
An open problem on strongly consistent learning
of the best prediction for Gaussian processes

László Györfi and Alessio Sancetta

For Gaussian process, we present an open problem whether or not there is a data
driven predictor of the conditional expectation of the current value given the past
such that the difference between the predictor and the conditional expectation tends
to zero almost surely for all stationary, ergodic, Gaussian process. We show some
related negative and positive findings.

1 Open problem

Let {Yn}∞
−∞ be a stationary, ergodic, mean zero Gaussian process. The predictor is

a sequence of functions g = {gi}∞
i=1. It is an open problem whether it is possible to

learn the best predictor from the past data in a strongly consistent way, i.e., whether
there exists a prediction rule g such that

lim
n→∞

(
E{Yn | Y n−1

1 }−gn(Y n−1
1 )

)
= 0 almost surely (1)

for all stationary and ergodic Gaussian processes. (Here Y n−1
1 denotes the string

Y1, . . . ,Yn−1.)
Bailey [3] and Ryabko [31] proved that just stationarity and ergodicity is not

enough, i.e., for any predictor g, there is a binary valued stationary ergodic process
such that
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P
{

limsup
n→∞

|gn(Y n−1
1 )−E{Yn | Y n−1

1 }| ≥ 1/2
}
≥ 1/8,

(cf. Györfi, Morvai, Yakowitz [18]).
In this paper we try to collect some related results such that the main aim is

to have as mild conditions on the stationary, ergodic, Gaussian process {Yn}∞
−∞ as

possible.
Concerning ergodicity of stationary Gaussian processes, L2 ergodicity means that

E


(

1
n

n

∑
i=1

Yi

)2
→ 0, (2)

which is equivalent to
1
n

n

∑
i=1

r(i)→ 0, (3)

where
r(i) = cov(Yi,Y0),

(cf. Karlin, Taylor [22]). Moreover, because of stationarity the ergodic theorem im-
plies that

1
n

n

∑
i=1

Yi→ E{Y1 |F} (4)

a.s. such that F is the σ -algebra of invariant sets. From (2) and (4) we get that

E{Y1 |F}= 0 (5)

a.s. Thus, from (3) we get the strong law of large numbers, and so (3) is a neces-
sary condition for ergodicity of a stationary Gaussian process. Maruyama [25] and
Grenander [15] proved that the necessary and sufficient condition for ergodicity of a
stationary Gaussian process is that the spectral distribution function F is everywhere
continuous. Lindgren [24] showed that

1
n

n

∑
i=1

r(i)2→ 0 (6)

is a necessary condition for ergodicity, while

r(i)→ 0 (7)

is a sufficient condition. Because of Jensen inequality, we get that(
1
n

n

∑
i=1

r(i)

)2

≤ 1
n

n

∑
i=1

r(i)2,
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therefore (6) implies (3). Cornfeld et al. [8] showed that for stationary Gaussian
process with absolutely continuous spectral distribution, (7) is a necessary, too.

In the theory of prediction of stationary Gaussian process, the Wold decomposi-
tion plays an important role. It says that we have Yn =Un +Vn, where the stationary
Gaussian processes {Un}∞

−∞ and {Vn}∞
−∞ are independent, {Un}∞

−∞ has the MA(∞)
representation

∞

∑
j=0

a∗jZn− j, (8)

with i.i.d. Gaussian innovations {Zn} and with

∞

∑
i=1
|a∗i |2 < ∞, (9)

while the process {Vn}∞
−∞ is deterministic: Vn = E{Vn |V n−1

−∞ }.
For a stationary, ergodic Gaussian process, we may get a similar decomposi-

tion, if we write the continuous spectral distribution function in the form F(λ ) =
F(a)(λ )+F(s)(λ ), where F(a)(λ ) is an absolutely continuous distribution function
with density function f and F(s)(λ ) is singular continuous distribution function.
Then we have the decomposition Yn =U ′n +V ′n, where the stationary, ergodic Gaus-
sian processes {U ′n}∞

−∞ and {V ′n}∞
−∞ are independent, {U ′n}∞

−∞ has the spectral dis-
tribution function F(a), while {V ′n}∞

−∞ has the spectral distribution function F(s). If∫
π

−π
ln f (λ )dλ >−∞, then Un =U ′n and Vn =V ′n (cf. Lindgren [24]).

In the analysis of stationary Gaussian processes one often assumes the MA(∞)
or the AR(∞) representations such that these representations imply various type of
mixing properties. The AR(∞) representation of the process {Yn} means that

Yn = Zn +
∞

∑
j=1

c∗jYn− j, (10)

with the vector c∗ = (c∗1,c
∗
2, . . .). Bierens [4] introduced a non invertible MA(1)

process such that
Yn = Zn−Zn−1, (11)

where the innovations {Zn} are i.i.d. standard Gaussian. Bierens [4] proved that this
process has no AR(∞) representation.

The rest of the paper is organized as follows. In Section 2 we summarize the basic
concepts of predicting Gaussian time series, while Section 3 contains some positive
and negative findings concerning universally consistent prediction. The current ma-
chine learning techniques in Section 4 may result in universal consistency.
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2 Prediction of Gaussian processes

In this section we consider the classical problem of Gaussian time series prediction
(cf. Brockwell and Davis [6]). In this context, parametric models based on distri-
butional assumptions and structural conditions such as AR(p), MA(q), ARMA(p,q)
and ARIMA(p,d,q) are usually fitted to the data (cf. Gerencsér and Rissanen [14],
Gerencsér [12, 13]). However, in the spirit of modern nonparametric inference, we
try to avoid such restrictions on the process structure. Thus, we only assume that we
observe a string realization Y n−1

1 of a zero mean, stationary and ergodic Gaussian
process {Yn}∞

−∞, and try to predict Yn, the value of the process at time n.
For Gaussian time series and for any integer k > 0, E{Yn | Y n−1

n−k } is a linear
function of Y n−1

n−k :

E{Yn | Y n−1
n−k }=

k

∑
j=1

c(k)j Yn− j, (12)

where the coefficients c(k)j minimize the risk

E


(

k

∑
j=1

c jY− j−Y0

)2
 ,

therefore the main ingredient is the estimate of the coefficients c(k)1 , . . . ,c(k)k from
the data Y n−1

1 . Such an estimate is called elementary predictor, it is denoted by h̃(k)

generating a prediction of form

h̃(k)(Y n−1
1 ) =

k

∑
j=1

C(k)
n, jYn− j

such that the coefficients C(k)
n, j minimize the empirical risk

n−1

∑
i=k+1

(
k

∑
j=1

c jYi− j−Yi

)2

if n > k, and the all-zero vector otherwise. Even though the minimum always exists,
it is not unique in general, and therefore the minimum is not well-defined. It is
shown by Györfi [16] that there is a unique vector C(k)

n = (C(k)
n,1, . . . ,C

(k)
n,k) such that

n−1

∑
i=k+1

(
k

∑
j=1

C(k)
n, jYi− j−Yi

)2

= min
(c1,...,ck)

n−1

∑
i=k+1

(
k

∑
j=1

c jYi− j−Yi

)2

,

and it has the smallest Euclidean norm among the minimizer vectors.

For fixed k, an elementary predictor
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h̃(k)(Y n−1
1 ) =

k

∑
j=1

C(k)
n, jYn− j

cannot be consistent. In order to get consistent predictions there are three main prin-
ciples:

• k is a deterministic function of n,
• k depends on the data Y n−1

1 ,
• aggregate the elementary predictors {h̃(k)(Y n−1

1 ),k = 1,2, . . . ,n−2}.

3 Deterministic kn

Schäfer [32] investigated the following predictor: for a > 0, introduce the truncation
function

Ta(z) =

a if z > a;
z if |z|< a;
−a if z <−a.

Choose Ln ↑ ∞, then his predictor is

ḡn(Y n−1
1 ) =

kn

∑
j=1

C(kn)
n, j TLn(Yn− j).

Schäfer [32] proved that, under some conditions on the Gaussian process, we have
that

lim
n→∞

(
E{Yn | Y n−1

n−kn
}− ḡn(Y n−1

1 )
)
= 0 a.s.

His conditions include that the process has the MA(∞) representation (8) such that

∞

∑
i=1
|a∗i |< ∞, (13)

and therefore it is purely nondeterministic and the spectral density exists. Moreover,
he assumed that

E{Yn | Y n−1
−∞ }−E

{
Yn|Y n−1

n−kn

}
→ 0

a.s. For example, he proved the strong consistency with kn = n1/4 if the spectral den-
sity is bounded away from zero. The question left is how to avoid these conditions
such that we pose conditions only on the covariances just slightly stronger than (7).

For a deterministic sequence kn,n = 1,2, . . . , consider the predictor

g̃n(Y n−1
1 ) = h̃(kn)(Y n−1

1 ) =
kn

∑
j=1

C(kn)
n, j Yn− j.
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For the prediction error E{Yn | Y n−1
1 }− g̃n(Y n−1

1 ) we have the decomposition

E{Yn | Y n−1
1 }− g̃n(Y n−1

1 ) = In + Jn,

where
In = E{Yn | Y n−1

1 }−E
{

Yn|Y n−1
n−kn

}
is the approximation error, and

Jn = E
{

Yn|Y n−1
n−kn

}
− g̃n(Y n−1

1 ) =
kn

∑
j=1

(c(kn)
j −C(kn)

n, j )Yn− j

is the estimation error. In order to have small approximation error, we need kn→∞,
while the control of the estimation error is possible if this convergence to ∞ is slow.

We guess that the following is true:

Conjecture 1. For any deterministic sequence kn, there is a stationary, ergodic Gaus-
sian process such that the prediction error E{Yn | Y n−1

1 }−∑
kn
j=1 C(kn)

n, j Yn− j does not
converge to 0 a.s.

Next we show that the approximation error tends to zero in L2 without any con-
dition:

Lemma 1. For any sequence kn→ ∞ and for any stationary process {Yn}∞
−∞,

lim
n→∞

E{(In)
2}= 0.

Proof. We follow the argument from Doob [10]. Because of stationarity,

E{Yn | Y n−1
1 }−E

{
Yn|Y n−1

n−kn

}
and

E{Y0 | Y−1
−n+1}−E

{
Y0|Y−1

−kn

}
have the same distribution. The sequence E{Y0 |Y−1

−n+1}, n = 1,2, . . . is a martingale
such that E{Y0 |Y−1

−n+1}→ E{Y0 |Y−1
−∞} a.s. and in L2, too. Similarly, if kn→∞ then

E{Y0 | Y−1
−kn
}→ E{Y0 | Y−1

−∞} a.s. and in L2. These imply that

E{Y0 | Y−1
−n+1}−E

{
Y0|Y−1

−kn

}
→ 0

a.s. and in L2, therefore for the variance of the approximation error, kn→ ∞ implies
that

Var(In) = Var(E{Yn | Y n−1
1 }−E

{
Yn|Y n−1

n−kn

}
)→ 0. (14)

ut
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Next we consider the problem of strong convergence of the approximation error.
First we show a negative finding:

Proposition 1. Put kn = (lnn)1−δ with 0 < δ < 1. Then for the MA(1) process de-
fined in (11), the approximation error does not converge to zero a.s.

Proof. For the MA(1) process defined in (11), we get that

E
{

Yn|Y n−1
1
}
=

n−1

∑
j=1

(
j
n
−1
)

Yn− j,

(see equation (5) in Bierens [4]). Similarly,

E
{

Ykn+1|Y kn
1

}
=

kn

∑
j=1

(
j

kn +1
−1
)

Ykn+1− j,

so stationarity implies that

E
{

Yn|Y n−1
n−kn

}
=

kn

∑
j=1

(
j

kn +1
−1
)

Yn− j.

On the one hand

E
{

Yn|Y n−1
1
}
=

n−1

∑
j=1

(
j
n
−1
)

Yn− j

=
n−1

∑
j=1

(
j
n
−1
)
(Zn− j−Zn− j−1)

=

(
1
n
−1
)

Zn−1 +
1
n

n−2

∑
j=0

Z j,

and on the other hand

E
{

Yn|Y n−1
n−kn

}
=

kn

∑
j=1

(
j

kn +1
−1
)

Yn− j

=
kn

∑
j=1

(
j

kn +1
−1
)
(Zn− j−Zn− j−1)

=

(
1

kn +1
−1
)

Zn−1 +
1

kn +1

n−2

∑
j=n−kn−1

Z j.

Thus

E
{

Yn|Y n−1
1
}
−E

{
Yn|Y n−1

n−kn

}



8 László Györfi and Alessio Sancetta

=

(
1
n
− 1

kn +1

)
Zn−1 +

1
n

n−2

∑
j=0

Z j−
1

kn +1

n−2

∑
j=n−kn−1

Z j

=
1
n

n−1

∑
j=0

Z j−
1

kn +1

n−1

∑
j=n−kn−1

Z j.

The strong law of large numbers implies that 1
n ∑

n−1
j=0 Z j→ 0 a.s., therefore we have

to prove that

limsup
n

1
kn +1

n−1

∑
j=n−kn−1

Z j = ∞

a.s. Let nm = bm lnmc be a subsequence of the positive integers, then we show that

limsup
m

1
knm +1

nm−1

∑
j=nm−knm−1

Z j = ∞

a.s. One can check that nm−knm > nm−1, therefore the intervals [nm−knm−1,nm−
1], m = 1,2, . . . are disjoint, and so for C > 0 the error events

Am :=

{
1

knm +1

nm−1

∑
j=nm−knm−1

Z j >C

}

m = 1,2, . . . are independent. If ϕ and Φ denote the density and the distribution
function of a standard normal distribution, then the tail probabilities of the standard
Gaussian satisfy

ϕ (z)
z

(
1− 1

z2

)
≤Φ(−z)≤ ϕ (z)

z

for z > 0, (cf. Feller [11, p. 179]). These imply that

P{Am}= P

{
1

knm +1

nm−1

∑
j=nm−knm−1

Z j >C

}
= Φ(−C

√
knm +1)

≥
ϕ
(
C
√

knm +1
)

C
√

knm +1

(
1− 1

C2(knm +1)

)
.

Because of the choice of kn, we get that

∞

∑
m=1

P{Am} ≥
∞

∑
m=1

ϕ
(
C
√

knm +1
)

C
√

knm +1

(
1− 1

C2(knm +1)

)
= ∞,

so the (second) Borel-Cantelli lemma for independent events implies that
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P
{

limsup
m

Am

}
= 1,

and the proof of the proposition is finished. ut

Proposition 2. Assume that for all n > k,

n−1

∑
j=k+1

c(n−1)
j r( j)≤C1k−γ , (15)

and
k

∑
j=1

(c(n−1)
j − c(k)j )r( j)≤C2k−γ , (16)

with γ > 0. If
kn = (lnn)(1+δ )/γ (17)

(δ > 0), then for the approximation error, we have that In = E{Yn | Y n−1
1 } −

E
{

Yn|Y n−1
n−kn

}
→ 0 a.s.

Proof. The approximation error In is a zero mean Gaussian random variable. Buldy-
gin, Donchenko [7] proved that In → 0 a.s. if and only if Var(In)→ 0 and for any
ε > 0,

P
{

limsup
n→∞

In < ε

}
> 0. (18)

Because of (14), we have to verify (18), which is equivalent to

P
{

limsup
n→∞

In ≥ ε

}
< 1.

Next we show that under the conditions of the proposition we have that

Var(In)≤
c

(lnn)1+δ
(19)

with some constants c > 0 and δ > 0. In order to show (19), consider the representa-
tions E{Yn |Y n−1

1 }= ∑
n−1
j=1 c(n−1)

j Yn− j and E{Yn |Y n−1
n−kn
}= ∑

kn
j=1 c(kn)

j Yn− j. Introduce

the vectors X (k)
i =(Yi−k, . . . ,Yi−1)

T (where the superscript T denotes transpose), and
the empirical covariance matrix R(k)

n = 1
n−k−1 ∑

n−1
i=k+1 X (k)

i (X (k)
i )T , and the vector of

empirical covariances M(k)
n = 1

n−k−1 ∑
n−1
i=k+1 YiX

(k)
i . If r(n)→ 0 then the covariance

matrix R(k) = E{R(k)
n } is not singular, and the optimal mean squared error of the

prediction is

E{(Y0−E{Y0 | Y−1
−k })

2}= E{Y 2
0 }−E{E{Y0 | Y−1

−k }
2}

= E{Y 2
0 }− (M(k))T (R(k))−1M(k),
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(cf. Proposition 5.1.1 in Brockwell, Davis [6]), where M(k) = E{M(k)
n }. Thus,

Var(In) = E{I2
n}

= E{E{Y0 | Y−1
−(n−1)}

2}−E{E{Y0 | Y−1
−kn
}2}

= (M(n−1))T (R(n−1))−1M(n−1)− (M(kn))T (R(kn))−1M(kn).

Moreover, we have that c(n−1) = (R(n−1))−1M(n−1) and c(kn) = (R(kn))−1M(kn). Ap-
plying the conditions of the proposition, we get that

Var(In) =
n−1

∑
j=1

c(n−1)
j M(n−1)

j −
kn

∑
j=1

c(kn)
j M(kn)

j

=
n−1

∑
j=1

c(n−1)
j r( j)−

kn

∑
j=1

c(kn)
j r( j)

=
kn

∑
j=1

(c(n−1)
j − c(kn)

j )r( j)+
n−1

∑
j=kn+1

c(n−1)
j r( j)

≤ (C1 +C2)k−γ
n

with γ > 0, then for the choice (17), (19) is proved. Thus, (19) implies that

P{In ≥ ε}= Φ

(
− ε√

Var(In)

)
≤ e−

ε2
2Var(In) ≤ e−

ε2(lnn)1+δ

2c = n−
ε2(lnn)δ

2c

therefore
∞

∑
n=1

P{In ≥ ε}< ∞,

so the Borel-Cantelli Lemma implies that

limsup
n→∞

In < ε

a.s. ut

The partial autocorrelation function of Yn is α ( j) := c( j)
j where c( j)

j is as defined
before, i.e. the jth coefficient from the AR( j) approximation of Yn. It is possible to
explicitly bound the approximation error In using α ( j). The asymptotic behavior of
α( j) has been studied extensively in the literature. For example, |α( j)| ≤ c/ j for
fractionally integrated ARIMA processes (e.g. Inoue, [20]). This includes Gaussian
processes such that |r(i)| ≤ c( j+1)−β under the sole condition that β > 0, as con-
jectured in Remark 1 below. It is unknown whether all stationary and ergodic purely
non deterministic Gaussian processes have partial correlation function satisfying
|α( j)| ≤ c/ j.

Proposition 3. Suppose that
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∞

∑
j=k+1

α
2( j)≤ ck−γ

with γ > 0, c> 0. For the choice (17), we have that In =E{Yn |Y n−1
1 }−E

{
Yn|Y n−1

n−kn

}
→

0 a.s.

Proof. We follow the line of the proof of Proposition 2 such that verify (19). To
ease notation, let σ2

k be the optimal mean square prediction error of the AR(k) ap-
proximation: σ2

k := E{(Y0−E{Y0 | Y−1
−k })

2}. By the Durbin-Levinson Algorithm
(cf. Brockwell and Davis [6], Proposition 5.2.1),

σ
2
k = σ

2
k−1(1−α

2(k)) = r(0)
k

∏
j=1

(1−α
2( j)),

iterating the recursion and noting that σ2
0 = r(0) = Var(Y0). Since, as in the proof

of Proposition 2,

E{(In)
2}=E{E{Y0 | Y−1

−(n−1)}
2}−E{E{Y0 | Y−1

−kn
}2}

=σ
2
kn
−σ

2
n−1

=r(0)
kn

∏
j=1

(1−α
2( j))

(
1−

n−1

∏
j=k+1

(1−α
2( j))

)
.

Without loss of generality assume that α( j)2 ≤C < 1. For 0 < x≤C < 1 apply the
inequality − lnC

C x≤ ln(1− x), then

E{(In)
2} ≤ r(0)

(
1−

∞

∏
j=kn+1

(1−α
2( j))

)
= r(0)

(
1− e∑

∞
j=kn+1 ln(1−α2( j))

)
≤ r(0)

(
1− e−

lnC
C ∑

∞
j=kn+1 α2( j)

)
≤ r(0)

lnC
C

∞

∑
j=kn+1

α
2( j)

≤ r(0)
lnC
C

ck−γ
n .

Hence, with the choice (17), (19) is verified. ut

Remark 1. We conjecture that under the condition

|r(i)| ≤ c(|i|+1)−β ,
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c <∞, β > 0, the conditions of Propositions 2 and 3 are satisfied. Notice that for any
MA(p), the conditions of Proposition 2 are met, while for any AR(q), the conditions
of Proposition 3 are satisfied.
Remark 2. Notice that the MA(1) example in the proof of Proposition 1 satisfies
the conditions of the Propositions 2 and 3 with γ = 1, since α( j) = c( j)

j = j−1, and
r(0) = 2, r(1) =−1 and r(i) = 0 if i≥ 2, from which one gets that

Var(In) =
1

kn +1
− 1

n
.

Moreover, the choice kn = (lnn)1+δ is just slightly larger than in the proof of Propo-
sition 1.
Remark 3. Under the AR(∞) representation (10), the derivation and the conditions
of Proposition 2 can be simplified. Multiplying both sides of (10) by Yn and taking
expectations,

EY 2
n =

∞

∑
i=1

c∗i E{YnYn−i}+E{YnZn}

=
∞

∑
i=1

c∗i r(i)+Var(Z0)

= E{E{Y0 | Y−1
−∞}2}+Var(Z0).

It implies that ∑
∞
i=1 c∗i r(i)< ∞ and

Var(In)≤ E{E{Y0 | Y−1
−∞}2}−E{E{Y0 | Y−1

−kn
}2}

≤
kn

∑
j=1

(c∗j − c(kn)
j )r( j)+

∞

∑
j=kn+1

c∗jr( j)

≤ (C1 +C2)k−γ
n ,

if the conditions ∑
∞
i=k c∗i r(i)≤C1k−γ and ∑

k
j=1(c

∗
j−c(k)j )r( j)≤C2k−γ are satisfied.

Remark 4. If the process is has the MA(∞) representation (8), then r(i)=∑
∞
j=0 a∗ja

∗
j+i

assuming the innovations have variance one. The Cauchy-Schwarz inequality im-
plies that

|r(i)| ≤
√

∞

∑
j=0

(a∗j)2
∞

∑
j=0

(a∗j+i)
2 =

√
∞

∑
j=0

(a∗j)2
∞

∑
j=i

(a∗j)2→ 0.

We show that for a∗j > 0, β > 1 implies (13). To see this, note that r(i)> 0 and(
∞

∑
j=0

a∗j

)2

≥
∞

∑
i=0

∞

∑
j=0

a∗ja
∗
j+i =

∞

∑
i=1

r(i).
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Moreover, ∑
∞
i=1 r(i) < ∞ implies that ∑

∞
j=0 a∗j < ∞. Notice that without any condi-

tions on {a∗j}, ∑
∞
i=1 |r(i)|< ∞ does not imply that ∑

∞
j=0 |a∗j |< ∞.

Remark 5. Concerning the estimation error the main difficulty is the possible slow
rate of convergence of averages. For an arbitrary ergodic process, the rate of con-
vergence of an average can be arbitrary slow, which means that for any sequence
an ↓ 0, there is a zero mean, stationary, ergodic process such that

limsup
n

E{( 1
n ∑

n
i=1 Yi)

2}
an

> 0. (20)

The question here is whether or not for arbitrary sequence an ↓ 0, there is a zero
mean, stationary, ergodic Gaussian process with covariances {r(i)} such that (20) is
satisfied. To see this, let {Yi} have the MA(∞)representation (10) with Z j standard
normal and a∗0 = 1, a∗j = j−α for j > 0, 1 > α > 1/2. Then a∗j ↓, therefore r( j) ↓
and so we get that

limsup
n

E{( 1
n ∑

n
i=1 Yi)

2}
an

≥ limsup
n

1
nan

n

∑
i=0

r(i)
(

1− |i|
n

)
≥ limsup

n

1
2nan

n

∑
i=0

r(i)

≥ limsup
n

1
2an

r(n)

= limsup
n

1
2an

(
∞

∑
j=0

a∗ja
∗
j+n

)
.

Then a∗j ↓ implies that

limsup
n

E{( 1
n ∑

n
i=1 Yi)

2}
an

≥ limsup
n

1
2an

(
∞

∑
j=0

(a∗j+n)
2

)

≥ limsup
n

n(1−2α)

2an
.

For α → 1/2 the sequence can be made to diverge for any an → 0 polynomially.

We can make it logarithmic using a∗j =
(

j ln1+ε ( j)
)−1/2

for j > 1 and some ε > 0,
but it is a bit more complex. Similar slow rate results can be derived for empirical
covariances.

If the process {Yn}∞
−∞ satisfies some mixing conditions, then Meir [27], Alquier

and Wintenberger [2] and McDonald et al. [26] analyzed the predictor h̃(k)(Y n−1
1 ).

If the process {Yn}∞
−∞ is stationary and ergodic, then Klimo and Nelson [23] proved

that
C(k)

n → c(k) (21)
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a.s. Unfortunately, the convergence (21) does not imply that ∑
k
j=1(C

(k)
n, j−c(k)j )Yn− j→

0 a.s.

Conjecture 2. For any fixed k, there is a stationary, ergodic Gaussian process such
that ∑

k
j=1(C

(k)
n, j − c(k)j )Yn− j does not converge to 0 a.s.

Lemma 2. Let

rn(i) := n−1
n

∑
j=1

YjYj+i

be the empirical autocovariance. Suppose that |r(i)| ≤ c(|i|+ 1)−β , c < ∞, β > 0.
Then, for the sequence an = (nα/kn) with α ∈ (0,β ∧ (1/2)),

an max
i≤kn
|rn(i)− r(i)| → 0

a.s.

Proof. At first, we show that

n2E|rn(k)− r(k)|2 ≤ c2ckn2−2β (22)

with ck < ∞. Note that

E|rn(k)− r(k)|2 = 1
n2

n

∑
i=1

n

∑
j=1

E
{
(YiYi+k−EYiYi+k)

(
YjYj+k−EYjYj+k

)}
.

To this end,

E
{
(YiYi+k−EYiYi+k)

(
YjYj+k−EYjYj+k

)}
= E

{
YiYi+kYjYj+k

}
−EYiYi+kEYjYj+k.

By Isserlis Theorem ([21]),

E
{

YiYi+kYjYj+k
}

= EYiYi+kEYjYj+k +EYiYjEYi+kYj+k +EYi+kYjEYiYj+k.

Therefore

E
{
(YiYi+k−EYiYi+k)

(
YjYj+k−EYjYj+k

)}
= EYiYjEYi+kYj+k +EYi+kYjEYiYj+k

= r2 (i− j)+ r (i− j+ k)r (i− j− k) .

Hence,

n

∑
i=1

n

∑
j=1

E
{
(YiYi+k−EYiYi+k)

(
YjYj+k−EYjYj+k

)}
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=
n

∑
i=1

n

∑
j=1

r2(i− j)+
n

∑
i=1

n

∑
j=1

r(i− j+ k)r(i− j− k)

= nr2(0)+2
n−1

∑
i=1

(n− i)r2(i)+nr2(k)+2
n−1

∑
i=1

(n− i)r(i+ k)r(i− k)

≤ n

(
2r2(0)+2

n−1

∑
i=1

r2(i)+
n−1

∑
i=1

(r2(i+ k)+ r2(i− k))

)

≤ nc2

(
2+2

n−1

∑
i=1

(|i|+1)−2β +
n−1

∑
i=1

(
(|i+ k|+1)−2β +(|i− k|+1)−2β

))
≤ c2ckn2−2β ,

and so (22) is proved. Ninness [29] proved that if an arbitrary sequence of random
variables Xn, n = 1,2, . . . satisfies

E


(

1
n

n

∑
i=1

Xi

)2
≤Cn−2β

with C < ∞, then

nα

(
1
n

n

∑
i=1

Xi

)
→ 0

a.s., where 0 < α < β ∧ (1/2). Thus, (22) satisfies the condition in Theorem 2.1
of Ninness [29], which implies nα |rn(k)− r(k)| → 0 a.s. for each k. Hence, by the
union bound, the lemma is true for any an ≤ nα/kn. ut

We slightly modify the coefficient vector as follows: introduce the notations
R̃(k)

n = R(k)
n + 1

lnn I and C̃(k)
n = (R̃(k)

n )−1M(k)
n . Moreover, put c̃(k) = (R̃(k))−1M(k),

where R̃(k) = E{R̃(k)
n }.

Proposition 4. Under the conditions of Lemma 2 and for the choice kn = (lnn)γ

with γ > 0,
kn

∑
j=1

(C̃(kn)
n, j − c̃(kn)

j )Yn− j→ 0

a.s.

Proof. Because of the Cauchy-Schwarz inequality

|Jn|=

∣∣∣∣∣ kn

∑
j=1

(c̃(kn)
j −C̃(kn)

n, j )Yn− j

∣∣∣∣∣
≤

√√√√ kn

∑
j=1

(c̃(kn)
j −C̃(kn)

n, j )
2

kn

∑
j=1

Y 2
n− j



16 László Györfi and Alessio Sancetta

≤

√√√√ kn

∑
j=1

(c̃(kn)
j −C̃(kn)

n, j )
2kn max

1≤i≤n
Y 2

i .

Pisier [30] proved the following: let Z1, . . . ,Zn be zero-mean Gaussian random vari-
ables with E{Z2

i }= σ2, i = 1, . . . ,n. Then

E
{

max
i≤n
|Zi|
}
≤ σ

√
2ln(2n),

and for each u > 0,

P
{

max
i≤n
|Zi|−E

{
max
i≤n
|Zi|
}
> u
}
≤ e−u2/2σ2

.

This implies, by taking u = 2σ
√

2ln(2n),

P
{

max
i≤n
|Yi|> 3σ

√
2ln(2n)

}
≤ 1

(2n)4 ,

and therefore
∞

∑
n=1

P{max
1≤i≤n

|Yi|> 3σ
√

2ln(2n)}< ∞,

and so the Borel-Cantelli lemma implies that

limsup
n→∞

max1≤i≤n |Yi|√
lnn

≤ ∞

a.s. Thus, we have to show that for the choice of kn = (lnn)γ we get that

kn lnn
kn

∑
j=1

(c̃(kn)
j −C̃(kn)

n, j )
2→ 0

a.s. Let ‖ · ‖ denote the Euclidean norm and the norm of a matrix. Then

kn

∑
j=1

(c̃(kn)
j −C̃(kn)

n, j )
2

= ‖c̃(kn)−C̃(kn)
n ‖2

= ‖(R̃(k))−1M(k)− (R̃(k)
n )−1M(k)

n ‖2

≤ 2‖(R̃(k)
n )−1(M(k)−M(k)

n )‖2 +2‖((R̃(k))−1− (R̃(k)
n )−1)M(k)‖2

Concerning the first term of the right hand side, we have that
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‖(R̃(k)
n )−1(M(k)−M(k)

n )‖2 ≤ ‖(R̃(k)
n )−1‖2‖M(k)−M(k)

n ‖2

≤ (lnn)2
kn

∑
i=1

(r(i)− rn(i))2

≤ (lnn)2kn max
1≤i≤kn

(r(i)− rn(i))2.

The derivation for the second term of the right hand side is similar:

‖((R̃(k))−1− (R̃(k)
n )−1)M(k)‖2 ≤ ‖(R̃(k))−1− (R̃(k)

n )−1‖2‖M(k)‖2

≤ ‖(R̃(k))−1‖2‖(R̃(k)
n )−1‖2‖R̃(k)− R̃(k)

n ‖2‖M(k)‖2

≤ (lnn)4‖R(k)−R(k)
n ‖2

kn

∑
i=1

r(i)2

≤ (lnn)4
kn

∑
i=1

kn

∑
j=1

(r(i− j)− rn(i− j))2
∞

∑
i=1

r(i)2

≤ c1(lnn)42kn

kn

∑
i=1

(r(i)− rn(i))2

≤ c1(lnn)42k2
n max

1≤i≤kn
(r(i)− rn(i))2.

For the choice kn = (lnn)γ , summarizing these inequalities we get that

kn lnn
kn

∑
j=1

(c̃(kn)
j −C̃(kn)

n, j )
2 ≤ c2(k2

n(lnn)3 + k3
n(lnn)5) max

1≤i≤kn
(r(i)− rn(i))2)

≤ c2(lnn)5+3γ max
1≤i≤kn

(r(i)− rn(i))2)

→ 0

a.s., where we used Lemma 2 with an = (lnn)5+3γ . ut

Remark 6. In this section we considered deterministic choices of kn. One can in-
troduce data driven choices of Kn, for example, via complexity regularization or via
boosting. In principle, it is possible, that there is a data driven choice, for which
the corresponding prediction is strongly consistent without any condition on the
process. We conjecture the contrary: for any data driven sequence Kn, there is a
stationary, ergodic Gaussian process such that the prediction error

E{Yn | Y n−1
1 }−

Kn

∑
j=1

C(Kn)
n, j Yn− j

does not converge to 0 a.s.
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4 Aggregation of elementary predictors

After n time instants, the (normalized) cumulative squared prediction error on the
strings Y n

1 is

Ln(g) =
1
n

n

∑
i=1

(
gi(Y i−1

1 )−Yi
)2
.

There is a fundamental limit for the predictability of the sequence, which is deter-
mined by a result of Algoet [1]: for any prediction strategy g and stationary ergodic
process {Yn}∞

−∞ with E{Y 2
0 }< ∞,

liminf
n→∞

Ln(g)≥ L∗ almost surely, (23)

where
L∗ = E

{(
Y0−E

{
Y0|Y−1

−∞

})2
}

is the minimal mean squared error of any prediction for the value of Y0 based on
the infinite past observation sequences Y−1

−∞ = (. . . ,Y−2,Y−1). A prediction strategy
g is called universally consistent with respect to a class C of stationary and ergodic
processes {Yn}∞

−∞ if for each process in the class,

lim
n→∞

Ln(g) = L∗ almost surely.

There are universally consistent prediction strategies for the class of stationary and
ergodic processes with E{Y 4} < ∞, (cf. Györfi and Ottucsák [19], and Bleakley et
al. [5]).

With respect to the combination of elementary experts h̃(k), Györfi and Lugosi
applied in [17] the so-called “doubling-trick”, which means that the time axis is
segmented into exponentially increasing epochs and at the beginning of each epoch
the forecaster is reset.

Bleakley et al. [5] proposed a much simpler procedure which avoids in particular
the doubling-trick. Set

h(k)n (Y n−1
1 ) = Tmin{nδ ,k}

(
h̃(k)n (Y n−1

1 )
)
,

where the truncation function Ta was introduced in Section 3 and 0 < δ < 1
8 .

Combine these experts as follows. Let {qk} be an arbitrarily probability distribu-
tion over the positive integers such that for all k, qk > 0, and define the weights

wk,n = qke−(n−1)Ln−1(h
(k)
n )/
√

n = qke−∑
n−1
i=1 (h

(k)
i (Y i−1

1 )−Yi)
2/
√

n

(k = 1, . . . ,n−2) and their normalized values

pk,n =
wk,n

∑
n−2
i=1 wi,n

.
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The prediction strategy g at time n is defined by

gn(Y n−1
1 ) =

n−2

∑
k=1

pk,nh(k)n (Y n−1
1 ), n = 1,2, . . .

Bleakley et al. [5] proved that the prediction strategy g defined above is univer-
sally consistent with respect to the class of all stationary and ergodic zero-mean
Gaussian processes, i.e.,

lim
n→∞

Ln(g) = L∗ almost surely,

which implies that

lim
n→∞

1
n

n

∑
i=1

(
E{Yi | Y i−1

1 }−gi(Y i−1
1 )

)2
= 0 almost surely.

(cf. Györfi and Lugosi [17], and Györfi and Ottucsák [19]).
This later convergence is expressed in terms of an almost sure Cesáro consis-

tency. We guess that even the almost sure consistency (1) holds. In order to support
this conjecture mention that

gn(Y n−1
1 ) =

n−2

∑
k=1

pk,nh(k)n (Y n−1
1 )≈

n−2

∑
k=1

pk,nh̃(k)n (Y n−1
1 ) =

n−2

∑
k=1

pk,n

k

∑
j=1

c(k)n, jYn− j,

and so

gn(Y n−1
1 ) =

n−2

∑
j=1

cn, jYn− j,

where

cn, j =
n−2

∑
k= j

pk,nc(k)n, j.
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32. Schäfer, D.: Strongly consistent online forecasting of centered Gaussian processes. IEEE
Trans. Inform. Theory 48, 791–799 (2002)

33. Singer, A., Feder, M.: Universal linear prediction by model order weighting. IEEE Transac-
tions on Signal Processing 47, 2685–2699 (1999)


