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Abstract. The notion ofcontrollability, informally the ability to force a system
into a desired state in a finite time or number of steps, is mostclosely associ-
ated with control systems such as those used to maintain power networks and
other critical infrastructures, but has wider relevance indistributed systems. It
is clearly highly desirable to understand under which conditions attackers may
be able to disrupt legitimate control, or to force overriding controllability them-
selves. Following recent results by Liuet al., there has been considerable interest
also in graph-theoretical interpretation of Kalman controllability originally intro-
duced by Lin,structural controllability. This permits the identification of sets of
driver nodeswith the desired state-forcing property, but determining such nodes
is aW[2]-hard problem. To extract these nodes and represent the control relation,
here we apply the POWERDOMINATING SET problem and investigate the effects
of targetediterativemultiple-vertex removal. We report the impact that different
attack strategies with multiple edge and vertex removal will have, based on un-
derlying non-complete graphs, with an emphasis on power-law random graphs
with different degree sequences.

Keywords: Structural Controllability, Attack Models, Complex Networks

1 Introduction
Structural controllability was introduced by Lin’s seminal work [1] as an alternative to
the controllability, identifying a graph-theoretical model equivalent to Kalman’s control
[2] in order to reach a desired state from an arbitrary state in a finite number of steps. Al-
though the Kalman’s model enables the use of a general, rigorous, and well-understood
framework for the design and analysis of not only control systems but also of networks
in which a directed control relation between nodes is required, the model presents some
restrictions for complex and large systems. A time-dependent linear dynamical system
A is controllableif and only if rank[B,AB,A2B, . . . ,An−1B] = n (Kalman’s rank crite-
rion), whereA is then× n adjacency matrix identifying the interaction among nodes
and then×m inputmatrix B identifies the set of nodes controlled by theinput vector,
which forces the system to a desired state. Whilst straightforward, for large networks



the exponential growth of input values as a function of nodesis problematic, giving
importance to concept of structural controllability. In this context, the graph-theoretical
interpretation would beG(A,B) = (V,E) as a digraph whereV =VA ∪VB is the set of
vertices andE = EA ∪EB is the set of edges. In this representation,VB comprises nodes
able to inject control signals into the entire network.

Moreover, recent work by Liuet al. [3] has renewed interest in this approach as it
allows the identification ofdriver nodes(nd corresponding toVB) capable of observ-
ing the entire network (graph). This work is relied on a non-rigorous formulation of
the maximum matching problem and has been expanded upon multiple times [4, 5].
However, we here focus on the equivalent POWER DOMINATING SET (PDS) problem,
originally introduced as an extension of DOMINATING SET by Hayneset al. [6], mainly
motivated by the structure of electric power networks, and the need of offering efficient
monitoring of such networks. A real world scenario related to this field is precisely the
current control systems (e.g. SCADA systems) which deploy their elements following a
mesh distribution to supervise other critical infrastructures (e.g. power systems), where
G = (V,E) depicts the network distribution withV illustrating the elements (e.g. control
terminal units, servers, etc.), andE representing the communication lines. In this con-
text, PDS can be defined using the two followingobservation rulessimplified by Kneis
et al. [7]: OR1, a vertex in the power dominating set observes itself and allits neigh-
bours; andOR2, if an observed vertexv of degreed≥ 2 is adjacent tod−1 observed
vertices, the remaining unobserved vertex becomes observed as well.

With the omission ofOR2, this reverts to the DOMINATING SET problem already
known to beNP-complete with a polynomial-time approximation factor ofΘ(logn) as
shown by Feige [8]. The approach relies on creating directedacyclic graphsG = (V,E)
to find a sequence of driver nodes (denoted asND/ ∀ nd ∈ ND) such thatND ⊆ V can
observe all vertices inV satisfyingOR1 andOR2. Instances of driver nodes from a
givenG = (V,E) are not unique and clearly depend on the selection order of vertices
∈ V to create DS usingOR1. Here, we follow the three strategies defined in [9]: (1)
Obtain the set of driver nodes with maximum out-degree satisfying OR1 (Nmax

D ); (2)
find the set of driver nodes with minimum out-degree satisfying OR1 (Nmin

D ); and (3)
obtain the set of random nodes satisfyingOR1 (Nrand

D ). Hence, eachNstrat
D represents a

partial order given by the out-degree (≤ or≥) in case ofNmax
D or Nmin

D , respectively; in
case ofNrand

D , no such relation exists as its elements are randomly chosen.

These three strategies have already been analysed for non-interactive scenarios,
in which a single vertex is exposed to a particular type of attack. Our contribution
in this paper is therefore to expand the approach from [9] to multiple-round attacks,
studying the robustness of controllability when multiple and combined attacks affect
control in several different graph classes, namely random (Erdős-Renyi (ER)), small-
world (Watts-Strogatz (WS)), and power-law (both (Barabási-Albert (BA)) and general
power-law (PLOD) distributions)1. In addition, we also analyse here the interaction be-
tween different multi-round attack strategies and the underlying control graph topology
on robustness, considering both the earlier work on single attacks [9] and new three
multi-round attack scenarios. These scenarios are as follows: (1) Removal of some ran-

1 For more detail on these distribution networks, please go to[9].



dom edges∈ E from a single or several vertices, (2) isolation of some vertices∈V, and
(3) removal of some random edges and vertices from a dense power-law subgraph.

The remainder of this paper is structured as follows: Section 2 describes the threat
model based on three different multi-round attack scenarios and on a set of attack mod-
els characterised by the number of targets. Later, in section 3 we proceed to evaluate the
impact of exploiting strategic points of the aforementioned topologies and its control-
lability (given byNmax

D , Nmin
D , or Nrand

D ), discussing the results obtained on connectivity
and observability terms. Finally, our conclusions together with an outlook on our on-
going work are given in section 4.

2 Multi-Round Threat Model
In order to study the robustness of the different types of network topologies, first we
consider the different attack types (edge and vertex removal), which may disrupt con-
trollability (e.g. denial of service attacks to communication lines in order to leave parts
of a system uncontrolled, unprotected or isolated bynd), and the resulting effects that
such attacks may cause in the control, the network connectivity and observability (as
the dual of controllability). The threats studied here are multi-round attacks with prior
knowledge, but do not explicitly take mitigating responsesof defenders into account.

Algorithm 2.1: ATTACK MODELS (G (V,E),Nstrat
D ,AM,Scenario)

output (Attack o f one vertex for a givenG (V,E));
local i, target;

if AM == AM 1 (F)
then

{

target← Nstrat
D [1];

else


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if AM == AM 2 (M)
then

{

target← Nstrat
D [(SIZE(Nstrat

D ))/2];

else



































if AM == AM 3 (L)
then

{

target← Nstrat
D [(SIZE(Nstrat

D ))];

else


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







if AM == AM 4 (BC)
then

{

target← BETWEENNESSCENTRALITY (G (V,E));
else

{

target← OUTSIDE Nstrategy
D (G (V,E),Nstrat

D );
if Scenario== SCN-1

then REMOVE SELECTIVE EDGES(G (V,E), target);
if Scenario== SCN-2

then ISOLATE VERTEX(G (V,E), target);
return (G (V,E))

Targets Combination of AM−x Num. of Attacks

TG-1 F, M, L, BC, O 5
TG-2 F-M, F-L, F-BC, F-O, M-L, M-BC, M-O, L-BC, L-O, BC-O 10
TG-3 F-M-L, F-M-BC, F-M-O, F-L-BC, F-L-O, F-BC-O, M-L-BC, M-L-O, M-BC-O, L-BC-O 10
TG-4 F-M-L-BC, F-M-L-O, F-M-BC-O, F-L-BC-O, M-L-BC-O 5
TG-5 F-M-L-BC-O 1

Table 1.Five attacks rounds with permuted AM

These threats are based on the combination of five attack models (AMs), which
have been grouped into three scenarios for the purposes of further analysis:Scenario
1 (SCN-1), it focuses on removing a small number of random edges of one or several
vertices, which may compromise controllability of dependent nodes or disconnect parts



the of control graph and underlying network. The selection of target nodes depends on
theAM described below, and the removal of edges avoids spurious node isolation.Sce-
nario 2 (SCN-2)destined to isolate one or several vertices from the networkby inten-
tionally deleting all the links from these vertices. This threat may result in the isolation
of vertices which depend on the compromised node or in the partition of the network
into several sub-graphs.Scenario 3 (SCN-3)aims to attack one or several vertices of a
sub-graph by randomly deleting part of their links (SCN-1), or carry out the isolation of
such nodes (SCN-2) so as to later assess the resulting effect of the threat withrespect to
the entire graph. For the extraction of the sub-graph, we consider theGirvan-Newman
algorithm to detect and obtain specific communities within acomplex graph [10]. A
community structure refers to a subset of nodes with dense links within its community
and with few connections to nodes belonging to less dense communities. For this, links
between communities are sought by progressively calculating the betweenness of all
existing edges and removing edges with the highest betweenness.

Algorithm 2.2: MULTI -ROUND ATTACKS( G (V,E),Nstrat
D ,TG-x,Scenario)

output (Attack o f one or several vertices for a givenG (V,E));
local i,CombinationAM,AM,SCN;

if Scenario== SCN-3

then







Gsub(V,E)← GIRVAN -NEWMAN (G (V,E));
Nstrat

D ← EXTRACT DRIVER NODES FROMSUBGRAPH(Gsub(V,E),Nstrat
D );

SCN← DETERMINE NEW SCN-1-2();
CombinationAM← COMBINE ATTACKS(TG-x);comment:See table 1;

for i← SIZE(CombinationAM)

do






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













AM←CombinationAM[i];
if Scenario== SCN-3

then

{

G (V,E)← ATTACK MODELSII (G (V,E),Gsub(V,E),Nstrat
D ,AM,SCN);

comment:Algorithm analogous to 2.1, but consideringGsub(V,E)

else
{

G (V,E)← ATTACK MODELS(G (V,E),Nstrat
D ,AM,Scenario);

return (G (V,E);)

For each scenario, we select a set of attacks in which it is assumed that an attacker is
able to know the distribution of the network and the power domination relation (control
graph). In real scenarios, these attackers could be insiders who belong to the system,
such as human operators, who known the topology and its system itself; or outsiders
who observe and learn from the topology to later damage the entire system or sub-parts.
The mentioned attacks, summarised in algorithm 2.1, are denoted asAM-1 to AM-5 .
AM-1 consists of attacking the first (F) driver nodend in a given ordered setNstrat

D .
Depending on the attack scenario, the attacker could randomly delete some edges or
completely isolate thend from G = (V,E). In constrast,AM-2 aims to attack or isolate
a vertexnd belonging to a given orderedNstrat

D positioned in the middle (M ) of the
set.AM-3 attacks the last (L ) driver nodend in the ordered set given byNstrat

D . AM-4
compromises the vertexv ∈ V with the highestbetweenness centrality(BC), whereas
AM-5 randomly chooses a vertexv∈ V and/∈ Nstrat

D (outside (O)).
Combinations ofAM- x (which are only representative of wider classes), such that

x∈ {1,2,3,4,5}, result in a set of rounds based on multi-target attacks, which are repre-
sented in table 1 and described as follows:1 Target (TG-1) illustrates a non-interactive
scenario in which a single vertexv ∈ V is attacked according to anAM- x, beingv a



driver node or an observed node. In contrast,2 Targets (TG-2)corresponds to a multi-
round scenario based on two attacksAM- x andAM- y x, y∈ {1,2,3,4,5} such thatx 6= y,
e.g. the attackF-BC identifies multiple attacks of typeAM-1 andAM-4 , in which one
or several attackers compromise two strategic nodes. Note that3-5 Targets (TG-3-5)
is a multi-round scenario based on 3, 4 or 5 threats with analogous goals and similar
features toTG-2. All objectives are summarised in algorithm 2.2, which depends on the
type of scenario and the number of targets to be attacked. Forscenarios of typeSCN-3,
we first extract the sub-graph fromG (V,E) using the Girvan-Newman algorithm and
its driver nodes to be attacked. For the attack itself, we notonly consider the sub-graph
itself but alsoG (V,E) to study the effects that attacks on dense sub-graphs may have
on the overall network.
Nomenclature Definition

nd Driver node
AM-x Attack model following a particular attack strategyx, such thatx ∈ {AM-1 ,. . . ,AM-5}
TG-x Number of target nodes such thatx∈ {TG-1,...,TG-5}
Nstrat

D Set of driver nodesnd following a particular controllability strategy such asNmax,min,rand
D

Nmax,min,rand
D An attack with minor impact on structural controllabilityNmax,min,rand

D

N
max†,min†,rand†
D An attack with intermediate impact on structural controllability, intensifying effect caused byNmax,min,rand

D

N
max‡,min‡,rand‡
D An attack with major impact on structural controllability,intensifying effect caused by †

∗ Symbol statingfor all the cases
Nstrat

Ds,l ,∗
Representation of small and large networks

* ,{AM-x} Influence of all attacks, but with a special vulnerability for AM-x
{X-AM-x} Any X threat combined withAM-x

x−y% Minimum and maximum rate of observability

Table 2.Nomenclature for analyses

3 Attack Scenarios on Structural Controllability
So as to evaluate the structural controllability strategies defined in [9] (Nmax

D , Nmin
D ,

Nrand
D ) with respect to ER, WS, BA and PLOD distributions, scenarios SCN-1, SCN-2

andSCN-3 defined in section 2 were studied Matlab simulations. Several topologies
and network sizes were generated, giving small (≤ 100) and large (≥ 100) networks
with 100, 1000 and 2000 nodes, and with low connectivity probability so as to repre-
sent sparse networks. Under these considerations, we assess the robustness from two
perspectives: First, thedegree of connectivitythrough the diameter, the global density
and the local density using the average clustering coefficient (CC). These statistical val-
ues should maintain small values in proportion to the growthand the average degree
of links per node, and more specifically, after an attack. Second, thedegree of observ-
ability by calculating the rate of unobserved nodes after a threat using OR1 [9]. Given
the number of simulations carried out and results obtained for the analyses2, we have
defined a language to summarize and interpret results shown in table 2.

3.1 SCN-1 and SCN-2: Exploitation of Links and Vertices in Graphs

For SCN-1 (see table 3), we observe that ER topologies are sensitive inconnectiv-
ity terms. The diameter for small networks is variable and, particularly, for networks
under the control ofNmax,min

D , with a special emphasis in scenariosTG-3 where a com-
plete break up of the network is verified and the observation rate is largely influenced,

2 Full results and code is available from authors



reaching null values. As for local and global density, it is also variable for all network
distributions and for allTG-x, where the controllabilityNmin,rand

D are mainly affected.
For WS graphs, the diameter changes for any distribution, but particularly for small
networks, and the greatest effect is obtained when launching a TG-3 attack. For this
topology, the density of the network is slightly modified when performing aTG-2 at-
tack, whereas no relevant effect has been registered for theother cases. This does not,
however, hold for local density, since the effects on the network become more and more
evident as the number of targets increases, especially whenthe number of nodes that
constitute the network is not high (as expected in small-world networks). The impact on
the observability is not very accentuated for this topology, as the effect is more evident
when performing an attack to thend with the maximum out-degree in small networks.

Connectivity Observability
TGx Network Diameter Density CC Attack Observation Attack Rate

T
G

-1

ER N
max†,min†,rand†
Ds N

max,min†,rand†
Ds Nmax,min,rand

Ds * N
max†,min,rand†
Dl * 96.8-100%

WS N
max†,min†,rand
Ds - Nmax,min,rand

Ds * ,{BC} N
max†,min,rand
Ds * 84-99%

BA Nmax,min,rand
Ds - - * ,{BC} N

max†,min,rand
Ds * ,{F} 16-100%

PLOD α ≃ 0.1 Nmax,min,rand
D∗ - N

max†,min,rand†
Ds * ,{BC} - - ≃ 100%

PLOD α ≃ 0.3 Nmax,rand
D∗ - Nmax,min,rand

Ds * ,{BC} - - ≃ 100%

PLOD α ≃ 0.5 N
max,min‡,rand‡
D∗ - Nmin,rand

Ds * - - ≃ 100%

T
G

-2

ER Nmax,min,rand
D∗ N

max,min†,rand†
D∗ N

max,min†,rand†
D∗ * , {X-BC} N

max†,rand†
Dl * 96.7-100%

WS Nmax,min,rand
Ds Nmin,rand

Ds N
max†,min†,rand†
D∗ * N

max†,min,rand
D∗ * 88-97.85%

BA Nmax,min,rand
Ds Nmin,rand

Ds Nmax,min,rand
Ds * N

max†,min,rand
Ds * , {F-BC,L-BC} 4-100%

PLOD α ≃ 0.1 N
max,min†,rand†
D∗

- N
max†,min,rand
Ds

* , {F-BC, M-BC ,
- - ≃ 100%

BC-O}

PLOD α ≃ 0.3 N
max,min†,rand†
D∗

- Nmax,min,rand
Ds

* , {M-BC , L-BC ,
- - ≃ 100%

BC-O}

PLOD α ≃ 0.5 N
max,min†,rand†
D∗ - N

max,min,rand†
Ds * - - ≃ 100%

T
G

-3

ER N
max‡,min‡,rand
D∗ N

max,min†,rand†
D∗ N

max,min†,rand†
D∗ * , {M-BC-O , L-BC-O} N

max‡,min‡,rand
D∗ * , {M-BC-O , L-BC-O} 0-100%

WS N
max‡,min‡,rand
D∗ - N

max‡,min‡,rand‡
D∗ * , {M-BC-O , L-BC-O} N

max†,min†,rand
D∗ * , {M-BC-O , L-BC-O} 2-98%

BA N
max‡,min‡,rand
D∗

Nrand
Ds - * , {M-BC-O , L-BC-O} N

max‡,min‡,rand
D∗

* , {F-M-L ,
0-100%

M-BC-O , L-BC-O}

PLOD α ≃ 0.1 N
max‡,min‡,rand
D∗ - Nmax,min,rand

Ds * , {M-BC-O , L-BC-O} N
max‡,min‡
D∗ * , {M-BC-O , L-BC-O} 0-100%

PLOD α ≃ 0.3 N
max‡,min‡,rand
D∗ - Nmax,min,rand

Ds * , {M-BC-O , L-BC-O} N
max‡,min‡
D∗ * , {M-BC-O , L-BC-O} 0-100%

PLOD α ≃ 0.5 N
max‡,min‡,rand
D∗ - N

max,min,rand†
Ds * , {M-BC-O , L-BC-O} N

max‡,min‡
D∗ * , {M-BC-O , L-BC-O} 0-100%

T
G

-4

ER Nmax,min,rand
Ds N

max,min†,rand†
D∗ N

max,min†,rand†
D∗ * Nmax,rand

Dl * 96.4-100%

WS Nmax,min,rand
Ds - N

max‡,min‡,rand‡
Ds * N

max†,min†,rand†
Ds * 86-97.85%

BA Nmax,min,rand
Ds Nrand

Ds - * , {F-M-L-O } N
max†,min,rand
Ds

* , {F-M-L-O ,
4-100%

F-M-BC-O}

PLOD α ≃ 0.1 Nmax,min,rand
D∗ - N

max†,min,rand
Ds * - - ≃ 100%

PLOD α ≃ 0.3 Nmax,min,rand
D∗ - Nmax,min,rand

Ds * - - ≃ 100%

PLOD α ≃ 0.5 N
max,min†,rand†
D∗ - Nmax,min,rand

Ds * - - ≃ 100%

T
G

-5

ER Nrand
Ds N

max,min†,rand†
D∗ N

max†,min†,rand†
D∗ * Nmax,rand

Dl * 96.3-100%

WS Nmax,min,rand
Ds - N

max‡,min‡,rand‡
Ds * N

max†,min†,rand†
Ds * 86-97.85%

BA Nmax,min,rand
Ds Nrand

Ds - * N
max†,min,rand
Ds * 14-100%

PLOD α ≃ 0.1 Nmax,rand
D∗ - Nmin,rand

Ds * - - ≃ 100%

PLOD α ≃ 0.3 Nmax,min,rand
D∗ - Nmax,min,rand

Ds * - - ≃ 100%

PLOD α ≃ 0.5 Nmax,min,rand
D∗ - Nmax,min,rand

Ds * - - ≃ 100%

Table 3. SCN-1: Removal of a small number of edges∈ E from one or several vertices∈ V

For BA graphs, the diameter shows a small variation for anyNstrat
D and for both

single and multiple targets. The difference is made by theTG-3 strategy, for which the
consequences on the network are remarkable both for small and large networks. The
global density of the network is influenced mainly when a small network is considered



and the links of a randomnd are damaged (Nrand
D ). Unlike ER and WS, the CC of

the BA does not significantly change, but its observability is heavily compromised for
anyTG-x where the control relies onNmax

D . In contrast, power-law distributions with
α = 0.1, 0.3 and 0.5 show a high robustness in connectivity and observability terms
where observation rate reaches values≃ 100%. The global density is not affected even
if CC mainly varies for small networks and the diameter specially impacts on both
Nmin,rand

D for dense distributions withα = 0.5 andNmax,min
D for different exponents in

TG-3 scenarios.

Connectivity Observability
TGs Network Diameter Density CC Attack Observation Attack Rate

T
G

-1

ER Nmax,min,rand
Ds N

max†,min†,rand‡
Ds N

max‡,min†,rand†
Ds * , {F, BC} N

max†,rand†
Ds * , {F,M} 86-100%

WS Nmax,min,rand
D∗ - N

max†,min†,rand‡
D∗ * , {BC} Nmax,min,rand

Ds * 89-100%

BA - - - - N
max‡,min,rand
Ds * , {F, M, L, BC} 2-100%

PLODα ≃ 0.1 Nmax,min,rand
D∗ - N

max†,min,rand†
Ds * , {BC} Nmax,min,rand

D∗ * , {O} 99-100%

PLODα ≃ 0.3 Nmax,min,rand
D∗ - N

max†,min‡,rand†
D∗ * , {BC} Nmax,min

D∗ * 98-100%

PLODα ≃ 0.5 Nmax,min,rand
D∗ - N

max†,min†,rand†
Ds * , {BC} Nmax

Ds * 97-100%

T
G

-2

ER Nmax,min,rand
Ds N

max‡,min‡,rand‡
D∗ N

max†,min‡,rand†
D∗ * , {F, BC} N

max‡,min,rand†
D∗ * ,{F-M,F-BC,F-O} 70-100%

WS Nmax,min,rand
D∗ Nmax,min,rand

Ds N
max‡,min‡,rand‡
D∗ * N

max‡,min,rand
D∗ * ,{F-O} 84-98%

BA - Nmin,rand
Ds - * N

max‡,min,rand†
D∗ * 2-100%

PLODα ≃ 0.1 Nmax,min,rand
D∗

- N
max†,min,rand†
Ds

* , {F-BC, M-BC,
Nmax,min,rand

Ds
* 99-100%

L-BC, BC-O}

PLODα ≃ 0.3 N
max†,min†,rand†
D∗ N

max,min,rand†
Ds N

max†,min‡,rand†
Ds * ,{L-BC, BC-0} Nmax,min

Ds * 98-100%

PLODα ≃ 0.5 Nmax,min,rand
D∗ Nmax,min,rand

Ds N
max†,min†,rand†
Ds

* , {F-BC, M-BC, Nmax
Ds * 97-100%

L-BC, BC-O}

T
G

-3

ER N
max‡,min‡,rand
D∗ N

max‡,min†,rand†
D∗ N

max‡,min†,rand†
D∗ * ,{M-BC-O, L-BC-0} N

max‡,min‡,rand†
D∗ * ,{M-BC-O, L-BC-0} 0.15-99.90%

WS N
max‡,min‡,rand†
D∗ N

max†,min,rand
Ds N

max‡,min‡,rand‡
D∗ * ,{M-BC-O, L-BC-0} N

max‡,min‡,rand
D∗ * ,{M-BC-O, L-BC-0} 2-98%

BA N
max‡,min‡,rand
D∗ Nmin,rand

Ds - * ,{M-BC-O, L-BC-0} N
max‡,min‡,rand†
D∗ * ,{M-BC-O, L-BC-0} 0-100%

PLODα ≃ 0.1 N
max‡,min‡,rand
D∗ Nmax,min,rand

Ds N
max†,min,rand
Ds * ,{M-BC-O, L-BC-0} N

max‡,min‡,rand
D∗ * ,{M-BC-O, L-BC-0} 0.15-100%

PLODα ≃ 0.3 N
max‡,min‡,rand
D∗ N

max,min†,rand†
Ds Nmax,min,rand

Ds * ,{M-BC-O, L-BC-0} N
max‡,min‡
D∗ * ,{M-BC-O, L-BC-0} 0-100%

PLODα ≃ 0.5 N
max‡,min‡,rand
D∗

Nmax,min,rand
Ds N

max,min†,rand†
D∗

* ,{M-L-O, L-BC-0 }
N

max‡,min‡,rand
D∗

* ,{M-BC-O, L-BC-0} 0-100%
L-BC-O, M-BC-O}

T
G

-4

ER Nmax,min,rand
Ds N

max‡,min‡,rand‡
D∗ N

max‡,min‡,rand‡
D∗ * N

max†,min,rand†
D∗ * 66-99.90%

WS Nmax,min,rand
D∗ N

max‡,min†,rand†
Ds N

max‡,min‡,rand‡
D∗ * N

max†,min†,rand†
D∗ * 82-97.85%

BA - N
max,min,rand†
Ds Nmin,rand

Ds * N
max‡,min,rand†
Ds * 2-100%

PLODα ≃ 0.1 Nmax,min,rand
D∗ Nmax,min,rand

Ds N
max‡,min,rand‡
Ds * Nmax,min,rand

Ds * 99-100%

PLODα ≃ 0.3 Nmax,min,rand
D∗ Nmax,min,rand

Ds Nmax,min,rand
Ds * Nmax,min

Ds * 98-100%

PLODα ≃ 0.5 Nmax,min,rand
D∗ Nmax,min,rand

Ds N
max†,min†,rand†
Ds * Nmax

Ds * 96-100%

T
G

-5

ER Nmax,min,rand
Ds N

max‡,min‡,rand‡
D∗ N

max‡,min‡,rand‡
D∗ * N

max†,min,rand†
D∗ * 68-99.85%

WS Nmax,min,rand
D∗ N

max‡,min†,rand†
Ds N

max‡,min‡,rand‡
D∗ * N

max†,min†,rand†
D∗ * 84-97.85%

BA - N
max,min,rand†
Ds Nmin,rand

Ds * N
max‡,min,rand†
Ds * 2-100%

PLODα ≃ 0.1 Nmax,min,rand
D∗ Nmax,min,rand

Ds N
max‡,min,rand‡
Ds * Nmax,min,rand

Ds * 99-99.85%

PLODα ≃ 0.3 Nmax,min,rand
D∗ Nmax,min,rand

Ds Nmax,min,rand
Ds * Nmax,min

Ds * 98-100%

PLODα ≃ 0.5 Nmax,min,rand
D∗ Nmax,min,rand

Ds N
max†,min†,rand†
Ds * Nmax

Ds * 96-100%

Table 4. SCN-2: Isolation of one or several vertices∈ V

ForSCN-2scenarios, we observe that ER topologies continues to be very sensitive
in connection terms, and the global and local density drastically vary for anyTG-x.
The observation rate is moderately high, but it presents certain weaknesses to attack
models containingAM-1 , AM-2 , AM-4 andAM-5 aiming to break downNmax,rand

D .
The diameter in WS networks slightly changes for anyNstrat

D where the global density
remains invariant forTG-1 and its value notably decreases according to the number of
isolated nodes, and specifically for small networks despitethe drastic change for CC.
The observation rate remains high with exception to multi-interactive threat scenarios



based onTG-3. As in SCN-1, the diameter, density and the CC of BA inSCN-2net-
works remains almost invariant what shows its robustness degree for all types ofAM-s.
Nonetheless, the densities can suffer some changes when three or more nodes are com-
promised and these nodes belong mainly toNrand

D . Moreover, the rate reaches≃ 2% of
the observation when driver nodes primarily of theNmax

D are compromised.

Connectivity Observability
TGs Network Diameter Density CC Attack Observation Rate Attack

T
G

-1

PLOD α ≃ 0.1 N
max,min,rand†
D∗ - Nmax,min,rand

Ds {M, L, BC} Nmax,rand
Ds {F, M, L, BC} 99.70-100%

PLOD α ≃ 0.2 Nrand
Dl - Nmax,rand

Ds {L} - - ≃ 100%

PLOD α ≃ 0.3 Nmax,min
Dl - Nmax,min,rand

Ds {L, BC} - - ≃ 100%

PLOD α ≃ 0.4 Nmax,min,rand
D∗ - Nmax,min,rand

Ds {M, L, BC} Nmax
Ds * 98-100%

PLOD α ≃ 0.5 Nmax,min
Dl - Nmax,min,rand

Ds {L, BC} Nmax
Ds * 98-100%

T
G

-2

PLOD α ≃ 0.1 N
max‡,min‡,rand‡
D∗ - N

max,min,rand†
Ds * ,{X-BC} Nmax,rand

Ds * 99.70-100%

PLOD α ≃ 0.2 Nmax,min,rand
D∗ - Nmax,min,rand

Ds {F-O, F-L, M-L, M-O } - - ≃100%

PLOD α ≃ 0.3 N
max†,min†,rand†
Dl - N

max†,min†,rand
Ds * - - ≃100%

PLOD α ≃ 0.4 N
max†,min†,rand†
D∗ - N

max†,min,rand
Ds * Nmax

Ds * 97-100%

PLOD α ≃ 0.5 - - N
max†,min,rand
Ds {L, BC} Nmax

Ds * 98-100%

T
G

-3

PLOD α ≃ 0.1 N
max‡,min‡,rand‡
D∗ - N

max,min,rand†
Ds * ,{M-BC-O, L-BC-0} N

max‡,min‡,rand‡
D∗ * ,{M-BC-O, L-BC-0} 0-100%

PLOD α ≃ 0.2 N
max‡,min‡,rand‡
D∗

- Nmax,min,rand
Ds

{M-L-O,M-BC-O }
N

max‡,min‡,rand‡
D∗

* {M-BC-O, L-BC-0} 0-100%
L-BC-0}

PLOD α ≃ 0.3 N
max‡,min‡,rand‡
D∗ - N

max†,min†,rand
Ds * ,{M-BC-O, L-BC-0} N

max‡,min‡,rand‡
D∗ * ,{M-BC-O, L-BC-0} 0-100%

PLOD α ≃ 0.4 N
max‡,min‡,rand‡
D∗ - N

max†,min,rand
Ds * ,{M-BC-O, L-BC-0} N

max‡,min‡,rand‡
D∗ * ,{M-BC-O, L-BC-0} 0-100%

PLOD α ≃ 0.5 N
max‡,min‡,rand‡
D∗ - N

max†,min†,rand
Ds * ,{M-BC-O, L-BC-0} N

max‡,min‡,rand‡
D∗ * ,{M-BC-O, L-BC-0} 0-100%

T
G

-4

PLOD α ≃ 0.1 N
max‡,min‡,rand‡
D∗ - N

max,min,rand†
Ds * Nmax,rand

Ds * 99-100%

PLOD α ≃ 0.2 Nmax,min,rand
Dl

- Nmax,min,rand
Ds

{F-L-BC-O,F-M-L-O }
- - ≃ 100%

F-M-L-BC }

PLOD α ≃ 0.3 Nmax,min,rand
Dl - N

max†,min†,rand
Ds * - - ≃ 100%

PLOD α ≃ 0.4 N
max†,min†,rand†
D∗ - Nmax

Ds * , {F-M-BC-O} Nmax
Ds * , {F-M-BC-O} 97-100%

PLOD α ≃ 0.5 Nmax
Ds - N

max†,min†,rand
Ds {M-L-BC-O } Nmax

Ds * 98-100%

T
G

-5

PLOD α ≃ 0.1 N
max‡,min‡,rand‡
Dl - N

max,min,rand†
Ds * Nmax,rand

Ds * 99-100%

PLOD α ≃ 0.2 Nmin,rand
Dl - Nrand

Ds * - - ≃ 100%

PLOD α ≃ 0.3 Nmax,min,rand
Dl - Nmax,min,rand

Ds * - - ≃ 100%

PLOD α ≃ 0.4 Nmax,min,rand
Dl - - * Nmax

Ds * 97-100%

PLOD α ≃ 0.5 - - N
max†,min,rand
Ds * Nmax

Ds * 98-100%

Table 5. SCN-3: Removal of a few edges (SCN-1) of a given sugraphGsub= (V,E)

This does not occur with general power-law networks where the observability de-
gree, except forTG-3, reaches the 90% of the observation at all times, in additionto
following similar behaviour pattern for any exponent value. While no effect is appreci-
ated in diameter, the density decays only in small networks when two or more nodes are
excluded from the graph. The consequences on the CC for smallnetworks are not negli-
gible, but the greatest consequences have been observed in observability when 3 nodes
are removed. Lastly, common behaviours inSCN-1andSCN-2arise. The removal of
random links in three vertices or the isolation of three vertices (TG-3) using the combi-
nationM-BC-O andL-BC-O can cause the breakdown of the entire graph. These two
configurations seem to be the most menacing within the configuration given in table 1,
in which the observability is largely influenced for any distribution and the diameter is
drastically decreased forNmax,min

D . In addition, threats of the typeAM-4 stand out from
the rest, underlying the importance of protecting the node with the highest centrality.



3.2 SCN3: Exploitation of Links and Vertices in Power-Law Subgraphs

Tables 5 and 6 show results obtained for attacks on a small number of random edges
(SCN-1) or isolation of one or several vertices (SCN-2) from power-law subgraphs.
Varying the exponent, we observe that these types of networks have similar behavioural
characteristics to those analysed in section 3.1. Unfortunately, the observation degree
decays extremely when the graph is subjected to attacks of typeM-BC-O andL-BC-
O, where twond of the sub-graph and a vertex of the sub-graph, but outside the Nstrat

D ,
are attacked simultaneously. Moreover, these two attack combinations are also danger-
ous in connectivity terms. The diameter values radically vary for anyNstrat

D and for any
distribution, although the global density remains broadlyconstant. Obviously, when the
sub-graph is subjected to massive attacks to isolate a single or multiple nodes, the diam-
eter, density, and CC of the entire network vary. Table 6 shows this, where the diameter
primarily changes for any large distribution, whereas the local and global densities im-
pact on small networks. As in the previous case, the observability is high at all times,
even if insignificant variations caused by attacks inNmax

D arise.

Connectivity Observability
TGs Network Diameter Density CC Attack Observation Rate Attack

T
G

-1

PLODα ≃ 0.1 N
max†,min†,rand†
D∗ - N

max,min,rand†
Ds {M, L, BC} Nmax,rand

Ds * 99-100%

PLODα ≃ 0.2 Nmax,min,rand
Dl Nmax,min,rand

Ds Nmax,min,rand
Ds *{L,BC} - - ≃ 100

PLODα ≃ 0.3 N
max†,min†,rand†
Dl - Nmax,min,rand

Ds {L, BC} - - ≃ 100

PLODα ≃ 0.4 N
max†,min†,rand†
D∗ Nmax,min,rand

Ds N
max†,min†,rand†
Ds *{M, L, BC} N

max†,rand
Ds * , {M, BC} 96-100%

PLODα ≃ 0.5 Nmax,min,rand
D∗ - Nmax,min,rand

Ds {M, L } Nmax
Ds * 99.60-100%

T
G

-2

PLODα ≃ 0.1 N
max†,min†,rand†
D∗ Nmax,min,rand

Ds N
max,min,rand†
Ds {F-O, M-L, X-BC } Nmax,rand

Ds * 98-100%

PLODα ≃ 0.2 Nmax,min,rand
D∗ Nmax,min,rand

Ds N
max†,min,rand†
Ds *{F-O, M-L, L-O } - - ≃ 100%

PLODα ≃ 0.3 N
max,min†,rand†
Dl - N

min†,rand
Ds {M-L, X-BC } - - ≃ 100%

PLODα ≃ 0.4 N
max†,min†,rand†
D∗ N

max†,min†,rand†
Ds N

max‡,min†,rand†
Ds *{X-BC} N

max†,rand
Ds * , {F-X, X-BC} 97-100%

PLODα ≃ 0.5 N
max†,min,rand
Ds - N

max†,min†,rand
Ds * ,{F-L, M-L, X-BC } Nmax

Ds * ,{BC-O} 96-100%

T
G

-3

PLODα ≃ 0.1 N
max‡,min‡,rand‡
D∗ Nmax,min,rand

Ds N
max,min,rand†
Ds * ,{M-BC-O, L-BC-O} N

max‡,min‡,rand‡
D∗ * 0-100%

PLODα ≃ 0.2 N
max‡,min‡,rand‡
D∗ Nmax,min,rand

Ds N
max†,min,rand†
Ds * ,{M-BC-O, L-BC-O} N

max‡,min‡,rand‡
D∗ * ,{M-BC-O, L-BC-O} 0-100%

PLODα ≃ 0.3 N
max‡,min‡,rand‡
D∗ Nmax,min,rand

Ds N
max,min†,rand
Ds * ,{M-BC-O, L-BC-O} N

max‡,min‡,rand‡
D∗ * ,{M-BC-O, L-BC-O} 0-100%

PLODα ≃ 0.4 N
max‡,min‡,rand‡
D∗ N

max†,min†,rand†
Ds N

max‡,min†,rand†
Ds * ,{M-BC-O, L-BC-O} N

max‡,min‡,rand‡
D∗ * ,{M-BC-O, L-BC-O} 0-100%

PLODα ≃ 0.5 N
max‡,min‡,rand‡
D∗ Nmax,min,rand

Ds N
max†,min†,rand†
Ds * ,{M-BC-O, L-BC-O} N

max‡,min‡,rand‡
D∗ * ,{M-BC-O, L-BC-O} 0-100%

T
G

-4

PLODα ≃ 0.1 N
max‡,min‡,rand‡
D∗ Nmax,min,rand

Ds N
max,min,rand†
Ds * Nmax,min,rand

Ds * 99-100%

PLODα ≃ 0.2 Nmax,min,rand
D∗ Nmax,min,rand

Ds Nmax,min,rand
Ds * - - ≃ 100%

PLODα ≃ 0.3 N
max†,min†,rand†
Dl Nmax,min,rand

Ds N
min†,rand
Ds * - - ≃ 100%

PLODα ≃ 0.4 N
max†,min†,rand‡
D∗ N

max‡,min‡,rand‡
Ds N

max‡,min†,rand†
Ds * N

max†,rand
D∗ * 96-100%

PLODα ≃ 0.5 N
max†,min,rand
D∗ Nmax,min,max

Ds N
max†,min,rand
D∗ * Nmax

Ds * 96-100%

T
G

-5

PLODα ≃ 0.1 N
max‡,min‡,rand‡
D∗ Nmax,min,rand

Ds Nmax,min,rand
Ds * Nmax,min,rand

Ds * 99-100%

PLODα ≃ 0.2 Nmax,min,rand
Dl Nmax,min,rand

Ds Nmax,rand
Ds * - - ≃ 100%

PLODα ≃ 0.3 N
max†,min,rand
D∗ Nmax,min,rand

Ds N
min†,rand
Ds * - - ≃ 100%

PLODα ≃ 0.4 N
max‡,min,rand‡
D∗ N

max‡,min‡,rand‡
Ds N

max,min‡,rand‡
Ds * N

max†,rand
D∗ * 96-100%

PLODα ≃ 0.5 N
max†,min,rand
D∗ Nmax,min,max

Ds N
max†,min,rand
D∗ * Nmax

Ds * 96-100%

Table 6. SCN-3: Isolation of vertices (SCN-2) of a given sugraphGsub= (V,E)

Given this, we conclude that both the connectivity and observation not only depend
on the network topology and construction strategies of driver nodes (Nstrat

D ), but also on
the nature of the perturbation [5], where degree-based attacks (e.g.AM-1 ) and attacks
to centrality (AM-4 ) are primarily significant. On the other hand, BA (see table 3) and



power-law (PLOD) distributions present analogous behaviours with respect to observ-
ability. Both are mainly vulnerable to threats given inNmax

D for small networks, and they
are no only sensitive toTG-3 attacks, but also toTG-4 based on a plannedF-M-BC-O
attack inSCN-1. This also means that an adversary with sufficient knowledgeof the
network distribution and its power domination can disconnect the entire network and
leave it without observation at very low cost.

4 Conclusions
We have reported results of a robustness analysis on structural controllability through
the POWER DOMINATING SET problem, extending the study given in [9] to consider
multi-round attack scenarios. We have primarily focused onrandom (Erdös-Renyi),
small-word (Watts-Strogatz), scale-free (Barabási-Albert) and power-law (PLOD) dis-
tributions, where we have observed that these networks are sensitive in connectivity and
observability terms. These weaknesses are mainly notable when nodes with the highest
degree distribution and with the maximum value of betweenness centrality are compro-
mised. Moreover, we have shown that combined attacks based on three specific nodes
(M-BC-O andL-BC-O ) can become highly disruptive, even if the power-law network
has proven to be robust with respect to the rest of topologies. Regarding future work,
sub-optimal approximations to repair the controllabilitywhen the power dominance re-
lationship might have been partially severed will be considered taking into account the
handicap of the non-locality of the PDS and theNP-hardness demonstrated in [6].
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