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Abstract 

Here we present a 710 year-long floating varve record from south east Sweden.  

Tephra analyses confirm the presence of the rhyolitic Vedde Ash preserved within 

two consecutive varve years, confirming the Younger Dryas age of the varve series.  

This permits, for the first time, direct correlation of Swedish varved clay with other 

records of equivalent resolution which also preserve the Vedde Ash and 

demonstrates that the potential exists to independently date the Swedish Timescale. 

This discovery will allow direct comparison of rates, timing and duration of key 

climatic events across Europe and the North Atlantic region in records of equivalent 

resolution. 
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Introduction 

Varved sediment records have the potential to allow the assessment of climatic data 

at annual and potentially sub-annual scales. They are one of very few archives of 

environmental change which have the ability to provide data at a resolution 

comparable to tree ring series (Friedrich et al., 2004) and ice-core records 

(Rasmussen et al., 2006; Svensson et al., 2008).  Thus varved records are critical for 

assessing the spatial and temporal differences in environmental responses to 

changing climates.  Throughout Europe, there have been notable successes in 

extracting detailed climate-proxy data from varved records from the Last Glacial to 

Interglacial transition (LGIT: c. 16-8ka BP; De Geer, 1940; Brunnberg, 1995; Lotter, 

1991; Andrén et al., 1999; Brauer et al., 1999; Litt et al., 2001; Lundqvist and 

Wohlfarth, 2001; Hang, 2003; Ringberg et al., 2003; Johnson et al., 2013; Lane et 

al., 2013).  However, many of these records are not varved to the present day and 

often those that are have substantial counting uncertainties associated with them, or 

potential problems of ‘missing years’. One of the most widely-recognised varve 



chronologies is the internationally acclaimed Swedish glacial varve chronology (“The 

Swedish Timescale (STS)).  The STS is based on cross-correlation of numerous 

clastic varve series and provides an unprecedented annually-resolved climate record 

(e.g. Strömberg, 1985).  Although considered a ‘count down from the top’ continuous 

chronology comprising 13,257 varve years from present (considered as 1986: Cato, 

1987; Wohlfarth et al., 1994; 1995), the total number of years represented in the STS 

is controversial.  Several authors have contested that there may be between 700 and 

900 years missing from the STS around the Younger Dryas-Preboreal climatic 

transition or in the Holocene part of the chronology (Wohlfarth et al., 1996, 1997).  

Current approaches applied to deal with this assume that Greenland and Northern 

Europe are responding synchronously to a common climate forcing mechanism and 

consequently this restricts the potential to make independent comparisons between 

each lake record. To avoid this circularity, independent means of correlation are 

required in order that rates, durations and synchroneity of response to climatic 

change can be more precisely assessed. 

 

Much of the research linking varve series between sites in the STS relies on the 

principle that common varve thickness patterns or distinct sedimentological features 

are considered to reflect regional processes that demonstrate the varve series are 

temporally related (i.e. colour changes, marine incursion, ice-rafted limestone debris, 

lake drainage).  It is this technique that permits the construction of a continuous, 

overlapping record which tracked ice recession from South to North of Sweden 

following the last glacial maximum.  This approach taken by De Geer and others 

(e.g. Andrén et al., 1999) has been successful in allowing construction (but not 

testing) of the timescale, however where local, rather than regional, factors influence 

deposition, distinctive and secure matches cannot always be located and this 

precludes long (c. 1000 year) varve series from extending and/or reinforcing the 

current STS.  Consequently, independent correlation methods must be sought if 

these long series are to be fully utilised.  Detailed sedimentology (thin-section 

analysis) may assist with these correlation challenges by identifying features not 

visible at the macro-scale, while attempts have also been made using radiocarbon 

dating of macrofossils to both temporally anchor and link varve series (Wohlfarth et 

al., 1993).  However, chronological precision is often not sufficient due to small 

sample sizes, large error margins and prevalent radiocarbon plateaux during the 

Lateglacial and early Holocene.  The use of time-synchronous marker horizons such 

as tephra layers could help unlock the hitherto unrealised potential of some of these 

sites.   

 

Tephra analysis has previously been conducted on mid-Holocene varves from sites 

in West central Sweden (Zillén et al., 2002) and tephra is preserved throughout the 

lateglacial period in non-varved contexts (Wastegård et al., 1998, 2000; Björck and 

Wastegård, 1999; Davies et al., 2003, 2004; Wohlfarth et al., 2006; Lilja et al., 2013).  

Björck and Wastegård (1999) reported occurrences of Icelandic ash of lateglacial 

age from the sites of Fågelmossen and Högstorpsmossen.  These sites are close to 

the current study area and this increases the likelihood that it may also be possible 



to detect it in the lateglacial portion of Swedish clay varves in this region.  The 

lateglacial Vedde Ash (12,121 ±114 GICC05 a BP; Rasmussen et al., 2006 with the 

according age from the type-site of 12,064 ±99 cal a BP; Lohne et al., 2013; 2014) in 

particular has proven to be extremely useful for palaeoclimate studies and has 

recently been used to synchronise climate records from Greenland, Norway and 

Germany.  This suggests that the climate amelioration which took place midway 

through Younger Dryas (YD) was time-transgressive across Europe (Lane et al., 

2013) and not synchronous as previously assumed (Bakke et al., 2009).  

Identification of this tephra in Sweden also allows spatial variability to be assessed 

on an east-west gradient. 

 

 

Site details 

The site investigated in this study is Gropviken which is located directly South of the 

mapped YD ice margin in eastern part of the province of Östergötland (58°21'21"N 

16°37'45"E) and was a part of the Baltic Ice Lake during deglaciation (Figure 1). 

Sites directly south of the YD ice-margin often show long continuous series of 

several hundred varves (Brunnberg, 1995) and this suggests that ice-recession in 

this region was relatively slow.  This observation is supported by data from the 

Mount Billingen area to the west of Gropviken, which indicates that for the first c.700 

years of the YD ice retreated at an average rate of c.10m a-1 and then increased to 

c.50-70m a-1 (Strömberg, 1994).   Gropviken is today a narrow inlet of the Baltic Sea 

and the core was taken close to the shoreline at approximately current sea level. The 

core is 5.5m in length and is varved throughout. The varves were deposited in water 

depths exceeding 100m throughout the YD (Brunnberg, 1995).This region formed 

part of a larger study by Brunnberg, (1995) which connected this region to the STS; 

however it is also one of the most problematic sectors of the timescale and would 

benefit from independent chronological control.   

 

Methods 

Varve analysis 

Visual and physical properties of the sediments were assessed at the macro-scale 

with clear and rhythmic variations evident in both colour and grain-size.  These 

variations can be observed to correspond to a pattern of alternating silt and clay 

couplets, the latter being consistently characterised by a sharp upper contact with 

the succeeding silt layer.  Based on this, and the palaeogeographic glaciolacustrine 

setting at the margins of the retreating Scandinavian ice sheet, it is considered that 

the sediments record annual accumulation throughout their length akin to the 

processes outlined by Ringberg and Erlström (1999).  Annual layer counting and 

thickness measurements were obtained at the macro-scale using visible variation in 



sediment grain-size, colour and structure to delimit boundaries and results are 

presented as varve thickness graphs.   

 

Tephra analysis 

The entire core was scanned contiguously for tephra content by taking approximately 

5cm-long samples.  However, sample length was increased or decreased in order 

that a known number of whole varve years could be incorporated within each 

sample.  Scan samples were processed using the method outlined by Turney (1998) 

and Blockley et al., (2005) with the following minor modifications: samples were not 

combusted prior to processing, 10% H2O2 was used to disaggregate the samples 

and due to the low amount of organic matter only a single cleaning float of heavy 

liquid (2.0g cm-3) was needed.  Where tephra was detected samples were refined to 

varve-scale and processed as before.  Samples for Wavelength Dispersive Electron 

Probe Micro Analysis (WDS-EPMA) chemical analysis were also prepared at varve-

scale but were not subjected to either HCl or H2O2 treatment. Individual tephra grains 

were handpicked using a micromanipulator and gas chromatography syringe, 

mounted on a Specifix-40 resin stub and sectioned to create a polished surface 

(Matthews et al., in prep).  Analyses were carried out using the Cameca SX-100 

Electron microprobe at the University of Edinburgh and probe conditions can be 

found in Supporting Table S1. A 5 µm beam diameter was used (Hayward, 2012). 

 

Results 

Here we present the first geochemically characterised occurrence of a tephra within 

YD Swedish clay varves. The site of Gropviken contains 710 varve years (Figure 2) 

and tephra was detected in the younger part of this sequence.  At the scan stage, 10 

shards g-1 of dry sediment tephra shards were identified across two 5cm samples.  

When this was refined to varve scale, 16-17 shards g-1 of dry sediment were 

constrained within only two varve years (Figure 2), the first occurrence being in varve 

number 91 (count down from the top).  This therefore provides a well-constrained 

marker horizon for this core.  In total, 18 EPMA analyses were obtained from 

individual volcanic glass shards (see Supporting Table S2).  Their chemical profile 

(Figure 3) is consistent in that all analyses are of rhyolitic composition, likely being 

sourced from Iceland and more specifically the Katla volcanic centre. Eruptions 

which have been reported in the literature and which have similar or identical 

chemical signatures include Dimna Ash (15,400-14,850 cal a BP; Koren et al., 2008), 

Vedde Ash (Mangerud et al., 1984), AF555 (11,790-11,200 cal a BP; Matthews et 

al., 2011) and the Suđuroy tephra (8310-7868 cal a BP; Wastegård, 2002).  Given 

what is known about the position and timing of ice extent and recession in the region 

around Gropviken, it is considered unlikely that this tephra could represent the 

Dimna Ash, AF555 or the Suđuroy tephra layers.  Consequently, we consider that 

this represents an occurrence of the Vedde Ash (12,121 ± 114 GICC05 a BP; 



Rasmusssen et al., 2006) which has been detected within sediments of YD age 

across northern Europe and in the Greenland ice cores.  The Vedde Ash is also 

known to have a basaltic component (Mangerud et al., 1984, Davies et al., 2001), 

however no shards of this composition were detected in this study. 

 

Discussion 

The Swedish varves provide a direct proxy of the melting of the Scandinavian ice-

sheet (Andrén et al., 1999) and an exact tephra-based synchronisation between this 

annual climate archive and other annually resolved records has never been 

accomplished. Detection of the Vedde Ash within the Swedish clay varves unlocks 

the potential to be able to build an independently-dated chronology which can be 

directly equated to other records of equivalent resolution in order to assess for leads 

and lags in the climate system and to analyse the rates and durations of key climatic 

shifts across broad regions.  With further work focussing on securely connecting 

Gropviken to the STS, it is also considered that it will be possible to quantify any 

chronological offset between the STS and other high-resolution climate archives in 

the North Atlantic region. 

The fact that the tephra is constrained to 2 years suggests that in this case reworking 

of tephra from ice, snow beds, or the surrounding catchment over decadal-centennial 

timescales as proposed for some sites (Davies et al. 2005; Matthews et al. 2011) 

does not apply and that this tephra represents a true isochronous layer of the Vedde 

Ash. This suggests that clay-varve records while providing an excellent way of 

testing for these effects are viable archives for constructing precise 

tephrostratigraphies. 

Our tephra-based correlation using the Vedde Ash is one example where 

tephrochronology can make significant contributions to the climate modelling 

community, especially as models now need to capture very abrupt changes on short 

time-scales (Lane et al., 2013). The Vedde Ash is, however, not the only tephra 

found in the Baltic region that has a potential to test hypotheses regarding 

synchronous or non-synchronous responses to climate forcing. Also the lateglacial 

Laacher See Tephra (c 12,880 cal a BP) has been reported (but not confirmed) to be 

present in a Baltic Sea core (Påhlsson, and Bergh Alm, 1985) and the early 

Holocene Hässeldalen and Askja-S tephras (11,360-11,300 cal a BP and 10,350-

10,500 cal a BP respectively; Davies et al., 2003; Lind and Wastegård, 2011; Lilja et 

al., 2013) are known to occur across the southern Baltic area and might also be used 

to synchronise varved records with other palaeoclimate records. 

 

Conclusions 

This study has confirmed for the first time that volcanic ash correlating to the mid-YD 

Vedde Ash has been preserved and chemically characterised within the Swedish 



glacial clay varves. This layer is detected as a well-constrained marker horizon within 

two varve years and, when combined with the associated varve series, demonstrates 

that this part of Östergötland was ice-free by at least (but likely prior to) 12,740 ± 114 

GICC05 a BP.  Results from Gropviken represent the first very positive steps in 

developing an absolute chronological link between the record of ice recession and 

climate preserved within the terrestrial Swedish clay varves and other records of 

equivalent temporal resolution. Further work will be directed to attain a secure 

connection to the STS.   
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Supporting Table captions 

Supporting Table S1: Edinburgh University operating conditions for the CAMECA 

SX-100 Electron Microprobe.  Elemental analyses corresponding to a beam current 

of 2nA are listed in bold text and those relating to 80nA in regular text (Hayward, 

2012). 

 

Supporting Table S2: Major element data measured as oxide concentrations (weight 

%) via WDS-EPMA. Analyses were obtained from individual glass shards extracted 

from varves 91 and 90 in Gropviken (see Supporting Table S1 for operating 

conditions). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure captions 

Figure 1: A. Location of the study site in South East Sweden and other locations 

mentioned in the text; B.  Location of Gropviken in Östergötland relative to De Geer’s 

clay varve chronology illustrating that the site records sediment accumulation prior to 

11,800 clay varve years BP (adapted from Brunnberg, 1995). 

 

Figure 2: Gropviken varve thickness record with the position of the tephra layer 

highlighted in red shading towards the top of the sequence within varve numbers 91 

and 90. This well constrained layer and clear first appearance of ash provides a well-

constrained chronostratigraphic marker.  

 

Figure 3: Biplots of Gropviken WDS-EPMA data compared with adjacent non-varved 

sites from Östergötland (Björck and Wastegård, 1999) and Kråkenes in Norway 

(Lane et al., 2012), illustrating the coherence of the data generated in this study with 

that of published data for the Vedde Ash. It should also be noted that these data lie 

comfortably within the range of data presented for the type-site of the Vedde Ash 

(Kvamme et al., 1989; Supplementary Figure S1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Supporting Figure caption 

Supporting Figure S1: Biplots of Gropviken WDS-EPMA data compared with 

adjacent non-varved sites from Östergötland (Björck and Wastegård, 1999), 

Kråkenes in Norway (Lane et al., 2012) and the Vedde Ash type-site from Kvamme 

et al., (1989) and Mangerud et al. (1984).  These plots illustrate the coherence of the 

data generated in this study with that of published data for the Vedde Ash. The data 

is included here for completeness as it reflects the analyses obtained from the type 

locality, however it was not used in the main figure as more recently obtained data 

from sites in Norway provide a more tightly clustered dataset of rhyolitic glass shard 

analyses.  It is not known why this is the case, however it can be postulated to relate 

to improved precision of the WDS-EPMA technique in recent years. 
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Supporting Table S1 

Electron Microprobe Cameca Sx-100, 5 Spectrometers 

Elements analysed Na, Al, Si, Fe, K, Ca, Mg, Mn and Ti 

Accelerating volatage 15keV 

Beam current 2nA/80 nA 

Beam diameter 5 µm 

Primary/Secondary 
calibration 

Standard calibration blocks/Lipari obsidian 

 

 



Supporting Table S2 

Gropviken  
Weight % oxides 

SiO2 TiO2 Al2O3 FeO(t) MnO MgO CaO Na2O K2O Total 

n           

#1 69.57 0.27 13.23 3.51 0.15 0.19 1.36 5.27 3.32 96.90 

#2 69.62 0.28 13.31 3.90 0.15 0.16 1.31 5.29 3.40 97.47 

#3 69.79 0.27 13.26 3.90 0.16 0.22 1.35 5.12 3.52 97.63 

#4 69.89 0.27 13.53 3.71 0.14 0.17 1.29 5.58 3.41 98.04 

#5 70.14 0.28 12.94 3.23 0.15 0.19 1.34 4.85 3.23 96.38 

#6 70.71 0.26 14.18 3.73 0.15 0.20 1.26 5.35 3.44 99.31 

#7 70.89 0.26 14.14 3.69 0.11 0.19 1.34 5.39 3.38 99.43 

#8 70.99 0.28 13.81 3.97 0.15 0.22 1.31 5.03 3.56 99.35 

#9 71.00 0.27 13.31 3.78 0.14 0.20 1.41 5.13 3.63 98.89 

#10 71.39 0.28 13.58 3.76 0.15 0.21 1.31 5.37 3.63 99.73 

#11 71.40 0.27 13.71 4.04 0.15 0.16 1.15 5.21 3.60 99.74 

#12 71.57 0.28 13.56 3.41 0.13 0.20 1.28 5.42 3.34 99.22 

#13 72.04 0.27 13.91 3.75 0.12 0.21 1.37 5.28 3.51 100.50 

#14 72.15 0.28 13.39 3.68 0.16 0.23 1.34 5.49 3.76 100.53 

#15 72.23 0.26 13.62 3.79 0.13 0.21 1.39 5.11 3.52 100.31 

#16 72.47 0.26 13.66 4.01 0.15 0.17 1.26 5.36 3.57 100.94 

#17 72.66 0.28 14.24 4.20 0.14 0.18 1.34 5.38 3.70 102.17 

#18 72.94 0.26 13.34 3.58 0.17 0.25 1.34 5.30 3.52 100.76 

Mean 71.14 0.27 13.61 3.76 0.14 0.20 1.32 5.26 3.49 99.22 

Std Dev 1.09 0.01 0.36 0.23 0.01 0.02 0.06 0.18 0.14 1.53 
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