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Abstract. The notion ofcontrollability, informally the ability to force a system
into a desired state in a finite time or number of steps, is rolosely associ-
ated with control systems such as those used to maintainrposte/orks and
other critical infrastructures, but has wider relevancaistributed systems. It
is clearly highly desirable to understand under which coow attackers may
be able to disrupt legitimate control, or to force overrgltontrollability them-
selves. Following recent results by Létial., there has been considerable interest
also in graph-theoretical interpretation of Kalman coltaumlity originally intro-
duced by Linstructural controllability This permits the identification of sets of
driver nodeswith the desired state-forcing property, but determiningrsnodes
is aW[2]-hard problem. To extract these nodes and represent thetrelation,
here we apply the ®wWERDOMINATING SET problem and investigate the effects
of targetedterative multiple-vertex removal. We report the impact that diffare
attack strategies with multiple edge and vertex removdl heive, based on un-
derlying non-complete graphs, with an emphasis on poweréamdom graphs
with different degree sequences.
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1 Introduction

Structural controllability was introduced by Lin’s semiimeork [1] as an alternative to
the controllability, identifying a graph-theoretical mel@quivalent to Kalman’s control
[2] in order to reach a desired state from an arbitrary stedefinite number of steps. Al-
though the Kalman’s model enables the use of a generalpugoand well-understood
framework for the design and analysis of not only controtesys but also of networks
in which a directed control relation between nodes is regljithe model presents some
restrictions for complex and large systems. A time-depenlilgear dynamical system
A is controllableif and only if rankB,AB,A?B, ..., A"1B] = n (Kalman'’s rank crite-
rion), whereA is then x n adjacency matrix identifying the interaction among nodes
and then x m inputmatrix B identifies the set of nodes controlled by thput vector
which forces the system to a desired state. Whilst stradgivtrd, for large networks



the exponential growth of input values as a function of nadgsroblematic, giving
importance to concept of structural controllability. Imsthontext, the graph-theoretical
interpretation would b&(A,B) = (V,E) as a digraph wheré =V, UV3 is the set of
vertices and = Ep UEg is the set of edges. In this representatid@ncomprises nodes
able to inject control signals into the entire network.

Moreover, recent work by Liet al [3] has renewed interest in this approach as it
allows the identification ofiriver nodes(ng corresponding td/g) capable of observ-
ing the entire network (graph). This work is relied on a n@wrous formulation of
the maximum matching problem and has been expanded upoipladimes [4, 5].
However, we here focus on the equivalevER DOMINATING SET (PDS) problem,
originally introduced as an extension obMINATING SET by Hayne<t al. [6], mainly
motivated by the structure of electric power networks, dredteed of offering efficient
monitoring of such networks. A real world scenario relakethis field is precisely the
current control systems (e.g. SCADA systems) which degieyr elements following a
mesh distribution to supervise other critical infrastues (e.g. power systems), where
% = (V,E) depicts the network distribution witt illustrating the elements (e.g. control
terminal units, servers, etc.), aidrepresenting the communication lines. In this con-
text, PDS can be defined using the two followmlgservation rulesimplified by Kneis
et al [7]: OR1, a vertex in the power dominating set observes itself andsafieigh-
bours; andOR?2, if an observed vertex of degreed > 2 is adjacent tal — 1 observed
vertices, the remaining unobserved vertex becomes olisas/ell.

With the omission 0fOR2, this reverts to the DMINATING SET problem already
known to be #2?-complete with a polynomial-time approximation facto@®flogn) as
shown by Feige [8]. The approach relies on creating direatgdlic graphs/ = (V,E)
to find a sequence of driver nodes (denotedNgsV ny € Np) such thatNp C V can
observe all vertices iV satisfyingOR1 and OR2. Instances of driver nodes from a
given¥ = (V,E) are not unique and clearly depend on the selection orderrtites
€ V to create DS usin@R1. Here, we follow the three strategies defined in [9]: (1)
Obtain the set of driver nodes with maximum out-degree fyatig OR1 (NJ2); (2)
find the set of driver nodes with minimum out-degree satigfyfdR1 (NQ"‘); and (3)
obtain the set of random nodes satisfy@B1 (N2"9. Hence, each' represents a
partial order given by the out-degree 6r >) in case oNJ® or N§'", respectively; in
case ofN2"d no such relation exists as its elements are randomly chosen

These three strategies have already been analysed fomteradtive scenarios,
in which a single vertex is exposed to a particular type cdckit Our contribution
in this paper is therefore to expand the approach from [9] tdtiple-round attacks,
studying the robustness of controllability when multipfedacombined attacks affect
control in several different graph classes, namely randerdds-Renyi (ER)), small-
world (Watts-Strogatz (WS)), and power-law (both (Baab@bert (BA)) and general
power-law (PLOD) distributions) In addition, we also analyse here the interaction be-
tween different multi-round attack strategies and the dgihey control graph topology
on robustness, considering both the earlier work on sintjéeles [9] and new three
multi-round attack scenarios. These scenarios are asvialid) Removal of some ran-

1 For more detail on these distribution networks, please §é]to



dom edge& E from a single or several vertices, (2) isolation of someigesic V, and
(3) removal of some random edges and vertices from a densergaw subgraph.

The remainder of this paper is structured as follows: SeQ@idescribes the threat
model based on three different multi-round attack scesanml on a set of attack mod-
els characterised by the number of targets. Later, in se8tive proceed to evaluate the
impact of exploiting strategic points of the aforementidmepologies and its control-
lability (given by NP, NB", or N[2"9), discussing the results obtained on connectivity
and observability terms. Finally, our conclusions togethigh an outlook on our on-
going work are given in section 4.

2 Multi-Round Threat Model

In order to study the robustness of the different types ofvaek topologies, first we
consider the different attack types (edge and vertex retfjavhich may disrupt con-
trollability (e.g. denial of service attacks to communioatiines in order to leave parts
of a system uncontrolled, unprotected or isolatedhily and the resulting effects that
such attacks may cause in the control, the network conritgcéimd observability (as
the dual of controllability). The threats studied here ardtiimound attacks with prior
knowledge, but do not explicitly take mitigating responsédefenders into account.

Algorithm 2.1: ATTACK MODELS (¥4 (V,E),Ng" AM, Scenari)

output (Attack of one vertex for a givei(V,E));
local i,target,

if AM == AM (F)
then {target« Ng™{1];
if AM==AM (M)
then {target«+ N3"™(Size (N3"™))/2);
if AM==AM3 (L)
then
else {target+ NZ™{(Size (N3"™))];
else if AM==AM, (BC)
then
{target+ BETWEENNESSCENTRALITY (¥(V,E));
else {target+ OUTSIDE N3 *H(¥(V, E), N&");

else

if Scenario== SCN-1

then REMOVE SELECTIVE EDGES(¥(V, E),target);
if Scenario== SCN-2

then ISOLATE VERTEX(¥(V,E),target);
return (4(V.E))

[Targets] Combination of AM —x [Num. of Attacks|
TG-1 F, M, L, BC,O 5
TG-2 F-M, F-L, F-BC, F-O, M-L, M-BC, M-O, L-BC, L-O, BC-O 10
TG-3 |F-M-L, F-M-BC, F-M-O, F-L-BC, F-L-O, F-BC-O, M-L-BC, M-L-QM-BC-O, L-BC-O 10
TG-4 F-M-L-BC, F-M-L-O, F-M-BC-O, F-L-BC-O, M-L-BC-O 5
TG-5 F-M-L-BC-O 1

Table 1. Five attacks rounds with permuted AM

These threats are based on the combination of five attack Im@&ds), which
have been grouped into three scenarios for the purposestbéfanalysisScenario
1 (SCN-1) it focuses on removing a small number of random edges of oseweral
vertices, which may compromise controllability of depemidedes or disconnect parts



the of control graph and underlying network. The selectibtamyet nodes depends on
theAM described below, and the removal of edges avoids spuriadisisolation Sce-
nario 2 (SCN-2)destined to isolate one or several vertices from the netlgrkten-
tionally deleting all the links from these vertices. Thisght may result in the isolation
of vertices which depend on the compromised node or in thitiparof the network
into several sub-graphScenario 3 (SCN-3jpims to attack one or several vertices of a
sub-graph by randomly deleting part of their linl&3N-1), or carry out the isolation of
such nodes§CN-2) so as to later assess the resulting effect of the threatresiect to
the entire graph. For the extraction of the sub-graph, weiden theGirvan-Newman
algorithm to detect and obtain specific communities withicomplex graph [10]. A
community structure refers to a subset of nodes with denke lithin its community
and with few connections to nodes belonging to less densentomties. For this, links
between communities are sought by progressively calagjatie betweenness of all
existing edges and removing edges with the highest betvessnn

Algorithm 2.2: MULTI-ROUND ATTACKS( ¢(V,E),N&" TG-x, Scenari)

output (Attack of one or several vertices for a givéitV, E));
local i,CombinationAM,AM,SCN

if Scenario== SCN-3
Ysun(V, E) <~ GIRVAN-NEWMAN (¢ (V,E));
then { N3+ EXTRACT DRIVER NODES FROMSUBGRAPH(%sun(V, E), N&™);
SCN+« DETERMINE NEW SCN-1-2();
CombinationAM < COMBINE ATTACKS (TG-x);comment: See table 1;
for i - Size (CombinationAM)
AM <+ CombinationAM(iJ;
if Scenario== SCN-3
4(V,E) « ATTACK MODELSII (4(V,E),%un(V, E), N AM, SCN);
comment: Algorithm analogous to 2.1, but consideriffg,(V, E)

else {#(V,E) + ATTACK MODELS(¥(V,E),N3™ AM, Scenarig;
return (4(V,E);)

do then

For each scenario, we select a set of attacks in which it imaad that an attacker is
able to know the distribution of the network and the power dgation relation (control
graph). In real scenarios, these attackers could be irssigdleo belong to the system,
such as human operators, who known the topology and itsmyistelf; or outsiders
who observe and learn from the topology to later damage ttieesystem or sub-parts.
The mentioned attacks, summarised in algorithm 2.1, aretddrasAM-1 to AM-5.
AM-1 consists of attacking the firsE) driver nodeng in a given ordered seXiyat
Depending on the attack scenario, the attacker could ralyddetete some edges or
completely isolate theq from¥ = (V,E). In constrastAM-2 aims to attack or isolate
a vertexny belonging to a given ordereld®™@ positioned in the middleM) of the
set.AM-3 attacks the lastl() driver nodeny in the ordered set given Gyt AM-4
compromises the vertexe V with the highesbetweenness centrali$8C), whereas
AM-5 randomly chooses a vertexe V and¢ N (outside Q)).

Combinations ofAM- x (which are only representative of wider classes), such that
x € {1,2,3,4,3, result in a set of rounds based on multi-target attacks;lwie repre-
sented in table 1 and described as follotv§arget (TG-1) illustrates a non-interactive
scenario in which a single vertaxe V is attacked according to akM- x, beingv a



driver node or an observed node. In contrastargets (TG-2)corresponds to a multi-
round scenario based on two attagid- xandAM-y x, y € {1,2,3,4,5 such thak # y,
e.g. the attack-BC identifies multiple attacks of typg&M-1 andAM-4, in which one
or several attackers compromise two strategic nodes. Mat&15 Targets (TG-3-5)

is a multi-round scenario based on 3, 4 or 5 threats with goals goals and similar
features tarG-2. All objectives are summarised in algorithm 2.2, which degseon the
type of scenario and the number of targets to be attackeddeorarios of typ&CN-3
we first extract the sub-graph frofi(V,E) using the Girvan-Newman algorithm and
its driver nodes to be attacked. For the attack itself, weonbt consider the sub-graph
itself but also¥ (V,E) to study the effects that attacks on dense sub-graphs may hav
on the overall network.

[Nomenclature[[ Definition |
Ng Driver node
AM-x Attack model following a particular attack strategysuch thak € {AM-1,... ,AM-5}
TG-x Number of target nodes such the¢ {TG-1,...,.TG-5}
Ngrat Set of driver nodesy following a particular controllability strategy such B§>™" @

Naxminrand An attack with minor impact on structural controllabilig ™™

D
max.,miny randy maxmin,rand

Np An attack with intermediate impact on structural contrailidy, intensifying effect caused by
Nga&'mmrmmji An attack with major impact on structural controllabilitgtensifying effect caused by T
* Symbol statindor all the cases
N%‘:‘* Representation of small and large networks
* {AM-x } Influence of all attacks, but with a special vulnerability AM-x
{X-AM-x } Any X threat combined witlAM-x
X— Y% Minimum and maximum rate of observability

Table 2. Nomenclature for analyses

3 Attack Scenarios on Structural Controllability

So as to evaluate the structural controllability strategiefined in [9] N2, NTIn,
Nf2"Y with respect to ER, WS, BA and PLOD distributions, scer@8GN-1, SCN-2
and SCN-3 defined in section 2 were studied Matlab simulations. Sévepmlogies
and network sizes were generated, giving smaltL00) and large % 100) networks
with 100, 1000 and 2000 nodes, and with low connectivity pholity so as to repre-
sent sparse networks. Under these considerations, wesahgesobustness from two
perspectives: First, theegree of connectivitthrough the diameter, the global density
and the local density using the average clustering codfti¢eC). These statistical val-
ues should maintain small values in proportion to the groavttl the average degree
of links per node, and more specifically, after an attacko8dcthedegree of observ-
ability by calculating the rate of unobserved nodes after a thréag @R 1 [9]. Given
the number of simulations carried out and results obtainedhie analyses we have
defined a language to summarize and interpret results shotablie 2.

3.1 SCN-1 and SCN-2: Exploitation of Links and Vertices in Gaphs

For SCN-1 (see table 3), we observe that ER topologies are sensitizennectiv-

ity terms. The diameter for small networks is variable arattipularly, for networks
under the control oRZ>*™", with a special emphasis in scenaris-3 where a com-
plete break up of the network is verified and the observatita is largely influenced,

2 Full results and code is available from authors



reaching null values. As for local and global density, itlsoavariable for all network
distributions and for alTG-x, where the controllabilitN{"™""% are mainly affected.
For WS graphs, the diameter changes for any distributionphtticularly for small
networks, and the greatest effect is obtained when laugchinG-3 attack. For this
topology, the density of the network is slightly modified whgerforming arG-2 at-
tack, whereas no relevant effect has been registered fathiee cases. This does not,
however, hold for local density, since the effects on thevodt become more and more
evident as the number of targets increases, especially tigenumber of nodes that
constitute the network is not high (as expected in smallldvoetworks). The impact on
the observability is not very accentuated for this topol@gythe effect is more evident
when performing an attack to thmg with the maximum out-degree in small networks.

| Connectivity Observability |
[TGx]]  Network ] Diameter | Density | CcC | Attack [ Observation T Attack | Rate |
R I Fangy Nrgaxmmrranar Nr[r)waxminrand N leax»r.mln‘ranar N 9681009
b :
My minyrand i Max min.rand
- ws Np Xt Miny B Nr[r)waxmmrand ~ {BC} NDs_»r * 84-99%
o i maxy . min,rand
= BA NEm)a"’"'”"a”d . - * {BC} NDaxT * {F} 16-100%
i m min,ran
PLODa ~ 0.1 Nmf"m'”"a”d . N i * {BC} . . ~ 100%
PLODa~03[  NJ¥AM Npommrand *{BC} - - ~ 100%
e MmNy, ran i
PLODa ~ 05| N T - nminrand - - ~100%
i MaXming rand; | maxming ran Tag ran
ER nmaxmingand |\ A NN Fanck *, {xBC} N randk : 96.7-1009
i 7 max i ran maxXy i, rand
ws Nrg:xmmrand Nrgén.rand ND*M +.Tandr N ND*”T N 88-97.859
o ; q i Max . rand
@ BA Nr[r)waxmmrand Nr[r)un.rand Nr[r)waxmmrand B Ny Xt * {F-BCL-BC} 4-100%
= - - =
~ maxming randy _ max;,min,rand , {F-BC,M-BC, 1000
PLODa ~0.1 ND* NDS BC-O} ~100%
- maxmint.rand R maxmin,rand * {M-BC,L-BC, ~ 5
PLODa ~0.3 ND* NDS BC-O} ~100%
MaX ming randy aX i randy
PLODa ~0.5 ND* - ND * - - ~ 100%
m -ming rand maxmin+.ran maxmins,ran m .ming.rand
ER ND_fX* + Np, T % Np. T % T+ {m-Bc-0,L-BC-0} ND_fX* + *, {M-BC-0,L-BC-O}| 0-100%
maxi‘mlni.ranu ma)gt.mlnt‘rana; maxr.mlnf‘rand
© ws ND* - ND* *, {M-BC-O,L-BC-O} ND* *, {M-BC-O,L-BC-O}| 2-98%
o) maxg,ming,rand rand . * _BC.O | .BC. maxg, ming rand * {FM-L, 1009
F BA Np,, NDs - {MBC-0,L-BC-O} || np, M-BC-0,L-BC-0} | O100%
m “ming. rand i i Lmin.
PLOD @ ~0.1 ND_fX* + nmaxmingand 1. yu.Bc-0, L-BC-0} NDfx* * |+ {m-BC-O,L-BC-0}| 0-100%
m “ming rand i i Lmin.
PLODa ~0.3 ND_,S,Xi * - Ngsaxm'”"a”d + (mBco,18c0}|| N EF [« {mBc-0,1-8C-0}| 0-100%
max; ming.rand MaX i randy e Mg
PLOD & =~ 05| Np, - Np, *, {M-BC-O,L-BC-O} || N *, {M-BC-0, L-BC-0} | 0-100%
i MaXming rand; | maxming, ran
ER Nrg:xmmrand NDw '+ ND* '+ dr * NBnIaxrand . 96.4-1009
ws Nrgaxminrand _ Nga&.mmrrana‘t . Nrgax»r.mm»r‘ranar . 86-97.859
< S S -
1) maxmin,rand rand - * M-l maxt.min.rand * {F-M-L-O, 1000
e BA Np2 Npgr ,{F-M-L-0} Npe F-M-BC-0) 4-100%
i Ve ;i rand
PLODa ~0.1] NT&Xminsand - gt - ~100%
PLODa ~ 03| Nmnand NnTang " " " ~100%
maxmint.ran i
PLODa =055 NG - nmaxminrand * ~100%
R Nand Nrgaxmmrranar Ngwa»r.mmrranar N Nglaxrand N 531000
L3 % -
o ws Nr[r)waxminrand . Nga&.mmrrana‘t B axy, mimy rand B 86-97.859
o i ma ,min.rand
F BA nmaxminrand nfand - * NDaxT * 14-100%
PLODa ~0.4] N nmn.rand * ~100%
PLODa ~ 03] Np@mnand Ngw;xmmrana " ~100%
PLOD G ~ 0.5 Nmaxmmrand NMaXmm.rand " ~100%

* B D: - -
Table 3. SCN-1 Removal of a small number of edgesE from one or several verticesV

For BA graphs, the diameter shows a small variation for Bg{?* and for both
single and multiple targets. The difference is made byTie3 strategy, for which the
consequences on the network are remarkable both for snthllaage networks. The
global density of the network is influenced mainly when a $metiwork is considered



and the links of a randomy are damagedNZ"%. Unlike ER and WS, the CC of
the BA does not significantly change, but its observabisthéavily compromised for
any TG-x where the control relies oNJ®*. In contrast, power-law distributions with
o = 0.1, 0.3 and 05 show a high robustness in connectivity and observabdityns
where observation rate reaches valte$00%. The global density is not affected even
if CC mainly varies for small networks and the diameter spicimpacts on both
NTnand for dense distributions witir = 0.5 andND®*™" for different exponents in
TG-3 scenarios.

| Connectivity Observability
[TGs]] Network Diameter | Density | CC Attack Observation Attack Rate |
i ThaX; MmNy randy | maxg, ming, ran axy ran
R Nr[r)waxmmrand Np %, Ming Fanc T Maxg min, Fancy *, {F.BC} Np, X Tand * {FM} 86-100%
o WS maxmin.rand Nma"f'm'”f‘ra”di * {BC} ymaxmin.rand N 39-100%
g D D max_t‘mln.ranu
BA - e s * {F,M,L,BC} 2-100%
PLODa ~ 0.1 NT&minrand ND_:x" ANt *, {BC} nmaxminrand *, {0} 99-100%
i o, ming, ram ;
PLODa ~ 0.3 NT&Xminsand N T * {BC} nmaxmin : 98-100%
i e, miny ramn
PLODa ~ 0.5 NT&Xminsand - N T ranty * {BC} nmax : 97-100%
i Mg miny randy | mas ming ran TMavk min,ran
ER Ngsaxm'ma"d ND*& + mer 4 randy *, {F,BC} ND*& % * {F-MF-BCF-0} | 70-100%
ws maxmin.rand maxmin,rand | M, Ming rancy N e mim.rand * {F-O} 84-98%
D D: D= D :
o i Trau min ran
9 oA - Nrgmrand . R ND*& O N 2.100%
~ maxmin,rand max,minrand; [ ¥, {F-BC,M-BC, maxmin,rand _
PLODa ~0.1 ND* NDS L'BC,BC-0} NDS * 99-100%
TrVay iy ram TaxXmin rant X, ming, ran ;
PLODa ~0.3 ND*XT Trandy Np O N MG | B BC-0} naxmin * 98-100%
~ maxmin,rand maxminrand | maxp,mingrands [ ¥, {F-BC,M-BC, max N 1009
PLODa =05 NI N2 N L'BC, Be.0} N 97-100%
maxg iy, rand | Mmas ming randy | _maxg miny ran e, ming ran
ER mei + Nlm><1 T mei trang * {M-BC-0, L-BC-0 } || N *xi +ranc * {M-BC-O, L-BC-0 } | 0.15-09.90
MaXg Mg, Tandy |~ “Max minrand | —mag ming rancy ma, ming rand
© ws ND* ND ND* *{M-BC-O, L-BC-0 } Nm *{M-BC-O, L-BC-0 } 2-98%
: mavg,ming. rand i Tavg,, ming, ramn
© BA N%><1 + N'[‘;'“"a“d - *,{M-BC-O,L-BC-0}||N *Xi HENG L MBC-O,LBC0}| 0-100%
m _ming.rand i i “min;rand mi “ming. rand
PLODa ~ 0.1 N%axt + nmaxmin.rand NDaxT * {M-BC-O, L-BC-0 } ND:D‘* + * {M-BC-O, L-BC-0 } | 0.15-100%
m _ming.rand maxXmint,ran i i min:
PLODa ~ 0.3 NDfX* + Np T-rancy nmaxmingand 1. (v.pco, L-BC-0} || N =M 1L (mBC-0, L-BC-0}| 0-100%
. maxi.minrrand maxmin,rand maxmin»r‘randr *{M-L-O,L-BC-0 } ma&mini.rand N RO RO 1000
PLODa =~ 05| ° NI N Lscomseo] || Now {M-BC-O,L-BC-0}| 0-100%
i e MmNy randy | mag, ming. ran Tra; min,ran
ER Nr[r)waxmmrand N%Xi 1+ randg N%xi . Tandy N ND_*X'T i * 66-99.90%
- ws N[m)axmin‘rand (TG T Tang; Nrgaxt.mlnt‘rana; N Nrgaxr.mlnf‘ranar N 92-97.85%
. % L3 L3 -
o Maxmin,randy min,rand g, min.randy
F BA - Nps g * Nps * 2100%
PLOD & ~ 0.1 Nrgsxmmrand Nm;xmmrand N ¢t ,MIn,randy * Nm:xmmrand . 99-100%
PLODG = 03| N@Xmmmang NBnaxmmrana N MaxXmin rand " T ; 98-100%
i i m mins.ran
PLODa ~ 05 NEm)f"m'”"a”d NEm)a"’"'”"a”d NDa)cr Trand * Npax * 96-100%
i e MmNy randy | mag, ming ran Tra; min,ran
ER Nr[r)waxmmrand N%Xi 1+ randg N%xi 1+ ,randg . ND_*XT G N 68-99.85%
- ws maxmin.rand | Maxg i rand Nrgaxt.mlnt‘rana; N Nrgaxr.mlnf‘ranar N 90-97.85%
! % L3 L3 -
O] maxmin,rant i mi minran
= BA - N ‘ i mglgé;'::’r‘:n * ND:& ‘ i * 2-100%
PLOD & ~ 0.1 Nrgsxmmrand Nrgs_xmmrand ND ¢t ,MIn,randy * Nm:xmmrand . 99-99.85%
PLODa = 0.3 NIT@ANTANT | MaKmInrand | Maxmin an " N ; 98-100%
i i T, MmNy ramn
PLODG ~ 0.5 Nmaxmmrand Nr[r)waxmmrand Np X +.randy * Nrgax * 96-100%
Table 4. SCN-2 Isolation of one or several verticesV

For SCN-2scenarios, we observe that ER topologies continues to lyeseasitive
in connection terms, and the global and local density draléfi vary for anyTG-x.
The observation rate is moderately high, but it presenticeweaknesses to attack
models containingAM-1, AM-2, AM-4 and AM-5 aiming to break dowrNJ®*"@"%
The diameter in WS networks slightly changes for &/ where the global density
remains invariant folf G-1 and its value notably decreases according to the number of
isolated nodes, and specifically for small networks deshitedrastic change for CC.
The observation rate remains high with exception to mulifiactive threat scenarios



based onTG-3. As in SCN-1, the diameter, density and the CC of BASTN-2 net-
works remains almost invariant what shows its robustnegeegdor all types oAM-s.
Nonetheless, the densities can suffer some changes wleenahmore nodes are com-
promised and these nodes belong mainlwgf‘d. Moreover, the rate reaches2% of
the observation when driver nodes primarily of tg** are compromised.

| Connectivity I1 Observability
[TGs]] Network ] Diameter [ Density][ cc | Attack [ Observation | Rate [ Attack |
maxmin,ran il
PLODa ~0.1] Np. % 1 . | nmaxminrand {M,LBC} nfaxrand {FMLBC} [99.70-1009
< |[PLODa~0.2 nrand - nmaxrand (L} - - ~100%
2 |[Proba~oa|  nmaxmm nmaxmin,rand {L.BC} - - ~100%
PLODa ~0.4] NpAXMInTand maxmin.rand {M,L,BC} Nmax * 98-100%
PLODa ~05  NM&XMN - Nmaxmin.rand {L.BC} Nmax * 98-100%
DI Ds ’ Ds
maXt ,MinN4 ran max min.ran
PLOD & ~0.1|Np, g rangg T Np, % * {X-BC} Ng’axra"d * 99.70-1009
8 |[PLopa~o02] NEEMTANT - DTG [{F-0, F-L, M-L, M-O } - - ~100%
.L_D PLOD 03 Nmaxr‘mlnar.ranur Nmaxr‘mlnar.ranu N 100%
a =~ 0. - - - =3 (]
DI Ds
i LMiNg, rant i “min;rand
PLODa ~ 04 NDfXT T NDSE_XT * Npax * 97-100%
max«rmln.ranu max
PLODd ~ 0.5 - Nps {L.BC} NI * 98-100%
m; LMIN4,rant maxmin.ran m LMIN4, ran
PLODa ~ 0.1 NDfX* I % *{M-BC-O,L-BC-0 } NDfX* rang *{M-BC-O, L-BC-0}| 0-100%
© ||PLopa~02 Nga&‘m'”i-'a"di - | nmaxminrand {M-lecgg-g;:-o ¥ N'[T)‘axrm'”i-'a"di « (M-BC-O,L-BC-0}| 0-100%
L'I) 1 - - %
= i LMINs . rant i “miny rand m LMINs . rant
PLODa = 03|Np. FE LI NDSa_XT u * {M-BC-O, L-BC-0 } ND_fX* T tmBC.0,LBC0}| 0-100%
- ma)&mlni.ranqt R max«rmln.ranu . ¥ § | § maximlni.ranqt . ¥ § K § i 5
PLOD a = 0.4|Np, Npe {M-BC-0,L-BC-0} ||Np, {M-BC-0,L-BC-0} | 0-100%
ma)&mlni.ranqt max«rmln»r.ranu maximlni.ranqt
PLODa ~ 0.5|Np, - N *{M-BC-0, LBC-0} ||Np, * {M-BC-O, L-BC-0} | 0-100%
PLODa ~01 Nga&mlni.ran% i Ngaxmmranar N Nrgaxrand . 99-100%
— %
~ maxmin,rand R maxmin,rand | {F-L-BC-O,F-M-L-O } R R 1000
3 PLODa =02 N Npe FM-LBC } ~100%
" |[PLopa =g maxminsand [T M rand . - - ~100%
maXt ,Miny ran
PLODa ~ 0.4|Npy, g rand | Nfax *, {F-M-BC-0} Npax *, {F-M-BC-0} 97-100%
max,ming rand
PLODa ~0.5 Npax Np, i {M-L-BC-O } Npax * 98-100%
maXt ,Miny ran max min.ran
PLOD & ~ 0.1 N e AN Np, % * Ng’axra"d * 99-100%
@ |[PLopa~o2[  nO™EM - npand * ~100%
E PLODa ~0.3 Nmaxmln.ranu Nmaxmln.ranu * = ~ 100%
~0. T T ~
PLODa ~0.4] N{ZMNANd - * Npax * 97-100%
max,min,rand
PLODa ~0.5 - N Npax * 98-100%

~ | R
Table 5. SCN-3 Removal of a few edge$SCN-1) of a given sugraptsyp= (V,E)

This does not occur with general power-law networks wheeeotservability de-
gree, except fof G-3, reaches the 90% of the observation at all times, in additon
following similar behaviour pattern for any exponent valhile no effect is appreci-
ated in diameter, the density decays only in small netwotkaniwo or more nodes are
excluded from the graph. The consequences on the CC for setalbrks are not negli-
gible, but the greatest consequences have been observieservability when 3 nodes
are removed. Lastly, common behavioursS@8N-1andSCN-2 arise. The removal of
random links in three vertices or the isolation of threeiees (TG-3) using the combi-
nationM-BC-O andL-BC-O can cause the breakdown of the entire graph. These two
configurations seem to be the most menacing within the conafiigun given in table 1,
in which the observability is largely influenced for any distition and the diameter is
drastically decreased fo{)>™". In addition, threats of the typ&M-4 stand out from
the rest, underlying the importance of protecting the noitle the highest centrality.



3.2 SCN3: Exploitation of Links and Vertices in Power-Law Sibgraphs

Tables 5 and 6 show results obtained for attacks on a smalbeuof random edges
(SCN-1) or isolation of one or several verticeSEN-2) from power-law subgraphs.
Varying the exponent, we observe that these types of nestake similar behavioural
characteristics to those analysed in section 3.1. Unfatily, the observation degree
decays extremely when the graph is subjected to attackpefMyBC-O andL-BC-

O, where twong of the sub-graph and a vertex of the sub-graph, but outsilR"
are attacked simultaneously. Moreover, these two attagibatations are also danger-
ous in connectivity terms. The diameter values radically Var any N and for any
distribution, although the global density remains broadigstant. Obviously, when the
sub-graph is subjected to massive attacks to isolate asimghultiple nodes, the diam-
eter, density, and CC of the entire network vary. Table 6 shibwg, where the diameter
primarily changes for any large distribution, whereas twal and global densities im-
pact on small networks. As in the previous case, the obstitydb high at all times,
even if insignificant variations caused by attackIff* arise.

| Connectivity 1 Observability
[TGs]| Network ] Diameter | Density | CC | Attack || Observation Rate [ Attack |
PLODa ~0.1 Ngfxr'mm*‘rand' - gsa_xmm‘ra"d' {M.,L,BC} nmaxrand - 99-100%
Z,; PLODa ~ 0.2 NmaxmlnArana Ngw:xmmrana Ngw:xmmrana *{L,BC} ~ 100
= llpLopa~023 NSEM'm"pr‘ranar - nmaxminrand {L.BC} - ~100
PLODa ~ 0.4 N AN | ymaxminand | MGy | ey nprand * {M,BC} 96-100%
PLODa ~05] NpXmmANd N mmrand ML} Nmax « 99.60-1009
PLODa = 0.1 NI TN [ ymaximinand [ AT Ty e . xpe nmaxrand . 98-100%
g PLOD g ~0.2 Nm:\xminrand Nr[r)waxminrand Nmax»r‘mln.ranur *{F-O,M-L, L0 } ~ 100%
" ||pLopa~03 Ng]'axmm*'m"u' - rg'sn*'m"u {M-L,X-BC } - ~ 100%
PLOD G ~ 0.4 Nm*axr.mlnf‘ranar Nr;axr.mlnf‘ranar Nmaxi.mlnf;ranar *{X—BC} Ngsaxr;rana . {F—XY X—BC} 97-100%
PLODa =~ 0.5 Ngax"mm'mnu Nrgax"mm“anu * {F-L, M-L, X-BC } Nppax * {BC-0} 96-100%
PLODa ~ 0.1 Ngf&'mm*‘ra"d* nmaxminrand Ngsaxm'"‘ra"d' *{M-BC-O, L-BC-0 } N&%'mmﬂaﬂd‘ . 0-100%
& ||PLopa~02 Ngf&'mmi‘ram‘t nmaxminrand N MG, F\BC-0, L-BC-O } Ngfxi'mmi‘rana‘t *{M-BC-0,L-BC-0} | 0-100%
" ||PLoba =03 Ngz&'mmi‘rana‘t nfpaxminsand N&axm'"T‘ranq * {M-BC-O, LBC-0 } | [N E ML, 1 BC.0,LBC-O}| 0-100%
PLODa = 0.4 Ny F O [P FANCE PRG MNP, (0.Be-0, L-BC-0 } | [Np b F |« {M-BC-O, LBC-0 } | 0-100%
PLODa = 0.5|Npy o F T E e | maxminsand T EMITEINGE fy B0, a0} [N E e | < {M-BC-0, LBC-0 } | 0-100%
PLODa ~ 0.1 Nm*ax_t.mlnt‘rand; maxmin.rand N[m)axmln‘randr R N[m)axmin‘rand N 99-100%
:; PLODa ~ 0.2 N&axmln‘rana Ngsaxmln‘rana Nmsaxmln‘rana B ~100%
F |[PLopa = ag[ng T | ymaxminand g . - ~100%
PLOD G ~ 0.4 Ng*axr.mlnf‘rana; Nr;axi.mlnt;rana; Nmaxi.mlnf;ranar . g*axr‘rana . 96-100%
PLOD @ ~ 0.5 Ngf“‘m'n'ranu nmaxminmax gf”"mm'ranu * Npax * 96-100%
PLOD @ ~ 0.1 ij&.mmrrand‘t Nrgs_xminrand Nm:xminrand . Nrg:xminrand . 99-100%
3 PLODa ~ 0.2 NmaxmlnArana Nr[r)waxmlnrana Nmaxranu * ~ 100%
= PLOD G ~ 0.3 Nr&f\)&mln.rand N&axminrand NTSII’IT.I‘BI’]U . R ~ 100%
PLODa ~ 0.4 Nrgfxi.mln;rana; Nrgaxi.mlnt;rana; Nmaxmlni‘rana; N Em)*axr‘rana N 96-100%
PLODa ~ 05| Np T Ng‘a"mi”'ma" N rand * Nmax * 96-100%

D Ds
Table 6. SCN-3 Isolation of vertices$CN-2) of a given sugrap®sp= (V,E)

Given this, we conclude that both the connectivity and olzt@n not only depend
on the network topology and construction strategies ofedmodes ), but also on
the nature of the perturbation [5], where degree-basediati@.gAM-1) and attacks
to centrality AM-4) are primarily significant. On the other hand, BA (see tab)largl



power-law (PLOD) distributions present analogous behagiavith respect to observ-
ability. Both are mainly vulnerable to threats giverNg®* for small networks, and they
are no only sensitive tdG-3 attacks, but also td6G-4 based on a planndeétM-BC-O
attack inSCN-1 This also means that an adversary with sufficient knowlexfghe
network distribution and its power domination can discartrike entire network and
leave it without observation at very low cost.

4 Conclusions

We have reported results of a robustness analysis on stalictintrollability through
the POWER DOMINATING SET problem, extending the study given in [9] to consider
multi-round attack scenarios. We have primarily focusedramdom Erdds-Reny),
small-word Watts-Strogafg scale-free Barabasi-Alber) and power-lawPLOD) dis-
tributions, where we have observed that these network®asitse in connectivity and
observability terms. These weaknesses are mainly notaidea wodes with the highest
degree distribution and with the maximum value of betwesaentrality are compro-
mised. Moreover, we have shown that combined attacks bas#dt@e specific nodes
(M-BC-O andL-BC-O) can become highly disruptive, even if the power-law networ
has proven to be robust with respect to the rest of topologegarding future work,
sub-optimal approximations to repair the controllabilitlgen the power dominance re-
lationship might have been partially severed will be coasd taking into account the
handicap of the non-locality of the PDS and thé”-hardness demonstrated in [6].
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