the partial derivative.

We let

E∗d = max{ELhd : L ⊆ E(KMW ), |L| < hH − d}.

As in the previous section, similarly to (2.21) we can assert that there is a positive

constant ε dependent only on H, such that, for each d,

pd−lE∗d < n−εnkH−1phH .

This follows from the proof of (2.21) in the previous section, by noting that in our

definition of hd, there are only finitely many z, and the inner sum, is bounded by

the polynomial τ , used in (2.21), with r = 1, a1 = z and hence dr = d.

We are now able to apply the concentration results we require. We consider the

polynomial f = α−1g, where α = maxU αU . Then we have, using (2.22),

f(t′) = α−1wy(J) = Θ(α−1bnkH−1phH)

and using the same arguments as we used at the end of the previous section, we can

show

f(t′) = ω(log n)

and

max{E′T f : T ⊆W,T 6= ∅} = n−Ω(1)f(t′).

For the final step, we first summarise that we have shown ARC implies that there

exist Y, x, y and a, b ∈ range(w′) for which we have the above two conditions, and

f(t′′) < 0.8f(t′).

However, we know that for any given choice of Y, x, y, a, and b, f depends only

on G[W ]. Equally, if G[W ] is fixed, then t and t′ are independent random variables,

with ‘law’ Bin(W,p) (i.e. t = (tw : w ∈ W ) has ‘law Bin(W,p)’ if each tw is an
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independent Bernoulli with mean p.) We finish with the final claim of [37], which

can be applied directly to our result here, without generalisation, and completes the

proof.

Claim 1

For any ε > 0 and d the following holds. If f is a multilinear, normal polynomial

of degree at most d in n variables, ζ(n) = ω(log n), and t′, t′′ are independent , each

with law Bin([n], p), then

Pr(f(t′) > max{ζ(n), nε max
T 6=∅

E
′
T f, (1 + ε)f(t′′)}) = n−ε.

Because there are only polynomially many possibilities for Y, x, y, a and b, this gives

us Lemma 2.25.

Proof of claim. Set

A =
1

2
max

{
ζ(n), nε max

T 6=∅
E
′
T f.

}
.

If Ef ≤ A then Corollary 2.20 gives

Pr(f(t′) > A) = n−ω(1);

otherwise, by Theorem 2.19,

Pr(f(t′) > (1 + ε)f(t′′)) < Pr(max{|f(t′)− Ef |, |f(t′′)− Ef |} > (ε/3)Ef) = n−ω(1).

2.7 Theorems 2.2 and 2.3 (Factors in directed graphs)

We note that in our proof of Theorem 2.2 we do not require the collapsed graph to

be a multigraph. Throughout, we only require that the graph does not contain any

subgraphs of density m(H), and this follows, in our main result, from the vertex

collapsing technique, but as in [37], it can also follow from strict balance of H, or

equivalently H. Since our partitions were fixed only by the partial embedding of

subgraphs of density m(H), in the strictly balanced case, we can simply choose our

vertex partitions freely, and then continue with the proof.
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Lastly, to prove Theorem 2.3, we use Theorem 2.2. Partition the vertices of

G(n, p) as usual into vH equal sets, either as a result of vertex collapsing dense

subgraphs, or freely in the strictly balanced case. In the former case, embedding the

partial factors of dense directed subgraphs, requires a modification of Theorem 2.4,

which follows the same arguments as the original but for directed graphs. We prove

this result below, first recalling the definition of D(n, p).

Definition 2.5 (D(n, p))

We let D(n, p) be the random directed graph on n vertices, where each unordered

pair of vertices is present with probability p independently of each other edge, and

is directed with probability 1/2 either way. This is equivalent to taking G(n, p)

and randomly directing it’s edges. D(n, 1) is therefore a random directing of the

complete graph on n vertices.

We begin with a technical lemma.

Lemma 2.28

Fix a directed graph H with v vertices and e edges. Let XH be the number of copies

of H in D(n, 1). Then, a.a.s.

XH = Θ(nv).

Proof We make use of a martingale concentration result, which can be found as

Corollary 2.27 in [36]. We state it below

Corollary 2.29

Let Z1, . . . , ZN be independent random variables, with Zk taking values in a set Λk.

Assume that a function f : Λ1 ×Λ2 × · · · ×ΛN → R satisfies the following Lipschitz

condition for some numbers ck:

If two vectors z, z′ ∈
∏N

1 differ only in the kth co-ordinate, then |f(z)−f(z′)| ≤

ck.

Then the random variable X = f(Z1, . . . , ZN ) satisfies, for any t ≥ 0,

P(|X − EX| ≥ t) ≤ exp

(
− t2

2
∑N

1 c2
k

)
.
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2.7 Theorems 2.2 and 2.3 (Factors in directed graphs)

We apply this result to the complete graph, with our Zi being the direction of edge

i, for each 1 ≤ i ≤
(
n
2

)
, and our function f = XH . It is clear that if we change the

direction of a single edge, we at most change the value of f by the number of copies

of H that edge could have been present in, which is at most Θ(
(
n−2
v−2

)
) = Θ(nv−2). In

other words, our function satisfies the Lipschitz condition with ck = cnv−2 for some

constant c. We note that the E(XH) =
(
n
v

)
v!/2vAut(H) = Θ(nv). We aim to show

that XH is within a constant multiple of expectation, and so with t = 1
2E(XH),

corollary 2.29 gives us,

P(|XH − EXH | ≥
1

2
E(XH)) ≤ exp

− E(XH)2

2
∑(n2)

i=1(cnv−2)2


= exp

(
− E(XH)2

2c2
(
n
2

)
n2v−4

)

≤ exp

(
−Θ

(
n2v

n2v−2

))
.

This clearly tends to 0 and hence, we have as n→∞, that a.a.s. XH = Θ(E(XH)) =

Θ(nv) as required. �

We also have the following corollary, the proof of which follows in an identical manner

to the above.

Corollary 2.30

Fix H ′, a subgraph of H with v′ vertices. Given a copy of H ′ in D(n, 1), the number

of copies of H in D(n, 1), using that fixed copy as a subgraph is Θ(nv−v
′
).

We will also require the following Theorem, again from [36], where it can be

found as Theorem 2.18(ii).

Theorem 2.31

Let Γp be a binomial random set of size N , where each element of Γ = [N ] is present

with probability p. Let S be a family of non-empty subsets of Γ and for each A ∈ S

let IA be the indicator function for the event {A ∈ Γp}. Let X =
∑

A∈S IA, i.e. X

is the number of sets in S contained in Γp. We have the following

P(X = 0) ≤ exp

(
− E(X)2∑∑

A∩B 6=0 E(IAIB)

)
(2.23)
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We are now ready to tackle our required result, which is a digraph generalised

form of Theorem 3.9 from [36].

Theorem 2.32

Let H be a directed graph on v vertices and e edges and XH be the number of copies

of H in D(n, p). Let ΨH = ΨH(n, p) = min{E(XH′) : H ′ ⊆ H, eH′ > 0}. Then for

any sequence p = p(n) < 1, we have the following,

P(D(n, p) 6⊃ H) ≤ exp{−Θ(ΨH)}.

Proof We first direct the complete graph on n vertices, and then we apply Theorem

2.31 to D(n, p) where Γp is the set of these directed edges from D(n, 1), each present

with probability p. We then let S be the set of copies of H in D(n, 1), and hence

X is the number of such copies in D(n, p). We consider the denominator of the

exponent of the inequality in Theorem 2.31, this can be reformulated as∑
K⊆H,eK>0

∑
H′,H′′∈S

∑
H′∩H′′=K

E(IH′IH′′) =
∑

K⊆H,eK>0

∑
H′,H′′∈S

∑
H′∩H′′=K

p2e−eK .

By Corollary 2.30, applied to the graph formed by the second copy of H, without

the K contained in H ′, in the innermost sum, and by Lemma 2.28 applied to H in

the 2nd sum, we have that this is equal to,∑
K⊆H,eK>0

Θ(nvnv−vKp2e−eK ) =
∑

Θ(n2vp2en−vKp−eK ) = Θ((E(X))2/ΨH).

Substituting back into (2.23), we have the inequality as required. �

In light of this we have the following

Corollary 2.33

For any ε > 0 there exists C > 0 such that for p > C(n−1/m(H)), a.a.s. D(n, p)

contains a partial factor covering at least (1− ε)n vertices.

Proof Suppose false, then there exists a subset of at least εn vertices that does not

a contain a copy of H. The probability that this happens is, by union bound and

Theorem 2.32, at most,(
n

dεne

)
P(D(dεne, p) 6⊃ H) ≤ 2ne−cΨH(dεne,p). (2.24)
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Where the c in the exponential depends only on H and ε. Letting pd = p/2, note

that

ΨH = min{E(XH′) : H ′ ⊆ H, eH′ > 0} = min
H′⊆H

nv
′
pe
′
d

≥minnv
′−1pe

′
d = min(np

(e′/v′−1)
d )v

′−1 ≥ min(np
m(H)
d )v

′−1,

and this implies that for p > C(n−1/m(H)), ΨH →∞, and in particular cΨH(dεne, p) >

n, and so the right hand inequality of (2.24) tends to 0, giving us a contradiction,

as required. �

We can use this result to embed the partial factors of the collapsed dense sub-

graphs of H, as in the undirected case, and continue as before, partitioning D(n, p)

into vertex sets corresponding to the vertex of H they are covered by in the partial

factors we have embedded.

We again consider the edges between the partition sets, only where they corre-

spond to edges in H. Now however, we can consider only the edges that are in the

direction we require, which are distributed uniformly and independently at random,

but with edge probability p/2, discounting those edges in the wrong direction. At

this point, the edges of the random digraph we are considering are equivalent to the

undirected random graph H(n, p/2), and we apply Theorem 2.2 directly, providing

the directed factor as required.

2.8 Conclusion, balanced H and further work

With these results, Conjecture 1 is now proven for both strictly balanced graphs,

and all non-vertex-balanced graphs. The methods used here also can be used to

prove that the conjecture holds for a wide range of vertex-balanced H.

We can prove the threshold for a variety of ‘necklace’ and related graphs formed

of copies of a dense graph linked by a ‘supergraph’ of equal or lower density.

As an example, in the graph pictured in Figure 2.5, the threshold for finding a

copy of this ‘triangle necklace’ must be at least that of a triangle factor, and Con-

jecture 1 suggests it should be equal. We prove this by first embedding a triangle
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Figure 2.5: A necklace graph.

factor, and then use Theorem 2.2 to embed the dotted edges that form a less dense

cycle in the supergraph. Provided the resulting graph or multigraph from the col-

lapsing process is less dense than m(H), we will always be able to apply Theorem

2.2 to find this.

The supergraph cannot ever be denser than m(H), as this implies a subgraph of

density greater than m(H), which is a contradiction. So, all that remains to consider

are graphs where we will be left with a supergraph of equal density, after collapsing

all subgraphs. We know this supergraph must be strictly balanced, or we would have

continued to collapse its subgraphs and so we can apply Theorem 2.2. However, the

supergraph may have fewer edges than each of the collapsed subgraphs, and certainly

has fewer than the original graph. This may force it to require a higher threshold,

by a constant power of log to embed, and so will not prove the conjecture.

Figure 2.6: A balanced graph.

For graph in Figure 2.6, the conjectured threshold is n−2/3(log n)1/5, but using

the methods within this paper, we are only able to embed it at p = ω(n−2/3(log n)1/3),

since collapsing the triangle will leave us with another triangle, requiring the higher

log term to embed.

In light of this, we see that we can prove Conjecture 1 for all H, except for
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those mentioned above, for which we are still within a constant power of log of the

conjectured bound.

Formally we have the following. For a vertex-balanced but not strictly balanced

H we begin by labelling each vertex with sv which we recall is defined by

sv = min{e(H ′) : H ′ ⊆ H, v ∈ V (H ′), d(H ′) = m(v,H)}.

We now apply the collapsing process, at each stage only collapsing strictly balanced

strict subgraphs of H (or subsequently strict subgraphs of the resulting graph after

collapse) of density m(H) and choosing the subgraph with the least number of

edges each step. Label the newly formed vertex after each step with the smaller

of either: the number of edges collapsed into the vertex or the maximum sv taken

over the vertices collapsed to form it. This process terminates when the remaining

(multi)graph after collapse is itself strictly balanced and we denote it byH and define

eH to be the number of edges it contains. Let SM = min{maxi∈V (H){si}, eH}. With

these terms defined, we have,

Theorem 2.34

If H is vertex-balanced but not strictly balanced then,

thH(n) = O
(
n−1/m(H) (log n)1/SM

)
.

Proof Consider a subgraph H ′, which we collapse in the process of generating

H. This subgraph has density m(H) and as such we can embed a partial factor

of it for values of p = ω
(
n−1/m(H)

)
. Equally, if required we can embed a full,

partitioned factor of H ′ for p = ω
(
n−1/m(H) (log n)1/|e(H′)|

)
. Consider the vertex

formed by collapsing H ′ and a strictly balanced subgraph H ′′ (or graph if the col-

lapsing process has terminated) that contains it. We can now embed a factor of the

vertices that both form and have been collapsed into H ′′ by first finding a partial

factor of H ′ and then finding a partitioned factor of H ′′. This requires p to satisfy

p = ω
(
n−1/m(H) (log n)1/|e(H′′)|

)
.

The only issue is if all of the other vertices of H ′′ were also formed by the collapse

of a subgraph. In this case, we can embed partial factors for all but one of the
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subgraphs but will then be required to find a complete factor of the final subgraph on

the remaining vertices of G(n, p). We can choose which collapsed subgraph to embed

last and hence we choose H ′ to be the subgraph with maximum number of edges.

As such we can embed the collapsed subgraphs at p = ω
(
n−1/m(H) (log n)1/|e(H′)|

)
and hence the full subgraph can be embedded at ω

(
n−1/m(H) (log n)1/α

)
, where

α = min{|e(H ′)|, |e(H ′′)|}.

If H ′′ is the graph resulting from the termination of the collapsing process, then

we are done, as α = eM in this case. If not and the process continues, then we can

use the same argument as above to iteratively arrive at the same result. Ultimately

we will be left with a single strictly balanced final graph, with each vertex i labelled

by the value of si for which a factor of the vertices collapsed into it can be embedded

at ω
(
n−1/m(H) (log n)1/si

)
. In this way we continue as above, partial factors are

embedded for all but one vertex and a full factor is embedded for the vertex for which

the value of si is maximum. Lastly the edges of the final graph H are embedded

which requires ω
(
n−1/m(H) (log n)1/eH

)
and hence the threshold is bounded above

by the smaller of these two values where the larger of the inverted values in the log

exponent is precisely the definition of eM as required. �

For any H, sM will always satisfy sM ≤ s(H) for the s(H) that appears in the log

exponent of Lemma 2.8 and hence since both appear inverted in the exponent, this

bound is (as required) at least the size of the lower bound which is conjectured to

be the correct threshold. This is clear as s(H) is the maximum over all sv and sM

is chosen by choosing amongst the smaller of the maximum of values of subsets of

sv and the size of the final graph and so cannot exceed the maximum sv which is

precisely s(H). For many graphs these values will however coincide, as for example

in Figure 2.5, after the collapsing process terminates, each vertex will be labelled

with a value of 3 and the final supergraph has 4 edges and as such s(H) = sM = 3

as required.
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Chapter 3

Complexity on Eulerian Circuits

3.0.1 Introduction

An Eulerian circuit of a graph G is a trail (a sequence of distinct edges from E(G);

{(v1,1, v1,2), (v2,1, v2,2) . . . } with vi,2 = vi+1,1 for all i) in which every edge of G

appears exactly once, starting and ending at the same vertex, and is one of the

oldest concepts in graph theory.

Euler proved that a necessary condition for a graph to be Eulerian, i.e. to

permit an Eulerian circuit, is for it to be connected and that every vertex must have

even degree [45] and stated that this condition was also sufficient, but this was not

formally proven until 1873 by Carl Hierholzer when it was published posthumously

after he had described his work to a colleague before his death [34].

Having defined the Eulerian circuits in this chapter’s title, we now move on to

introducing complexity. Informally, we call a well defined question with specified

inputs, for which there is a yes or no answer, such as, “can the graph G be properly

coloured using only k colours?”, a decision problem. We define the set P to be the

set of such problems, for which we can find a solution in polynomial time, in terms of

the size of the problem’s inputs (for example, k and the number of edges or vertices

in G).

By a solution in polynomial time, we mean an algorithm that will determinis-

tically provide a solution to all instances of the problem such that the number of

steps taken by this algorithm to solve any instance of the problem is bounded above

by a polynomial function in the input parameters of that instance.

A reason why polynomial time algorithms are of interest, is that they scale well

with increasing the size of the problem. The advent of computing means that tasks
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and calculations that would have been tedious or impossible to compute by hand

can be tackled by computers. If a problem has a polynomial time solution, then

when applying such an algorithm, we know that there is a limit to how badly the

time taken to solve it will scale up as we increase the size of the inputs. Conversely,

if all we have at our disposal are exponential time algorithms, increasing the scale

of the problem will very quickly lead to solution times that spiral out of control.

If for any possible solution to a decision problem, if it can be verified as a correct

solution in polynomial time, then we say that the problem is part of the set NP.

The problem of whether P=NP remains open (famously so), but there is a class of

problems for which it has been shown that a polynomial time solution for any one

of them would allow you to solve any problem in NP in polynomial time (and hence

P would equal NP). This class is called NP-Hard, and also includes problems that

are not decision problems, such as “what is the minimum number of colours needed

for graph G to be properly coloured?”. We call a decision problem NP-complete if

it lies in both NP and NP-Hard.

The first problem shown to be NP-complete, was the Boolean satisfiability prob-

lem, usually referred to as SAT, which was proven by Cook in his seminal paper “The

Complexity of Theorem-proving Procedures” [12], which formalised the concepts of

polynomial time reduction and NP-completeness. This result was also independently

discovered by Levin in 1973 [46]. Following on from these initial results, Karp demon-

strated 21 problems that were NP-complete [40], by demonstrating that if they were

solvable in polynomial time, the original SAT problem would also become solvable,

and hence these new problems must also be NP-complete. This approach is the

model for almost all NP-completeness proofs today, namely to demonstrate a “poly-

nomial time reduction” from a solution to the problem to be tackled to a solution

to a known NP-complete problem, thus proving that it is also NP-complete.

Given an Eulerian graph, it is well known that an Eulerian circuit can be found

in polynomial time. By simply following a trail around the graph, choosing a free

edge (one not already used in the trail) at the starting or current vertex whenever
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available and following this edge to the next vertex and repeating the process, you

will eventually find a closed trail. Supposing this trail is not an Eulerian circuit,

some vertex in the trail must have free edges not used in the trail, and since an

even number of edges are used by any trail at each vertex, this vertex (and in fact

all vertices) will have an even number of free edges remaining. Beginning again at

this vertex with free edges remaining, and connecting the new trail to the first will

rapidly cover the graph’s remaining edges through iteration of this process. This

approach is essentially what is known as Hierholzer’s algorithm [34].

In sharp contrast to this structure is the Hamiltonian cycle, a closed cycle that

visits every vertex of the graph exactly once. Although superficially similar, there

are no known simple and easy to check conditions for the existence of a Hamiltonian

cycle and finding such a cycle was one of Karp’s original 21 NP-complete problems

[40].

Finding a Hamiltonian cycle can be seen to be an example of the travelling

salesman problem, i.e. finding the shortest cycle in an edge weighted graph, that

visits each vertex at least once. By setting the distance between any two adjacent

vertices to one, a solution of length n to the travelling salesman problem must

correspond to a Hamiltonian cycle.

Finding an Eulerian circuit is a special case of the Chinese Postman, or route

inspection, problem, in which the shortest trail, that uses every edge at least once,

is sought after in a (usually weighted) graph. In an Eulerian graph, this is always

any Eulerian circuit, and in a general undirected graph, finding the minimum is

computable in polynomial time [15].

This might lead one to wonder whether any problem related to Eulerian circuits is

NP-complete and in fact the Chinese Postman Problem does become so, for graphs

that contain both directed and undirected edges, (Listed as ND25 in [28]). This

however is for non-Eulerian graphs, looking for the shortest circuit that may use

edges several times.

Limiting ourselves to Eulerian circuits, we can see that weighting the edges or
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3.1 The turn-costed Eulerian circuit problem

vertices will have no impact, since all Eulerian circuits use each edge and vertex the

same number of times, with the only choices in forming an Eulerian circuit are the

order in which you follow them. This suggests a number of possible problems to

consider to take into account these transitions and we consider two of them in this

chapter.

3.1 The turn-costed Eulerian circuit problem

The first such problem we consider is that of the turn-costed Eulerian circuit problem

(ETCP). We begin with an Eulerian graph G and at each vertex of G we assign

turning costs (which we define below), with the aim of finding an Eulerian circuit

with either minimum total cost or with total cost less than some fixed value (or

whether such a circuit exists for the decision version of the problem). In defining

the turning cost at a vertex, we consider the half edges incident to it formed by

considering each edge as two half edges, so a loop at v would create two distinct half

edges, both at v, while each other edge would consist of one half edge at each of the

end points of the edge.

Definition 3.1 (Transition systems)

Let G be a graph, and v ∈ V (G) be a vertex of G. A pairing at v is a set {e, f}

where e and f are distinct half edges at v. A transition system, or configuration of

v, denoted by T (v), is a partitioning of the half edges at v into pairings so that each

half edge appears in exactly one pair.

Definition 3.2 (Turning costs)

For each possible pairing {e, f} at v we assign a non-negative rational number, which

we call the turning cost of the pairing, denoted by wv(e, f). We call the set of turning

costs at v to be the turning costs at v, and for each transition system, we call the

sum of the costs of the pairs in the configuration the total cost of the configuration

at v, and denote this by w(T (v)).

If you consider an Eulerian circuit on a graph, starting at an arbitrary point

and following the circuit in either direction will generate a transition system at each
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3.1 The turn-costed Eulerian circuit problem

vertex, by pairing the half edges that enter and then leave the vertex. Conversely,

fixing a transition system at each vertex will induce a set of circuits on the graph,

but these may not form an Eulerian circuit, even on an Eulerian graph. As an

example, consider the transitions at a cut vertex, which separates the graph into

two components if removed. Any transition system in which the half edges from one

component are entirely paired among themselves cannot possibly induce an Eulerian

circuit, since no trail within this component will ever leave and hence cannot span

the edges of the graph.

Given an Eulerian circuit C, we denote the transition system determined by this

circuit at a vertex v by TC(v). For such an Eulerian circuit, the cost of C, denoted

by w(C), is the sum of the costs of the pairings that it determines:

w(C) =
∑

v∈V (G)

w(TC(v)).

We can now state the optimisation problem formally.

Problem 1

Given an Eulerian graph G equipped with a set of turning costs at each vertex, find

an Eulerian circuit C with the minimum cost w(C).

Since this problem is clearly not a decision problem (no yes/no answer), we can also

state the corresponding decision form of Problem 1;

Problem 2

Given an Eulerian graph G equipped with a set of turning costs at each vertex, and

a non-negative constant c, determine if there is an Eulerian circuit C with a cost

w(C) ≤ c.

We call both forms of this problem the turn-costed Eulerian circuit problem or

ETCP. Verifying a possible solution (a given Eulerian circuit on G) to Problem 2

is clearly possible in polynomial time, since this requires only verifying the induced

turns at each vertex, which can be carried out by following the path of the circuit

and recording the edge sequence, and then summing the total costs of these turns

and hence Problem 2 lies in NP. If a polynomial time algorithm for finding a solution
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to Problem 1 were known, then it could be used to solve Problem 2 immediately,

by finding the minimum and comparing it to the value of c specified, and hence it

would lie in P. We, however, will demonstrate that both problems are, in general,

intractable (assuming P6=NP).

It has been pointed out to us by Graham Brightwell, that this result is implied

by the result of Bent and Manber on A-trails in [8]. In this paper they demonstrate

that verifying the problem “Given a graph drawn in the plane, is there an Eulerian

circuit in which successive edges always belong to a common face?” is NP-complete.

This implies the NP-completeness of Problem 2 by taking the plane graph to be

considered and setting turn costs that lie along a common face to 0 and those that

do not to 1. A 0 cost turn costed Eulerian circuit on this plane graph implies the

existence of such an Eulerian circuit as required. However in the following sections we

also prove that several restrictions of the problem, such as bounding the maximum

degree of the graph, do not make the problem tractable and for this we require our

original result as the methods of Bent and Manber are not applicable here, and so

include it. We also demonstrate a number of restrictions for which we do however

produce a polynomial time algorithm.

3.2 Motivation

Both forms of ETCP we discuss, and the related problems we discuss later, arise

from biomolecular computing and a design strategy problem in DNA self-assembly

via origami folding, which involves finding an optimal route for a scaffolding strand

of DNA through a targeted structure.

Self-assembly is the physical process by which structures form from disordered

components without outside direction, based on the local chemical and physical

properties of the materials used. It is an important property in nanoscale construc-

tions, where the creation of tiny structures can be extremely difficult to direct and

control.

DNA naturally possesses properties that lends itself to self-assembly, since bond-

66



3.2 Motivation

ing of DNA strands is dependent on the base pairs within the strands, following

rules that are well understood. This naturally leads to the double-helix structure

that would be familiar to many people today. DNA self-assembly design problems

are those in which synthetic DNA strands are designed such that the chosen base

pairs will result in the formation of a particular desired construct. Initial uses of

DNA self-assembly were little more than proofs of concept, producing ‘artistic’ 2D

structures, such as a smiley face, but a range of possible applications have been

proposed such as self-destructing drug delivery systems.

In ‘DNA origami’, a single scaffolding strand of DNA traces a construct exactly

once, and then short helper strands, called staples, bond to this strand to fold and

lock it into the desired configuration (see [35], [51], and [56] for a recent survey).

DNA origami has initially been applied to constructing a range of 2-complexes

(solid 2D) structures, and later 3-complexes (solid 3D structures). A logical next

step is adapting this technique to 1-complexes, or graph-theoretical structures, such

as the skeletons of polyhedra. Such graph-theoretical structures (such as cubes

[11]; truncated octahedra [67]; rigid octahedra [60]; tetrahedra, dodecahedra, and

buckyballs [33]; and a 3D crystalline lattice [68]) have already been assembled via a

different method known as branched junction molecules.

DNA origami is known to have some practical advantages over branched junction

methods (the scaffolding strands and staples are easier to produce than branched

junction molecules, for example), so it is of interest to try to assemble these and

similar structures from DNA origami. However, the design strategies for ‘filled’

constructions, such as the stars and smiley faces of [56] or the 3D solid bricks and

honeycombs and modularly assembled icosahedron of [13], are different from those

needed for graph-theoretical structures such as 1-complexes.

The design process for using DNA origami folding to produce self-assembling

molecular structures involves finding a route for a scaffolding strand to take through

the desired structure. When aiming to produce a construct with the structure of a

1-complex or graph embedded in 3-space, for example a polyhedral skeleton, then
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the route of the scaffolding strand must correspond to an Eulerian circuit through

the graph, or through some augmentation of the graph (if it is not Eulerian, for

example).

In general since DNA bonding of matched pairs is energetically favourable, a

system will likely maximise the number of matches naturally, according to the laws

of thermodynamics. However, other physical properties and behaviour of DNA

strands may interfere and resultantly, at each vertex there may be a preferred route

for the scaffolding strand, for example, following a face of the structure rather than

weaving through the vertex. This gives us the graph theoretic associated problem of

finding an Eulerian circuit with minimum turning cost, outlined above as Problems 1

and 2.

Our result, in proving that in general finding the minimum weight Eulerian cir-

cuit is NP-Hard and remains so for bounded degree structures, produces an immedi-

ate implication to using DNA origami in biomolecular computing. Graph invariants

are properties of graphs which remain unchanged under isomorphism (such as the

number of edges or vertices of the graph, or the existence of a Hamilton cycle). Ver-

ifying these properties is known to be NP-Hard in many cases (Hamilton cycles and

graph colourability being two well known examples). Being NP-Hard does not mean

that advances in tackling the problems cannot be made and biomolecular strategies

have been developed for solving a number of such problems.

Biomolecular computing is the process of encoding a problem directly into struc-

tures, such as DNA, and taking advantage of the massive amount of data intrinsically

encoded into its structure, and the ability of chemical processes to effectively run

massively efficient and parallel computations at speeds that modern day silicon based

computing cannot hope to match. The idea of nano-computation is widely credited

as originating with Richard Feynman and his 1959 talk “There’s plenty of room at

the bottom” [22], where he proposed structural arrangement on a molecular scale

to tackle problems that were outside the scope of the scientific community of the

day, such as the production of nanoscale machines and computers. The first proof
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of concept of such computation came in 1994 when Adleman [2] demonstrated that

a biological system could be used to tackle the (NP-Hard) directed Hamilton cycle

problem, actually managing to encode a 7 node example into a DNA structure. This

approach has continued to attract interest and further results have been developed,

for example, see [38] for strategies for tackling 3-SAT and vertex 3-colourability.

It is hoped that DNA origami might well be a sensible approach for encoding

graph problems into biological processes, but the NP-Hardness results shown here

demonstrate that caution is required, since the initial self-assembly design process

of assembling a graph through DNA origami to tackle difficult problems may itself

already require solving an NP-Hard problem.

Despite this gloomy outlook, a positive result comes from work with our co-

authors; Joanna A. Ellis-Monaghan, Iain Moffatt and Greta Pangborn in [19], where

we showed that ETCP can be transformed into a Travelling Salesman Problem

(TSP). While the TSP is also in general NP-Hard, it is a problem that has attracted

a huge range of research, for its wide ranging applications and uses (see [61] for a

detailed survey). These results and work on TSP, while obviously not producing

polynomial time algorithms, still provide computational approaches and software

that are far beyond the machinery available for most NP-Hard problems and this

progress, as a consequence of this result, can be brought to bear on finding opti-

mal routes for a scaffolding strand for DNA origami assembly of graph-theoretical

structures.

It is unclear at this point what these results say for the relative feasibility of using

DNA origami for biomolecular computing. The NP-Hard result suggests that the

complexity of the initial input makes the approach suboptimal and that single strand

DNA origami methods may not be suitable as a generic starting point for efficient

biomolecular computing of graph invariants. We previously mentioned branched

junction molecules as an alternative method of producing self-assembling structures,

and for this method, there are several provably optimal design strategies for a few

common classes of graphs (see [18, 1]), but at this point no-one has looked at the
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general computational complexity of the design problem for these methods, and it

may be that they too are intractable in the general case.

3.2.1 Related problems

The ETCP problem at first glance may appear very similar to the ‘Mill Routing

Problem’, in which a (possibly non-Eulerian) graph is assigned turning costs and

the minimum weight tour that covers all the edges is sought.

The Mill Routing Problem derives from discrete thin mill routing, based on the

physical scenario of a router cutting out patterns from a solid surface of material.

For mass-production, it is ideal for the router to go as quickly as possible, and as

such turning at a grid point will be slower than going straight, and reversing may be

extremely costly or impossible depending on the physical design of the router and

as such this can be modelled as a turning cost problem.

This is a very similar set-up to Problem 1, with the only difference being that

we insist that the covering tour is Eulerian. This problem of finding a minimum

tour, rather a minimum Eulerian circuit was tackled in [7], where they show that

the problem is in general NP-Complete.

At first glance, the change of insisting on an Eulerian cover may not seem signifi-

cant and a naive view might suggest that they are equivalent on Eulerian graphs, but

in practice, this changes the problem considerably, requiring a different approach to

analyse the complexity of the problem. In general, subtle changes to similar prob-

lems can dramatically alter the complexity of the problem, as we already mentioned

with subtle changes to the Chinese Postman problem moving it from polynomial

solvable to NP-Completeness (see [16] and [23, 24] for overviews).

Relaxing the restriction on an Eulerian tour, even on an Eulerian graph, allows

for doubling back or repeating edges, which should be avoided in DNA origami. The

methods of [7] are not applicable to our restriction, as they in fact prove that in

finding a minimum weight covering tour, even the number of turns is NP-Hard to

decide, while this is fixed in our restriction of the problem.
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An extremely simple turn costed Eulerian graph, for which the optimal covering

tour is not Eulerian can be seen by taking the graph consisting of two triangles,

intersecting at a single shared vertex.

1

4

2

3

We assign a cost of 0 to all pairs at the degree 2 vertices and those at the degree 4

vertex which stay within a single triangle (i.e. {1, 4} and {2, 3}), and to one of the

four transitions that pair edges from different triangles (say {1, 2}), with a weight

of 1 on the remaining 3 pairs ({1, 3} and {2, 4} and {3, 4}) at the centre.

An optimal Eulerian circuit must use two distinct pairings at the centre vertex

that cross from one triangle to another (either {1, 2} and {3, 4} or {1, 3} and {2, 4}),

and so will have total cost at least 1 even if it uses the 0 cost transition as one of

its two choices, while in the mill routing case, the tour can back track on itself,

using the same 0 cost crossing pair at the centre vertex twice to cross back and forth

between the triangles and cover all the edges with a total cost of 0.

In light of this, the results of [7], which show that the mill routing problem is NP-

Hard, cannot be applied here. Our results, however, show that the discrete thin mill

routing problem remains NP-Hard in the restricted case that the desired tour must

be an Eulerian circuit. Therefore, even if a set of repeated edges is specified ahead of

time, which can be modelled by doubling edges, or if, in general, augmenting edges

are added to make the graph Eulerian, then the general discrete thin mill routing

problem remains intractable if the desired covering tour must also be an Eulerian

circuit.
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3.3 Finding an Eulerian circuit with minimum turning

cost is NP-Hard

We now move on to the main sections of this chapter, the proofs that Problem 1 is

NP-Hard and Problem 2 is NP-Complete and the consideration of the tractability

of various restrictions of these problems.

We tackle this proof by demonstrating that Problem 2, namely that checking

the existence of an Eulerian circuit with total turning cost less than or equal to

some value, can be used to solve an arbitrary 3-SAT problem. Formally we prove

that an arbitrary 3-SAT instance is polynomial time reducible to an ETCP problem.

This means that a polynomial time solution to a general ETCP problem could be

used to produce a polynomial time solution to 3-SAT, which is known to be NP-

Complete [12], and hence ETCP is also NP-Complete, since it clearly lies in NP. As

mentioned earlier, a polynomial time solution to Problem 1 implies one for Problem

2, since comparing the weight of the minimum circuit to the chosen value yields an

immediate answer, and hence Problem 1 is therefore also NP-Hard.

A 3-SAT problem is a logical evaluation problem, involving a Boolean logic

expression involving Boolean variables x1, . . . , xn in m logical clauses, and the output

is whether or not there is a configuration of the xi (to either true or false) such that

the complete expression evaluates to true. As an example, a 3-SAT problem looks

something like

(x1 ∨ x2 ∨ ¬x3) ∧ (¬x2 ∨ x4 ∨ x5) ∧ · · · ∧ (x1 ∨ ¬x3 ∨ x4).

Formally, each parenthetical clause in the Boolean expression is a collection of 3

distinct boolean variables, xi ∈ {x1, . . . xn} in either positive (x1) or negative form

(¬x1, where ¬ is the logical ‘not’ operator), connected by logical ‘or’ (∨) operators.

The instance is formed of these clauses connected by logical ‘and’ operators (∧). A

3-SAT instance containing m clauses in n variables, therefore has input parameters

n and m. We refer to xi and ¬xi collectively as the literal corresponding to xi, with

xi being referred to as a positive literal and ¬xi as a negative literal.
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v2

v5

v1

v3

v4

Figure 3.1: Triangles for 3-SAT formula: (x1 ∨ x2 ∨ ¬x3) ∧ (¬x1 ∨ x3 ∨ x4) ∧ (x1 ∨
x2 ∨ ¬x5).

3.3.1 Constructing an Eulerian graph with turning costs from a

given 3-SAT instance

We begin with an arbitrary 3-SAT instance, I and for each variable xi we construct

a vertex vi to model this variable. To help visualise this process, we embed each vi

in a plane.

Analysing the 3-SAT instance from left to right, we add edges to the graph to

represent each clause. Supposing the first clause contains xi, xj and xk, in either

positive or negative forms (for example (xi ∨ xj ∨ ¬xk)), we connect vertices vi, vj

and vk with a single edge between each, forming a triangle.

We do not require the graph to be planar, so we do not care whether the edges

are crossing, but we do require each of the 3 pairs of half-edges to be consecutive

in a clockwise cyclic ordering of the half-edges at each vertex, i.e. the edges (xi, xj)

and (xi, xk) must appear consecutively in a clockwise ordering of the edges adjacent

to xi.

It does not matter in which order these half edges appear within their pair, nor

in what order the pairs themselves appear, as long as the half-edges within each pair

are adjacent.

Again, purely for ease of visualisation and description, we shade a small region

between the pair of half-edges within each triangle to record this property, as seen

in Figure 3.1.

As this process continues, it is likely that multiple edges will be added between
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v1(x1∨xp∨xq) (x1∨xl∨xm)

(¬
x
1∨
x
n
∨x

r
)

Figure 3.2: Initial neighbourhood of a vertex v1.

various pairs of vertices. If one wishes to restrict this problem to simple graphs,

each multiple edge e, e′ = (u, v) can be replaced with edges (u, x) and (x, v) with a

weight of 0 assigned to the only possible transition at x. Clearly this does not affect

the existence of an Eulerian circuit of any given weight, and since the number of

added vertices and edges is less than the number of edges in the original multigraph,

it makes no difference to the complexity of the problem.

Each triangle is labelled with the clause it represents. Observing the structure of

the vertex vi, at this point, observe that each vertex is of even degree, with pairs of

adjacent edges alternately bounding either unshaded regions or shaded regions, la-

belled with a clause from the 3-SAT instance containing either a negative or positive

occurrence of the variable xi.

We now add an extra vertex u, above the plane. We call u the apex vertex. We

will be adding edges from each vi to u, having them leave vi within the unshaded

regions, and lying in the plane for a small neighbourhood of vi before rising to u as

seen in figure 3.3.

The number of edges we embed in each unshaded region depends on whether

the bordering shaded regions are labelled with clauses that contain xi in positive

or negative form. For each unshaded region around vi, if both adjacent labelled

triangles contain xi in positive form, or both contain xi in negative form, we add

two edges from vi to u, emerging from this region. If however the literal is positive
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u

Figure 3.3: Adding the apex vertex u.

(x1∨xp∨xq) (x1∨xl∨xm)
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x
n
∨x

r
)

Figure 3.4: Final neighbourhood of a vertex v1.

in one clause and negative in the other, we add a single edge in this region as seen

in figure 3.4.

We observe that each vertex is still of even degree. This can be seen by con-

sidering the sequence of bounded regions and the form of the literal xi in each one.

Between instances of xi that are both positive or both negative, we add two edges.

We add one edge only when the ‘polarity’ of the instance switches, and again when

it switches back. Since the edges are in a cyclic ordering, we must switch an even

number of times, and hence add an even number of single edges. Since the number

of edges from vi to u is even at every vi, the degree of u must clearly also be even.

At this point we have constructed an Eulerian graph, since every vertex is of
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even degree and connected to u and hence the entire graph is connected.

All that remains in the construction is to add turning costs at each vertex. This

is done according to a simple scheme. All possible turning configurations at the

apex vertex, u are assigned a cost of 0. At each vi we assign a weight of 0 to any

edge pairing that appears consecutively in the clockwise orientation and a weight of

1 otherwise.

This is the Eulerian graph with turning costs associated to the given 3-SAT

instance.

3.3.2 Equivalence of 3-SAT to finding an Eulerian circuit with

minimum turning costs

We now demonstrate checking the satisfiability of a given 3-SAT instance is equiv-

alent to finding the minimum weight Eulerian circuit of the associated graph we

constructed in subsection 3.3.1. Formally we prove the following;

Theorem 3.1

There is a solution to a given 3-SAT instance I if and only if there is a zero weight

solution to the turn costed Eulerian circuit problem (ETCP) on the associated Eu-

lerian graph GI , with turning costs, as constructed in Subsection 3.3.1, i.e. an

Eulerian circuit through the associated graph with total weight zero.

Proof We first suppose that a 0 weight solution to the ETCP exists on the associ-

ated graph, GI . Since the total cost is 0, the configuration at each vertex must also

have total weight 0, and hence each pairing in the circuit has cost 0. This implies

that at each vi, each edge in the circuit is paired with a consecutive edge in the

clockwise ordering of the adjacent edges (since these are the only pairs assigned a

cost of 0), and hence these edges appear consecutively in the Eulerian circuit itself.

Choosing any edge at vi and examining which of its neighbours it is paired with

in the 0 cost circuit, must then fix the choices for each of the edges at vi, since

the consecutive edge not paired with the initial edge we examine must therefore be

paired with its only other neighbour, which then fixes the next edges in the cyclic
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xi is true.
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xi is false.

Figure 3.5: These are the only two possible zero-cost transitions at a vertex vi.
Dotted lines in the left image represent the Eulerian circuit configurations at the
vertex vi corresponding to variable xi set to true, hence connecting ¬xi triangles.
The image on the right represents vi when xi is set to false.

ordering, and so on. This means that there are only two 0 total weight configurations

at each vertex.

Due to the way in which we added single or double edges from vi to the apex

vertex u, these two configurations behave in a fixed manner with regards to the

shaded regions corresponding to the clauses that xi appear in. If two edges adjacent

to a shaded region corresponding to a clause where xi appears in positive form

are paired together, then all such pairs bordering positive instance of xi will also

be paired up. Conversely all edges adjacent to regions corresponding to negative

instance of xi will have the edges paired up with edges going from xi to the apex

vertex. If instead two edges adjacent to a region with a negative instance of the

clause are paired, all such negative regions will have their bordering edges at xi

paired and the edges bordering the positive instances will be paired with the edges

going to u.

In simpler terms, the two 0-cost configurations at vi will either pair up all edges

incident to vi that are part of a triangle bordering regions corresponding to clauses

containing positive instances xi or all edges incident to vi that are part of a triangle

bordering regions corresponding to instances of ¬xi but never a mixture of the two.
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This dual configuration set-up allows the states of vi to be linked to the boolean

value of the literal xi. Somewhat counter-intuitively, if the configuration at vi pairs

up the edges correspond to xi, we say the vertex is in the ‘false’ configuration,

while if it connects up the edges corresponding to ¬xi, we say vi is in the ‘true’

configuration.

We claim that examining the Eulerian circuit and recording the configuration of

each vertex and then assigning each variable the value corresponding to its repre-

sentative vertex’s state produces a solution to the original 3-SAT problem.

Suppose that this process does not produce a solution to the 3-SAT problem,

then at least one of the clauses in the 3-SAT instance is false. We examine the

triangle corresponding to this clause. Since the clause is false, each xi in the clause

must be set to true if ¬xi appeared in the clause and false if xi appeared there. If

one of the xi is set to false, when the clause this triangle is labelled with contains

xi, then the edge configuration at vi is set to its false configuration, which means

that the edges forming this triangle appear sequentially at vi in the Eulerian circuit.

Equally if xi is set to true, and the clause contains ¬xi then the vertex is in its true

configuration which will also link up the edges at xi in this triangle.

The clause evaluating to false therefore implies that all three edges of the triangle

are paired up at each vertex, and hence form a closed loop. This cannot occur in an

Eulerian circuit and hence we have a contradiction, since we derived the proposed

solution to the 3-SAT instance from a solution to the turn costed Eulerian circuit

problem.

For the converse, we must show that if a solution exists for the 3-SAT instance,

then this graph and associated turning cost problem has a zero weight solution.

We begin by examining the boolean value of each xi and assigning each vertex

the corresponding configuration state. By design, either configuration we can assign

at each vertex will have weight 0 and any configuration at the apex vertex will have

weight 0 also. All that remains is to check that this 0 weight configuration does

form an Eulerian circuit.
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Figure 3.6: Subpaths in an Eulerian circuit around a triangle, recalling that the Euler
circuit follows turns with cost zero, i.e. using consecutive edges about a vertex.

As in the previous argument, we can see that we will not have any closed trian-

gles, as this would correspond to an unsatisfied clause which is a contradiction to our

assumption of a solution for the 3-SAT instance. The edges around each triangle,

therefore form up to 3 paths of length at most 3 which terminate at edges going to

the apex vertex.

Every edge from the apex vertex, u is either paired up with another edge to u,

forming a path of length 2, or to a path bordering a triangle, which also continues

to the apex. Since any configuration at u has weight 0, we can simply concatenate

these paths in any cyclic order at u which must form an Eulerian circuit with total

weight 0 as required. �

Before we move on, we make the following observation that will be useful later

and is best understood with the construction and equivalence in mind. This ob-

servation essentially notes that in the graph constructed above, we could take any

vertex representing a literal, and the apex vertex and add two edges between them

without impacting Theorem 3.1, namely the equivalence of a solution to the 3-SAT

instance and the existence of a 0 cost Eulerian circuit in the graph. As such, since

the construction already ensures that the vertices have even degree, we can also

assume that every vertex has a degree not divisible by 4.

Observation 1

Given a 3-SAT instance I, we may assume without loss of generality that any vertex

vi, representing the literal corresponding to xi in GI , the Eulerian graph with turning

79



3.3 The turn-costed Eulerian circuit problem is NP-Hard

costs of I that is used in the proof of Theorem 3.1, has a degree that is not divisible

by 4.

Proof If the degree of vi is divisible by 4, then modify the graph by adding two

additional copies of any edge (vi, u) from vi to the apex vertex, placing them im-

mediately after (vi, u) in the cycling ordering of the edges around vi and making

the region between them in the neighbourhood of vi unshaded. This increases the

degree by two, without changing the parity of the number of edges in any unshaded

region. Thus, we are still able to distinguish between the two possible transitions

at the vertex vi (consider Figure 3.5 with the two additional edges added), so the

additional edges do not affect the ways in which a zero-cost Eulerian circuit can

follow the triangles corresponding to the clauses, and the construction of the graph

is still polynomial time. Thus the proof of Theorem 3.1, still holds with the modified

graph and does not increase the complexity of constructing the graph. �

In light of the above, all that remains is to demonstrate that the associated

graph with turning costs can be constructed in polynomial time from the given

3-SAT instance.

Proposition 3.2

For a given 3-SAT instance, the associated graph with turning costs, GI as described

in section 3.3.1 can be constructed in polynomial time.

Proof To demonstrate that the construction of the graph GI can be completed in

polynomial time, we first recall that our inputs are n, the number of literals, and m,

the number of clauses in our 3-SAT instance. We aim to show that the graph can

be constructed in O(nm2) time.

Firstly, we note that to generate the vertex set of GI , all we require is to know the

value of n. This can be found by simply reading each clause in turn and recording

the highest index seen through the whole process.

Equally, the pairs of edges we add to form the triangles corresponding to each

clause, can be added in any order, as long as they are added in a clockwise ordering
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around each vertex, and so can be added in as the clauses are read from left to right.

There are 3 literals in each clause, corresponding to 3m edges added to the graph

and at most 2m at a single vi vertex.

Once the edges between vi have been added, the only edges remaining are those

that are required between the vi and the apex vertex u. This involves going through

the cyclic ordering of edges around each vi and adding 1 or 2 edges for each pair

of triangle forming edges, depending only on the labelling we added to the region

between the existing edges. As such this process adds at most 2m edges to the graph

at each vertex, and therefore requires O(mn) steps to complete.

Assigning the turn cost transitions requires us to list each possible pair of edges at

a vertex. Since no vertex has degree greater than 4m, this is at most
(

4m
2

)
= O(m2)

pairs at each vertex. We do not need to list the transitions at u since all transitions

at u (which has degree at most 3m) have weight 0 and so do not contribute to the

total weight. Therefore, at most we require O(nm2) steps to record the possible

turning costs.

After these steps, the graph with turning costs are completed, and so the overall

time required is O(nm2) which is polynomial in n and m as required. �

Corollary 3.3

Problem 2 is NP-Complete.

Proof Problem 2 is clearly in NP, since the cost of any Eulerian circuit can easily

be calculated in polynomial time. In light of Theorem 3.1 and Proposition 3.2,

we have shown that 3-SAT is reducible to Problem 2. 3-SAT is well known to be

NP-Complete, and hence Problem 2 must also be NP-Complete as required. �

Corollary 3.4

Problem 1, which is the optimisation form of Problem 2, namely, finding a minimum

cost Eulerian circuit is NP-Hard.

Proof Problem 2 is clearly solvable in polynomial time if Problem 1 can be used

as an oracle. �
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v
−→

white smoothing black smoothing crossing.

Figure 3.7: The three transition systems of a vertex v in a face two colored 4-regular
plane graph.

3.4 Tractability of restricted versions of ETCP

As we have mentioned previously, it can often be the case that restrictions of an

intractable problem can be solved in polynomial time, and that is indeed the case

here. Some obvious restrictions to consider are often found by limiting graphs to

planarity, bounded degree or adding additional conditions to the structure to be

sought. We consider several variants and combinations of these restrictions. In

addition to finding polynomial time variants, we demonstrate that for several re-

strictions, the problem remains NP-Hard. This is interesting as it provides insight

into what properties are important in making the problem difficult to solve and a

lot of research is dedicated to finding the thresholds of restriction at which problems

switch from NP-complete or NP-Hardness to polynomial time solvability.

As a starting point, in [19] along with our co-authors, we demonstrated that

for 4-regular plane graphs, with the added restriction of not allowing ‘crossing’

transitions at a vertex (for a given plane embedding of the graph), the problem

becomes polynomial time solvable and produced an algorithm to solve it. It is

fortuitous that this case is tractable, as many likely graph structured targets for

DNA origami assembly, for example lattice subsets and cages, are planar, while

requiring that a scaffolding strand and staples follow faces without crossing over one

another respects the physical constraints of DNA.

We include this proof despite it being superseded by later results because it uses

an interesting and different approach that may be of interest for related restrictions.
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3.4.1 4-regular plane graphs with no crossing transitions

If v is a vertex in a 4-regular plane graph, then it has 3 transition systems, determined

by the embedding in the plane. Figure 3.7 illustrates a degree 4 vertex with its 3

configuration states, the last being a ‘crossing’ transition. If an Eulerian circuit does

not use crossing transitions, then all of its edges follow the boundary of one of the

two faces that the previous edge in the circuit also bordered. In this section, we

will assume the crossing transition systems are prohibited. (This can be done by

assigning the pairs that comprise them large turning costs, in particular, larger than

the sum of all the turning costs of other non-crossing transition systems.).

More generally, if G is an Eulerian graph embedded in some surface, then an

Eulerian circuit in which consecutive edges in the circuit, (vi−1, vi) and (vi, vi+1) say,

are adjacent in the cyclic ordering of the edges incident to vi, then we call this circuit

an A-trail (or a non-intersecting Eulerian circuit) of G. Using this terminology, an

Eulerian circuit of a 4-regular plane graph that has no crossing transitions is an

A-trail.

In [42], Kotzig proved that every 4-regular plane graph contains an A-trail. How-

ever, Bent and Manber, in [8], showed that dropping the 4-regularity requirement

results in a problem that is NP-complete, i.e., the problem of deciding if an Eule-

rian plane graph contains an A-trail is NP-complete. This remains the case even

when restricted to simple, 3-connected graphs with only 3-cycles and 4-cycles as

face boundaries (see [5]), although a polynomial-time algorithm for finding A-trails

in simple 2-connected outerplane (a planar graph in which all of the vertices lie

on the boundary of a single shared, unbounded face.) Eulerian graph was given

in [6]. Andersen, Bouchet and Jackson [4] characterised all 4-regular plane graphs

that have two orthogonal A-trails, where two A-trails of G are orthogonal if the two

trails have different transitions at every vertex of G. Furthermore the complexity of

the related problem of finding Eulerian Petrie walks on 4-regular plane graphs has

been studied by Žitnik in [69]. Eulerian Petrie walks are Eulerian circuits in which

the non-crossing transition to either the left or right of the edge on which the walk
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arrives at the vertex, is selected alternately at each vertex in the walk.

In light of these results, it is non-trivial to determine the minimal cost A-trail

when turning costs are assigned to the graph. We demonstrate below that it can be

accomplished in polynomial time for 4-regular plane graphs.

Theorem 3.5

If G is a 4-regular plane graph with a set of turning costs such that the crossing tran-

sitions are prohibited, then an optimal Eulerian circuit may be found in polynomial

time.

Proof For any connected plane graph G, one can form its medial graph by taking a

vertex for each edge of G and connecting two such vertices in the medial graph with

an edge for each face of G in which their original corresponding edges in G appear

adjacently (i.e. consecutively in a clockwise cyclic ordering of the edges forming the

face).

It should be noted that medial graphs depend on the planar embedding used for

G and as such are not unique under isomorphism.

For each edge in G, at each of its endpoints, the corresponding vertex in the

medial graph will gain two half-edges, either one for each other edge it appears

consecutively with (either clockwise or anti-clockwise) in a face, or if the original

edge is a loop to itself, it will gain one loop and two half edges to the other adjacent

edges. In this way the medial graph generated will also be 4 regular, with a number

of vertices equal to the number of edges of G, which is clearly of polynomial size in

terms of the size of G.

It is known that every 4-regular plane graph G is the medial graph of its Tait

graph (or blackface graph), as in Figure 3.8 (see, for example, [20] for details). The

Tait graph, F , is constructed by face 2-colouring G using the colours black and

white such that the unbounded region is coloured white, and placing a vertex of F

in the interior of each black face. (Note that G is face 2-colourable as it is plane and

4-regular.) There is an edge between two vertices in F whenever the two regions

corresponding to the vertices have a shared vertex of G on their boundary. The edge
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A 4-regular plane
graph G.

A face 2-colouring
of G.

Forming F . The Tait graph F .

Figure 3.8: Forming Tait graphs.

is drawn between the two vertices of F , passing through this shared vertex of G.

Thus, there is a one-to-one correspondence between the edges of F and the vertices

of G, and if v is a vertex of G, we label the corresponding edges of F by ev.

The face 2-colouring of G allows us to distinguish the two non-crossing transition

systems at each vertex as either a black smoothing or a white smoothing, as in Figure

3.7. (The term smoothing derives from standard terminology in knot theory.) It is

well-known that there is a one-to-one correspondence between spanning trees of F

and Eulerian circuits of G. The correspondence identifies an edge ev in a spanning

tree of F with a white smoothing at v in the Eulerian circuit of G, and an edge eu

not in the spanning tree with a black smoothing at u in the Eulerian circuit. Again,

see Figures 3.7 and 3.8.

Suppose for each vertex v in G, the cost for the white smoothing is av, while the

cost for the black smoothing is bv. Then we assign the value av − bv to the edge ev

in F . Now suppose C is an Eulerian circuit without crossing in G, and let I be the

set of vertices of G which have a white smoothing in C. We can see that the total

cost of the Eulerian circuit will be,

∑
v∈I

av +
∑
v/∈I

bv =
∑
v∈I

(av − bv) +
∑
v∈V

bv.

However, because of the correspondence between Eulerian circuits of G and the

spanning trees of F , the set of edges {ev | v ∈ I} is a spanning tree of F . Since we

have assigned the value of av − bv to the edge ev in F , the summand
∑

v∈I (av − bv)

on the righthand side is the weight of this spanning tree.
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Thus, a minimum weight spanning tree in F corresponds to a minimum cost

Eulerian circuit in G. Since it is well known that minimum weight spanning trees

may be found in polynomial time (see for example [44] or [54]) it follows that opti-

mal Eulerian circuits without crossings may be found for 4-regular plane graphs in

polynomial time. �

3.4.2 Graphs of bounded degree.

In light of Theorem 3.5, a natural approach was to see if it was possible to relax

one of the three conditions needed for that result, namely planarity, 4-regularity or

the restriction on crossing transitions and still find a polynomial time algorithm.

Planarity is a powerful restriction on graphs and problems which are NP-Hard in

general may be polynomial time solvable when restricted to planar graphs. As an

example, the Max Cut Problem, one of Karp’s 21 NP-complete problems [40], has

a polynomial time solution on planar graphs [31].

The following observation however shows that the same is not true for ETCP.

Observation 2

If ETCP is solvable in polynomial time on planar graphs of maximum degree d, then

it is also solvable in polynomial time for general graphs of maximum degree d (for

d > 2).

Proof Suppose we have an algorithm that solves ETCP on any planar graph of

maximum degree d. Consider a non-planar Eulerian graph G of maximum degree d,

with turn costs assigned to each vertex. We can assume G does not contain multiple

copies of a single edge, as otherwise we can replace any such multi-edges with a path

of length 2, which clearly has no impact on the complexity of ETCP. Embed the

vertices of G arbitrarily on the circumference of a circle in the plane. Embed all edges

of G into the plane as straight lines between their endpoints. Supposing that more

than two edges intersect at a single point, replace one of the additional intersecting

edges with an edge that curves around this intersecting point in a small circumference

around the intersection point that does not intersect with any additional edges, but
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that is unchanged elsewhere in the plane. Iteratively repeating this process leaves us

with a graph that while not planar, does not have more than two edges intersecting

at a single point.

Replace this graph G with a new graph G′, that has the same vertices and turning

costs on the circumference of the circle, but at each intersection point between two

edges, add a vertex that bisects both edges, forming two new edges. This adds at

most
(|E(G)|

2

)
vertices and edges to the graph, which is clearly still polynomial in

terms of the graph size inputs. This new graph is now planar. At each new vertex

we assign turning costs of zero to the pairings that connect up the two edges that

previously formed a single edge, and a cost of T to the other two configurations,

where T is equal to the total cost of all possible configurations of the vertices of G,

plus 1.

By our assumption we can now solve ETCP on G′, since we have not increased

the degree of any vertex and all new vertices are of degree 4, and hence it is of

maximum degree d. Whether or not we can find it in polynomial time, an Eulerian

circuit on G must have total cost less than T . Note also that any Eulerian circuit on

G implies the existence of one on G′ of equal cost, by taking the zero cost transitions

at each added vertex, which traces the same path in the plane as the Eulerian circuit

in G, and therefore covering every edge of G′ as required. Therefore any minimal

Eulerian circuit in G′ must not use of the transitions with cost T , which equally

implies the existence of an Eulerian circuit of equal cost in G. By these facts we

can see that there is a one to one correspondence between minimal weight Eulerian

circuits in G and G′ and as such solving ETCP on G′ provides a solution to ETCP

on G as required. �

This observation in fact applies to a wide range of graph classes, demonstrating

that planarity does not reduce the complexity of the problem in general, but note

that this argument cannot be applied to the problem of considering graphs with

crossing transitions forbidden, as we require crossing transitions in our construction

of G′ to maintain the equivalence.

87



3.4 Tractability of restricted versions of ETCP

4

1 2

3

Figure 3.9: A degree 4 vertex and its 3 possible turning configurations.

Having attempted to drop planarity, we attempted to remove the restriction

on crossing vertices and consider variants of planarity instead, but in a surprising

result we found that the properties we required to solve ETCP in polynomial time

on these graphs are actually inherited from all 4-regular graphs. As such we have

the following result.

Theorem 3.6

Solving Problem 1 can be completed in polynomial time when restricted to the class

of 4-regular graphs.

Proof We begin with several observations. Firstly recall that vertices of degree 4

have only 3 possible configurations, see figure 3.9.

Secondly, we note that given an Eulerian circuit in G, if we examine any degree

4 vertex and consider its configuration in this circuit, one of the other two config-

urations at this vertex would, all else remaining unchanged also form an Eulerian

circuit, while the other would separate the circuit into two edge-disjoint circuits.

This can be seen by considering the circuit as it leaves the vertex by one of the

edges. We label the edges 1-4 clockwise, with the edge in the top left, labelled 1.

Without loss of generality, we can suppose that in our original circuit, the circuit

leaves by edge 1, returning to the vertex next using edge 4 (on the lower left), and

the vertex has the first of the three configurations. It will then leave by edge 3,

before returning to edge 2, which connects back to edge 1, completing the circuit.

We observe that instead adopting the second configuration at this vertex means

that the trail from edge 1 to 4 now forms a closed circuit when reaching the ver-
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tex. In contrast, configuration 3 creates another Eulerian circuit, where the second

half of the circuit is simply traversed in reverse from the direction it would with

configuration 1.

v

Figure 3.10: Two of the three transitions at a vertex form a single closed circuit.

This observation tells us that no minimum weight Eulerian circuit will need to use

the most expensive configurations at any vertex, since supposing such a minimum

weight circuit exists is an immediate contradiction, as we could replace the maximum

weight configuration at a vertex with one of the other two cheaper configurations

and maintain an Eulerian circuit. In the case where two or three configurations

are of equal cost, this observation still holds, as one of the equally highest cost

configurations can always be discarded.

Using these observations, we propose the following algorithm for finding the mini-

mum weight Eulerian circuit. Firstly set each vertex to its configuration of minimum

cost (if more than one are equally minimum, then choose one arbitrarily.). Simply

by following edges sequentially through each configuration, we can find the number

of disconnected circuits (which we will, in an abuse of notation, call components)

this configuration forms, which we denote by k. We also record which vertices are

in each component, noting that each vertex may lie in one or two components only.
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We note that for any vertex which lies in two components, changing its con-

figuration to either of its other configurations will connect these two components

into a single circuit, forming a new single component, and reducing the number of

components by 1. After k−1 repetitions of this process, we will be left with a single

component, and hence an Eulerian circuit.

We claim that at each stage, choosing the vertex with least difference between its

cheapest and next cheapest configuration, chosen from the set of vertices currently

lying in two components, will produce an Eulerian circuit of minimum cost.

Firstly we note that any minimum solution must have exactly k−1 of its n vertex

configurations set to a cost differing from this initial lowest cost model (except for

some number of vertices that may have two minimum cost configurations that do

not spilt up the components they are in). Some of these k−1 may also be minimum

cost configurations, if a vertex has two equal cost states, but the algorithm above

would have also chosen these states, as they have a relative cost of 0 to switch

to. Any alternative minimum cost configuration at a vertex that the algorithm

would not have considered is irrelevant, as if it lies in two components, the switch

would connect it, and hence the algorithm would have chosen it unless another 0

cost choice also connects those components. If it lies in one, then the switch either

disconnects that component or leaves it connected, leaving the rest of the global

structure unchanged, making it at best a neutral choice

Suppose we have a minimum cost Eulerian circuit with more than k − 1 of its

choices differing from a lowest cost configuration. For each vertex not set to a

minimum cost configuration, we can observe the impact of replacing it with the

configuration of minimum cost. We know that not all of these choices can create

a new component, as there must be k at the end, were we to change all of them.

Supposing, however that such a change at a vertex did not increase the number of

components, we can see that switching only that vertex to a lower cost would keep

the minimum cost Eulerian circuit in a single component while reducing its cost,

clearly a contradiction.
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Equally, any minimum cost circuit cannot have less than k − 1 differing config-

urations, since that would imply more than one component in the circuit.

Given these observations, we can see that a minimum cost circuit, consists of

n − k + 1 configurations set the cheapest value, and the remaining k − 1 chosen to

connect up the k components from this cheapest base state.

Analogously to Kruskal’s algorithm for minimum spanning trees, we can see that

this circuit is minimum by induction. We suppose that at stage t we have made t

changes from the cheapest base state and our inductive assumption is that there

exist a set of k− 1 changes including these t that form a minimum Eulerian circuit.

This is clearly true at t = 0, since we have seen that a minimum circuit that

consists of k − 1 changes must exist. We now suppose true for all t < t0 < k − 1.

By our inductive hypothesis, we have a set of t0 vertices, whose configurations have

been switched from minimum, each one reducing the number of components by one,

and some further k − 1− t0 changes will create a minimum weight Eulerian circuit.

If the next choice of vertex to switch is contained in this minimum circuit, then by

induction we are done, otherwise we suppose that the vertex v1 we change next was

not changed in this minimum circuit.

Taking this minimum circuit, and then additionally changing v1 can either keep

the circuit connected, or disconnect it into two components. Given the first scenario,

there must exist some vertex v2 that the algorithm would not have switched, but is

switched within the minimum circuit, such that switching v1 instead of v2 keeps the

circuit in a single component. We know that this new circuit must have the same

weight as the minimum, otherwise the algorithm would have chosen v2 instead of v1.

Therefore by induction our changes up to t0 + 1 also lie within a minimum circuit.

If we are in the second scenario, then there exist two components that switching

v1 separates the minimum circuit into. In previous settings, where each change has

taken place only in two disjoint circuits, each step can only have created a new

component by merging two existing ones, and hence each component consists of

a union of the components that form our base state. Here however, switching v1,
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which lies entirely within a component, could create two new components, where

both new components may have edges from a single original component.

Since v1 was chosen by the algorithm, we know its base state originally lay in

two separate components. If we consider the transitions induced by changing all

the vertices chosen by the algorithm, except for v1, we are left with a graph with

exactly two components, with v1 lying in both. The minimum weight circuit must

contain some vertex v3 that lies in both these components, since it must connect

the constituent components whose union forms these two. It must also not have

been chosen by the algorithm, since v1 would not have been selected as well as v3.

Even if the new components formed by switching v1 are different from the original

two, this vertex v3 must still lie in both, since by splitting the graph into two new

components, the switch at v1 must be connecting two trails that each lay in different

components originally, therefore some other vertex must be allowing these trails to

connect across the two components, to become closed.

Switching v3 therefore back to its original state, must reconnect the circuit, and

hence taking the minimal circuit, except for switching v1 instead of v3 is also an

Eulerian circuit. If this new circuit is not also minimal, then v3 must have a lower

cost than v1, but if this is the case, then the algorithm would have selected v3 over

v1, which is a contradiction, and hence this circuit is also of minimal cost. Since it

contains all the choices of the algorithm, up to v1, our inductive step is complete,

and therefore by induction, our algorithm produces a minimal circuit.

This algorithm first requires sorting the weights of the configurations at each

vertex. Since each vertex only has 3 configurations this can clearly be done in

polynomial time. Setting the graph to a configuration where each vertex is at it’s

lowest configuration takes n = |V (G)| steps and then determining the ‘components’

induced by these configurations requires simply following the edges until a closed

walk is formed. This takes |E(G)| steps, recording the component(s) each vertex

lies in as the walks are traced.

At each step of the algorithm, for each vertex that lies in two components, the
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differences between its two lowest costed configurations need to be recorded and

then, this list sorted to find the vertex with the smallest difference. Generating

this list takes at most 3n steps and merge sort (for example) can sort this list in

O(n log(n)) time. Once the vertex whose configuration will be switched has been

chosen, the components that vertex lies in will be merged and so updating the lists

requires only checking each element of the list and updating the component for those

affected, or removing those vertices who now lie in a single component. This again

takes n steps.

In light of this, each step of the algorithm takes at most O(n log(n)) time to

complete, and there are k ≤ n steps before the algorithm completes. As such the

algorithm clearly runs in polynomial time as required. �

The graphs that we construct in section 3.3.1 in order to prove Theorem 3.1 may

have vertices of very high degree, up to linear in the number of vertices in the graph

and for these graphs we can demonstrate NP-Completeness. In contrast, 4-regular

graphs clearly have bounded degree, which leads to the obvious question of whether

Problem 1 can be solved in polynomial time on all graphs of bounded degree. In the

following theorem we show that this is not the case as we show that the restriction of

only considering graphs with bounded degree vertices, does not, in general, change

the complexity of Problem 1. In particular we can show that the problem remains

NP complete for graphs of maximum degree 8. With very little modification to the

below argument, it can also be shown for 8-regular graphs.

Theorem 3.7

Solving Problem 1 remains NP-hard even restricted to the class of graphs of maxi-

mum degree 8.

Proof Let G = GI be the Eulerian graph with turning costs associated with a 3-

SAT instance I as constructed in Section 3.3.1. By Observation 1, we may assume,

without loss of generality, that if a non-apex vertex of G has degree greater than

8, then its degree is not divisible by 4. To prove the theorem, we will construct,

in polynomial time, an Eulerian graph with turning costs, G′, that has maximum
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degree ∆(G′) ≤ 8. Furthermore, G′ will have a zero-cost Eulerian circuit if and only

if G does. To construct G′, we ‘blow-up’ each high degree vertex of G, replacing

it with a special graph that has maximum degree 8. We will need two types of

blow-ups: one for the vertices vi arising from the variables of I, and one for the

apex vertex u.

We denote the edges incident with a non-apex vertex vi of G by ei1, e
i
2, . . . , e

i
d(vi)

and we assume that they appear in that cyclic order (with respect the orientation of

the plane, as in the construction of G). Furthermore, if d(u) = 2d, we let f1, . . . , f2d

denote the edges of G that are incident with u. See Figures 3.11 and 3.12.

For the first type of blow-up, for a vertex vi, we note that since d(vi) is even

and not divisible by 4, then d(xi)/2 = 2k + 1 for some k. We then form the

structure Bi which will act as the blow-up of vi as follows. Start with a plane

(2k + 1)-cycle. Add two parallel copies of each edge in the cycle to the (2k + 1)-

cycle. At each vertex, place two half-edges such that one lies in the bounded region,

and one in the unbounded region formed by the cycle (these will correspond to,

and represent the edges eij leaving vertex vi in the original graph). Label the half-

edges by labelling an arbitrary edge ei1. Then, if eij has been assigned to some

half-edge in the unbounded (respectively, bounded) face, travel round the outer face

following the orientation of the plane and at the next vertex label the half-edge in

the bounded (respectively, unbounded) face eij+1, alternating between the half edges

in the bounded and unbounded region as you follow the cycle around it’s clockwise

orientation. Continue until all half-edges have been labelled, which happens since

2k + 1 is odd. See Figure 3.11. Assign pair costs to this graph as follows. Give

a cost of zero to any consecutive pairing of half-edges with respect to the (plane)

orientation about each vertex in Bi. All other pairings of half-edges have cost one.

The resulting graph-like structure (Bi would be a graph if degree one vertices were

added to the end of each of the half edges.) with turning costs is Bi.

To blow-up a vertex vi in G, we replace it with Bi as follows. Suppose an edge

eij of G has endpoints vi and w. Then we identify the unassigned endpoint of eij in

94



3.4 Tractability of restricted versions of ETCP

Bi with the vertex w. We do this for each eij , and then delete the vertex vi and its

incident edges.

Examining a vertex in Bi, note that since only adjacent edges in the cyclic

ordering have a zero cost pairing, the vertex only has two configurations that can

have a total zero cost. Supposing the configuration is fixed for a single vertex, then

consider either of the two vertices adjacent to it in the original (2k + 1)-cycle used

to form Bi. This adjacent vertex also only has two zero cost configurations but

considering the three edges that connect these two vertices, we can see that two of

these edges will have been paired up at the first vertex, and as such pairing them

again at the second vertex would create a closed loop. This observation means that

fixing the configuration of one vertex in Bi will automatically fix the configuration

of it’s neighbours (assuming a zero cost configuration is desired).

For the blow-up of the apex vertex u, which has degree 2d, we construct the

structure Bu by first creating a d-cycle on d vertices. For each vertex in the cycle,

we attach two additional half edges that will correspond to and represent the 2d

edges incident to u. We assign pair costs of 0 to all configurations at each of these

vertices.

The vertex u is blown-up similarly to the vi’s by identifying each half-edge leaving

Bu with an edge incident to u in G, and then deleting u and its incident edges. The

choice of edges to assign to each half edge is irrelevant.

Observe that if a zero cost configuration is fixed at every vertex other than

those within Bu, as long as a closed cycle is not formed elsewhere in the graph, the

configuration at Bu can always be set to form a zero cost Eulerian circuit. This

follows from observing that fixing the configurations elsewhere, assuming a closed

cycle is not formed, is equivalent to pairing up the half-edges leaving Bu into full

edges. Regardless of how this pairing is done, the resulting graph formed from Bu

and these pairings will be 4-regular and connected, and hence an Eulerian circuit

exists (and will have 0 cost since all configurations at u are zero costed) and can be

found in polynomial time.
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Figure 3.11: The blow-up of xi into Bi.

Now, let G′ be the graph obtained from G by blowing-up each vertex vi that has

d(vi) > 8 using Bi, and, if d(u) > 8, blowing-up u using Bu. The turning costs of G′

are inherited from those of the Bi, Bu, and those of the vertices of G with degree at

most 8. Observe that G′ is constructed from G in polynomial time in the number

of edges and vertices. It remains to show that G has a zero-cost Eulerian circuit if

and only if G′ does.

First we suppose that a zero-cost Eulerian circuit exists in G. For each vi, we

examine the edge ei2 and record whether it is paired with ei1 or ei3 in the zero-cost

configuration at vi. Examining Bi, we observe the two configurations possible (as

we observed earlier, each vertex in Bi has two configurations, but fixing one of them,

fixes it for all vertices in Bi, and hence Bi as a whole has two configurations that

provide a total zero-cost) and we see that this construction will mean that ei2 will

be paired by a trail to one of the edges leaving Bi from an adjacent vertex in the

cycle forming Bi, but on the opposite region (bounded or unbounded by the cycle)

to ei2 (see figure). By construction, these two possible edges are identified with the

edges ei1 and ei3 in G, and as such, each Bi allows the edge ei2 to be paired up with

the same edge in G′ as it was in G. Equally the labelling of the edges leaving Bi

has been chosen such that, if examined purely in terms of outgoing edges, the two

zero-cost configurations in Bi are identical to those of vi, i.e. the two configurations

will pair up the outgoing edges in Bi in the cyclic order they are labelled, which

corresponds to the cyclic order they were embedded in G. In this way, since each Bi
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pairs up the incoming and outgoing edges in the same ways that vi does, and uses

every internal edge to do so, it is clear that setting each Bi to the corresponding

configuration of vi preserves the Eulerian circuit, as vi is blown up to Bi.

Given this, all that remains is to check that we can still find an Eulerian circuit at

u, the apex vertex, once it has been blown up to Bu. Given that a zero-cost Eulerian

circuit exists with the vertex u rather than Bu, we can assume that the configurations

elsewhere in the graph are fixed and just consider Bu. By our earlier observation,

we note that this corresponds to pairing up the edges leaving Bi, replacing the trails

between them with a single edge. This at most takes a number of steps equal to the

number of edges in the graph, since we can simply follow the configurations around

the graph, and as such can be done in polynomial time. Once this has been done,

it is a simple step to find an Eulerian circuit in Bu that uses all of the edges in Bu

and since all configurations here have a cost of 0, and all configurations external to

Bu have zero-cost configurations, this means that a zero-cost Eulerian circuit must

exist for G′ as required.

Equally suppose a zero-cost Eulerian circuit exists in G′. As before, each Bi

has only two zero-cost configurations, which correspond to a pairing of the outgoing

edges to the adjacent edges in a cyclic ordering relative to their labelling. Setting

the configuration of vi in G to the same as that of Bi in G′ with regards to the

pairing of the outgoing edges preserves the structure of G′ except for the collapse

internally of Bi to vi. This clearly cannot introduce a closed loop.

At u, the task is even easier. Since any pairing of the outgoing edges is of zero-

cost at u, one can pair them up in exactly the same way as they were paired at

Bu. Again since we are collapsing trails to single edge transitions, which all have

zero-cost at u, we cannot be eliminating the Eulerian circuit here.

Thus if there is a zero-cost Eulerian circuit in G there is a to a zero-cost Eulerian

circuit in G, completing the proof of the theorem �

With differing results for 4 and 8 regular graphs, there remains a clear area of

interest in whether or not Problem 1 remains NP-Complete or becomes polynomial
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Figure 3.12: The blow-up of u into Bu.

time solvable (or neither of these two) for 6-regular graphs but as of yet, this problem

has defied analysis using the techniques employed for its neighbouring cases but we

would conjecture that it would be NP-complete.

3.4.3 Related problems

A problem that appears similar, and we thought may be related to the ETCP, is

that of the Eulerian superpath problem.

This arises from another very different physical problem that also involves DNA

which is that of DNA sequencing. This involves determining the precise ordering of

the nucleotides, usually denoted by A, C, G, T and U, in a given strand of DNA

or RNA. In practice, this usually involves cutting strands into smaller segments

and producing large numbers of copies, or clones of each segment, and performing

reads on these copies. By computationally identifying overlapping sequences, the

full sequence is derived.

Traditional methods of solving this computational problem are relatively fast

initially, but are known to introduce small errors, which take computationally large

amounts of time to identify and correct.

In [52], [53], the authors proposed the Eulerian Superpath Problem (ESP) as

a possible approach to solving the problem of DNA sequencing by hybridization.

Before we state ESP, we first define an Eulerian superpath;
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Definition 3.3 (An Eulerian superpath)

Given an Eulerian (multi)graph G, and a collection P, of trails in G, we define an

Eulerian superpath of G with respect to P, as an Eulerian circuit on G, such that

the circuit contains all of the trails in P.

We define the Eulerian superpath problem, for a given G and P, as the problem

of determining whether such an Eulerian superpath exists, formally;

Problem 3 (Eulerian Superpath Problem)

Given an Eulerian graph and a collection of trails P in this graph, find an Eulerian

circuit that contains all the trails of P as subtrails, or determine that it is not

possible.

As the problem was originally formulated, the trails were specified by a sequence

of vertices, with multiple edges not distinguished. This problem has since been

shown to be NP-Hard in general, see [39] where the problem known as the De Bruijn

Superwalk problem is shown to be NP-complete. This problem is ESP formulated

on a specific class of graphs called De Bruijn graphs. Since it is NP-complete for

these graphs, it must also be for the class of general graphs.

In [52] and [53], an algorithmic approach is provided that will return the solution

to Problem 3 in polynomial time for a range of graphs, including those with no

multiple edges and in cases where the prescribed trails do not overlap. In general

the approach of Pevzner, Tang and Waterman in these papers appears to provide a

quick solution to the types of graphs that are generated from the DNA sequencing

problem it inspired, but clearly since the problem is NP-complete, they cannot be

applied to all graphs or trail sizes.

Since a trail is prescribed to be followed in the Eulerian circuit, it can be seen

that as soon as an Eulerian circuit begins following the first edge of the prescribed

trail, it must continue on to the end, and hence this would be equivalent to removing

the edges of the trail and following a single edge between the start and endpoints of

the trail. The only issue is that the edges removed may have been present in other

prescribed trails.
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The methods employed in the approach of [52] and [53] essentially revolve around

iteratively replacing one of the prescribed trails by a single edge in the base graph,

and updating any other trails that overlap with the replaced trail by contracting

this overlap, where possible, down into the new single edge. If this is definitely not

possible, then no solution to the problem exists. If however the trails can be replaced

consistently this process replaces the instance of the ESP problem with another ESP

instance with one less prescribed trail such that a solution to one exists if and only

if a solution exists for the other. If this iteration can be continued, one is eventually

left with an Eulerian graph with no prescribed trails, for which ESP is equivalent to

just finding an Eulerian circuit.

In general the difficulty arises when there are repeated edges, as it is not clear

which of the multiple edges are used in a given trail covering them and hence up-

dating these overlapping trails can have multiple options that may at each stage all

appear valid choices, resulting potentially in exponential possibilities to check.

The case where each trail is a single edge is clearly just analogous to finding an

Eulerian circuit and hence solvable in polynomial time. The case, however, where

each trail is a path of length 2 appears more complex.

At first glance this problem appears to be quite similar to the turn costed Eule-

rian circuit problem. Each prescribed trail is essentially (in a graph with no multiple

edges) a pairing at a vertex which is now fixed. If there are repeated edges, then a

number of possible pairings are allowed at the vertex at the centre of the trail, but

this still seems closely linked to Problem 1.

In light of this similarity, it seemed likely that ESP would remain NP-complete

in the case where each prescribed trail is of length 2, and we attempted to use our

results in Corollary 3.3 to prove this, but to our surprise, we actually found the

opposite, and as such arrived at the following theorem.

Theorem 3.8

If every element of P is of length 2, then the Eulerian superpath problem (ESP) can

be solved in polynomial time.
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Proof We note that the Eulerian superpath problem can always be solved in poly-

nomial time if G is a simple graph (i.e. no multiplicity of edges). This follows from

following a process of replacing each trail in P with a single edge and then updat-

ing each other trail which contained any of the edges replaced, with the new edge,

wherever the two trails are “consistent”. i.e. they overlap only at the beginning or

end of each of the trails (or if one trail is contained entirely within another). If they

are not consistent, then the superpath cannot exist.

Formally, if the trail T = xyz exists in G and P (we restrict ourselves here to

paths of length 2 in explanation, but these arguments for simple graphs with no

multiple edges are valid for paths of any length), then we replace the edges in the

trail with a single edge (x, z). If it does not exist then clearly there is no Eulerian

circuit that uses T , since it is not even present in the graph. Clearly an Eulerian

circuit on G containing T only exists if and only if an Eulerian circuit exists on the

modified graph. Once we have replaced T we examine any trails in P of the form

uxy or yzv and replace them with new trails uz and xv respectively. Since a circuit

following the trail uxy must immediately follow on to z if it also follows T , this

maintains the equivalence of the superpath problem between the original instance

of G and P and this new modified instance.

The difficulty in the general problem comes from allowing multi-edges. In this

case, we can still replace trails with edges, but when we come to update the remaining

overlapping trails, we no longer have a single choice for each trail to use. If both

xyz and yzv are present in P, there is no requirement for the circuit to follow xyzv

if there are multiple copies of the edge (y, z). The circuit may follow xyz before

returning to y later in the circuit and using the second copy of (y, z) to then follow

yzv. From this difficulty, it is not clear, when replacing xyz with (x, z) whether

we should update yzv, assuming it follows on from the first, or to leave it alone.

Certainly we can not guarantee that making one choice or the other preserves the

equivalence of the superpath problem on these two instances.

Looking at the case where all elements of P are length 2, we note that we have
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3 cases to consider for any multi-edges. A multi-edge (x, y), may be covered by

• No trails,

• Some number of trails of the form xyz for some z adjacent to y (or x, but not

both),

• Some number of trails of the form xyz and yxz′ at once.

In the first case we do not need to consider this edge in any additional detail

than in finding a normal Eulerian circuit.

Suppose we are in the second case and our edge (x, y) is covered by some number

of trails (w.l.o.g) of the form xyz. For each trail, we can replace one of the edges

(x, y) and (possibly one of) the edges (y, z), with a single edge (x, z) in G and

remove the trail from P, since this single edge must be covered by any Eulerian

circuit anyway. We can continue by replacing each other trail using the edge (y, z)

that we have replaced, and hence is of the form yzα by a new trail xzα unless (z, α)

is also a multi-edge covered by multiple trails. In this case it is again unclear whether

the trail must really be using the edge we have replaced. In this case, (z, α) must

be an edge of the third type.

Therefore supposing we have only edges of the first two types, we have a poly-

nomial time solution to whether a circuit exists. We replace the trails whenever

possible, updating both the graph and the elements of P. If not possible, the circuit

does not exist. Once we are done, we are left with a graph and a series of trails of

length 1. This is simply the problem of finding a normal Eulerian circuit, which is

well known to be solvable in polynomial time.

For each edge of type 3 (or for ease of analysis, for every multi-edge) we take the

following steps. We replace each such multi-edge (x, y) with multiplicity k, with a

new vertex v and k copies of (x, v) and (v, y) each. We replace any trails in P of

the form xyz with new trails vyz and similarly, trails of the form zxy with trails

zxv. We now have no edges of type 3 and can hence solve the Eulerian superpath

problem on this new graph and trail system which we denote by G′ and P ′.
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Suppose a solution exists on the original graph, in other words an Eulerian circuit

that respects all of the original trails. This implies a solution on our new graph by

equating any instance in the circuit of a vertex progression of xyx with xvyvx in

the new graph. Equally, we equate yxy, with yvxvy. We also equate xyz with xvyz

and similarly in the other direction. It is clear that each edge in the original graph

uses up one each of the two new edges, and so translates into an Eulerian circuit in

the new graph.

x v y ⇐⇒ x y

x v y x y

Also, any trail in the modified graph G′ either derives from a trail in G that did

not cross a multi-edge and hence is unchanged or is of the form vyz or zxv where

v is a vertex added to G′ between some multi-edge (x, y) and some trail existed in

G of the form xyz or zxy. Since all trails in P were covered in G by this assumed

Eulerian circuit, we know, supposing without loss of generality that xyz ∈ P that

xyz is present as a subtrail in the circuit in G. However, by construction we equate

the subtrail xyz with xvyz in generating the Eulerian circuit G′ which covers the

new trail vyz as required. Therefore the new G′ and P ′ Eulerian superpath instance

is solved by this new circuit as required.

We also need to show the reverse, that we can construct an Eulerian circuit in G

that contains all of P from a solution to the superpath problem on G′ and P ′. Once

we have applied the Eulerian superpath solution to G′, which we note contains no

edges of type three, we must construct an Eulerian circuit in G in polynomial time

that still respects the original trails in P.

We do so by using the same equating method as above for subtrails that use

both x, y and v. Any subtrail in the circuit that travels from x to v to y or the
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reverse is collapsed down to a single (x, y) edge. We are left with one remaining case

however to translate. When a trail is of the form xvx (or equivalently yvy), it is not

clear whether this can be translated directly into an Eulerian circuit in the original

graph G.

To resolve this third case, we note firstly that since there are an equal number

of edges from v to each of x and y, and trails of the previous types use an equal

number of edges from each, there must also be an equal number of these third type

on each side of v, i.e. for each trail of the form k1xvxk2, there is also one of the

form k3yvyk4. See figure 3.13, bearing in mind that there may well be more than 2

sets of multiple edges between x and v.

x v y

k3

k4

k1

k2

Figure 3.13: Subtrails of the Eulerian circuit in G′ that ‘reflect’ at v

We pair these ‘reflected at v’ trails up arbitrarily, and note that if this transition

forms an Eulerian circuit (which by our assumption it does), then there must exist

a trail that connects the trail leaving from k1 to either k3 or k4 and a trail from

k2 to the other neighbour of y. Checking which pairs are connected will take less

steps than the number of edges in the new graph (which is no more than twice the

number of edges of G), and so can be done in polynomial time. The union of these

trails may return to the (x, v, y) edges but must cover all edges, since this forms an

Eulerian circuit.

At this point we can apply the same logic we used in Theorem 3.6 when looking

for turn-costed Eulerian circuits in 4-regular graphs. Although we do not necessarily

have a degree 4 vertex at v, we do have an analogous situation, when considering

just the 4 edges that enter v in these two subtrail of the circuit. The important

point is that we can switch this configuration of ‘reflection’ at v with one of the
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other two possible configurations for pairing these 4 edges at v and we will still have

an Eulerian circuit, assuming all other transitions are left unchanged.

x v y

k3

k4

k1

k2
�

Figure 3.14: Modified subtrails that still form an Eulerian circuit.

We note that without loss of generality that supposing k1 is linked to k4 by some

trail, we can replace this configuration by two trails k1xvyk3 and k2xvyk4 which

will still be an Eulerian circuit. This change only affects trails in P ′ covering xvy of

which there are none so all trails in P ′ are still covered by this new Eulerian circuit.

We can now equate these configurations back into an Eulerian circuit in G using the

same equivalence we used when going from G to G′. All trails in P ′ are unchanged

from those in P or of the form vyz or zxv for some multi-edge (x, y) and as we saw

for the reverse direction, this equivalence preserves the covering of these trails in the

two circuits as required.

Based on this equivalence we can see that we solve ESP on G and P if and only

if we can solve it for G′ and P. The process of transforming one solution into the

other is polynomial time, since it at most requires to follow all the edges of the graph

once for each duplicate edge in G, which is at most quadratic steps in |E(G)| and

we can solve ESP on G′ and P ′ in polynomial time, since there are no overlapping

trails in P ′ by design.

With these facts it is clear that for any instance of the Eulerian superpath prob-

lem where all trails are of length 2, the problem can be solved in polynomial time

as required.
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3.5 Future work

The work in this chapter leaves a range of interesting questions still open. The most

obvious is that of examining the complexity of Problem 1 (ETCP) on 6-regular

graphs. Finding the precise boundaries at which a problem shifts from polynomial

time solvability to being NP-complete gives great insights into the nature of the

problem and where the difficulties arise in tackling it.

All attempts at using degree 6 vertices to form gadgets that model higher degree

vertices have proved unsuccessful, and it seems unlikely that the methods used

to tackle 8-regular graphs will apply. Equally however the methods used to find

polynomial time solutions to the 4-regular case are very much intrinsic to degree 4

graphs, and cannot be used for higher degree vertices.

Another area of interest would be to tackle ETCP on graphs of bounded tree-

width. Although some initial success seemed promising with 4-regular such graphs,

this result made almost no use of the bounded tree-width of the graph and was

superseded by the polynomial time approach for all 4-regular graphs. It seems very

likely that ETCP will be solvable in polynomial time for all graphs of bounded

tree-width. This seems likely because the key determining factor which prevents

the choice of the lowest cost configuration at each vertex generating the lowest cost

Eulerian circuit, is the presence of cycles in the graph, which can be closed by a

greedy choice of configurations for the circuit. The tree decomposition of the graph

can be generated in linear time and although we have not managed to find an

algorithm using it to tackle the problem, it seems a promising approach.

The final open question this work presents is that of considering the Eulerian

superpath problem with larger trails. The problem is known to be NP-complete in

general, and we have shown that it is polynomial time solvable if all the trails are of

length 1 (the standard Eulerian circuit problem) or 2. Considering instances of the

problem in which all trails are of length 3 seems a natural next step and may already

be NP-complete, but considering the more general case of bounded trail length would

also be of interest and probably more applicable to DNA sequencing. Although it
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seems very likely that this problem is NP-complete, finding faster algorithms to solve

it would have direct and immediate applications. Currently algorithms are used (see

[52] and [53]) which ‘usually’ (based on observed applications) run quickly, as the

kind of difficult cases that induce super-polynomial time solvability in the general

problem rarely occur in the natural processes used to generate the ESP instance.

An algorithm with provable upper bounds on running times and good average-case

performance would clearly be of interest.
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Chapter 4

Adversarial resilience of matchings

in bipartite random graphs

4.1 Adverserial resilience

In the first chapter we talked about matchings and how they are one of the most

fundamental structures in graph theory, both for their intrinsic properties and their

applicability to both mathematical and applied problems.

As a reminder, a matching is a collection of disjoint edges, which can also be

thought of as a pairing up of the vertices. A complete or perfect matching is one in

which every vertex is covered by one of these edges, or in other words, every vertex

has a unique partner it is paired up with.

Finding matchings in graphs is a well-studied problem and polynomial time

algorithms are known to find maximum matchings, see for example [14].

Matchings can be important to find in a range of computer based situations such

as pairing up tasks to processors or units capable of completing them or assigning

unique hashed or encrypted keys to objects stored in a database. In these scenarios,

in particular in those of computer security, a situation may arise in which some

number of keys or encryption methods may face being compromised and the ability

for a security scheme to remain secure in the face of such an adversary can be

described as resilience.

Another area in which matchings have proved important is in the area of con-

trollability which has become an increasingly active and interesting field in the light

of recent papers, most prominently, the Nature paper by Liu, Slotine and Barabasi
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[48]. Controllability refers to the ability, given a complex dynamical system, to

control the overall state of the system, by modifying some subset of the system’s

components. One such model for this is known as network controllability in which

each component of the system is modelled by a single vertex with some weight as-

signed to it. As time passes each vertex generates weight on its neighbours according

to some weighted values assigned to its neighbouring edges. The aim is to find a

minimum set of vertices, for which having complete control of the weights assigned

to this control set, allows for complete control of the entire network, in particular,

the ability to bring the network to any desired state in some finite time.

Liu, Slotine, and Barabási used a characterisation by Lin [47] of structural con-

trollability to show how large matchings in bipartite graphs play a crucial role to

obtain bounds on the number of nodes needed to control directed networks. They

also estimated the fraction of edges in a matching drawn randomly from several

classes of graphs in a non-rigorous way using the cavity method. Rigorous proofs

for most of these results can be found in [10] and [59] . In particular the authors

of these papers determine the size of a maximum matching in a random bipartite

graph with a fixed degree distribution under some mild assumption on the degree

distributions.

Several forms of resilience of graph properties have been considered for a range

of different motivations and applications. In many ways random graph theory can

be thought of as a kind of average case resilience argument, in which a large num-

ber of edges from the complete graph are removed, or have failed, and thresholds

demonstrate the average failure rate required before a property is likely to no longer

be present with high probability.

Instead of average case analysis, one can also consider worst case, or adversarial

resilience. In this model, rather than allowing edges to be removed at random, we

allow some adversary the ability to delete edges at will, with the aim of disrupting

the desired property in the graph. This models both the ability of an attacker to

disrupt a network, and also the worst possible case that could occur randomly.
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In general allowing an adversary free reign in choosing which edges to destroy

provides too much power, and almost any property can be disrupted. Such a result

falls into the realm of extremal combinatorics, where properties are shown to exist

for certain only when a very large number of edges are still present within a graph.

Limiting the abilities of an adversary provides more realistic results, since it is

unlikely that any system an adversary would want to attack would be designed to

give them such power over it. In these cases, two differing models present them-

selves. The first is the concept of global resilience, which includes the case where the

adversary has freedom to choose. In this model, the adversary is given some fixed

number of edges to destroy, anywhere in the graph, perhaps subject to some selec-

tion criteria. An example of such a selection criteria might be that at each stage the

adversary may be presented with two edges selected at random, and may delete one

of them. Such processes have attracted considerable interest, with the equivalent

reverse process of adding an edge being the Achlioptas process, generating several

interesting recent results (see, for example [55]).

An alternative model, and the one which we consider in this chapter, is that of

local resilience. In this case, the adversary is presented with the ability to delete

edges limited by local conditions, for example deleting half of the edges adjacent

to each vertex. An excellent overview of local resilience and various results in this

area can be found in the article “Local Resilience of Graphs” by Sudakov and Vu

[63]. It is often surprising to discover that enforcing fairly simple and entirely local

conditions can allow the adversary to eliminate completely global properties.

In this chapter we look at proving a local resilience result for matchings on a

particular model of random bipartite graph. The use of this model was motivated

by that used in a paper by Alan Frieze and Páll Melsted in a non-adversarial setting

which has applications to the computer science problem of cuckoo-hashing [26]. In

this paper, the authors demonstrated tight bounds on the relative size of the vertex

sets in the bipartite graph for which a matching not only exists (with high proba-

bility) but can also be found with high probability by the Karp-Sipser algorithm.
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This algorithm simply chooses an unclaimed edge incident to a degree one vertex

where possible, otherwise choosing any unclaimed edge at random and adding it to

the matching. Since this relatively simple algorithm has been shown to succeed for

graphs on which a maximum matching exists, we were interested to see how grant-

ing the adversary the ability to isolate these degree one vertices would impact the

bounds for the existence of a maximum matching. This led us to consider the case

where the adversary is given the power to eliminate a single edge incident to each

vertex in one of the partition sets of the bipartite graph.

4.2 Technical introduction

We are interested in the problem of finding the largest matching in a random bipar-

tite graph after an adversary has deleted some edges. More precisely, we consider

a random bipartite graph G = (A ∪ B,E) with |A| = n and |B| = (1 + ε)n. Each

vertex in A is adjacent to d neighbours chosen uniformly at random from B. We

allow repetition, so this is a multigraph. An adversary is then able to remove a

single edge adjacent to each vertex of A, with the aim of minimising the size of the

largest matching.

We will show that for each η > 0 there exists a d0 such that for all d ≥ d0, if

ε > (4+η) log d/d2, then asymptotically almost surely the adversary cannot destroy

all matchings of size n. If on the other hand ε < (4−η) log d/d2, then asymptotically

almost surely the adversary can destroy all matchings of size n. (Asymptotically

almost surely (a.a.s.) means with probability tending to 1 as n tends to infinity.)

This problem is closely related to finding maximum strongly independent sets

in d-uniform hypergraphs Hd(1+ε)n,n on (1 + ε)n vertices and n edges. A strongly

independent set in a d-uniform hypergraph is a set of vertices such that no hyperedge

contains two or more vertices of this set. Here, the partition class B corresponds to

the vertices of the hypergraph and the vertices of A correspond to the edges. Clearly,

an adversary can isolate all vertices corresponding to a strongly independent set, and

hence if the maximum size of a strongly independent set is β then the adversery can
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force the size of a maximum matching to be at most (1+ε)n−β. We will show that

Hd(1+ε)n,n a.a.s. contains a strongly independent set of size (4− η) log d/d2n.

As a note on notation, asymptotically, we are interested in the probabilistic

results as n → ∞, and so by o(1) we mean a function that tends to 0 as n → ∞,

but since we are also considering d→∞ (and at the same time ε→ 0), we may also

require the use of little o notation to denote the size of terms which do not depend

on n, in which case we will label them od(f(d)) to indicate that the asymptotics

depend on d rather than n. As an example ε = od(1), but neither depend on n and

hence are asymptotically constant in terms of n.

4.3 Upper bounds

We begin by finding an upper bound for the threshold for ε, such that for values of

ε above this bound the graph will, with high probability, contain a matching of size

n. To prove this we consider Hall’s theorem.

Theorem 4.1

(Hall [32]) For a bipartite graph G with partition sets X and Y , a matching in G of

size |X| exists if and only if,

∀X ′ ⊆ X, |ΓY (X ′)| ≥ |X ′|, (4.1)

where ΓY (X ′) is the set of neighbours of X ′ in Y .

If there exists an X ′ ⊆ X that does not satisfy (4.1), we call X ′ a witness for

violating Hall’s condition.

We aim to give a bound on the probability of the adversary being able to restrict

the size of a maximum matching. We do this by bounding the probability of the

existence of a set that after deletion of edges by the adversary, could become a

witness.

Theorem 4.2

Let d > 3, and let G be the random bipartite graph with partition sets A and B

of size n and ñ = (1 + ε)n respectively, and each vertex of A chooses d neighbours
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4.3 Upper bounds

uniformly at random from B. An adversary deletes a single edge incident to each

vertex of A to obtain G′. Then, for ε > (4 + od(1)) log d
d2

, a matching of size n still

exists in G′ with probability tending to 1 as n→∞.

Proof Fix η > 0 and assume that ε ≥ (4+η)(log d)/d2. Suppose that a matching of

size n does not exist inG′. By Hall’s Theorem, at least one witness of Hall’s condition

exists. Consider a smallest such witness S, of size s, say. Its neighbourhood (again

after deletion) must be of size s − 1, or we could delete an element of S and still

have a witness of smaller size.

For two sets S ⊆ A and S′ ⊆ B of sizes s and s− 1 respectively, if they form a

witness and its neighbourhood after deletion, for each vertex of S, either all of the

edges incident to that vertex in G lie in S′, or exactly one lies outside (which the

adversary then deletes).

The probability of a given edge incident to a vertex of S also being incident to a

vertex in S′ is p := s−1
ñ . Let q := 1− p. Given this, the probability that the d edges

incident to a vertex of S satisfy this condition is P(Bin(d, q) ≤ 1) = (qd+ p)pd−1.

The expected number es of witnesses of size s is therefore

es =

(
n

s

)(
ñ

s− 1

)(
(qd+ p)pd−1

)s
. (4.2)

We split the analysis in several cases depending on s and p. For s not too large, we

use the inequality
(
n
r

)
≤
(
en
r

)r
to bound(

n

s

)(
ñ

s− 1

)
≤
(en
s

)s( eñ

s− 1

)s−1

≤
(

eñ

s− 1

)2s

≤
(
e

p

)2s

.

Thus

es ≤ (e/p)2s
(

(qd+ p)pd−1
)s

= (e2(qd+ p)pd−3)s. (4.3)

Case s ≤
√
n. In this case p ≤ 1/

√
n, so for d > 3, e2(qd + p)pd−3 ≤ e2d/

√
n.

Hence √
n∑

s=1

es ≤
e2d/
√
n

1− e2d/
√
n

= o(1).

Case s ≥
√
n and q ≥ 2(log d)/d. Note that the lower bound on q implies an

upper bound on s, say s ≤ s0, so we must also ensure we have covered all the cases
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for s. In this case e2(dq + p)pd−3 ≤ e2d exp(−q(d − 3)) ≤ 1/2 for large enough d.

Thus
s0∑

s=
√
n

es ≤
∞∑

s=
√
n

1

2s
= 2−

√
n+1 = o(1).

Case 5/d ≤ q ≤ 2(log d)/d. Write the corresponding bounds on s as s0 ≤ s ≤ s1.

Note that (qd+ p)pd−1 = P(Bin(d, q) ≤ 1) is increasing as q decreases. Thus

(qd+ p)pd−1 ≤ (5 + 1)(1− 5/d)d−1 ≤ 6e−
5d−1
d

which is less than 1/20 for large enough d. For sufficiently large d we also have

e2/p2 ≤ 10, so e2(qd+ p)pd−3 ≤ 1/2 and

s1∑
s=s0

es ≤
∞∑
s=s0

1

2s
= o(1)

as in the previous case.

Case 1000(log d)/d2 ≤ q ≤ 5/d. Write the corresponding bounds on s as s1 ≤ s ≤

s2. From now on we will use the fact that

(qd+ p)pd−1 ≤ 1−
(
d

2

)
q2pd−2 ≤ exp

(
−
(
d

2

)
q2pd−2

)
. (4.4)

Note that s− 1 = pñ = (1− q)ñ and in this case
(
n
s

)
≤
(
ñ
s−1

)
=
(
ñ
qñ

)
. Thus

es ≤
(
ñ

qñ

)2

exp
(
−
(
d
2

)
q2pd−2

)s
≤
(
e

q

)2qñ

exp
(
−
(
d
2

)
q2pd−2

)s
= exp

(
−
(
d
2

)
q2pd−2s+ 2qñ log(e/q)

)
.

Since s ≥ s− 1 = pñ we get

s2∑
s=s1

es ≤ n exp
(
−
((

d
2

)
q2pd−1 − 2q log(e/q)

)
ñ
)
.

Thus it suffices to show that
(
d
2

)
q2pd−1 − 2q log(e/q) is bounded away from 0 in-

dependently of n. But this is clear as pd−1 ≥ 1/200, log(e/q) ≤ 2 log d, and

q ≥ 1000(log d)/d2.
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Case q ≤ 1000(log d)/d2 and s ≤ (1 − e/d2)n. In this case we have that pd−1 =

1− od(1). Note that

n−s
n = 1− s

n ≤ 1− s−1
n = 1− p(1 + ε) = q − pε

and q = 1− p ≥ 1− n/ñ = ε/(1 + ε) ≥ e/d2. Hence by (4.2) and (4.4)

es ≤
(

n

n− s

)(
ñ

qñ

)
exp

(
−
(
d
2

)
q2pd−2

)s
≤
(

en

n− s

)n−s(e
q

)qñ
exp

(
−
(
d
2

)
q2pd−2s

)
≤ (d2)n(q−pε)(d2)qñ exp

(
−
(
d
2

)
q2pd−1ñ

)
≤ exp

((
−
(
d
2

)
q2pd−1 + 2(log d)(2q − pε)

)
ñ
)
.

Thus it suffices to show that −
(
d
2

)
q2pd−1 + 2(log d)(2q − pε) is bounded away from

0 independently of n. But (q − pε)2 ≥ 0 so

2(log d)(2q − pε) ≤ 2(log d)q2/pε ≤ 2
4+ηd

2q2/p ≤
(
1− η

10

) (
d
2

)
q2pd−1

for sufficiently large d.

Case q ≤ 1000(log d)/d2 and s ≥ (1−e/d2)n. In this case we have
(
n
n−s
)
≤
(

n
en/d2

)
.

As above we have

es ≤ (d2)en/d
2
(d2)qñ exp

(
−
(
d
2

)
q2pd−1ñ

)
≤ exp

((
−
(
d
2

)
q2pd−1 + 2(log d)(q + e/d2)

)
ñ
)
.

Now q ≥ ε/(1 + ε) so

2(log d)(q + e/d2) ≤ (2 log d)q(1 + η/10)

while (
d

2

)
q2pd−1 ≥ d2qε(1− η/10)/2 ≥ (2 log d)q(1 + η/2).

�

Thus the proof is complete.
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4.4 Lower bounds

We now demonstrate a lower bound for the threshold, such that for values of ε below

this bound, with high probability, the adversary can ensure that a matching of size

n does not exist. We achieve this by demonstrating that a strategy for the adversary

can succeed in isolating more than εn vertices from B (which is of size (1 + ε)n).

This means that there will remain less than n vertices in B with neighbours in A

and so no matching of size n can possibly occur.

Instead of looking at a matching in a bipartite graph we consider the random

d-uniform hypergraph Hdñ,n consisting of ñ = (1 + ε)n vertices and n edges. The

correspondence between these two models is simple. For each of the vertices of A,

its neighbourhood consists of d vertices in B, chosen uniformly and independently

at random. Each neighbourhood of d vertices in B is chosen using an equivalent

random process to the one that determines the hyperedges of Hdñ,n and as such,

treating these neighbourhoods as hyperedges on B, creates an auxiliary hypergraph,

which is equivalent to Hdñ,n.

A small issue is that in the graph, the neighbourhood of a vertex in A may not

be of size d, since each vertex chooses uniformly at random from the vertices of B for

each of its d edges, and hence (with small probability) may choose the same vertex

twice, creating a multi-edge while the hypergraph model assumes all hyperedges are

exactly of size d. In this case we can still generate a corresponding hyperedge inHdñ,n

by simply choosing vertices at random to increase the size of the neighbourhood to

d. Since every set of size d is generated with equal probability by this method, the

hypergraph generated this way and Hdñ,n have the same probability distribution.

To address the equivalence in terms of translating our results, we firstly note

that the number of vertices of A whose incident edges contain a multi-edge (or

equivalently, the number of vertices of A, whose neighbourhood is of size smaller

than d) is asymptotically almost surely near to constant size.

To see this, consider that the probability that the edges incident to a single vertex

in A each have unique neighbours in B is ñ
ñ
ñ−1
ñ . . . ñ−d+1

ñ and hence the probability
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that a given vertex in A has at least two incident edges incident to a single vertex

in B (or equivalently that the neighbourhood of the vertex in A is smaller than d)

is

1− ñ

ñ
× ñ− 1

ñ
× · · · × ñ− d+ 1

ñ
= 1− ñ!

(ñ− d)!(ñ)d
≤ 1−

(
ñ− d
ñ

)d
≤1−

(
1− d2

ñ
+
d3(d− 1)

2ñ2
+ . . .

)
≤ d2

ñ
.

In light of this, if we allow Ai to be the indicator variable which has value 1 if

the neighbourhood of vertex i ∈ A is of size less than d and 0 otherwise, we have

that E(Ai) ≤ d2

ñ . Equally the variance of Ai satisfies,

V ar (Ai) ≤
d2

ñ
− d2

ñ2
+ o

(
1

ñ2

)
.

The total number of vertices whose neighbourhood is of size less than d is
∑
Ai,

and since the Ai are independent, the expectation and variance of
∑
Ai are the sum

of the expectations and variance respectively of the Ais. This gives us

E
(∑

Ai

)
≤ nd

2

ñ
=

d2

(1 + ε)
,

and

V ar
(∑

Ai

)
≤ n

(
d2

ñ
− d2

ñ2
+ o

(
1

ñ2

))
=

d2

(1 + ε)
+ o

(
1

n

)
.

By Chebyshev’s inequality, the probability that
∑
Ai is more than a function

f(n) from its expected value is

P
(∣∣∣∑Ai − E

(∑
Ai

)∣∣∣ ≥ f(n)
)
≤ V ar (

∑
Ai)

(f(n))2
.

Letting f(n)→∞ as n→∞ however slowly we wish gives us that,

P
(∑

Ai ≥
d2

(1 + ε)
+ f(n)

)
≤ d2

(1 + ε)(f(n))2 + o
(

(f(n))2

n

) → 0,

as n → ∞. In light of this, we can see that for any increasing function of n, the

probability that the number of neighbourhoods containing multi-edges is larger than

this function tends to 0, and such the number is asymptotically small.
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For the lower bound we aim to find a strongly independent set in B of size (4−

od(1)) log d
d2
n, which the adversary can then isolate since it corresponds to vertices in

B, whose neighbourhoods consists of unique vertices in A. If some of the hyperedges

that cover the elements of this set were generated from neighbourhoods containing

multi-edges, then the vertex incident to the multi-edges cannot be isolated by the

adversary (since this would require deleting two edges adjacent to a single vertex of

A). However since there are a.a.s near to a constant number (and certainly o(n))

such multi-edges, this is less than the error term in the size of the independent set.

The adversary can simply ignore any such vertices, and still isolate a sufficiently

large set.

Formally, we aim to find a strongly independent set in Hdñ,n, that is, a set I of

vertices such that no two vertices of I are contained in the same hyperedge. Clearly,

given a strongly independent set I ⊆ B, the adversary can isolate the vertices of I

in the set B, since no two vertices in this set share a neighbour in A. The adversary

can go through the vertices of I, eliminating their incident edges and never need to

remove two edges incident to a single vertex in A. Hence if the maximum strongly

independent set is of size bigger than εn then the adversary can ensure that a

matching of size n does not exist.

Theorem 4.3

The maximum size of a strongly independent set in a random d-uniform hypergraph

Hdñ,n consisting of ñ vertices and n edges is asymptotically almost surely at least

(4− od(1))
log d

d2
n.

Proof We actually prove a stronger result by proving this result for the d-uniform

hypergraph Hdñ,p which has ñ(= (1 + ε)n) vertices and each subset of the vertices of

size d is a hyperedge with probability p independently of the presence or absence of

all other hyperedges. Here p is such that the expected number of hyperedges equals

n, that is, (
ñ

d

)
p = n. (4.5)
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This is indeed a stronger result. For example, suppose the maximum strongly in-

dependent set is a.a.s. of size at least k in Hdñ,p. As this hypergraph has at least

n edges with probability bounded away from zero, the maximum size of a strongly

independent set is a.a.s. at least k, even conditioned on the hypergraph having at

least n hyperedges. But then a.a.s. there is a strongly independent set of size at least

k in the hypergraph obtained from this graph by selecting at random n hyperedges

from this graph, which is distributed precisely as Hdñ,n.

We follow an argument of Frieze [27] suggested by  Luczak. We use a partition

P of the vertex set consisting of parts P1, . . . , Pn′ of size m where m grows asymp-

totically faster than (log d)2 but slower than d2/ log d, that is, m = od(d
2/ log d) and

m = ω(log2 d). A set is a P -set if it is strongly independent and contains at most

one vertex from each Pi for i ∈ {1, . . . , n′}. Let β be the maximum size of a P -set.

By Azuma’s inequality, we have that

P (|β − E(β)| ≥ t) ≤ 2e−t
2/2n′ (4.6)

using the martingale that exposes the hyperedges incident to Pi at step i, i =

1, . . . , n′, and noting that β can change by at most 1 when we change hyperedges

incident to a single Pi. This is because until we have exposed the hyperedges incident

to Pi we cannot know whether any vertex in Pi can be added to our P -set and at

most we can increase the size of the maximum P -set by 1 by adding a vertex from

Pi to an existing P -set formed of vertices from the already exposed Pi′ .

Let Xk be the random variable that counts the number of P -sets of size k.

Using the second moment method we will now show that for η = od(1), η > 0 and

sufficiently large d,

P(Xk > 0) > 2 exp

(
−210

(
log d
d

)4
n

)
(4.7)

where

k = (4− η)
log d

d2
n.
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This implies the lower bound by setting t = 26
(

log d
d

)2
n/
√
m as

t2/2n′ =
212n2

2n′m

(
log d

d

)4

=
212n2

2ñ

(
log d

d

)4

=
212n

2(1 + ε)

(
log d

d

)4

> 210

(
log d

d

)4

n.

From this it follows that the probability that Xk > 0 is larger than the probability

that β, (which is the largest k for which Xk 6= 0) lies further from the expectation

than t. Thus k must be at most t greater than E(β). By Azuma’s inequality, we

know that |k − E(β)| < t with high probability and hence with high probability

β > k − 2t. Hence if m/(log d)2 →∞, we have that for sufficiently large d,

β > (4− η − 27(log d)/
√
m)

log d

d2
n ≥ (4− 2η)

log d

d2
n

as required.

We begin by observing that, by the second moment method,

P(Xk > 0) ≥ (EXk)
2

E(X2
k)
. (4.8)

We derive bounds on these values, firstly noting that

EXk =

(
n′

k

)
mk(1− p)Nk , (4.9)

where Nk is the number of d-sets in {1, . . . , ñ} intersecting a given k-set in at least

two elements. Clearly,

Nk ≤
(
k

2

)(
ñ− 2

d− 2

)
,

since this counts the number of pairs (e, e′) where e is a d-set and e′ ⊆ e is a pair of

elements from the given k-set.

For the second moment, consider two sets of size k which overlap in a set of size i.

We define Nk,i as the number of d-sets which cover at least two vertices from each

of these two k-sets. This can happen if at least two vertices from the overlap are

covered by an edge or we cover one from the overlap and at least one from each of

the two sets outside the intersection, or two in each set from outside the intersection.
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Hence we have

Nk,i ≤
(
i

0

)(
k − i

2

)(
k − i

2

)(
ñ− 4

d− 4

)
+

(
i

1

)(
k − i

1

)(
k − i

1

)(
ñ− 3

d− 3

)
+

(
i

2

)(
k − i

0

)(
k − i

0

)(
ñ− 2

d− 2

)
.

Multiplying by p and simplifying, we get,

pNk,i ≤ n

((
k − i

2

)2 d(d− 1)(d− 2)(d− 3)

ñ(ñ− 1)(ñ− 2)(ñ− 3)

+ (k − i)2i
d(d− 1)(d− 2)

ñ(ñ− 1)(ñ− 2)
+

(
i

2

)
d(d− 1)

ñ(ñ− 1)

)

≤ n
(
k4d4

2ñ4
+
k2id3

ñ3
+
i2d2

2ñ2

)
as (d− j)/(ñ− j) ≤ d/ñ for j ≤ d < ñ. Using that

kd

ñ
≤ 4 log d

d
,

we get

pNk,i ≤ n

(
1

2

(
4 log d

d

)4

+

(
4 log d

d

)2 id

ñ
+
i2d2

2ñ2

)
. (4.10)

Now consider E(X2
k). As X2

k counts ordered pairs of k-sets, both having at most

one vertex in each Pi and intersecting all hyperedges of Hdñ,p in at most one vertex,

we have

E(X2
k) =

k∑
i=0

(
n′

k

)(
k

i

)(
n′ − k
k − i

)
m2k−i(1− p)2Nk−Nk,i .

Indeed, there are
(
n′

k

)
mk ways of choosing the first k-set,

(
k
i

)
ways of choosing the

intersection of the k-sets, given this intersection has size i, and
(
n′−k
k−i
)
mk−i ways

of choosing the remaining vertices of the second k-set. Also, there are 2Nk − Nk,i

potential edges ofHdñ,n that must be absent as there areNk such potential hyperedges

intersecting each k-set in at least two vertices, and these two sets of hyperedges

intersect in a set of size Nk,i.

121



4.4 Lower bounds

We now return to bound (4.8), by first considering its reciprocal;

E(X2
k)

(EXk)2
=

k∑
i=0

(
n′

k

)(
k
i

)(
n′−k
k−i
)
m2k−i(1− p)2Nk−Nk,i(

n′

k

)2
m2k(1− p)2Nk

=

k∑
i=0

(
k
i

)(
n′−k
k−i
)(

n′

k

) m−i(1− p)−Nk,i

≤
k∑
i=0

(
k

i

)((
n′ − i
k − i

)
/

(
n′

k

))
m−i exp(pNk,i +O(p2Nk,i))

≤
k∑
i=0

(
k

i

)
k(k − 1) . . . (k − i+ 1)

n′(n′ − 1) . . . (n′ − i+ 1)
m−i exp(pNk,i + o(1))

≤
k∑
i=0

(
k

i

)(
k

n′m

)i
exp(pNk,i + o(1))

≤ 2

k∑
i=0

(
k

i

)(
k

ñ

)i
exp(pNk,i)

for sufficiently large d and n. Here we have used the fact that pNk,i = O(n) by

(4.10), so p2Nk,i = O(np) = O(n1−d) as n → ∞. We split the sum, dealing firstly

with the case i ≤ i0 where i0 satisfies

i0d

ñ
=

(
4 log d

d

)2

,

and hence (by (4.10))

pNk,i ≤ 2n

(
4 log d

d

)4

.

Note that (ek2/iñ)i is maximised at i = k2/ñ and hence

2

i0∑
i=0

(
k

i

)(
k

ñ

)i
exp(pNk,i) ≤ 2

i0∑
i=0

(
ek2

iñ

)i
exp(pNk,i) (4.11)

≤ 2(i0 + 1) exp

(
k2

ñ
+ 2n

(
4 log d

d

)4
)

≤ exp

(
2n

(
4 log d

d

)4

+O

(
(log d)2

d4
n

))
. (4.12)

For i ≥ i0, (4.10) implies that

pNk,i ≤
i2d2

2ñ
+

24i(log d)2

d
.
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We first consider the sum over i > (1− η)k. In this case write j = k − i. This gives

us j < ηk and so, assuming η is sufficiently small,

exp(pNk,i) ≤ exp(i2d2/2ñ+ 24i(log d)2/d)

≤ exp
(
(k2 − 2jk + j2)d2/2ñ+ 24(k − j)(log d)2/d

)
≤ exp

(
(k − 2j)

(
(1 + 2η2)kd2/2ñ+ 25(log d)2/d

))
≤ exp

(
(k − 2j)(1 + 3η2)(4− η)(log d)/2

)
≤ (d2−η/3)k−2j ≤ (ñ/k)k−2j = (k/ñ)k−2i. (4.13)

Hence

2
∑

i≥(1−η)k

(
k

i

)(
k

ñ

)i
exp(pNk,i) ≤ 2

k∑
i=0

(
k

i

)(
k

ñ

)k−i
= 2

(
1 +

k

ñ

)k
≤ 2 exp(k2/ñ) = exp(O((log d)2n/d4)),

which is much less than the contribution (4.12) above.

Now assume i0 ≤ i ≤ (1− η)k. By applying (4.13) with i = k we have

exp
(
k2d2/2ñ+ 24k(log d)2/d

)
≤ (ñ/k)k,

so by raising this to the power i/k we have

exp
(
ikd2/2ñ+ 24i(log d)2/d

)
≤ (ñ/k)i.

Hence(
k

ñ

)i
exp(pNk,i) ≤

(
k

ñ

)i
exp

(
i2d2/2ñ+ 24i(log d)2/d

)
≤ exp(−(k − i)id2/2ñ).

Hence it remains to bound the sum

2

(1−η)k∑
i=i0

(
k

i

)
exp(−(k − i)id2/2ñ).

For ηk ≤ i ≤ (1− η)k, (k− i)id2/2ñ ≥ η(log d)k > k, so exp(−(k− i)id2/2ñ) < 2−k.

Hence the sum over these terms is at most 1. For i < ηk we use that exp((k −

i)d2/2ñ) ≥ exp(3(log d)/2) = d3/2. Thus(
k

i

)
exp(−(k − i)id2/2ñ) ≤

(
ek

id3/2

)i
≤ 1
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for i ≥ i0 > ek/d3/2. Thus the sum over i0 ≤ i ≤ (1 − η)k contributes at most

O(i0 + 1). Hence we obtain

E(X2
k)

(EXk)2
≤ exp

(
2n

(
4 log d

d

)4

+O

(
(log d)2

d4
n

))

and so

P(Xk > 0) ≥ 2 exp

(
−210

(
log d

d

)4
)

as required. �

In light of this result, as mentioned before, we therefore immediately have the

following,

Corollary 4.4

Let d > 3, and let G be the random bipartite graph with partition sets A and B

of size n and ñ = (1 + ε)n respectively, and each vertex of A chooses d neighbours

uniformly at random from B. An adversary deletes a single edge incident to each

vertex of A to obtain G′. Then, for ε < (4 + od(1)) log d
d2

, there exists a strategy for

the adversary to ensure, with probability tending to 1 as n → ∞, that there is no

matching of size n in G′.

In an earlier result using different methods, we showed a weaker threshold of

ε < (2 + od(1)) log d
d2

for the lower bound. Although this result has been superseded

by the above, it is still of interest from an algorithmic point of view.

The above result provides an existence result of a set of edges the adversary

can eliminate to reduce the maximum matching size, but we do not have a clear

strategy for the adversary to pursue at each step, other than to identify the entirety

of the independent set in advance. Although the result below is only proven for a

weaker threshold, it does provide a clear algorithmic strategy for the adversary. In

particular it proves that a greedy strategy of simply identifying any new vertex of

roughly average degree, whose neighbourhood hasn’t had any incident edges deleted

already, to isolate at each step, can eliminate any matchings of size n. This algorithm

is also producing a strongly independent set in the same manner as the previous
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result but the gap in the thresholds demonstrates what is lost by pursuing a simple

greedy approach of trying to isolate low degree vertices one at a time.

Theorem 4.5

Let G be the random bipartite graph with partition sets A and B of size n and

ñ = (1 + ε)n respectively, and each vertex of A chooses d neighbours uniformly at

random from B. An adversary deletes a single edge incident to each vertex of A. For

ε < (2 + od(1)) log d
d2

, with probability tending to 1 − od(1) as n → ∞, we provide a

strategy for the adversary such that a matching of size n will not exist after deletion.

Proof Firstly we note that for every subset SB ⊂ B with |SB| = γ(1 + ε)n for

some γ ∈ (0, 1), the number of edges from A, incident to SB is

(1 + od(1))γdn, (4.14)

with probability tending to 1 as n→∞. This follows from observing that for each

of the nd edges from A, the probability that it is adjacent to a vertex in SB is γ,

independently of each of the other edges. Hence the number of edges is binomially

distributed with nd trials and mean γnd.

To prove this statement formally, we first bound the probability of an arbitrary

set, SB ⊂ B of size γ(1 + ε)n having a number of adjacent edges that differ signifi-

cantly from (4.14). Using a Chernoff bound (see for example, Corollary 2.3 in [36])

and denoting the number of edges between two sets X and Y by e(X,Y ) we find

that for any β > 0,

P(|e(T, SB)− γnd| > βγnd) ≤ 2e−
β2

3
γnd.

We now consider the number of such sets, and using H(p), the binary entropy

function and the following inequality;(
n

k

)
≤ enH( kn) where H(p) = −p log p− (1− p) log(1− p),

find that the number of sets is equal to(
(1 + ε)n

γ(1 + ε)n

)
≤ e(1+ε)nH(γ).
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The expected number of sets SB for which |e(A,SB)− γnd| > βγnd is therefore

less than or equal to,

2e
n

(
−β

2

3
γd+(1+ε)H(γ)

)
.

Noting that (1+ε)H(γ) is bounded above by 2 and β2

3 γd is unbounded as d→∞,

we can see that this tends to 0 as d→∞ for any β > 0.

In light of this, the expected number of sets that satisfy |e(A,SB)−γnd| > βγnd

tends to 0 for any β > 0, and hence every set SB ⊂ B of size γ(1 + ε)n must satisfy

e(A,SB) = (1 + od(1))γdn as required.

We now outline a greedy approach for the adversary to isolate vertices from B.

Our aim is to isolate more than εn vertices from B, which means a matching of size

n cannot occur.

We begin by taking a vertex at random from B, and for each of its neighbours in

A, the adversary eliminates the incident edges from that neighbour. The expected

number of vertices in B that have two edges incident to a single vertex in A is

o(d/n) and hence, the probability of choosing such a vertex at any step (as long as

the number of iterations is od(n)) is small and hence we discount this possibility,

discarding any randomly chosen vertex that has this property. We iteratively define

the sets SB and SA as the vertices we have isolated in B and their neighbours in A

respectively.

After one step, with high probability, there will be d + od(d) vertices in SA

and a single vertex in SB. We now iteratively look for vertices in B \ SB whose

neighbourhood lies entirely in A \ SA, in other words, those vertices not yet chosen

to be added to SB who have no neighbours in SA.

This process terminates once we can no longer find a vertex in B \SB which does

not have a neighbour in SA, at which point we will have |SA| = (1 + od(1))d|SB|.

Treating the edges from SA as independent selections from B, this problem can be

seen as analogous to a coupon collector problem. Each edge from SA is a draw of

a random vertex from B, and our process ends when there are no more vertices

‘undrawn’. The only complication is that we are removing vertices from considera-
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tion by adding them to SB, and this selection process is not random. At each step,

we are choosing (non-randomly) one element of A that is definitely ‘undrawn’ and

which we add to SB, and then the remaining choices in the coupon collector analogy

are selected randomly, by considering the neighbours of the neighbourhood of this

chosen vertex (all of which are distributed uniformly at random on B). In light

of this, if we can show that the number of remaining vertices not adjacent to any

vertex in SA is greater than the number of vertices in SB (which is the number of

vertices removed from selection, non-randomly by this process), then regardless of

the choices we made in adding to SB, there must, with high probability, be choices

remaining that we can add.

Since we aim to construct SB to be of size greater than εn, we need to show

that, with high probability, the set of vertices with no neighbours in SA is also of

size greater than εn. This calculation will give us a bound on the size of SA, which

in turn gives a bound on the size of SB.

Since each vertex of SA has degree d, the number of edges incident to the set

is d|SA|, which is therefore the number of coupons drawn in the equivalent coupon

collector problem that we consider. It is known (see, for example Lemma 2 in [50]

with s = 1) that with n0 distinct coupons, that after αn0 iterations of the coupon

collector process, the number of coupons remaining unseen is e−αn0 + o(n0) with

high probability. In our case n0 = (1 + ε)n and

α =
|SA|d

(1 + ε)n

and as such with high probability, there will be

e
|SA|d
(1+ε)n (1 + ε)n+ o(n)

vertices whose neighbours lie entirely in A \ SA. Since we aim for this to be greater

than εn, we require the following;

e
|SA|d
(1+ε)n (1 + ε)n > εn+ o(n).
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Rearranging, we get,

−|SA|d > (1 + ε)n log

(
ε

1 + ε

)
+ o(1)

and hence we require,

|SA| <
(1 + od(1))n

d

(
log

(
1

1 + ε

)
+ od(1)

)
. (4.15)

To this end, we recall that ε satisfies

ε < (2 + od(1))
log d

d2
,

and so the right hand side of 4.15 is greater than,

(1 + od(1))n

d

(
log

(
d2

2 log d

)
+ od(1)

)
=

(2 + od(1))n

d
log d.

Since this is smaller than the bound we require for SA, if we have,

|SA| <
(2 + od(1))n

d
log d,

then we have shown that with high probability, a set of size εn exists in B where

each vertex in this set has neighbours only in A \ SA as required, and hence the

process of generating SB will not terminate until SA reaches this threshold.

All that remains is to show that SB is of sufficient size at this point. Since SB

is constructed such that all of its neighbours are in SA and distinct, we can see that

the size of SA is precisely equal to the number of edges leaving SB. We can use our

observation (4.14), on the number of incident edges from any subset of B to note

that the size of SB must therefore be equal to |SA|/(1 + od(1))d. This gives us that

once SA is approaching the bound we calculated, we must have

|SB| =
(2 + od(1))n

d2
log d > εn,

�

as required.

Given this, the adversary can therefore isolate all of the vertices of SB, leaving

strictly less than n vertices remaining in B, and hence no matching of size n can

occur.
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4.5 Conclusion

Although we have proven a threshold for the lower and upper bounds which are

asymptotically equal as d → ∞, it seems likely that a threshold should exist for

each d. In other words, we conjecture that there exists constants cd for d ≥ 3 such

that for all η > 0, if ε > cd + η then with high probability a matching of size n

can be found, while for ε < cd − η there is with high probability a strategy for the

adversary that reduces the size of the maximal matching below n. If this conjecture

is true then we know cd = (4 + od(1))(log d)/d2.

Although we have identified the threshold for which an adversary can and cannot

destroy the complete matching, there still remain a number of interesting open

questions.

One that is of interest, is that of allowing the adversary greater or differing

powers in modifying G. We initially considered the case where the adversary was

able to delete n edges globally, but found that for any fixed values of d > 0, this

allowed the adversary to easily isolate a linear proportion of the vertices, while

equally, a matching still exists that covers a linear proportion of the vertices. In

both cases a simple greedy algorithm provides fairly simple bounds, but finding the

exact size of the largest remaining matching seems challenging and certainly would

require further insight in tackling.

Another problem to consider would be the case when d is small. Although our

arguments here are asymptotically tight for large d, it would be interesting to be

able to say something about the graph’s behaviour for small, fixed values of d. The

use of our graph model was motivated by its use in [26] which analysed the size of the

maximum matching in the same model but without an adversary removing edges,

for all values of d, and it would be interesting to know what the behaviour of the

maximum matching becomes for small values of d once an adversary is introduced.

Finally, it would be interesting for values of ε between the two thresholds demon-

strated in section 4.4, to identify an algorithmic approach for the adversary to pursue

in eliminating the maximum matching.
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Interscience, 2000. 8, 9, 10, 14, 54, 55, 56, 125

[37] Johansson, A., Kahn, J., and Vu, V. Factors in random graphs. Random

Struct. Algorithms 33, 1 (2008), 1–28. Available from: http://dx.doi.org/

10.1002/rsa.20224. vi, 4, 7, 8, 10, 13, 16, 20, 22, 24, 25, 26, 27, 32, 33, 34,

35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53

[38] Jonoska, N., Karl, S. A., and Saito, M. Three dimensional

{DNA} structures in computing. Biosystems 52, 1–3 (1999), 143 –

153. Available from: http://www.sciencedirect.com/science/article/

pii/S0303264799000416. 69

134



Bibliography

[39] Kapun, E., and Tsarev, F. De bruijn superwalk with multiplicities problem

is np-hard. BMC Bioinformatics 14, S-5 (2013), S7. Available from: http:

//dblp.uni-trier.de/db/journals/bmcbi/bmcbi14S.html#KapunT13. 99

[40] Karp, R. M. Reducibility among combinatorial problems. In Complexity of

Computer Computations (1972), pp. 85–103. 62, 63, 86

[41] Kim, J. H., and Vu, V. Concentration of multivariate polynomials and its

applications. Combinatorica 20, 3 (2000), 417–434. 33

[42] Kotzig, A. Eulerian lines in finite 4-valent graphs and their transformations.

Theory of graphs, Proceedings of the Colloquium, Tihany, Hungary (1966), pp.

219–230. 83

[43] Krivelevich, M. Embedding spanning trees in random graphs. ArXiv e-prints

(July 2010). 8

[44] Kruskal, Joseph B., J. On the shortest spanning subtree of a graph and

the traveling salesman problem. Proceedings of the American Mathematical

Society 7, 1 (02 1956), 48–50. Available from: http://www.jstor.org/stable/

2033241. 86

[45] L., E. Solutio problematis ad geometriam situs pertinentis. (The solution

of a problem relating to the geometry of position). Commentarii academiae

scientiarum Petropolitanae 8, 1741, pp. 128-140 (1741). Available from:

http://www.math.dartmouth.edu/~euler/docs/originals/E053.pdf. 2, 61

[46] Levin, L. A. Universal sequential search problems. Problemy Peredachi In-

formatsii 9, 3 (1973), 115–116. 62

[47] Lin, C.-T. Structural controllability. Automatic Control, IEEE Transactions

on 19, 3 (Jun 1974), 201–208. 109

135



Bibliography

[48] Liu, Y.-Y., Slotine, J.-J., and Barabasi, A.-L. Controllability of complex

networks. Nature 473, 7346 (May 2011), 167–173. Available from: http:

//dx.doi.org/10.1038/nature10011. 109
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