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We show how off-resonant light scattering can provide quantitative information on antiferromag-
netic ordering of a two-species fermionic atomic gas in a tightly-confined two-dimensional optical
lattice. We analyze the emerging magnetic ordering of atoms in the mean-field and in random phase
approximations and show how the many-body static and dynamic correlations, evaluated in the
standard Feynman-Dyson perturbation series, can be detected in the scattered light signal. The
staggered magnetization reveals itself in the magnetic Bragg peaks of the individual spin compo-
nents. These magnetic peaks, however, can be considerably suppressed in the absence of a true
long-range antiferromagnetic order. The light scattered outside the diffraction orders can be col-
lected by a lens a with highly improved signal-to-shot-noise ratio when the diffraction maxima are
blocked. The collective and single-particle excitations are identified in the spectrum of the scattered
light. We find that the spin-conserving and spin-exchanging atomic transitions convey information
on density, longitudinal spin, and transverse spin correlations. The different correlations and scat-
tering processes exhibit characteristic angular distribution profiles for the scattered light and, e.g.,
the diagnostic signal of transverse spin correlations could be separated from the signal by the scat-
tering direction, frequency, or polarization. We also analyze the detection accuracy by estimating
the number of required measurements, constrained by the heating rate that is determined by inelas-
tic light scattering events. The imaging technique could be extended to the two-species fermionic
states in other regions of the phase diagram where the ground state properties are still not fully

understood.

PACS numbers: 37.10.Jk,03.75.5s,42.50.Ct,67.85.Lm,71.10.Fd,37.10.Vz

I. INTRODUCTION

The two-species fermionic Hubbard model is one of
the most studied models with strong correlation effects
in condensed matter physics, particularly since Ander-
son proposed in 1987 [1] that the Hubbard model (or
its strong coupling limit, the t-J model) is the minimum
model to describe the physics of the high temperature
superconductors [2]. It is well understood that at half-
filling, i.e., at an average of one spin-1/2 fermion per site,
the Hubbard model has the ground state which is a Mott
insulator with antiferromagnetic (AFM) ordering. Away
from half-filling, quantitatively accurate predictions are
scarce, but it is generally believed that a d-wave super-
conductor can be present in some regions of the phase
diagram, hence the relevance of the Hubbard model for
the high temperature superconductors.

With the rapid advance in cooling and trapping tech-
nologies of neutral atoms in optical lattices, there is the
exciting prospect that the phase diagram of the fermionic
Hubbard model can be explored via quantum simulation
(rather than numerical simulation) in an optical lattice
set up with ultracold two-species fermionic atomic gas [3—
5]. Such a system has been cooled down in a laboratory
to the Mott insulator regime [6, 7] and recent experiments
have demonstrated evidence of AFM correlations [8, 9],
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owing to exchange coupling between the atomic spin
states. Magnetic ordering has also been observed in dou-
blon formation in tilted lattice systems [10, 11]. On the
other hand, entangled cluster states including singlet or
triplet states [12] and resonating valence-bond states [13]
have been controllably created and measured in systems
of ultracold bosonic atoms trapped in optical superlat-
tices.

Accurate diagnostic tools for ultracold atoms in lat-
tices form key elements in emulating strongly-correlated
physics of condensed-matter systems. Currently, ad-
vanced imaging provides a microscopic scanning tech-
nology of atoms with a single-site resolution [14-21] in
which case each atom may resonantly scatter thousands
of photons while being detected. The analogy between
x-ray (or neutron) diffraction of crystalline structure in
solids and off-resonant light scattering from an ultracold
atomic gas in an optical lattice provides an alternative
route. The periodic crystalline order leads to construc-
tive interference and the emergence of sharp diffraction
maxima, or Bragg peaks, revealing the underlying lattice
structure. Importantly, diffuse background of scattered
light in between the diffraction maxima can convey infor-
mation on fluctuations of atomic positions. The far-field
off-resonant imaging therefore provides a powerful probe
of strongly-correlated ultracold atom systems in optical
lattices, being sensitive, e.g., to correlations, excitations,
and temperature.

Spontaneously scattered off-resonant light was first
proposed as a diagnostic tool for correlations of ultracold



atoms in an optical lattice in Ref. [22]. This study con-
sidered a two-species gas where the hopping element of
the atoms between adjacent sites acquired an artificially
constructed phase factor from the Peierls substitution. It
was then shown that the resulting topological properties
of edge states, which originate from nontrivial spin cor-
relations, can be mapped onto fluctuations of scattered
light and directly detected [22, 23]. Several other studies
have addressed signatures of atom statistics in an optical
lattice from the scattered light with [24, 25] and with-
out [26-35] an additional optical cavity.

A two-species fermionic Hubbard model exhibits a
Mott insulator state where the fluctuations of the total
on-site atom number are suppressed [6, 7]. At sufficiently
low temperatures the effective exchange coupling can
generate magnetic ordering of the atomic spins within
the Mott state. At half-filling with equal spin popula-
tions this leads to alternating checkerboard pattern of
atom densities of individual spin components. The re-
sulting doubling of periodicity of atom densities leads
to the emergence of additional magnetic Bragg peaks of
scattered light that have been proposed as a detection
mechanism of AFM ordering [36]. The extra Bragg peaks
in the optical signal of a two-species system were experi-
mentally observed using an artificially constructed stripe
pattern of atomic densities [37].

Here we analyze the far-field diffraction pattern for off-
resonantly scattered light from a two-species fermionic
atomic gas in an optical lattice. We consider a tightly-
confined two-dimensional (2D) Hubbard model at half-
filling with equal spin populations. We show how op-
tical diagnostics can provide quantitative information
on properties of strongly correlated states in a lattice.
The time-ordered correlation functions that can be cal-
culated using the Feynman-Dyson perturbation series are
mapped onto the fluctuations of the scattered light and
detected in the optical signal. We evaluate the relevant
correlation functions in the mean-field theory (MFT)
and in the random phase approximation (RPA) for the
AFM ordered state. MF'T provides information on single-
particle excitations but fails to capture the effect of quan-
tum fluctuations and collective excitations that are ap-
proximately incorporated in RPA. In the RPA calcula-
tions we follow the approach of Ref. [38].

The scattered light intensity may be separated into
elastic and inelastic components. In the elastic scattering
process the atom scatters back to its original state. The
elastic part produces a diffraction pattern from a non-
fluctuating atom density, analogous to that of Ng x N,
diffracting apertures when the lattice has Ny x Ny sites.
The overall envelope of the diffraction pattern is deter-
mined by the lattice site wave function of the atoms. The
magnetic ordering specifies the relative atom densities of
the two spin components and appears as additional Bragg
peaks. The measurement of the magnetic Bragg peaks is
possible, provided that the lattice spacing a > \/ V2,
where A denotes the probe wavelength. Our analysis
confirms that detecting the magnetic peaks by scatter-

ing light from a single spin component alone constitutes
an accurate observable for the staggered magnetization
of the AFM order. However, the absence of true long-
range AFM order can significantly suppress the magnetic
Bragg peaks. We demonstrate this by considering a phe-
nomenological Ising model for the staggered magnetiza-
tion when the system exhibits a finite correlation length.
Moreover, for atomic species for which it is possible to
achieve far-detuned imaging with the laser tuned in be-
tween the resonances of the two spin components, one
can enhance the optical signatures of the magnetic Bragg
peaks. This is because the light scattered from the two
components can then be m phase-shifted with respect to
each other, making the peaks directly proportional to the
staggered magnetization order parameter.

The inelastic scattering processes, on the other hand,
are those in which an atom scatters between two differ-
ent quasimomentum states. The inelastically scattered
light conveys information on correlations between the
atoms and results in diffuse scattering of light outside the
diffraction orders, generating fluctuations of the diffrac-
tion pattern. We collect the light in the near-forward di-
rection with a lens and block the diffraction maxima, so
that the amount of elastically scattered light entering the
detector is suppressed [26]. This method is then extended
to detection of light in the direction approximately per-
pendicular to the propagation direction of the incident
field. In Ref. [26] detecting the near-forward light was
shown to provide an experimentally feasible technique
for measurements of temperature of fermionic atoms in
a lattice. We find that in an AFM ordered two-species
state the scattered light in the near-forward direction is
not only sensitive to the temperature of the atoms but
provides also a suitable probe of density and longitudi-
nal spin correlations (from spin conserving atomic tran-
sitions). The scattering processes in which the atomic
spin state changes, on the other hand, are prominent in
the scattered light perpendicular to the light propagation
direction and can be employed in detection of transverse
spin correlations. Furthermore, we estimate the detec-
tion accuracy of the magnetic ordering in different mea-
surement configurations. This is done by calculating the
number of required experimental realizations of the lat-
tice system to detect the order parameter above the shot
noise of light at a desired accuracy. In each experimental
realization the scattered light heats up the atomic sam-
ple and the total number of inelastic scattering events is
constrained to be a small fraction of the total atom num-
ber. We find that a strong lattice and trap confinement is
beneficial for the measurements in suppressing scattering
of atoms to higher energy bands as compared with the
inelastic lower energy band scattering.

We also calculate the spectrum of the scattered light
and show how it reveals the excitation of the system
that could be measured using optical heterodyne tech-
niques [39]. The differences between the MFT and RPA
treatments are especially prominent in the spectrum of
transverse spin correlations: The low-energy collective



mode excitations manifest themselves as a well-separated
peak (at sufficiently strong interaction energy) from the
gapped single-particle excitations.

The optical setup that blocks the Bragg diffraction
maxima in the measured signal can considerably reduce
the scattered light that is insensitive to correlations,
therefore improving the signal-to-noise efficiency. Sim-
ilar separation of less important part of the signal, for
instance, in atom shot-noise correlation measurements
[40, 41] would be challenging. We estimate the detection
accuracy of the AFM ordering in the scattered light in-
tensity by calculating the number of experiments needed
to achieve a given measurement accuracy of the magnetic
order parameter, when the heating rate of the atoms lim-
its the total number of possible scattering events.

The proposed technique differs from the simple angle-
resolved imaging of the diffraction peaks, since we collect
the inelastically scattered light with a lens that has a rel-
atively large numerical aperture (NA). By analyzing the
spectrum of the scattered light using the realistic optics
setup, we show that the essential features of the exci-
tation spectrum can be captured even when the light is
collected over a range of scattering angles. A large lens
provides a stronger signal even when the number of in-
elastically scattered photons remains a small fraction of
the total atom number. In less demanding detection sce-
narios (e.g., in large lattices and at high temperatures)
even a single experimental realization of the lattice sys-
tem can then be sufficient to determine, e.g., the ap-
proximate temperature of the atoms in the lattice. This
contrasts with the single-site microscopy [14, 42] in which
case typically several thousands of photons are scattered
from each atom and the light is also simultaneously used
to cool down the atoms. The microscopy also requires a
scanning of the lattice sites that in very large lattice sys-
tems may become less practical. The off-resonant light
scattering, on the other hand, becomes more efficient a
method when the size of the system increases. Other
advantages of the off-resonant imaging include the pos-
sibility for spectral measurements of excitations and the
access to correlation functions that include combinations
of different spin states via spin-exchanging scattering pro-
cesses. Finally, the diffractive far-field imaging does not
need to be limited to probing the atoms only by light,
but also matter-wave probes are possible [43].

The remainder of the paper is organized as follows:
Section IT presents a summary of the key results. We
then start in Sec. III by introducing the basic formal-
ism of the lattice system. We continue in Sec. IV, where
the MEFT and RPA results for the lattice system are pre-
sented. The scattered light as a diagnostic tool is in-
troduced in Sec. V. In Sec. VI we present results for
the scattered light intensity for “°K atoms. The specific
experimental setups for the optical detection and the es-
timates for the measurement accuracy are considered in
Sec. VII. The scattered spectrum is studied in Sec. VIII
and some concluding remarks are made in Sec. IX. Fi-
nally, a diagrammatic description of the RPA suscepti-

bilities is presented in Appendix A and the finite tem-
perature MFT susceptibilities are given in Appendix B.

II. SUMMARY OF KEY RESULTS

In this Section we briefly highlight the main findings of
the paper. We study the AFM ground state of the Mott
insulator in a two-species fermionic atomic gas trapped
in a tightly-confined 2D optical lattice (Sec. III). We
assume equal spin populations and that on average, there
is one atom per site in the lattice.

We show how quantum statistical correlations of the
atoms can be mapped onto fluctuations of the scattered
light. Measurements on the scattered light therefore con-
vey information about the correlated phases of the ultra-
cold atoms in the lattice (Secs. VA and V). We con-
sider two electronic ground states | 1) = [4S;/s, Fy =
9/2,mp = =7/2) and | |) = [4S1)2,Fy; = 9/2,mp =
—9/2) of 9K (Sec. VIB), excited by the ¢~ polarized
incident light, such that | |) undergoes a cycling transi-
tion and the atoms in | 1) may either scatter back to | 1)
(spin-conserving transition) or to | |) (spin-exchanging
transition).

The scattered light intensity contains contributions
from the elastic and inelastic scattering events. The elas-
tic part generates the diffraction pattern of the atomic
lattice structure. If the detected signal cannot distin-
guish the two spin components, the light provides almost
no information about the AFM order. But with spin-
specific imaging, the emerging AFM order and the period
doubling can be identified as additional Bragg peaks.

Specifically, we find that the elastic component of the
scattered light intensity is given by

= (\/> Prxy) + \/> (Pxir > - (@)

In this expression the dependence on level structure, po-
larization, and scattering direction are coded in Mg
[Eq. (63)], Ak is the change in the momentum of the scat-
tered photons [Eq. (53)] while Ak is the same momentum
projected into the lattice plane. Here the Debye-Waller
factor aax depends on the lattice site wave function and
determines the overall envelope of the diffraction pattern

[Egs. (62) and (64)]. For the AFM state we find

I.(Ak)
aAkB

(Pakg) = Uawfg T Uskiq mn(9) (2)
where fq, [Eq. (32)] is the density operator for the spin
state g, Q = (7w/a,w/a) (a denotes the lattice spac-
ing) is the magnetic ordering wavevector, f; = 1/2 is
the atomic filling factor of species g at half-filling, and
n(T) = 1, n(}) = —1. The staggered magnetization
m [Eq. (15)] represents the AFM order parameter and
luxk|? [Eq. (68)] generates the diffraction pattern from
the periodic atom density [Eq. (75)]. The second term
of Eq. (2), when substituted into Eq. (1), is responsi-
ble for the magnetic peaks due to the period doubling



in the AFM state. In the absence of true long-range
AFM order the staggered magnetization, however, may
vary in space, resulting in a significant suppression of the
magnetic Bragg peaks when the correlation length is not
much larger than the size of the lattice (Sec. VIB2).
While elastically scattered light gives information
about the AFM ordering of the system, the inelastic com-
ponent directly probes the correlations of the spin Si
(i = z,4,—) [Egs. (30), (31)] or the density pq [Eq. (32)]
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where the equal time 2 x 2 matrix response function
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O can be any of the operators S; (i = z,+,—)

[Egs. (30), (31)] or jpq [Eq. (32)]. We have also introduced
the two-component vector [Eq. (95)] uk = (uy, Ug,q)

In Eq. (3), the scattering contributions in which spin
is conserved are proportional to density and longitudi-
nal spin correlations. The spin-exchanging transitions
(Fig. 7) generate the term depending on the transverse
spin correlations. The two processes exhibit very differ-
ent angular distribution of the scattered light and can
also be separated in frequency. Thus, another key result
of this paper is that specific quantum correlations can be
separated in the detected signal.

We estimate the minimum number of experimental
measurements needed to obtain a given relative accuracy
in the magnetization or temperature [26]. This is deter-
mined by two factors: photon shot noise that dictates a
minimum difference in the number of photons detected
for two close AFM magnetization values and the total
number of photons collected that is set by the heating
rate of the system due to inelastic scattering of atoms
by light (Sec. VIIB). In this analysis the best mag-
netization measurement accuracy can be achieved with
spin-specific detection where the photons are collected
near the perpendicular direction or around the direction
of the magnetic Bragg peak, while the temperature of
the atoms can be measured in the near-forward direction
[Fig. 16(b)]. In the perpendicular direction [Fig. 16(c)
and 20], it is preferable to detect only the light scattered
from spin-exchanging transitions.

For the spectrum of the scattered light we obtain an
expression similar to the scattered light intensity, with
the static correlations replaced by dynamic ones 89 (q, w)

operators. The basic MFT analysis (Sec. IV B) does not
include quantum fluctuations and we calculate the corre-
lations functions by a partial summation of the Feynman-
Dyson perturbation series in RPA (Sec. IV D) that incor-
porates the correct spin wave physics at strong coupling.
We explicitly show how the time-ordered many-body cor-
relation functions obtained in RPA [Eqs. (44)-(48)] are
mapped onto the inelastically scattered light intensity

[Eq. (96)]
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(Sec. VIII). We find that at moderately large to large
U/J, the collective excitations generate a sharp peak in
the low energy part of the spectrum, which is separated
by an energy gap of order U from a more broad feature
generated by single particle excitations. The location and

width of these features can give a quantitative measure
of the AFM order.

III. OPTICAL LATTICES AND THE HUBBARD
MODEL

We consider a tightly-confined 2D square lattice with
the potential (r = (x,y, 2))

V(r) = s, Epsin® (%) + s, ERr sin? (%) + %mwizQ.
()
We choose the lattice depth s = s, = s, similar to the 2D
lattice experiments with a disk-like lattice [14]. Here the
frequency of the harmonic confinement in the z direction
is denoted by w,. and the lattice light recoil energy

(hky)?

2m

Er = (6)
We define an effective wavenumber for the optical lattice
in terms of the lattice spacing a by

=2 (7)

When the effective wavenumber coincides with the laser
wavenumber, we have kj = 27/\ and a = /2, where
Al denotes the wavelength of the laser beam generating
the lattice. In the case of accordion lattices the lattice
spacing is manipulated by optical components and can
be considerably increased [44-46].

In typical experimental situations, the trapping poten-
tial is a superposition of the lattice and an external trap.



Here we will assume a weak external potential and ignore,
for simplicity, any modulations of the uniform lattice.
Experimentally, it is also possible to produce entirely ho-
mogeneous traps; a first step towards this has recently
been demonstrated for a Bose-Einstein condensate [47].
The effects of the additional harmonic trap, e.g., in the
context of the Mott insulator states has already been ad-
dressed by several studies [6, 7].

We expand the atomic field operators ¥, (r) for the
hyperfine state ¢ in terms of Wannier functions w, j(r) =
wy(r —rj) (at position r; and band n [48])

\i/g(r) = Z Wy, j(T) Cnjg (8)

where ¢,j, denotes the annihilation operator for hyper-
fine state g at site j = (jz,jy). In the uniform lattice of
this study the spatial variation of Eq. (8) between dif-
ferent lattice sites is entirely encapsulated in the phase
factors of ¢pj4.

We assume that the higher bands in the initial ground
state are not populated (U, T are much smaller than the
bandgap), such that only the n = 0 state in Eq. (8) is
included in the analysis of the ground-state properties,
and we drop the band index for now. (Later, we will
consider the effect of light scattering of atoms into higher
bands in Sec. V C.) In order to describe the lattice system
we introduce the one-band Hubbard Hamiltonian [49]

H==T > (&, 465+ Hee)

(J1i2),9

+UY Ay =Yy g (9)
J g

Here p is the chemical potential and the hopping ampli-
tude between the nearest-neighbor sites is J. The on-site
interaction strength is denoted by U. It can be modified
by changing the spatial confinement or via a Feshbach
resonance of the s-wave scattering length a, [50]. The
two hyperfine states are identified by “spin” labels | |)
and | 1), in analogy to electrons in solids.

For deep lattices, the lattice potential can be approx-
imated locally close to the site minimum as a harmonic
potential with frequencies

_ 2Eg

- (10)

W = Wy

Then, the ground state Wannier function becomes

2

wir) = ] Wexp (;7) (11)

i=x,y,z

li :(h/mw’b)l/Q 57: =T,Y,%, (12)

With this approximation,
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In the limit s > 1, the hopping matrix element can be
obtained from the 1D Mathieu equation as

4
J= ﬁER(s)?’/‘* exp [—2V/5] . (14)
Thus J and U are readily changed by tuning the laser
intensity and magnetic fields in the experiment.

IV. APPROXIMATE SOLUTION OF THE
HUBBARD MODEL AT HALF-FILLING

A. Low energy physics of the Hubbard model

In the experimentally relevant large U/J limit, and at
half-filling (i.e., on average one atom per site), the ground
state of the Hubbard model is a Mott insulator. This is
a state where the energy cost of a doubly occupied site
(~ U) is too large compared to both the hopping energy
J and the temperature 7" when kg7 < U. In the Mott
insulator state the on-site total atom number fluctua-
tions are suppressed. Immediately below the onset of the
Mott transition there is, however, very little energy cost
in mixing the relative populations of the two spin states
and the on-site relative atom number may still fluctuate.
At even lower temperatures, below a new characteristic
scale determined by the Néel temperature, the spins in
a square lattice form into an AFM pattern. Classically,
with equal numbers of 1 and | atoms, this represents
a checkerboard pattern where spin 1 and spin | atoms
occupy alternating sites. In the alternating density pat-
tern, virtual hopping of atoms between nearest neighbor
sites becomes energetically favorable. Second-order per-
turbation theory at large U/.J then leads to an effective
spin exchange interaction ~ 4.J2/U between the atoms
in the neighboring sites, defining the Néel temperature
scale. At such low energies, the system is described by
the (spin only) Heisenberg model [51].

At zero temperature, it is known that the ground state
of the 2D Hubbard model (or the effective Heisenberg
model) has true long-range AFM order; for a review, see
Ref. [52]. The order parameter for the AFM state is the
staggered magnetization, defined as

1o (82, (15)

m=2 3

where the spin operator in real space is gj = (é}’réjT —

éLéji) [cf. the momentum space version in Eq. (30)].
For the checkerboard pattern in a 2D square lattice, the
ordering momentum is

Q= (7/a,7/a). (16)

This in turn corresponds to the expectation value of the
number operator for each spin component at half-filling

(flyg) = % +mn(g) eI, (17)



FIG. 1. Illustration of Brillouin zone indicated by the outer
(red) square and RBZ by the inner (blue) square in a 8x8
lattice. The filled squares represent filled momentum states
in the Fermi sea at half-filling.

where

9=T
9=

The AFM state breaks lattice translation symmetry
such that the new unit cell in real space is doubled in size
(to contain both spin components). Hence, in momentum
space, the Brillouin zone is halved to become the RBZ. In
Fig. 1, we show one choice of the RBZ, which is bounded
by the four lines k, £ k;, = £m/a. The filled circles
denote the momentum states belonging to the RBZ, and
the ordering vector Q links a state within the RBZ to
one outside (and vice versa). Note that in order to avoid
double counting, half the states on the bounding lines
belong to the RBZ and the other half are outside of the
RBZ.

The AFM order can approximately be characterized by
a MFT, and results so obtained can be used to calculate
the effect of the ordering on off-resonant light scatter-
ing. However, MFT contains only single particle exci-
tations (of order U at large U/J). Importantly, MFT
does not include quantum fluctuations that give rise to
collective excitations at low energies, the spin waves of
the AFM state. Schrieffer et al. [38] and others [53—
55] have demonstrated how the RPA can partially incor-
porate quantum fluctuations and describe both the spin
wave excitations of the system, and the consequent sup-
pression of the AFM order. Moreover, Ref. [38] and [53]
showed that the spin wave spectrum and the AFM order
suppression are given quantitatively by the RPA at large
U/J, despite the RPA being a priori a weak-coupling ap-
proach. Thus even though the formalism becomes strictly
accurate in the limit U < J, a qualitative description
can also be obtained for U 2 J. Hence, we will use the
RPA at zero temperature to study how collective modes
modify the scattered light.

On the other hand, at any non-zero temperatures,
there is no true long-range AFM order in the thermo-

n(g){ bofor (18)

-1 for

dynamic limit in the Hubbard model or the Heisenberg
model [56]. This loss of long-range order is due to the
enhanced quantum and thermal fluctuations in 2D. In-
stead, there is at most quasi-long-range order; for a re-
view, see [57]. For example, in the Heisenberg model, the

spin correlation function (S? 532> decays with the distance

r = |rj — rj| as exp(—r/Earm), for r >> Earpm. {arm is
the AFM correlation length in 2D given by

27Tb0 JH)

T (19)

Earm(T) = cp aexp (
where cg ~ 0.26, by ~ 0.2, Jy is the Heisenberg exchange
coupling and a is the lattice spacing [51, 58]. In contrast,
true long-range order is signaled by an additional con-
stant term in the spin correlation function, which is just
m?. In the absence of true long-range order, the existence
of the length scale {apn leads to the following physical
picture: If the system size L is such that L > &apwm,
the system is made up of small domains of size ~ £apm
within which there exists AFM ordering. The order pa-
rameter m in different domains, however, are uncorre-
lated, so that there is no net AFM order overall. Such
short-range order can be masked, if the system size is
small compared to £apn and only consists of a single do-
main (see [57] for the actual form for the spin correlation
function at r < Eapm)-

We can estimate roughly the temperature at which
such a finite size effect can become significant in ultracold
atom lattice systems. The crucial ingredient is the strong
exponential dependence of £apy on T in Eq. (19). The
Heisenberg exchange coupling Jy can be related to the
Hubbard model parameters by Jy ~ 4J%/U in the large
U/J limit. At U/J = 6, we find that {apm ~ 1000a for
kpT/J ~ 0.1. On the other hand, at kgT/J ~ 0.2 the
correlation length &apn ~ 20a is already smaller than
current typical optical lattice size of ~ 30 sites in each
dimension.

B. Mean-field Hamiltonian

In order to use the staggered magnetization as the
MFT order parameter for the Hubbard Hamiltonian, we
write j, = (Njq) + (Rjg — (Mjg)). It is then assumed that
in the MFT Hamiltonian, terms second order in the fluc-
tuation (4, — (Rj4)) are small. Hence, the interaction in
Eq. (9) can be rewritten as:

U Z njrigy ~ U Z(ﬁmmw + A5 () — () (M)

As usual, the real space Hamiltonian can be simplified
by transferring to momentum space via

. 1 ikt A
Gy = 77 Ze K5 g (20)
Sk

The summation over momenta is defined for the whole
Brillouin zone: (kg ky) = 7%= (jo,jy) with —N/2 <



Joy < Ng/2 — 1, where we assume N sites in each di-
mension. If, for simplicity, we assume a translationally
invariant system with periodic boundary conditions, we
only need to consider coupling between the momentum
states k and k 4+ Q in the momentum space representa-
tion of the Hamiltonian. Then it is useful to explicitly
split up the fermion operator ¢k, defined over the whole
Brillouin zone, to two operators ¢k, and céxiqg, Where
k is now defined only for the RBZ. They are then col-
lected into a two-component Nambu spinor (in analogy
to superconductivity)

_ ék,g
Wy 4 = (ék+Q,g) , k € RBZ. (21)

Using the definition of the staggered order parameter
[Eq. (17)] and substituting Eq. (20) and (21), the MFT
Hamiltonian H can be written as a 2x2 matrix

RBZ ‘ A
_ 3t K~ ;
H=Cnt ) ) ¥y, (Ag €k+é> Uiy, (22)
k g

where we have defined the coefficient C,, = UN2(m? —
1/4), single-particle dispersion

ex = —2J(coskya + coskya) , (23)
and the order parameter (also called gap parameter)

A!] = W(Q)A )

Also, at half-filling we have used p = U/2 to simplify
the equation. Note that the Hamiltonian factors into
separate spin sectors due to the choice of ordering in the
z direction.

The MFT Hamiltonian (22) can be diagonalized by a
canonical (Bogoliubov) transformation

~ ék,g B Uk,g Uk,g élkﬂ . (25)
Ck+Q.g —n(g)ux,g N(g)vk,g) \Cox,g

with appropriately chosen vy 4 and wuy 4. The solution is

A=mU. (24)

2\ By 2T By,

Big =\[A2 + @ = \/A2+ & = Fic. (27)

The last equation holds because A, = n(g)A [see
Eq. (18)]. The subscript of the new operators in Eq. (25)
refers to the energy bands in RBZ. In the new basis, the
Hamiltonian reads

RBZ B 0 .
_ Al Al Ly Clk,g
el ) (3 0 (2)
9
(28)
In summary, the MFT ansatz [Eq. (15)] leads to the
MFT Hamiltonian Eq. (22) that couples a particle at
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FIG. 2. Diagram showing the (U, T') dependence of the stag-
gered magnetization, m, obtained by solving Eq. (29) in a
40x40 lattice.

k to a hole at k+ Q. The Bogoliubov rotation then
transforms the original one-band Hubbard model, defined
over the full Brillouin zone, to a two-band model with
energies +Fy,. To accommodate the same number of
states, the momenta in the two-band model are defined
over the RBZ only. At temperature 7' = 0, the ground
state has all the negative energy modes filled at half-
filling, i.e., band 1 is filled. At finite temperatures, the
usual Fermi-Dirac distribution describes the occupation
of the two bands.

The MFT is found by minimizing the total energy with
respect to m at a given temperature using the Hamilto-
nian (28). The resulting order parameter equation is

RBZ
1 U Ek/
1= — > —tanh . 2
NZ & By (QkBT) (29)

S

At half-filling at 7' = 0 with U > J the solution saturates
towards m = 1/2. The MFT critical temperature T¢ ver
can be obtained from solving Eq. (29) with m = 0. The
value of staggered magnetization m is shown in the (U, T)
space in Fig. 2.

As mentioned at the beginning of this Section, in
2D, there is strictly no true long-range order except at
T = 0 [56]. However, one can define instead a cross-over
temperature T’y below which there is at least short-range
order, see Borejsza and Dupuis [59, 60]. In the moder-
ate to large U regime, Tx is defined as the temperature
at which the AFM correlation length equals the lattice
spacing a: &apm(Tx) = a. It turns out that [59] at
large U/J, kpTx ~ 4J2/U, the Néel temperature scale.
On the other hand, at small U/J, Tx ~ Tomrr Where
the critical temperature T vpr is exponentially small
in J/U. A detailed analysis of the cross-over phase di-
agram can be found in Ref. [59]. Figure 3 (based on
Fig. 2 of [60]) shows a schematic phase diagram for the
Hubbard model in 2D at half-filling.
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FIG. 3. Schematic phase diagram of the 2D Hubbard model
at half-filling (based on fig. 2 from [60]). Tc,mrr is the critical
temperature computed from the gap equation, Eq. (29). Tx
is the temperature at which the crossover from short-range to
(quasi-) long-range order happens.

C. Mean-field susceptibilities at zero temperature

One key result of this paper is the explicit connec-
tion between the physical observables of inelastic scat-
tered light intensity and spectrum (coded in static and
dynamical structure factors), and susceptibilities calcu-
lated for the Hubbard model. We first indicate the chain
of relations from structure factors to susceptibilities in
Sec. IVC1, and then proceed to give the MFT suscepti-
bilities in Sec. IV C2 and the RPA ones in Sec. IV D.

1. Time-ordered and retarded correlation functions

We shall show in Sec. V that the inelastic scat-
tered intensity [Eq. (67)] and inelastic scattered spec-
trum [Eq. (79)] depends on the static and dynamic
structure factors defined in Eqs. (69) and (80). For
the specific system of two-species atomic gas of YK
(see Sec. VI A), these general formulae can be reduced
[Egs. (96) and (116)] to involve static and dynamic re-
sponse functions [Egs. (71), (81) and (94)] for the spin op-
erators (we follow the notation convention from Ref. [38])

S3= 2 (Ahrarier — Hiquin) - (30)
k
. NN
S‘T - ﬁZCquTcki ’ Sq = (qu) ) (31)
k

or for the density operator pq,

N~ ~ ~ o iqry . ~F ~
Pq = E Pag,  Pag = E :e T Mg = § :Ck+q7gck79 )
g

j k
(32)
expressed in terms of the density operators pq4 for species
g, where njq = é}géjg and rj is the coordinate of the cen-
ter of the lattice site j. On the other hand, anticipating
the calculations of Sec. IV D, the RPA method involves a
Feynman-Dyson perturbation series that requires the use

of time-ordered correlation functions (often called suscep-
tibilities). The Fourier transform in time of time-ordered
correlation function is defined as

i

adie) = [ de | TON00 )] ¢ 33

where 7T represents the time ordered product, and Oa (t)
can be fpq(t) or S’}l(t)

Fortunately, linear response theory [61] allows to con-
nect time-ordered correlation functions to the response
functions needed for scattered intensity and spectrum,
as follows. First, at temperature 7' = 0, the dynamic
response function §%(q, q';w) [Eq. (81)] is related to the
retarded susceptibility x* ¥ via

3 _9 »
S§Y(q,q;w) = - Im [x7 ®(q,q;w)] .,  (34)
where the indices 7,7 = p,z,4+,—. Note the factor of
2 in Eq. (34) which is there to compensate for the un-
conventional factor of 2 in Eq. (33). The superscript
B in the susceptibility x*/  denotes retarded correlation
functions that corresponds to the normally ordered phys-
ical observables of the scattered light intensity or spec-
trum. Next, these retarded susceptibilities can be ana-
lytically continued from time-ordered susceptibilities, re-
sulting in [61]

Re[x"(q,q’;w)] = Re[x"7"(q,q';w)]

Im[x"(q,q’;w)] = sgn(w) Im[x” *(q,q";w)] . (35)

For the MFT (Sec. IV C2), and for the RPA, (Sec. IVD),
all susceptibilities are time-ordered (and Fourier trans-
formed in time).

For future reference, we also point out that the static
response function [Eq. (71)] can be obtained from the
dynamic response function by integrating over w,

o0

S(q,q') = h/dw SY(q,q;w) . (36)

— 00

2. Mean-field susceptibilities

Because of the RBZ structure of the AFM state, the
MFT susceptibilities defined in Eq. (33) can also be writ-
ten in a 2x2 matrix form,

Xo(@aw) X laat+ Qiw) (37)
Xoy(@+Q aqw) xp(a+Q,q+Qiw)

The subscript () in all the susceptibilities signifies that

these correlation functions are calculated within MFT.

A similar 2x2 structure can also be written for the RPA
susceptibilities. We shall use a boldface x to denote the



susceptibility matrix. Here, and for the rest of the Sec-
tion, unless it is explicitly indicated that this is not the
case, we use the notation that the momentum q belongs
to the RBZ only. Schrieffer et al. [38] and others [53]
have calculated the zero temperature susceptibilities us-

For the 2D Hubbard model in a square lattice at half-
filling in the AFM ground state, the MFT density sus-
ceptibility is

PP .
X (a, q;w) 0
X(0)(a,w) = ( % ) :

ing MFT. Here we will present the results; see Appendix X’(Jg) (a+Q.q+ Q;w)
A for an outline of the derivation. (38)
RBZ
1 €k€k+q T A2 1 1
pp coy) — 1— d . 39
X(o) (@ @) = = 533 Zk ( Fubirg ) \ho— By Frrq +i0  —hwo— B — Fuyq + 0 (39)

Here in Eq. (39) the momentum q belongs to the full BZ
for both sides of the equation. We have explicitly shown
the convergence factor +id (6 > 0) appropriate for time-
ordered susceptibilities. For the calculations in this pa-
per we set § a small but finite value which determines
the frequency resolution in calculated spectra. Since the
total density does not distinguish between the spin com-
ponents, there can be no component in the susceptibil-
ity matrix which transfers momentum Q between atoms,
hence the diagonal nature of the matrix in Eq. (38). The
form of the susceptibility in Eq. (39) is similar in struc-
ture to susceptibilities for BCS superfluidity.

It turns out that at the MFT level, the longitudinal
spin susceptibility is equal to the density susceptibility

This however, is no longer true when RPA is used to
compute the susceptibility, cf. Eqgs. (44) and (45).

The transverse spin susceptibility, on the other hand,
is sensitive to the coupling of atoms that differ in momen-
tum by Q. This then leads to two distinct components
in the transverse spin susceptibility matrix with nonzero
off-diagonal components

b () = X(o) (@, q3) X(o) (@ a+Q;w)
X(0) @ X (@+Qaw) xp) (@+Qa+Qiw) )
(41)
We find

1 1

X(6)(a,w) = x{p) (q,w) - (40)
J
RBZ
_ 1 €k€k+q — A2
+ a
X(o) (@ aw) =— (1 -
© 2N2 4 FxExiq

42
hwEkEk+q+i5+hwEkEk+q+i5)’ (42)

1 &L A(Bx + Fiyq) <

+— . _
Xio (@494 Q;w) = —
(0) 2N2 £ ErFitq

Similarly to Eq. (39) the momentum label q in Eqs. (42)
and (43) is valid for the full BZ on both sides of the
equation and XZFO)_ (,9+Q;w) = XZFO)_ (a+Q, q;w). Note
that the transverse spin susceptibilities are different to
the longitudinal one. This is due to isotropy in spin space
being broken in our MFT: we have assumed in Eq. (15)
that the AFM ordering occurs in a specific spin direction
(along z axis).

We also generalize these MFT susceptibilities to finite
temperatures in Appendix B. At finite temperatures,
there are more available scattering processes as the lower
effective band (band 1) is no longer fully filled, leading
to several additional terms in the expressions for the sus-

1 1
— . 43
M—Ek—Ek_;,_q-i-’M —M—Ek—Ek+q+i5) ( )

ceptibilities.

D. RPA susceptibilities

The MFT results of the previous subsection capture
only the ground state order and single particle excita-
tions. The latter have energies of order U at U/J > 1,
and hence only describe high energy excitations. How-
ever, the low energy physics is that for spin, coming from
the effective Heisenberg exchange interaction at large
U/J. In particular, there are low energy quantum fluc-
tuations that lead to gapless collective excitations, cor-



responding to the spin waves of the Heisenberg antifer-
romagnet. The simplest approximate theory that can
capture these collective modes is the RPA [38], which we
will therefore employ here.

The basic idea behind the RPA is that certain terms
in the perturbation expansion in U in the Dyson equa-
tion can be summed to infinite order as a geometric se-
ries (see Appendix A 2). Formally, at least for the non-
magnetically ordered state, RPA can be justified as a se-
ries expansion in the small parameter kras where kg is
the Fermi wavevector, and a is the scattering length re-
lated to U [62]. However, it is interesting that the RPA
for the AFM ordered state also captures the collective
modes at large U/J. These collective modes show up
as bosonic gapless modes in the transverse spin suscep-
tibility Xﬁ; - Furthermore, these collective modes (via
Xﬁ; ) can be incorporated into an RPA renormalisation
of the AFM order parameter m [38].

In Appendix A 2, we outline the derivation of the RPA
susceptibilities, here we only state the relevant results.
For the density correlation,

—1

X(o) (@ @)l = Ux{y (a+Qa+Qw)]+UK{ (a.a+Qw)?

10

and for the longitudinal spin correlation,

-1
Xitea (@ @) = X5 (@.w) [1 - UxGlaw)| (@)

Note the only difference between these two is the sign of
the term proportional to U in the denominator. Both
have the form recognizable from summing a geometric
series; indeed they have the same form as the more fa-
miliar RPA result for the non-ordered interacting Fermi
gas.

The transverse spin susceptibility is more complicated:
the AFM state doubles the unit cell and halves the Bril-
louin zone, coupling a spin g particle at k to a spin g
hole at k + Q [see Eq. (22)]. This gives rise to the non-
diagonal matrix form of Eq. (41) for the MFT suscep-
tibility, which then feeds into the RPA one. The RBZ
structure can be accommodated in a 2x2 matrix version
of Dyson’s equation to give (see Appendix A 2)

-1

Or in the explicit form given by [53],

Xiepa (@ @s w) =

A7
[1-Uxpy (@, asw)][l = Uxg) (a+Q,a+ Qiw)] — U2[x(y (a,a+ Qiw)]? )
X(o) (@9 + Q;w) (18)

X§F_’A(qa q + Q, w) =

Here in Egs. (47) and (48), as in Eqgs. (39), (42) and (43),
the momentum q belongs to the full BZ on both sides of
the equation and xﬁ{,A(q, q+Q;w) = xﬁF_,A(qu Q,q;w).
The appearance of new poles in yjips of Eq. (46) is dis-
played in Fig. 4. Figure 4(a) shows the individual poles
originating from the MFT transverse susceptibility XEE;
[Eq. (42)]. These poles start from hw > 2A, and the
width of the peaks is determined by ¢ [see discussion
after Eq. (38)]. Figure 4(b) shows the real and imagi-
nary parts of the denominator of Eq. (47). When the
real part of the denominator crosses zero, a new pole
emerges. We can estimate the energy of this pole as fol-
lows. The Heisenberg model has the spin wave dispersion

given by [51]
hwq = 2Juy/1 =72, (49)

with 74 = (cosgza + cosgya)/2. The effective coupling
constant Jy is related to the Hubbard model parame-
ters via Jy = 4J2/U in the large U/J limit. Then, in
Fig. 4 with q = (n/a,0) and U = 5J, the pole occurs
at energy hwgq ~ 8J2/U ~ 1.6J. It can be seen that

[1=Ux{) (@ @)l = Ux{y (a+ Q. a+ Qw)] - U (a.a+ Qw)?

this is an overestimate, because we are not strictly in the
U > J limit. The imaginary part of both MFT and RPA
transverse spin susceptibilities are compared in Fig. 5(a)
to illustrate how the RPA renormalizes the single parti-
cle excitations and induces collective modes. The RPA
transverse susceptibility notably differs from the MFT
result owing to the collective excitations.

In Fig. 5(b), we show the corresponding RPA renor-
malization of the MFT density and longitudinal spin sus-
ceptibilities. The different signs in the denominators in
Egs. (44) vs. (45) indicate that the RPA corrections have
opposite effects on the MFT density and longitudinal spin
susceptibilities, as shown in Fig. 5(b).

1. RPA correction to the AFM order parameter

One can also incorporate quantum fluctuations and the
effect of collective excitations in the calculation of the
AFM order parameter m [38], see Appendix A3 for a
sketch of the method. Indeed, quantum fluctuations are
known to strongly suppress m (by about 40%) [51] in the
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FIG. 4.

Transverse spin susceptibility for U = 5J and
q = (n/a,0) computed with a finite convergence factor
0 = 0.1J in a 20x20 lattice. (a) We show for the MFT case

the individual momentum terms X:B;(k) (q,q;w) of Eq. (42)

XZB; (d,qsw) = > X:B)_(k) (q,q;w). Each term contributes
with a Lorentzian shaped peak at w = EFx — Ex+q. (b) Imagi-
nary (solid) and real (dashed) parts of the denominator in the
RPA case xfipa (a0, q;w) [Eq. (47)]. The inset in (b) zooms in
close to the origin and shows the zero-crossing in the real part.
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FIG. 5. Imaginary part of the MFT and RPA density, longi-
tudinal spin and transverse spin susceptibilities for a lattice
size of 40x40. Other parameters are as in Fig. 4. (a) Imag-
inary part of the transverse spin susceptibility for the MFT
case X;B)_ (q,q;w) of Eq. (42) (dashed) and for the RPA case
Xioa(a,q;w) of Eq. (47) (solid). (b) RPA density suscepti-
bility x%pa(a,q;w) of Eq. (44) (dashed), RPA longitudinal
spin susceptibility x5pa(q, q;w) of Eq. (45) (dotted). Note
that the in the MFT case ng) (q,q;w) (solid) coincides with
the ME'T x{5)(q, q;w), see Egs. (39) and (40). However, the
RPA renormalizes these two susceptibilities differently.

Heisenberg model. For the half-filled Hubbard model,
Schrieffer et al. [38] have computed the RPA corrections
to m numerically (see their Fig. 7). Chubukov et al.
have further shown that at large U the RPA corrected m
indeed approaches the Heisenberg model result quantita-
tively. We will use the RPA-corrected data of Ref. [38] for
computing the elastic scattering intensity in Secs. VIB 1
and VIIB.

V. OPTICAL DIAGNOSTICS
A. Scattered intensity

In the previous Section we showed how the time-
ordered and normally-ordered correlation functions can
be calculated for the AFM ordered fermionic atoms in
an optical lattice. Here we show how these quantities are
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FIG. 6. Schematic illustration of the light scattering setup.
The atoms are confined in the optical lattice close to the xy
plane. The incident light field with the wavevector k; propa-
gates perpendicular to lattice in the positive z direction. The
wavevector of the scattered light is denoted by ko with the
scattering direction determined by the coordinates 6 and ¢

related to measurements on the light scattered from the
atoms. In optical lattice systems the atoms can be con-
fined by highly anisotropic trapping potentials in which
the atom dynamics is restricted to 1D or 2D. This makes
the atomic samples particularly suitable for imaging. For
the incident light tuned off from the atomic transition
resonance frequency, the sample is then optically thin
and the quantum statistical correlations of the atoms can
be mapped onto fluctuations of the scattered light [22-
35]. Measurements on the scattered light therefore con-
vey information about the many-body state of the atoms
and can be employed in the diagnostics of the correlated
phases of the ultracold atoms in the lattice. Moreover,
it was shown in Ref. [26] that by collecting the scattered
light into the forward direction by a lens with the diffrac-
tion maxima blocked, an experimentally feasible ther-
mometer for fermionic atoms can be realized. The sensi-
tivity of the thermometer was analyzed by comparing the
shot noise of the scattered light with fluctuations in the
far-field diffraction pattern that arise from thermal cor-
relations of the atoms. In this paper we study quantum
correlations in AFM-ordered strongly-correlated phase of
fermionic atoms in an optical lattice. In this Section we
introduce the formalism describing the relationship be-
tween optical signal (the intensity and spectrum of the
scattered light) and the atomic correlations.

We assume that the atoms in the lattice are illumi-
nated by light that can be approximated by a monochro-
matic plane wave with the frequency €2;,, propagating
perpendicular to the lattice (in the positive z direction).
The setup is illustrated in Fig. 6. We write the positive
frequency electric field component EII as

E{ (r,t) = %5 etk Tt (50)
where &;,, k1 = ké, (k = Qin/c), and £ denote the po-
larization, wavevector, and the amplitude, respectively,
of the incoming light. In an optically thin sample, the
dynamics of the electronically excited atomic state may
be adiabatically eliminated and the scattered field ampli-
tude Ef.(r,t) is proportional to the transition amplitude



of atoms between the initial and final hyperfine electronic
ground states g and ¢’ [63],

=C3 Ay, [
(51)
Here the scattered field at r is evaluated in the far radi-

ation zone, so that |[r —r/| ~r —n -1’ with

(r—1)

r x|

e ARG (2, )Wy (', ).

fl:

(52)

and the origin is located inside the atomic sample. The
integration is over all the radiating atomic dipole sources
at the positions r’. The field is scattered in the direc-
tion ks and the change of the wavevector of light upon
scattering is, see Fig. 6,

Ak = ks — k; = k(i — &)
= k (sinfsin ¢, sinf cos p,cosf — 1) . (53)

In Eq. (51) the effects of the level structure are incorpo-
rated in Ay, defined by

1 . R N
Ag/g = E Zn X (n X dg/e)(ein : deg) . (54)

Here the atomic transition dipole matrix elements be-
tween the ground state g and the excited state e are

deg = (dge)* = (e[d]g) = @Z elog)ers (55)

where (e|og) denotes the corresponding Clebsch-Gordan
coefficient. The summation runs over the circular polar-

ization vectors &, (0 = —1,0,1),
. 1 " . A . 1 "
é, = —E (6 +i&y), ég=6,, é_ = 7 (€6, —i&y),

(56)
and © is the reduced dipole matrix element. The latter
is related to the Weisskopf-Wigner radiative resonance
linewidth ~ by

D23
6mhey

v = (57)

where € is the vacuum permittivity. In Eq. (51) we de-
fined the prefactor C' by

7356“”’}/
 ASkr

5= Qi — wo (58)

Here 6 denotes the detuning of the incident light fre-
quency €, from the atomic resonance frequency wy.
Typically the wavenumber for the probe light is not the
same as the effective wavenumber of the optical lattice
potential. In order to suppress the spontaneous emis-
sion due to the lattice light lasers, the lattice lasers are
considerably more off resonant. The probe and the lat-
tice lasers may also be tuned to different transitions and
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the lattice spacing can be modulated by optical compo-
nents, resulting, e.g., in the accordion lattices where the
lattice spacing may vary for a given lattice light laser
frequency [44-46]. We investigate the effect of different
ratios k between the probe light wavenumber k£ and the
effective lattice light wavenumber k) [Eq. (7)], so that

k ka

— . 59
e k’l ™ ( )

The intensity of the scattered light is given by
I'=2¢coc(Be(r, t)E (r, 1)) (60)

where ¢ denotes the speed of light in vacuum. By sub-
stituting the field amplitudes from Eq. (51) in the ex-
pression for the light intensity, we obtain the intensity in
terms of the atomic correlation functions. The atoms are
initially assumed to occupy the ground state in the lowest
energy band. In the tight-binding regime the atomic field
operators in the correlation function may be expanded
in the series of the Wannier functions [Eq. (8)] where &,
denotes the annihilation operator for the atoms in the
electronic ground state g and the lattice site j = (ju, jy)-
We obtain for the scattered light intensity

— 9394 1Ak (r;—r, T
B~ YAk Z M9291 (re J)<Clg clgS g2 CJ91> : (61)
91,92

93,94
ij

Here we have defined

3y 2 1
B = Iin YT ) Iin =3 2 ; 62
(25kr) pcoct (62)
where I, denotes the intensity of the incoming light, and

MI394 — A* A

9291 g3ga~ 9291 °

(63)

In deriving Eq. (61) we have assumed that the spatial
overlap between different sites is negligible. If the lattice
potential is approximately independent of the different
ground state levels g, the Debye-Waller factor aak ex-
hibits a simple format of the Fourier transform of the
lattice site density that can be evaluated by means of the
Wannier functions [Eq. (11)],

2
Ak = ‘/d37‘ e—iAk‘r|wO(r) 2

I e {—W} , (64)

I=x,Y,Z

where the oscillator length [; is defined by Eq. (12).

In the expression (61) for the scattered light inten-
sity, the spatial variation of atomic correlations is encap-
sulated in the operators ¢j;. The result is general and
also includes the cases where the translational invariance
of the lattice is broken owing to finite-size effects. In
this work, we neglect any additional potential superposed



with the lattice that would lead to a nonuniform density
distribution, so that (éj géjg) is here constant. The spatial
profile in Eq. (61) is therefore solely determined by the
phase factors of ¢4’s. The simple relationship (61) be-
tween the scattered light intensity and the atomic corre-
lation functions is a consequence of the weak off-resonant
coupling of light. For near-resonant light the coupling is
strong even in a 2D lattice and results in excitations of
collective polarization modes [64].

We will consider the scattering processes of the atoms
to higher energy bands in Sec. V C. Although such pro-
cesses result in the photon frequencies that are shifted by
the energy difference between the bands and can be fil-
tered from the signal, they can contribute to the heating
rate of the atoms in the lattice.

In the specific analysis of the optical signatures of the
atomic correlations it is beneficial to separate in the scat-
tered intensity the contributions from the elastic and in-
elastic scattering events. In the following study we de-
fine the elastic scattering processes as those in which the
atom scatters back to its original momentum state. We
evaluate Eq. (61) in terms of the elastically and inelas-
tically scattered light intensities Io(Ak) and I;(Ak), re-
spectively,

[(Ak) =I.(Ak) + L;(Ak) (65)

ZA

=Baak Z ME29 (D Akgs) (P—Akg) > (66)

9193

I;(Ak) =Baax Z MY394 §9394 ( AK) . (67)

9291 79291
91,92

93,94

I.(Ak) =Baak (P Akg)

Here Ak denotes the change of wave vector of light on
the zy plane and the density operator pix, for the spin
state g is given by Eq. (32). We have defined

U = Ze‘“”f , (68)
Jj
and the static structure factor
5 s
Ak—q Ak—q’

® q,q9'#0

D (o ot —qrgp i), - (69)
k,k’

5939 (k) = —

9291

X

All the q = q’ = 0 terms in the previous equation are
included in the elastic part. This corresponds to incor-
porating only the connected Feynman diagrams in the
correlation function of the static structure factor (indi-
cated by the subscript ¢) and the disconnected ones in
the relevant expansion are precisely those that go into
the elastic part, see Ch. 13.4 of [65].

The finite-size effects of the lattice contribute in
Eq. (69) via the uy factors. In the limit of a large lattice,
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we may approximate SZ3% by translationally invariant
atomic mode functions, so that the summation over the

sites approaches a delta function ux — N2dx o and

Z <AJlr<+Akg4ck93 L Akgo Ck’91> (70)
KK/

Sgd 94 (Ak)

9291

In a typical 40x40 lattice we are investigating, taking
the continuum limit changes the integrated inelastically
scattered light intensity by less than 2%.

In order to calculate the intensity of the scattered light
[Eq. (67)] and the corresponding static structure factor
[Eq. (69)] it is useful to define a static response function
as

1
_ A4 s g .
Sgsgf (q7 q/) :N_gl Z <Ck+qg4 Ckgs Ck’—q’ggck/!]1>C . (71)
KK/

In Sec. IVC2 and IVD we showed how both the RPA
correlations based on the Feynman-Dyson perturbation
series as well as the MFT correlations for the AFM state
in the large lattice limit can then be efficiently calculated
in a compact form by evaluating the diagonal components
S§%94(q,q). In this paper we approximate the inelasti-
cally scattered light intensity by these diagonal expres-
sions, while still including finite-size contribution from
the diffraction pattern via [uxy_q4|*. The corresponding
intensity expression reads

—aAkB ~ 3 lusic o Y MBE SBS(q.q)  (72)
q#0 91,92
g3,94

In Sec. VIB we will show how S22+ (q,q) can be related
to the density as well as longitudinal and transverse spin
correlation functions [Eq. (94)].

The general Egs. (65)-(67) give the scattered light in-
tensity for an arbitrary lattice system. The scattered
light carries information about the atomic correlation
functions. The lattice structure generates the diffraction
pattern and the overall envelope of the pattern is pro-
duced by the Debye-Waller factors that depend on the
profile of the atomic wave functions on individual sites.
The dependence of the scattered light on the polariza-
tion, atomic level structure, and the scattering direction
is incorporated in Mg39:.

The elastic scattering produces a diffraction pattern
from a non-fluctuating atom density in the lattice where
the Wannier site wave functions play the role of the
diffraction slit profile [26]. The inelastic scattering pro-
cesses are those in which an atom scatters from one
quasimomentum state to another different state. The
inelastic scattering is sensitive to the fluctuations of the
atoms and reflects the underlying statistical correlations
between the atoms. It produces scattered light into an-
gles outside the diffraction orders, generating fluctuating
shifts in the diffraction pattern that result from the atom-
lattice system absorbing recoil kicks from the scattered
photons [26].



The role of the elastically scattered light intensity is
easiest to analyze in the case of a uniformly filled lat-
tice (when the translation symmetry of the lattice is not
broken by any of the atomic species). In that case the
density operator expectation value reads

= u&kfg ) (73)

where f; is the atomic filling factor of species g (the total
number of atoms of species g divided by the total number
of sites, N2). Ak is defined after Eq. (67). We then find
that the elastically scattered light intensity,

ZAggfg

g9

(Pakg)

2

Le(Ak) = Baak|ux| ; (74)

is determined by the Bragg diffraction pattern of the
lattice |uxy|?, weighted by the contributions from the
atomic level structure via Agq, and modulated by the
Debye-Waller factor aax. In the specific case of a 2D
square lattice we obtain the familiar diffraction pattern
of a 2D square array of Ny x Ny diffracting apertures

sin? (NSA;kaa)
2
luskl” = II

a=z,y Sin2 (—Al;"‘a )

For uniformly filled lattice the elastic part contains no
information about the atomic correlations in the system.
Since the atom statistics is mapped onto the inelasti-
cally scattered light intensity according to Eq. (67), it is
beneficial to block the elastically scattered light before
the measurement [26]. We will explain this procedure
in detail in Sec. VIB1. For the AFM state studied in
Sec. IV B, lattice translation symmetry is broken, result-
ing in the Brillouin Zone being halved in size. We shall

N Z UXk—qHBk—q’ Z

(75)

59391 (AK, w)

9291

sqqsﬁO k,k’

/ dt (el 0, (0)engs (0)EL,
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show in Sec. VI B 1 that in this case, there are new diffrac-
tion peaks that correspond to this new lattice periodicity,
and is therefore a key signature of the AFM order. This
effect was first analyzed in Ref. [36].

B. Scattered spectrum

In the previous Section we established the relation be-
tween the scattered light intensity with the equal time
atomic correlations [Eqgs. (65)-(67)]. We now analyze the
spectrum of the scattered light and show how it conveys
information about the excitation spectrum of the atoms
in the lattice. The scattered light spectrum may be ob-
tained as a Fourier transform of the two-time correlation
function of the scattered electric field [63]

S(Ak,w) = A / dt e (B~ (r,0)ET (r, 1)), (76)

where A denotes the normalization factor. We can then
write the scattered spectrum in terms of the two-time
correlation functions of the atoms in the optical lattice.
The spectrum can be separated into an elastic and in-
elastic component and we obtain

S(Ak,w) =S.(Ak,w) + Si(Ak,w) , (77)
2
Se(Ak,w) =A'aard(w ZAgg Posig)| »  (78)
Si(Ak,w) =A'aak Y Mggg‘ngjgf (Ak,w).  (79)
91,92
93,94

where A" = AB/(2¢pc). In the last equation we have
introduced the dynamic structure factor, which is analo-
gous to the static case of Eq. (69)

a’g2 (t)ék'!h (t))e- (80)

The elastic component corresponds to a peak at w = 0. The subscript ¢ indicates the connected diagrams for which

w # 0, revealing the excitations of the system [see Sec. VIII].

response functions as

9394 /.
Sgxot(a,qsw
é k k/

We approximate Eq. (79) in a similar fashion as Eq. (72)

. 2
S‘(Ak’ w) ute § MY894 S9394 (q q; w)
aAkA/ - Ak—q 92919291 i 3] .
q#0 91,92
93,94

(82)

/ dt e (e, 0. (0)eug, (0)cf,

Analogously to Eq. (71) we define the dynamical

/g2 Dy ())e (81)

C. Atom losses to higher bands

In Sec. VA we calculated the optical intensity signal
for probing the atoms in an optical lattice. This con-
sists of the elastic scattering processes in which the fi-
nal state of the atoms is the same as the initial state as



well as the inelastic scattering processes within the low-
est energy band where the quasimomentum state of the
atoms changes. The atoms that initially occupy the low-
est energy band may also undergo scattering to higher
bands. Owing to the energy splitting between the ad-
jacent bands, which is of the order of 2s'/2ER [Er was
defined in Eq. (6)], the photons that scatter to higher
bands are frequency-shifted from the optical signal and
could be filtered out. This is because the maximum re-
coil kick absorbed by the atom within the lowest band
on the xy plane is k [the recoil component on the lattice
plane satisfies |Aq| = ksin(#), see Eq. (53)], correspond-
ing to the energy shift of k2 Er [Eqgs. (6) and (59)], which
is less than the energy difference between the bands [66].
The scattering to higher bands, however, provides a loss
mechanism which we will estimate when calculating the
measurement accuracy of AFM correlations of the atoms.

go.]47m.l
mj,0j1

The mode functions in each site form a complete basis
and we have

D Wi (r)wh () = 0(r—1')=> " wo;(r)wi(r') . (85)

J,m#0 J

This can be used to simplify Eqgs. (83) and (84). We find
that the contribution to the scattered intensity of this
process reads

I, = BN2[1 — aak Zl\/lgg, (86)
9,9’

where I, refers to the scattered light intensity resulting
from the scattering events where the atoms end up in the
higher energy bands. Here N = N2 is the total number
of atoms in the lattice. This result remains valid for
both fermions and bosons as long as the assumption of
unpopulated higher bands is valid.

VI. OPTICAL SIGNATURES OF MAGNETIC
ORDERING IN SCATTERED INTENSITY

A. Two-species atomic gas of °K

In the previous Section we presented the general ex-
pressions for the dependence of the scattered light on
the atomic correlation functions in an optical lattice sys-
tem. Next we analyze the 2D square lattice system of
two-species fermionic atoms introduced in Sec. III, with
equal population of N2/2 atoms of both species. As a
specific example we consider “°K, which has been used
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Here we extend the analysis of the loss rates of Ref. [30]
to our multi-level formalism. In the evaluation of the
scattered intensity the following correlation functions in-
volving states in higher energy bands yield nonvanishing
contributions

} : 0.]47m.1 of ot
gm_] 0_]1 OJ4g4CmJ93 mjg260J191>7 (83)
j,m#0

where ¢,,j, denotes the annihilation operator for the
atoms in the band m, site j, and ground state g, Eq. (8).
The nonvanishing contribution from the empty excited
energy band m # 0 results from (émjgs mng> by the cre-
ation of an atom at (m,j) followed by the annihilation
of an atom at (m,j). We concentrate on the case that
the interactions do not mix the spin states, so that only
the term g3 = g4 is nonvanishing. The coefficients G are
defined in terms of the Wannier function integrals

/ A3 rd> 1wy, ()W (£)wh; (¥ Jwog, (/) AKE=) (84)

By

FIG. 7. Schematic illustration of the atomic level structure.
The atoms are illuminated by an incident light with the o~
polarization, exciting atoms | 1)—|2) and | |)—|1). The state
|1) decays to | |), while the state |2) can decay either to | 1)
or to | ).

in an experimental realization of fermionic Mott insula-
tor states in lattices [6-8] and recently AFM ordering [8].
We consider the two electronic ground states

| \l/> = |4SI/27F9 = 9/27mF = 79/2>5
1) = |48y 2, Fy = 9/2,mp = ~T/2).  (87)

The incident field is assumed to be o~ polarized, so that
the two ground states are coupled to the electronically
excited states

) = [4Ps)5, F,

1 L =11/2,mp = —11/2),
12) = [4P3 )2,

F.=11/2,mp = —9/2). (88)
The level scheme and the transitions are illustrated in

Fig. 7. The atoms in | |) undergo a cycling transition
in which case they are only excited to |1), decaying back



to the original state | |). The atoms in | 1) are ex-
cited to |2) from where they can decay either back to
| 1) or to | |). The latter represents a spin-exchanging
transition. We will find that the transitions in which
the spin is changed convey information about transverse
spin correlation functions, while those associated with
the scattering processes in which the spin is conserved
are proportional to density and longitudinal spin correla-
tion functions. Specifically, the different transitions can
be identified with the different RPA susceptibilities in
Eqs. (44), (45) and (46), respectively.

In our system we vary the lattice size between Ny = 16
and 40 sites along each direction. We consider two lattice
heights, 7.8Fr and 25Fg. The trap frequency perpen-
dicular to the lattice is chosen as w, = 10Egr/h. For
40K we take experimentally realistic [6-8] values for the
incoming light A = 766.5nm and I, = 5W/m?, and as-
sume it to be detuned from the atomic resonance 6 = 20~y
[Eq. (58)]. This yields in Eq. (62) Br? ~ 1615 photons/s.
We vary the ratio between the lattice spacing and the
wavelength of the incident light by changing x [Eq. (59)]
and take x = 0.66, 1.05 and 1.5. All these correspond to
subwavelength lattice spacing, but the additional mag-
netic peak due to period doubling may only be observed
for k = 1.5 > /2.

B. Scattered intensity

In Sec. V A the total scattered intensity was separated
into the elastic component I,(Ak) and an intraband in-
elastic component I;(Ak), see Egs. (66) and (67). Fur-
thermore, in Sec. VC we have taken into account the
inelastic scattering of atoms to higher bands in Eq. (86),
I, (Ak), that is not assumed to contribute to the de-
tected signal but affects the heating rate of the atoms.
The total scattered intensity is thus

I=1I.+1+Iy. (89)

We now analyze each of these components for the specific
case of a two-species °K. Applying the level structure of
Fig. 7 we find the explicit expressions for all the scattered
elastic and inter-band intensity components

Le(Ak) =(\/“Tﬁ<mk¢>+ MﬂmAkﬁ) W

OtAkB
I (AK) =BN2 (1 — arak) (Mﬂ + M Mﬂ) . (91)
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Here the Debye-Waller factor aak is given in Eq. (64) and
the coefficient B in Eq. (62). In the elastically scattered
intensity, Eq. (90), the Fourier transform of the density
operator is defined in Eq. (99). The components of MJ394
in Eq. (63) read [see Egs. (87) and (88)]

1
Mﬁ =1 (34 cos20),

81 18

I\/Ig =181 (34 cos20), I\/Iﬂ =151 sin? 0. (92)
We now consider the scattered inelastic intraband in-
tensity component ;. Due to the broken translation
symmetry in the AFM state, the RPA susceptibilities of
Egs. (44), (45) and (46) have a matrix structure [cf. the
MFT susceptibility matrix Eq. (37)]. To exhibit clearly
this RBZ structure, the inelastic intensity component of
Eq. (72) can be written by generalizing the static re-
sponse functions of Eq. (71) to a 2x2 matrix with a RBZ

momentum structure analogous to that of Eq. (37) as

82324 (q) — (Sg;sg'éi;gf (q5 q) Sg;.gf (q5 q + Q) > .
291 saila+Qa) SEi(a+Q.qa+Q)

(93)
The static response functions that appear in each ele-
ment of the previous matrix are defined in of Eq. (71).
To relate to the RPA density and spin susceptibili-
ties [Egs. (44), (45), and (46)] we first note that using
Egs. (32), (31) and (30), we can define the matrix of
static response functions for the density, longitudinal and
transverse spin operators

§7(q) =Y 897 (q)
9,9’

9
o
Mii —MTT = ﬂ (3+C0829),

8*(a) = >_nlg) n(g') 85 (a)

9.9’

St (q) =28{](a) , (94)

where 7(g) is defined in Eq. (18). These static response
functions can in turn be related to the time-ordered
correlation functions (susceptibilities) of Eqs. (44), (45)
and (46) of Sec. IV, using the relationship in Eqs. (35)
and  (34) together with frequency integration from
Eq. (36).

The diffraction factors ug defined in Eq. (68) can also
be accommodated into the RBZ structure by defining

Uk
= k € RBZ. 95
=) ke (95)

Hence, the inelastic component of the intensity of light
scattering off atoms in the AFM state of Eq. (72) can be
written as



Li(Ak) 1 oy —
= M E u
OtAkB 4 a0
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o [877(a) + 87 (a)] usi—q

1 RBZ RBZ
-1 (M M) Y uly | 187(@) - S (@l usiq + M D uk ST (@i (96)
q#0 q#0
[
In the following we will analyze the different scattering 3.5 103
contributions. The spectrum and the excitations will be 3.0103" (@)
studied in Sec. VIII.
i~ 2
= 2.010%
1. Elastic scattering 51;
T 10103
This Section is devoted to studying the elastic compo-
nent of the scattered light. We show that the emergence 0 - Y
of AFM ordering in the system is directly observable in /4  3n/8 /2 5x/8 3rn/4
the elastically scattered light intensity as this results in 0
magnetic Bragg peaks in the scattered light signal. For 1.210°
the two-species system studied here (Fig. 7) the total (b)
scattered light intensity can be computed from Egs. (90) 40
. . 9.010
and (92). This results in m
2 6.010%
L(Ak) 1 ) 9 . ? g
(B _ 1 (34 cos20) ((psc) + 2 (o)) - (O7) 3
aakB 4 11 3.0 10
Note that the two spin terms contribute unequally be- i\
cause the dipole matrix elements are different for each Oﬂ)4 37/8 7T)2 57/8 37%/4
hyperfine state, see Eq. (92). 0

When both atomic species fill the lattice with a uni-
form density, the Fourier transforms of the density terms
in Eq. (97) are given by Eq. (73). In the AFM state the
total atom density is still uniform, but this is no longer
true for the densities of the individual spin components.
Each spin component favors the occupations of alternat-
ing sites, indicating broken lattice translation symmetry
and period doubling [see Eq. (17)]. Consequently, the
Fourier transform has a new term. It can be written as

pAkg Z ezAk rjs iy = Z ezAk rJ + mn( ) iQ»rJ-)
(98)
=Upk fg + Uskrq m1(9) (99)

where f, = 1/2 is the atomic filling factor of species g at
half-filling and n(g) is defined in Eq. (18). Comparing to
Eq. (73), the new term is proportional to the AFM order
parameter m, Eq. (15), and is centered at the ordering
vector Q = (m/a,m/a). The order parameter m can be
obtained by solving the implicit MFT [Eq. (29)]. The
MFT phase diagram of Fig. 2 shows its dependence on T’
and U. However, as discussed in Sec. IV D and Appendix
A 3, quantum fluctuations around the MFT solution have
significant effects not only on susceptibilities, but also on
the AFM order parameter m: the ordering can decrease

FIG. 8. Angular distribution of the elastic component of the
scattered light intensity along the direction ¢ = 7/4. The
calculations use the AFM order parameter m computed with
RPA corrections. Here the number of sites is 40x40 and the
lattice depth s = 25. (a) I.(Ak) for different values of m,
when both species are detected. Different curves represent
U = 7.3J and mrpa = 0.3 (solid), U = 3.9J and mgrpa = 0.25
(dashed), U = 2.0J and mrpa = 0.15 (short dashed). In (b)
we compare the results for the total density with the single
species detection (mrpa = 0.3). Curves from top to bottom:
I}(AKk) (dashed), I (Ak) (dash-dotted), and I.(Ak) (solid).
The magnetic Bragg peak is observable since k = 1.5 >
Note that the highest peak in (a) corresponds to the smallest
one in (b).

by up to ~ 40% at large U. Thus, we shall use the RPA-
corrected m values as computed by Schrieffer et al. [38].

Substituting Eq. (99) into Eq. (97), we see that in ad-
dition to the usual diffraction term ug uxy centered at
Ak = 0, there is a new magnetic Bragg peak centered
at Ak = Q, proportional to m? (see Fig. 8). This new
peak can be detected by collecting scattered light around
Ak ~ Q, which, according to the definition of Ak in

Eq. (53), corresponds to 0 = arcsin% and ¢p = /4



(see Sec. VITA). The position of the magnetic peak de-
pends on the ratio x [Eq.(59)] between the probe light
wavevector and the effective wavevector of the lattice
light, see Eqgs. (53). Hence it will only be observable
if kK > /2. Magnetic Bragg peaks were first studied in
optical lattices in Ref. [36] and experimentally observed
for an artificially prepared density pattern in Ref. [37].

The dependence of the magnetic Bragg peak on the
staggered magnetization m is illustrated in Fig. 8(a) that
shows the elastically scattered intensity from a lattice
populated by both atomic species for different values of
m [Eq. (97)]. The different values of m may correspond,
e.g., to different values of temperature or the on-site in-
teraction strength U.

On the other hand, if for example only the | species
is imaged, according to Eq. (97), the elastic part of the
intensity becomes

IX(Ak)  (3+cos20),
Bank 4 <pAk¢> (100)
(34 cos20) ruxy
= (5 ~vsam) (0D

The resulting magnetic Bragg peak is now strongly en-
hanced, see Fig. 8(b). We show two different cases;
the case when both species are present in the system
[Eq. (97)] and the case when imaging is done with only
a single species present in the lattice [Eq. (101)]. In the
first case, without spin-specific detection, the total signal
is very weak because of destructive interference between
the scattered light from the two species. In fact, the mag-
netic Bragg peak is observable only because the dipole
transition matrix elements between the two species are
not equal and, according to Eqs. (97) and (99), is weaker
than the single species response by the factor of (2/11)2.
If the transition matrix elements were the same, the spin-
independent imaging would only probe the total density
without revealing the AFM order.

Alternatively, if the Zeeman splitting between the two
spin states can be sufficiently increased by magnetic
fields, such that the incident laser is tuned in between the
resonances of the two states while simultaneously being
far-detuned from both of them, the optical signatures of
the staggered magnetization order parameter can be fur-
ther enhanced. This is because the light scattered from
the two species can then be 7 phase-shifted with respect
to each other. This changes the sign of one of the den-
sity terms originating from Eq. (99). By appropriately
adjusting the detuning it is therefore possible to have the
elastically scattered light intensity proportional to m?

L.(Ak)
OéAkB

1 18 2

where the detuning d in the parameter B [Eq. (62)] is now
the detuning of the incident light from the resonance of
the atomic species | 1). For %K the necessary splitting
would require very strong magnetic fields. The hyperfine
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levels mp = 7/2 and mp = 9/2 can exhibit a more sig-
nificant splitting than mp = —7/2 and mp = —9/2. For
strong fields the nuclear spin I can also decouple from the
optical transitions, such that the atomic levels needed
in the imaging could, e.g., be |[J = 1/2,m; = £1/2),
|J =3/2,m; = —1/2), and |J = 3/2,m; = —=3/2) (all
with the same I, m).

2. Elastic scattering in the presence of short-range
correlations

So far we have considered long-range AFM order where
the staggered magnetization m is constant throughout
the lattice. In Sec. IV A, we discussed how there is no
genuine long range AFM order in the Hubbard model (or
its strong coupling limit, the Heisenberg model), at any
finite temperature in the thermodynamic limit. More-
over, to avoid heating and atom losses (see Sec. VIIB)
due to scattering, the probe laser can only be turned on
for a time about two orders of magnitude shorter than
the hopping time (~ h/J) of an atom. This means that
in a single experimental realization, the light is scattered
off a specific frozen configuration of the atoms in the lat-
tice. Therefore the measurements of the scattered light
intensity necessitate a simulation of a specific stochastic
atom configuration, and not an ensemble-averaged atom
distribution. It is beyond the scope of this paper to cal-
culate the finite temperature short-range effects, but we
can present an example how a reduced correlation length
would qualitatively influence the optical signal by simu-
lating short-range ordering effects in a phenomenological
manner, as follows: At finite temperatures, the spins are
correlated up to the AFM correlation length £apn which
leads to domains of size ~ &apn. We introduce the spa-
tial variation of the AFM order parameter by letting m;
to depend on the site index i, with the amplitude fixed at
the T'= 0 magnetization value mrpa. For simplicity, we
assume that m;’s in different domains are not oriented in
random directions, but that there exists a preferred axis,
generated, e.g., by a small imbalance in the Fermi levels
of the two species. We therefore introduce a sign s; = +1

(Ising variable) for m;’s that fluctuates from site to site
(103)

mj = MRPAS; -

The configuration of s; is modelled using the nearest-
neighbor Ising Hamiltonian

Hi JIsing
- _ 5= —K .
kel kgl %S % %S %

(104)

J1sing 1s the coupling strength, and K = JIsing/kBT. For
Jising < 0, the ground state of the system at 7' = 0 is an
AFM Neél state. In contrast to the Heisenberg model,
the Ising model has a nonzero critical temperature. The
transition temperature for a finite system with periodic
boundary conditions can be estimated as [67]

Ko(Ns = 40) ~ —0.437 . (105)



FIG. 9. Typical configurations for the Ising model at two dif-
ferent temperatures. We show the cases far above (K = —0.3
on left) and slightly above (K = —0.43 on right) the transi-
tion temperature. The corresponding correlation lengths are
&1sing(—0.3) & 3a and Eiging(—0.43) ~ 40a.

We approximate the the correlation length iging (K) for
a finite-size system (N, = 40) and for T > T.(40)
[K.(40) < K] by [68]

1

EIsing(K) ~ m . (106)

Using the Wolff algorithm [69], we can numerically gen-
erate a specific configuration for the Ising variable sj,
with a correlation length determined by the tempera-
ture in the Ising model. To ensure that the number
of up and down spins is equal, we impose a constrain
|mp| = |>; si| < 0.01 on the ferromagnetic Ising order
parameter. Figure 9 shows two of the generated config-
urations at two different temperatures. A specific con-
figuration of m; is then used in Eq. (98) to calculate the
single-species (] atom only) elastic part of the scattered
intensity of Eq. (100) as

IHAK) =BaaMiimip, | etk
j

(107)

Note that this expression does not contain the diffrac-
tion peak in the forward direction, as we are only inter-
ested in the magnetic Bragg peaks whose contribution
is significant around the perpendicular direction. The
numerically calculated scattered light intensity at differ-
ent temperatures is shown in Fig. 10(a)-(c). The average
value of the order parameter m is smaller than 0.02 in all
the cases. The average scattered light intensity grows at
temperatures close to the transition [Fig. 10(d)], and the
magnetic Bragg peaks emerge as the correlation length
increases. The large fluctuations between different real-
izations in the simplified model (Fig. 10) are likely to sig-
nificantly overestimate the fluctuations of the true AFM
state.
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FIG. 10. Angular distribution of the elastic component of the
scattered light intensity in the presence of short-range order
[Eq. (107)] along the ¢ = 7/4 direction. The lattice depth is
taken to be s = 25, k = 1.5 [Eq. (59)], and mrpa =~ 0.3. We
only show the magnetic Bragg peaks for the case that only
the down species is imaged. In (a)-(c) the solid lines repre-
sent the ensemble averages of the intensity over 100 stochas-
tic realizations at different temperatures: (a) K = —0.3; (b)
K = —0.42; (c) K = —0.43. The corresponding fluctuations
(sample standard deviation) are given by the dashed lines.
The different average intensities of (a)-(c) are shown together
in (d). Typical individual lattice configurations are shown in
Fig. 9.

3. Inelastic intraband scattering

As was demonstrated in the previous Section, the elas-
tic part of the scattered light intensity conveys informa-
tion about the atom density in the lattice and gener-
ates the diffraction pattern of the atomic lattice struc-
ture. If the detected signal cannot distinguish the two
spin components, the light provides almost no informa-
tion about the AFM order. On the other hand, when
the contributions of the two spin components can be
separated in the scattered light, the emerging AFM or-
der and the period doubling can be identified as addi-
tional Bragg peaks. In addition to the elastic signal, one
may also study the inelastically scattered light intensity
[Eq. (67)]. The inelastic scattering processes are propor-
tional to static structure factors S7:74 (Ak) [Eq. (69)] that
represent scattering events in which an atom is excited
from a quasimomentum state q and scatters to a differ-
ent quasimomentum state q’. Atoms absorb recoil kicks
from the scattered photons. The recoil events depend on
the statistical correlations between the atoms, generating
fluctuating shifts in the diffraction pattern and significant
scattering outside the diffraction orders. In the process,
the atomic correlations are mapped onto the properties of
the emitted light. Inelastically scattered light in a single-
component fermionic gas in a lattice can reveal thermal
correlations [26] and has in a two-component case previ-
ously been proposed as a detection method for topologi-
cal order of the atoms [22].

The inelastically scattered light intensity for the two-



FIG. 11. Angular distribution of the inelastically scattered
light intensity for different values of the interaction strength
U at T = 0 along the direction ¢ = /4. The calculations are
based on MFT. Here the number of sites is 40x40. The ratio
between the wavenumber of the probe light to the effective
wavenumber of the optical lattice light k = 1.05 [Eq. (59)].
The lattice height is s = 25. Intensity contributions from
(a) the density and longitudinal spin components; (b) trans-
verse spin component; (c) total scattered light intensity. The
scattered intensity decreases with increasing magnetization
because of the changes in the density and longitudinal spin
susceptibility.

component ‘°K gas is given by Eq. (96). The scattering
contributions in which the spin is conserved are propor-
tional to density and longitudinal spin susceptibilities.
The spin-exchanging transitions (see Fig. 7) generate the
term depending on the transverse spin susceptibility. The
two processes exhibit very different angular distribution
of the scattered light as shown in Eq. (92). In the spin-
conserving processes the emitted photons are generated
by the o transition in which case the intensity in the
forward direction is twice the intensity in the perpendicu-
lar direction. The spin-exchanging process, on the other
hand, produces scattered photons via the 7 transition
which is oriented parallel to the propagation direction of
the incident field. Therefore the scattering reaches its
maximum in the perpendicular direction (6 = 7/2) and
entirely vanishes in the forward direction.

We have calculated the angular distribution of the in-
elastically scattered light for different values of the on-site
interaction strength U, and hence the staggered magne-
tization m of the AFM ordering. In Fig. 11 we show
the results based on MFT at 7' = 0. In this case the
intensity is obtained using the MFT static structure fac-
tor [Egs. (B1) and (B2)] in Eq. (67). The correspond-
ing MFT susceptibilities required in the calculation are
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FIG. 12. Comparison of the angular distribution of the inelas-
tic scattered light intensity based on MFT (solid) and RPA
(dashed) at 7' = 0 along the direction ¢ = w/4, with k = 1.5.
The rest of the parameters are as in Fig. 11. The MFT and
the RPA results notably differ, owing to the collective modes
that significantly modify the transverse spin component. The
magnitude of the order parameter [Eq. (15)] is m = 0.19
(mrpa =~ 0.15) for U = 2J and m = 0.4 (mgrpa =~ 0.28)
for U = 5.3J.

provided by Egs. (39)-(43), (34), (35), and (36). The
different angular distribution of the different scattering
contributions is clearly visible in Fig. 11. We find that
in MFT the density and longitudinal spin susceptibilities
are more sensitive to the variation of U than the trans-
verse susceptibility.

The intensity calculations based on MFT fail to cap-
ture the effects of collective excitations. We showed in
Sec. IVD how the collective modes emerge in RPA. (See
Figs. 4 and 5 for comparisons of the RPA and MFT.)
The difference between the two approaches in the scat-
tered intensity distribution is illustrated in Fig. 12. The
low-energy collective modes are notable in the transverse
spin correlations, corresponding to the spin-flip transi-
tions, but in the case of the spin-conserving scattering
processes the two approaches yield almost identical in-
tensity distributions. The scattered light intensity distri-
butions based on the calculation of the atomic correla-
tions within RPA at T' = 0 for different U are shown in
Fig. 13. The variation of the signal as a function of U
and the AFM order are most notable in the perpendicular
direction, compared with the MFT case of Fig. 11.

Finally, to produce an example how the scattered sig-
nal also depends on the temperature of the system, we
show the calculated light intensity distributions for dif-
ferent T based on the MFT Eq. (67) [the finite temper-
ature factors are presented in Eq. (B1) in Appendix B].
Although the collective excitations in this example are
ignored, the comparison between the MFT and RPA
T = 0 results suggests that the scattered intensity
is less sensitive to low-energy collective excitations in
the near-forward direction where the the spin-conserving
transitions are dominant. A more accurate description
of the temperature dependence would require a finite-
temperature version of RPA which is beyond the scope



FIG. 13. Angular distribution of the inelastically scattered
light intensity for different values of the interaction strength
U at T = 0 along the direction ¢ = w/4. The calculations
are based on RPA. We use the same parameters as in Fig. 11.
Intensity contributions from (a) the density and longitudinal
spin components; (b) transverse spin component; (c) total
scattered light intensity. The scattered intensity increases
with increasing magnetization near the perpendicular direc-
tion 8 ~ /2 because, due to the collective modes, the trans-
verse spin component dominates the scattered light.

of the present study.

We find in Fig. 14(a) a significant dependence of the
light intensity on the temperature T of the atoms in
the near-forward direction that is analogous to the tem-
perature sensitivity of a single-component noninteract-
ing fermionic gas [26]. (Note that in this figure, lower
T is represented by increased staggered magnetization
m, for a given fixed value of U = 5.3J.) The suppres-
sion of small-angle scattering at low 7" can be understood
in terms of the Fermi blocking: the scattering events in
which an atom would recoil to an already occupied state
are forbidden and in MFT the small-momentum recoil
events can take atoms out of the Fermi sea only near
the Fermi surface. Owing to the sensitivity of the sig-
nal to temperature, optical diagnostics could be used as
a thermometer of the atoms also for an interacting two-
component case. We study the detection accuracy of this
method in Sec. VIIB.

4. Inelastic losses to higher bands

The detected light intensity consists of the elastic and
inelastic intraband components that were calculated for
40K in Secs. VIB 1 and VIB 3. In addition, the atoms can
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FIG. 14. Angular distribution of the inelastically scattered
light intensity at different temperatures along the direction
¢ = m/4. The calculations are based on MFT. Here the on-
site interaction is fixed at U = 5.3.J. This means that lower T’
corresponds to higher values of m. We use the same param-
eters as in Fig. 11. The intensity contributions from (a) the
density and longitudinal spin components; (b) transverse spin
component; (c) total scattered light intensity. An increase in
temperature enhances scattering in the near-forward direc-
tion.

scatter to higher bands as demonstrated in Sec. V. C. The
interband scattering can be separated from the detected
signal (owing to the different frequency of the photons),
but still contributes to the heating rate of the atoms. For
the level structure of “°K we can write the intensity of
the scattered light corresponding to the interband tran-
sitions, Eq. (86), as

192 + 10 cos 26

I, (Ak) = BN2 (1 — aay) o1

(108)

We show the angular distribution in Fig. 15. The inelas-
tic interband scattering is proportional to 1 —aak, where
aak denotes the Debye-Waller factor [Eq. (64)]. On the
other hand, the intraband inelastic scattering is propor-
tional to aak. Consequently, in deep lattices atoms are
more strongly confined and the loss rate to higher bands
can be suppressed, while the inelastic intraband scatter-
ing, that provides information on correlations, can be
enhanced.
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FIG. 15. Comparison of the angular distribution of the differ-
ent components of the scattered light intensity at 7" = 0 along
the direction ¢ = /4. Here the on-site interaction strength
U = 1.76J and the order parameter m = 0.16 (mrpa ~ 0.13).
We use the same parameters as in Fig. 11. MFT elastic com-
ponent (solid), RPA inelastic intraband component (dashed)
and inelastic interband component (dotted). We schemati-
cally represent the position of a block and a NA=0.8 lens by
vertical lines.

VII. DETECTION OF SCATTERED LIGHT
A. Optical components for light detection

As discussed in Sec. VI, the elastically and inelastically
scattered light from the atoms can provide different infor-
mation on the AFM order parameter m, the temperature
of the system, and collective and single particle excita-
tions. Here in this subsection, we discuss in sequence how
one might optimize the experimental configurations for 1)
detection of the extra intensity peak due to AFM order-
ing and the measurement of the AFM order parameter
m, ii) temperature measurement, and iii) measuring the
effects of atomic correlations on inelastically scattered
light.

The elastically scattered light intensity in the presence
of the AFM ordering contains extra peaks that result
from the period doubling of the atom density when atoms
in only one of the two spin states are measured [Egs. (97)
and (99)], or when the light is detuned in between the
resonances of the spin components [Eq. (102)]. We con-
sider detection of this emerging Q peak by a small optical
lens when the lens is placed at the appropriate angle so
as to maximize the contribution of the peak [Fig. 16(a)].
This then can be used to measure directly the AFM order
parameter m.

In order to detect atomic correlations or to measure
temperature of the system from inelastically scattered
light, we consider two experimental configurations: i) a
lens is placed in the near-forward direction, as depicted
in Fig. 16(b), and ii) a lens is centered close to the per-
pendicular direction, see Fig. 16(c). The total light in-
tensity collected by the lens (L) with a given NA can be
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obtained by integrating the scattered intensity, Eqgs. (90)-
(96), over the solid angle (dQ2 = sinfdfd¢) determined
by the corresponding scattering angles,

3L(m) = /L dQ 1, (Ak,m) , (109)

where Ak denotes the change of momentum upon scat-
tering [Eq. (53)] and the index a = e, 1, hb refers to the
elastic, inelastic intraband or inelastic interband (higher
band) components, respectively Eqgs. (90), (96) and (91).

We have already shown in Sec. VIB 3 that an increase
in temperature leads to enhanced inelastic scattering in
the near-forward direction, see Fig. 14. However, a lens
placed near the forward direction will also capture the
much stronger elastic scattering signal, see, e.g., Fig. 15.
Now, the elastically scattered light generates a diffrac-
tion pattern [Eq. (75)] and, for the subwavelength lat-
tice spacing we consider, only the zeroth order Bragg
peak is collected by the lens. Thus, in order to maximize
the proportion of inelastically scattered light in the mea-
surement, we can block the high-intensity regions of the
elastically scattered light by placing an appropriately de-
signed block on the focal plane of the lens, see Fig. 16(b).
(For the case of atomic species for which the light can be
tuned in between the resonances of the spin states, the
elastically scattered light peaks could be suppressed by
destructive interference.) This setup is similar to the one
proposed in Ref. [26] to measure the temperature of an
ideal single-species fermionic gas in a lattice. In that case
the inelastically scattered light varied as a function of the
temperature in the near-forward direction resulting from
the enhancement of the Pauli blocking effect at low tem-
peratures. In the two-species interacting case within the
MFT we observe the same behavior as shown in Fig. 14.
We correspondingly achieve the optimized detection ef-
ficiency by selecting a narrow cross-shaped block that
covers the Bragg peak and high-intensity regions along
the principal axis of the lattice, analogously to Ref. [26],
as shown in Figs. 19(a) and (b).

We now consider how to optimize the detection of AFM
correlations in the inelastically scattered light. At zero
temperature, the effect of the AFM ordering on the an-
gular distribution of the scattered light calculated with
RPA is displayed in Fig. 13. The staggered magnetiza-
tion most noticeably changes the signal away from the
forward direction. Optimal shape and size of the block
can be estimated from the angular distribution of scat-
tered light that shows both the elastic and inelastic con-
tributions (see Fig. 15). Since near-forward scattering
provides only little information on magnetization in this
case, it is beneficial to consider a block that combines a
narrow cross block with a circular block located at the
center. The light can then be collected with a lens of large
NA. For a lattice of 40x40 sites the block sizes used are
listed in Table I. In Fig. 16(b) we show an example cir-
cular block with the angular size Ocirc-Block &~ 0.20 rad.

As has been discussed in Sec. VI, spin-exchanging scat-
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FIG. 16. Schematic illustration of the experimental configura-
tions to detect AFM ordering of fermionic atoms in an optical
lattice. The atoms are confined in the 2D optical lattice close
to the z = 0 plane and the incident light propagates towards
the positive z direction. In (a) the elastically scattered light
corresponding to the emerging additional Bragg peak gener-
ated by the AFM ordering is collected by a small lens. In
(b) the setup is closely related to that of Ref. [26]. The two
lenses have focal lengths f1 and f2. The light scattered in the
near-forward direction is first collected by lens 1. In the focal
plane the scattered light is selectively stopped by a block in
order to suppress the intensity of the elastically scattered light
at the detector. The shape and the size of the block can be
optimized for different measurements of collective excitations
or of temperature. In (c) the scattered light is collected near
the perpendicular scattering direction of 6 = /2, to measure
transverse spin correlations.

tering processes dominate the inelastic signal near the
perpendicular direction [Fig. 16(c)]. For x < /2 the
elastic scattering contribution to the collected signal is
negligible (Fig. 15) and no block is needed. On the other
hand, for k > /2 the elastic component near the per-
pendicular direction strongly depends on the AFM order
parameter m [see Fig. 8, and Sec. VIB1, in particular
Egs. (97) and (101)]. As we will show in next subsection,
this enhances the sensitivity of the signal to changes in

Detector
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TABLE I. Parameters of the block used to estimate the mea-
surement accuracy estimates shown in Fig. 18.

K Cross width (rad) Circular radius(rad)
0.66 0.08 0.22

1.05 0.05 0.14

1.5 0.03 0.10
m.

B. Measurement accuracy

We will analyze the accuracy of the optical measure-
ments of the AFM correlations in the lattice when the
light is collected by a lens. We will follow the procedure
introduced in Ref. [26] where the optical detection accu-
racy of temperature in a single-species fermionic atomic
gas in an optical lattice was calculated. In an inelastic
scattering event an atom scatters to a different quasimo-
mentum state owing to the photon recoil kick. Inelastic
scattering leads to heating of the atomic gas and per-
turbs the many-body state of the atoms. In order to limit
the effect of heating, the number of inelastic scattering
events in each experimental realization of the lattice sys-
tem should be limited to a small fraction of the total
number of atoms in the lattice. We set the maximum
number of allowed inelastic scattering events to be W, so
that W/N? is sufficiently small. In the example analysis
we take W/N2 = 0.1. We specify the fraction of inelasti-
cally scattered photons that are collected by the lens and
constitute the measured signal for a given magnetization

m by n(m),

~Lm
MW:TJ“) (110)

(m) + 35

Here 3!°*(m) and J}$' denote the total rate of inelastic
intraband and interband scattering events, respectively.
We assume that the scattered light corresponding to in-
terband transitions is filtered out of the signal so the cor-
responding rate is excluded from the numerator. If, for
simplicity, we assume a 100% photon detector efficiency,
the number of detected inelastically scattered photons
in each experimental realization of the lattice system is
given by Ni(m) = n(m)W. If the lattice system is pre-
pared and the experiment is repeated 7 times, we find
that the total number of detected photons is
TNe(m) = 7[Ne(m) + N (m)],

Ne(m) = 35N )

1

(111)

(112)

where N¢(m) denotes the total number of detected elas-
tically scattered photons in a single experimental real-
ization of the lattice system and JL(m) is the scattering



rate of elastically scattered photons that are collected
by the lens. In optical diagnostics of AFM ordering
one would need to distinguish in the scattered light sig-
nal two fermionic states in the lattice that exhibit dif-
ferent magnetic orderings m; and ms. After 7 exper-
imental realizations the difference in the total number
of detected photons between the two ordered states is
T[Ne(ms2) — Ne(mq)]. The minimum requirement for the
two states to be distinguishable is that this difference is
at least equal to the photon shot-noise \/7N.(mz), so
that 7[Ne(mz2) — Ne(m1)] 2 /7N.(m2). Thus the min-
imum number of experimental realizations 7y, required
to distinguish between the optical signal from two mag-
netization states my and mo approximately satisfies
Nc(mg)

Tmin = 3 - 113
[Ne(mz) = Ne(ma)] .

In the rest of this Section, we present results for the
rate of detected photons as a function of the staggered
magnetization m and the number of experimental real-
izations 7 required to determine changes in the AFM
order parameter m. The changes are calculated with re-
spect to a reference value, m,¢f, and for a given relative
accuracy Am/myer [Eq. (113)]. At T = 0, the inelastic
scattering is calculated using the RPA susceptibilities. In
Figs. 17, 18 and 20 myf is the RPA corrected order pa-
rameter (Sec. IVD 1) and also the elastic component of
the scattered light [Eqs. (97) and (101)] has been com-
puted using the RPA corrected order parameter mgpa
(Sec. IVD 1). At finite temperature we use only the MFT
results. For the temperature dependent MFT results of
Fig. 19 the myer is the MFT order parameter obtained
from the solution of Eq. (15). Except the scaling analy-
sis of 7 with lattice size, all the results in this Section are
for a lattice of size 40x40.

We first study the AFM order parameter measure-
ment accuracy when a lens (NA= 0.2) is used to collect
the light along the direction of the emerging magnetic
Bragg peak [Fig. 16(a)]. We also study the configura-
tion in which a lens (NA= 0.4) is placed perpendicu-
lar to the propagation direction of the incident probe
laser [Fig. 16(c)]. In both cases, the ratio between the
wavenumber of probe light and the effective lattice light
k=15>+2 [Eq. (59)]. This allows the NA= 0.4 lens
to collect the signal also from two magnetic Bragg peaks
[Eq. (99)]. In Sec. VIB1, we have shown that the elastic
signal is strongly enhanced when only the | atoms are
detected. Figure 17 compares this case [Fig. 17(c),(d)] to
the case when both species are detected [Fig. 17(a),(b)].
In both lens configurations the number of experimental
realizations 7 needed to achieve a given accuracy drops
dramatically when only | atoms are detected. Some spe-
cific values of 7 for single species detection are presented
in Table II. These values are (much) lower than all
other experimental configurations to be presented later
[see Table ITI]. We conclude that the single-species de-
tection scheme provides the most accurate determination
of the AFM order. (This could be improved for atomic
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TABLE II. Specific values of the estimated number of ex-
perimental realizations, 7(my.s) for single species detection
[Fig. 17(d)] with x = 1.5. The two lenses with NA= 0.2 and
NA= 0.4 are pointing in the direction of the magnetic Bragg
peak [Fig. 16(a)] and in the direction perpendicular to the
incident field[Fig. 16(c)], respectively. These values are for
a relative accuracy of 10%. Here myq is the RPA corrected
order parameter (Sec. IVD1).

NA 7(0.08) 7(0.12) 7(0.19)
0.2 210 60 10
0.4 200 50 10
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FIG. 17. Measurement accuracy at k = 1.5 when light along
the direction of the emerging magnetic Bragg peak is detected.
The calculations are based on RPA susceptibilities at T'= 0
with an RPA corrected order parameter mrpa for the elastic
component. We show the collected photon rates vs. the RPA
corrected AFM order parameter mgrpa (left column) and the
number of experimental realizations 7 to achieve a relative
accuracy Am/myes (right column). In all the plots (a)-(d),
dashed curves correspond to the configuration of a lens with
NA= 0.4 pointing in the perpendicular direction [Fig. 16(c)],
and solid curves are for a small lens with NA= 0.2 point-
ing in the direction of the emerging magnetic Bragg peak
[Fig. 16(a)]. Note that the lens in the perpendicular direction
also collects the signal from two magnetic Bragg peaks. (a),
(b) show the case when both spin species are detected. (c),
(d) show the case when only the | |) atoms are detected. Far
fewer experimental realizations are needed for a given accu-
racy when only one species is detected. In (b) and (d) we show
the 7 values for two different reference states: myer >~ 0.12 in
black (top two curves) and myer ~ 0.19 in green (bottom two
curves).

species for which far-detuned light can be tuned in be-
tween the two resonances.) Experimentally, the single-
species imaging can be realized by transferring the other
spin component to a different hyperfine state [37].

In Fig. 18 we show the effect of lattice depth s [Eq. (5)]
and k on the detection accuracy of m. The scattered
light is collected by a lens of NA=0.8 in the forward di-
rection, corresponding to the experimental arrangement
of Fig. 16(b). We find that a deeper lattice generally en-
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FIG. 18. T = 0 collected photon rates vs. the RPA corrected
AFM order parameter mrpa with a lens of NA= 0.8 in the
forward direction (top row) and the corresponding estimated
number of experimental realizations to achieve a relative accu-
racy Am/myer (bottom row). The calculations are computed
with RPA susceptibilities at 7' = 0 and with an RPA corrected
order parameter mgpa for the elastic component. In both (a)
and (b), we show a fixed value of k = 1.05 and compare two
different lattice depths s = 7.8 (dotted) and s = 25 (solid).
In (b), the top two curves (in black) are for myer ~ 0.12 and
the bottom two curves (in green) are for myes ~ 0.19. The
top two curves are essentially on top of one another, similarly
for the bottom two curves. In both (¢) and (d) we show a
fixed lattice depth s = 25 and compare three different values
of the parameter x = 0.66 (dotted line), k = 1.05 (solid) and
k = 1.5 (dashed). Note that varying » changes the width
of the elastic diffraction peak. Thus, to block out the main
elastic diffraction peaks, a different block width is required
for each k value, see Table I. In (d), the top three curves (in
black) are for myer ~ 0.12 and the bottom three curves (in
green) are for myer ~ 0.19. The top three curves are close
together, and even more so for the bottom three curves.
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FIG. 19. Finite temperature plots of (a) collected photon
rates vs. the MFT AFM order parameter m with a lens of
NA= 0.8 in the forward direction, and (b) the correspond-
ing estimated number of experimental realizations to achieve
a relative accuracy Am/myer. Results are obtained with
MFT at finite 7" with fixed U = 5.3J, and with s = 25
and x = 1.05. The cross block width is 0.048 rad. At
fixed U, increasing T leads to decreasing m, and in (b),
we show from top to bottom (corresponding to lowering 7'),
Mrer = 0.13,0.18,0.22,0.26,0.31,0.35,0.4. In (b) the data
points are joined with straight lines.

25

TABLE III. Specific values of the estimated number of ex-
perimental realizations, 7(mef), for two lattice depths with
% = 1.05 presented in Fig. 18(b). The parameters of the block
are given in Table I. Here myer is the RPA corrected order
parameter (Sec. IVD1).

Am/myer = 10% Am/myer = 20%

s 7(0.12) 7(0.19) 7(0.12) 7(0.19)
7.8 410 50 90 10
25 390 50 90 10

hances the scattering rate, but the effect of s on 7 in the
studied cases is negligible [Fig. 18(a),(b)]. Some example
values are shown in Table ITI. The number of required ex-
perimental realizations for a 40x40 lattice drops rapidly
when the desired accuracy is reduced and the staggered
magnetization is increased.

Similarly, increasing x enhances the rate of detected
photons [Figs. 18(c),(d)]. Generally however, the detec-
tion accuracy is lower for larger values of k. This is so
because for larger x, there are more inelastic scattering
events particularly near the ordering wavevector. Such
inelastic signal contributes to inelastic losses and heat-
ing, but is not captured by the forward direction lens
considered here.

As explained previously (Sec. VIB 3), we only provide
a qualitative analysis of finite temperature effects using
MFT, without taking into account the collective exci-
tations included in RPA. Using a narrow cross-shaped
block of width 0.048 rad, the light can be collected near
the forward direction where the temperature strongly af-
fects the scattering rate (Fig. 14). Lower T' corresponds
to stronger magnetization values and fewer collected pho-
tons, as shown in Fig. 19(a), and the temperature changes
in m can be accurately detected [Fig. 19(b)]. For exam-
ple, myer = 0.18 can be measured with the accuracy of
10% with 100 realizations.

Finally in Fig. 20, we show the RPA results for the
accuracy in mrpa when the scattered light is collected
perpendicular to the propagation direction of the inci-
dent laser [Fig. 16(c)]. The light scattered from the spin-
conserving and spin-exchanging transitions may be sep-
arated owing to the different frequency of the scattered
photons (or the polarization, see the next Section). If
the transitions are not separated, the measurement accu-
racy in the perpendicular direction is significantly lower
than, e.g., for forward direction measurements. There is
a notable improvement in the detection accuracy in the
perpendicular direction when only the spin-exchanging
scattering processes (representing the transverse spin cor-
relations) are selected (for the angular distribution of the
scattered light for the different components, see Fig. 13).
For instance, for k = 1.5, 10% accuracy for myes ~ 0.19
can now be achieved after 50 realizations for NA= 0.4.
By increasing the size of the lens to NA= 0.5 this can
be further improved to 40 realizations. In general, for
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FIG. 20. Collected photon rates vs. the AFM order parame-
ter m with a lens pointing in the perpendicular direction (left
column) and the corresponding estimated number of experi-
mental realizations 7 to achieve a relative accuracy Am/myer
(right column). The calculations are computed with RPA
susceptibilities at T = 0 and with an RPA corrected order
parameter mrpa for the elastic component. We compare the
case when [(a) and (b)] all the density and spin components
are collected by a lens with NA= 0.4, to the case when [(c)
and (d)] only the transverse spin component of the scattered
light is collected by a lens with NA= 0.5. In both (a) and
(b), solid lines are for x = 1.05 and dashed lines for x = 1.5.
In (b), the top two curves (in black) are for myer >~ 0.12 and
bottom two curves (in green) are for myer ~ 0.19. Note that
the bottom black dashed curve almost overlaps the top green
solid curve. In both (c) and (d), dotted lines are for k = 0.66,
solid lines for x = 1.05 and dashed lines for x = 1.5. In (d),
the top three curves (in black) are for myer >~ 0.12 and bottom
three curves (in green) are for myes =~ 0.19.

the perpendicular direction the large k = 1.5 case gives
the highest number of scattered photons because of the
strong enhancement of spin-exchanging scattering pro-
cesses [cf. Fig. 21(a) vs Fig. 13(c)]. Also the 7 values are
substantially lower for the xk = 1.5 case [Fig. 20(b),(d)].

Our example calculations are for a 40x40 lattice.
Smaller values of 7 can be obtained for larger lattices.
The number of required experimental realizations of the
lattice system 7 is approximately inversely proportional
to the number of sites 7 oc Ny 2. We have simulated lat-
tices sizes between N, = 16 and N, = 40, and our results
confirm this scaling to be qualitatively accurate for rea-
sonably large lattice systems Ny 2 25 for both forward
and perpendicular directions measurements. For smaller
systems the choice of the block size and shape can result
in larger variations owing to the dependence of the width
of the diffraction peak on the lattice size.

C. Distinguishability of transitions by light
polarization

In general the scattered light corresponding to different
transitions are separated in frequency space and could be
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FIG. 21. Angular distribution of the inelastically scattered
light intensity along the direction ¢ = 7/4 when the scat-
tered light is projected along specific polarization directions.
We show different values of the interaction strength U at
T = 0. The calculations are based on RPA, x = 1.5 and
the other parameters are as in Fig. 11. (a) The total scat-
tered light intensity; (b) the total scattered intensity from
the spin-conserving transition; (c) the total scattered intensity
from the spin-exchanging transition; In (d) and (e) the light
has been projected along the direction of the scattered light
from the spin-conserving transition. (d) projected component
of the scattered intensity from the spin-conserving transition
which in this case equals to (b); (e) projected component of
the scattered intensity from the spin-exchanging transition.
In (f) and (g) the light has been projected along the direction
of the scattered light from the spin-exchanging transition. (f)
projected component of the scattered intensity from the spin-
conserving transition; (g) projected component of the scat-
tered intensity from the spin-exchanging transition which in
this case equals to (c).



identified by filtering the relevant frequencies. If the suf-
ficient frequency resolution is not achievable the transi-
tions could still be partially distinguished by the polariza-
tion of the scattered light. The polarization of the scat-
tered light from the spin-conserving and spin-exchanging
transitions depend on the scattering direction and gen-
erally they are not orthogonal. For any given scattering
direction we may project, e.g., the light scattered from
the spin-exchanging transition to the direction of the po-
larization of the scattered light from the spin-conserving
transitions. This provides the optimum value how much
for the given scattering direction the light from the spin-
conserving transition can be distinguished from the total
scattered intensity. In order to analyze this we modify
the polarization vector of Eq. (54) Ay, by

Agg = AMggley s, = Mgrg 9192019 5 (114)
where the polarization of the scattered is given by
A,
g9 (115)

In a studied example case of Fig. 21 we show the angu-
lar dependence of the scattered light intensity and com-
pare this with the projected intensities along the polar-
ization of the scattered light from either of the two transi-
tions. The relative part of the signal from the density and
longitudinal spin correlations is enhanced in Figs. 21(d)
and (e), while the contribution of the transverse spin cor-
relations is particularly strong in Figs. 21(f) and (g) in
the direction around 6 ~ /2.
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This spectrum has been derived using the same proce-
dures as the analogous expression for the intensity in
Sec. VIB, generalizing the definitions of Eq. (94) to the
frequency-dependent case here. We can translate the dy-
namical response function of Eq. (81) to the density, lon-
gitudinal and transverse spin dynamical response func-
tions 8¥(q,w) (i,5 = p,2,+,—) using a frequency de-
pendent version of Eq. (94). In turn, these dynamical
response functions are related via Eq. (34) to the vari-
ous RPA spin and density susceptibilities Eqs. (44), (45)
and (46) of Sec. IV, which are then used to compute the
scattered spectrum.

We first compare in Sec. VIII 1 the physical quanti-
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VIII. DIAGNOSTICS OF EXCITATIONS FROM

SCATTERED SPECTRUM

In this Section we calculate the spectrum of scattered
light and show how intraband inelastic scattering can re-
veal the single-particle and collective excitations in an
AFM ordered lattice system. In Sec. V B, the scattered
spectrum is split up into an elastic [Eq. (78)] and an in-
elastic part [Eq. (79)]. The elastically scattered light has
no nontrivial spectral structure, consisting of only the
zero frequency part, by definition. Inelastic losses due to
scattering to higher bands occur at high frequency (on
the order of the band gap) and can therefore be filtered
out and ignored, as this part does not contain informa-
tion about the state probed.

The inelastic spectrum of Eq. (79), or the more spe-
cific form of Eq. (82), contains useful information about
the excitation spectrum of the system being probed. In
Sec. IVD, we show how the MFT contains only sin-
gle particle excitations in the density, longitudinal and
transverse spin susceptibilities. The RPA partially takes
into account quantum fluctuations around the AFM or-
dered state and can capture the collective excitations
(spin waves) emerging in the transverse spin suscepti-
bility. RPA also renormalizes the single particle excita-
tions. (See Figs. 4 and 5 for comparisons of the RPA
and MFT.) Via linear response theory (see Sec. IVC1),
the various RPA susceptibilities can be related to the dy-
namic structure factor Eq. (80), or the dynamic response
function Eq. (81). The spectrum of inelastically scattered
light reads

SZZ (qa W)] u&k—q

RBZ

zZz 1 —
M) Dk 187 (a.w) =87 (@) usiq + 3MI D uky ST (@ w) uly -

q#0
(116)

ties of interest, the angle-resolved spectrum [Eq. (116)]
and susceptibilities [Eqs. (44), (45) and (46)], with the
angle-integrated spectra [Eq. (117)] that corresponds to
a measurement of the spectrum by a lens over a range
of scattering angles. We then analyze in Sec. VIII 2 the
features corresponding to single particle excitations and
in Sec. VIII 3, the collective mode peak.
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FIG. 22. Comparison between the RPA susceptibilities, angle-
resolved spectrum, and the spectrum collected by a lens over
a range of scattering angles. The ratio between the wavenum-
ber of the probe light to the effective wavenumber of the op-
tical lattice light is k = 1.5 [Eq. (59)] and U = 5J. Each
line shown has been normalized to its maximum value for
comparison. We show sg5(w) [solid (black)], s&(w) [dot-
ted (blue)], S(Ak,w) [dashed (green)] and x(Ak, Ak;w) [dot-
dashed (red)]. (a) shows the configuration with a lens in the
forward direction [Fig. 16(b)]. The angle-resolved quantities,
the spectrum S(Ak,w) and total susceptibility x(Ak, Ak;w)
are computed at a wavevector close to the axis of the lens
(0 ~ 0, » ~0). (b) shows the case for a lens in the perpen-
dicular direction [Fig. 16(c)]. S(Ak,w) and x(Ak, Ak;w) are
computed at a wavevector Ak close to the axis of the lens
at (0 ~ 7/2,¢ ~ w/4). (b) shows the collective mode at low
energies and the inset shows the single-particle excitations at
energies above the gap.

1. Comparison between angle-resolved spectrum and
angle-integrated spectrum

The scattering rate of off-resonantly illuminated atoms
is generally low. Experimentally, the number of mea-
sured photons can be increased by collecting the inelasti-
cally scattered photons over a range of scattering angles
using a lens (see Sec. VIIA). The spectrum, however,
changes with the scattering angle, since each Ak rep-
resents a different argument of the dynamical structure
factor. In this Section we analyze how much of the spec-
tral structure can be extracted when the measured light
is collected by a lens with a large NA and the spectrum
is integrated over the corresponding range of scattering
angles. We therefore define

(117)

spa(w) = / d¢sin 0df S(Ak(6, ¢),w) ,

L,NA

where L = F, P indicates the experimental configuration:
F for the lens with a given NA pointing in the forward di-
rection [Fig. 16(b)] and P for the perpendicular direction
[Fig. 16(c)].

In Fig. 22, we compare the angular integrated spec-
trum [Eq. (117)] for two different lens sizes with the
physical quantities of interest. These are the angle-
resolved spectrum S(Ak,w) and the total susceptibil-
ity x(Ak, Ak;w), which is the sum of all the longitu-
dinal and transverse susceptibilities. Here S(Ak,w) and
X(Ak, Ak;w) are computed at a wavevector Ak close to
the axis of each corresponding lens. In Fig. 22(a) the lens
is pointing in the forward direction (6 ~ 0, ¢ ~ 0) and in
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FIG. 23. RPA spectrum collected by a lens for different values
of the on-site interaction strength U at T' = 0. Here the num-
ber of sites is 40x40. The lattice height is s = 25 and k = 1.5.
Light is collected with a lens of NA= 0.5 pointing in (a) the
forward direction [Fig. 16(b)]; (b) the perpendicular direction
[Fig. 16(c)]. From left to right, black (solid) is mgrpa =~ 0.19
(U =~ 2.6J), blue (dashed) is mrpa ~ 0.25 (U = 4.0J), and
green (dot-dashed) is mrpa =~ 0.30 (U =~ 8.3J). Inset in (b)
shows the renormalized single-particle excitations starting at
w =~ U/J. All the curves have been normalized to the maxi-
mum of the mgrpa =~ 0.30 case.

Fig. 22(b) in the perpendicular direction (6 ~ 7/2, ¢ ~
7/4).

It can be seen that the small lens measurement repro-
duces quite closely the spectrum S(Ak,w), in both for-
ward and perpendicular directions. However, compared
with the large lens, the small lens leads to the absolute
magnitude of the signal being down by nearly a factor
of 200 in the forward direction and about a factor of
10 in the perpendicular direction. But even the large
lens captures well at least the position of the collective
mode peak (at low energies) and single particle peak (at
high energies). The collective mode peak is somewhat
broadened by the large lens. (These peaks are analyzed
in detail in the next subsections.) Note that unlike the
total susceptibility x(Ak, Ak;w), the spectrum S(Ak, w)
contains the dipole matrix elements M73%4, Eq. (92), that
skews the signal towards the forward direction for spin-
preserving transitions, and towards the perpendicular di-
rection for spin-exchanging transitions (see Sec. VIB 3).
Hence one key finding here is that different lens positions
can be used to select for different types of transitions, to
separate out the collective modes versus the single particle
excitations.

2. Single particle excitations

In Fig. 23, we plot the RPA spectrum collected by a
NA = 0.5 lens in the forward direction [Fig. 23(a)] and
in the perpendicular direction [Fig. 23(b)]. A broad peak
at high energies can be seen in both lens directions. This
peak is due to gapped single particle excitations already
included by MFT. The form of the MFT susceptibili-
ties of Egs. (39), (40), (42) and (43) indicates that the
single particle excitations spectrum is non-zero only for
2A < w < 2/A2+16J2. For U > J, the gap can
be approximated by 2A = 2mU =~ U as m saturates
to 1/2. Indeed, it can readily be seen in Fig. 23 that
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FIG. 24. RPA scattered spectrum at zero temperature along
¢ = w/4 for U = 8.3J (mrpa =~ 0.30). This figure only
shows the low energy part of the spectrum that includes the
collective modes. Single particle excitations occur at much
higher energies and are not shown. The gray scale on the
left gives the magnitude of the spectrum plotted. (a) shows
k = 1.05 and (b) kK = 1.5. wak (solid line) given by Eq. (49)
is the spin wave dispersion relation of the Heisenberg model.
The green (step-like) line connects the maximum values of the
collective mode peak of the RPA spectrum for each 6 point
evaluated.

the gap opens up progressively and more sharply with
larger U, and there is signal only between the aforemen-
tioned bounds. To compute numerical values, we give
a finite value to the infinitesimal imaginary part using
0 = 0.07J, in the denominators of the susceptibilities of
Egs. (39), (42) and (43). Thus, individual delta func-
tions coming from the susceptibilities are then spread
out into Lorentzian functions, representing the finite fre-
quency resolution of spectral measurements.

3. Collective modes

The other main feature in Fig. 23(a) and (b) is the
sharp peak at low energies. This originates from light
scattering off the spin-exchanging transitions that domi-
nate the transverse spin susceptibility ng; (9, q;w). In
turn, such transitions can be induced by the excitation of
gapless collective modes, the spin wave excitations above
the AFM ground state (see Sec. IVD and Fig. 5). Notice
that the sharp collective mode at low energy separates
cleanly in frequency from the single particle excitations
only from moderately large U/J onwards. A rough crite-
rion for this separation is that the collective mode band-
width [~ 2]y, see Eq. (49) and the text after] should be
smaller than the single particle gap 2A. At small U/J,
the single particle gap is small and the collective mode
peak merges with the single particle broad peak, as can
be seen for the case of U ~ 2.6.J in Fig. 23.

As discussed in Sec. IV, for large U/J, the Hubbard
model reduces to the Heisenberg model at low energies.
In Fig. 24 we show the angular and frequency dependence
of the scattered light along the ¢ = 7/4 line for U = 8.3J
(mrpa =~ 0.30) and compare it with the spin wave dis-
persion relation of the Heisenberg model, Eq. (49). As a
visual aid, the line connecting the maximum of the spec-
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trum for each 0 point is also drawn. It is indeed similar to
the dispersion relation curve. Such measurement could in
principle be realized with a small NA lens scanning the 6
direction. Note that this figure only shows the low energy
spectrum, cutting off the higher energy single particle ex-
citations shown in Figs. 22 and 23. Despite the similar
shape, the RPA derived dispersion occurs for smaller fre-
quencies compared with the Heisenberg model dispersion.
This mismatch disappears for values of U 2 25.J.

IX. CONCLUDING REMARKS

We have studied off-resonant imaging of AFM correla-
tions in a two-species fermionic atomic gas in a tightly-
confined 2D optical lattice. The AFM ordering represents
a checkerboardlike alternating density pattern of the two
species that effectively doubles the lattice periodicity of
each spin component. This can be revealed in emerging
magnetic Bragg peaks of elastically scattered light when
only one spin component is detected, or via a destructive
interference of the scattered light from the two compo-
nents. The density correlations as well as the longitudinal
and transverse spin correlations of the atoms are mapped
onto the fluctuations of the scattered light where they
can be detected in the inelastically scattered light. We
have shown how the standard Feynman-Dyson perturba-
tion theory of interacting many-body systems can then
be related to the experimental observables of the inten-
sity and the spectrum of the scattered light. Our specific
example concerned RPA of the AFM ordering that corre-
sponds to a partial summation of the diagrammatic per-
turbation series. The general principle could be adapted
to other strongly-correlated states, indicating how off-
resonant imaging can provide a powerful diagnostic tool
in interacting ultracold atom systems.
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Appendix A: Susceptibilities from Mean-field theory
and RPA for the AFM via Feynman diagrams

In this Appendix, we outline the calculation of the
MFT and RPA susceptibilities for density p Eq. (44),
longitudinal spin 57 Eq. (45) and transverse spin S+ 8-
[Egs. (47) and (48)] using the diagrammatic method.
MFT susceptibilities (at T = 0 or finite T') can also be
calculated directly from the MFT Hamiltonian [Eq. (28)]
and the Bogoliubov transformation [Eq. (25)]. Here we
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FIG. 25. Diagrammatic representation of the interaction vertices, spin densities, and Green’s function needed for the RPA
calculation of the susceptibilities. (a) and (b) interaction vertices [Eq. (A1)], (c) density operator [Eq. (32)], (d) spin projection
on the z direction [Eq. (30)], (e) spin raising operator [Eq. (31)] and (f) MFT Green’s function [Eq. (A3)].

derive the T' = 0 MFT susceptibilities first to show briefly
how the diagrammatic method works and how to gener-
alize it to RPA.

As mentioned in Sec. IV B, we have dropped second
order fluctuations to arrive at the MFT Hamiltonian of
Eq. (22). The diagrammatic method in the AFM ordered
state then approximately reinstates quantum fluctuations
as follows: The full Hamiltonian is a sum of the MFT one
H [Eq. (22)] and the fluctuations (the interaction part),
using the compact Nambu notation [Eq. (21)],

Hiot =H + Vo + Vq,
U RBZ
- N2 Z ‘PL+q,T\IIk=T ‘Il;r(’—q,i\llk'=¢’
S q,k,k/
U RBZ
VQ :F Z ‘IJL-Q—q,TTI‘Ilva ‘PL/_q,iTI‘Ilk/,¢ . (Al)
S q,k,k/

Vo

Here Vg corresponds to the interaction with momentum
transfer q € RBZ, while Vq has momentum transfer q +
Q that is represented by the Pauli matrix 7, acting in
the Nambu spinor space.

The elements of the diagram technique can now be de-
fined; see Fig. 25. The interaction vertices Vo and Vq
are defined in Fig. 25(a) and (b). The interaction is rep-
resented by a dashed line, with an associated factor of
—iU/N?2. The various density operators (total density,
longitudinal and transverse spin) can be written using the
Nambu spinors, as shown in Fig. 25(c)-(e). Diagrammat-
ically, a creation (annihilation) spinor operator ¥ (¥)

is represented by an outgoing (incoming) arrow, with its
momentum and spin label near the arrow. The momen-
tum transfer is represented by a wavy line. Whenever
the momentum transfer q is shifted by Q, a Pauli matrix
in Nambu space 7, is needed in between ¥' and ¥, and
is represented as a open square. When there is no such
shift, a unit matrix 1 is represented by a filled circle.

In the spin density wave ground state |®ygy), we can
write the bare Green’s function at zero temperature as a
2x 2 matrix, using the Nambu spinor defined in Eq. (21),

GOkt —t) = —i(Dan| T Wi g (1) T (1) Peaw) - (A2)

From now on, we will drop the explicit ground state bra
and ket. All expectation values are understood to be
for this ground state. A matrix Green’s function iGg is
represented as a straight line with momentum and spin
labels shown in Fig. 25(f). The arrow starts from a cre-
ation operator to end in an annihilation operator. G’g can
be calculated via a Fourier transform in time, directly
from the MFT Hamiltonian [Eq. (28)] and the Bogoli-
ubov transformation [Eq. (25)] to give

Gg(k,w) :/ dt e™* Gg(k, t)

_ 1 hiw + €ex Ag
(hw)? —E2+i6 \ A, Tw—e)
(A3)

We will not derive the diagram rules here, as this matrix
formalism is a direct generalization of a similar matrix
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FIG. 26. Diagrammatic representation of the MFT trans-
verse spin susceptibility matrix, see Eq. (37). The sums over
internal momentum k, frequency v have not been written ex-
plicitly.
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FIG. 27. Diagrammatic representation of the MFT density-
density susceptibility matrix, see Eq. (37). The sums over
internal momentum k, frequency v, and spin have not been
written explicitly.

formalism in the well-documented BCS superconductiv-
ity case, which in turn is a matrix generalization of the
usual diagram technique [70, 71]. We will just illustrate
the rules with a few examples in the next subsections.

1. Mean-field susceptibilities

The MFT susceptibilities correspond to computing
Eq. (33) in the matrix form Eq. (37) without any interac-
tion vertices Vo and Vq. As an example, we calculate the
first diagram of the diagonal element of the susceptibility
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FIG. 28. Diagrammatic representation of the RPA series for
the density susceptibility. The first order term is the MFT
bubble. The sums over internal momenta k, k', k”, and fre-

: ! " . . . —
quencies v, v,V have not been written explicitly. g stands
for the opposite spin of g.

matrix shown in Fig. 26,

_ 2
RBZ
3 (T (OB (8) B g (0)F0,4(0))
k,k’ i
i RBZ
= -3 > TriG)(k, t)iGl(k + q, 1) .
Sk

(A4)

The two momenta in the left-hand side of Eq. (A4) are
a consequence of the translation invariance with periodic
boundary conditions that we have imposed on the sys-
tem (Sec. VA) and Tr denotes the trace of the matrix.
The overall minus sign comes from anticommuting the
Nambu spinors, and is an example of the diagram rule
for a fermion loop leading to a (—1) factor. In frequency
space, this becomes

RBZ

- 2
(A5)

Substituting Eq. A3 into this and evaluating the fre-
quency integral then leads to Eq. (42). Given that the
MFT longitudinal spin susceptibility is equal to the den-
sity one [Eq. (40)] the only nonzero MFT susceptibilities
are those shown in Figs. 27 and 26; in particular,

=X{)(@a+Quw)=0.

This leads to a simple diagonal structure for the RPA
susceptibilities for these quantities, as we shall see next.
However, the matrix structure of xZB)_ does lead to a full
matrix equation for its RPA susceptibility.

X(o) (@ @@ ’I‘rG 9k, V)G (k+q, w+v) .

Xy (@,9+ Qiw) (A6)

2. RPA susceptibilities

For the RPA susceptibilities, the interaction vertices
need to be inserted n times for the nth order diagram.
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FIG. 29. Diagrammatic representation of the alternative form
of the interaction vertices suited to computing the transverse
spin susceptibility for (a) Eq. (A11l); (b) Eq. (A12). In (c),
we show the RPA series for the transverse spin susceptibility.
The sums over internal momenta k,k’,k”, and frequencies
v,v',v" have not been written explicitly.
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In Eq. (A7), the extra factor of 2 comes from the spin sum
in Fig. 28, and using the fact that each bubble of a specific
spin is spin independent. Importantly, the second line of
q. (A7) does not contribute because this is proportional
to fdt’ pp (q,9+Q;t— t’)xfg) (q,q+Q; ), which is zero
by Eq. (A6) Hence, X(o) is a diagonal matrix in Nambu
space: effectively, there is no matrix structure needed.

This example can be generalized to higher order con-
tributions and we find in the frequency domain, in the
full matrix form,

Xipa (4, w) = X(5)(a,w) = x{5) (@, w)Ux(p) (a4, w)

+ Xﬁ(/)))(% W)UX%)) (a, W)UX%)) (q,w) + ...

-1

=20 (a.w) [1+ Ux%) (a.w)

= Xo\d (A9)

— X (@ at’) -
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We first look at the first order diagrams depicted in the
second diagram of Fig. 28. For example, for the density
susceptibility, the first order correction X?f) reads

—t) T GY(K ., )G (K +q,—t')

tr.Glk+a,t' —t) Tr G) (K, )G (K + q, —t')7,]

(A7)
(A8)

For $%, we sum the same set of diagrams in Fig. 28,
except that each of the spin density operator S* has a
spin-dependence [Eq. (30)], which leads to a (—1) extra
factor. Thus, we obtain

—1

Xira (@, w) = x(5)(a,w) |1 = Ux(5)(q,w) (A10)

For the transverse spin susceptibility, the computation
can be simplified in the following way: instead of writing
the interaction term as ~ Upyp, as for Eq. (Al), we can



instead write it as ~ —US+S~. More precisely, we write
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(A12)

The new forms of the interaction vertices are depicted in
Fig. 29(a), (b). Using this new interaction form, the RPA
series of diagrams, depicted in Fig. 29(c), have the same
structure as for the longitudinal spin or density suscep-
tibility cases. In particular, in the frequency domain the
summation of the series yields

-1
Xira (@) = X0y (a.0) [1 = Ux (@w)] . (A13)

This is the matrix form for Eq. (46).

3. RPA renormalisation of the AFM order
parameter

A more general method to calculate m, from the def-
initions of m (Eq. (15)) and $* (Eq. (30))7 is to rewrite
Eq. (15) using the single-particle Green’s functions of
Egs. (A2),(A3), following Schrieffer et. al [38]

Gyk,k+Q;w). (Al4)

e ==X [ 3

We can define in analogy to the bare Green’s function of
Eq. A2, arenormalised matrix Green’s function G4 (k, w),
where G4(k,k + Q;w) is the off-diagonal component.
Note that using the bare Green’s function in Eq. (A14)
gives back the MFT gap equation Eq. (29) at T = 0.
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The renormalised matrix Green’s function satisfies a
matrix Dyson equation
Gykw) " = Gkw) —By(kw).  (ALD)
The self-energy ¥, (k,w) can be approximated within the
RPA as follows [38]. We can take a yrpa diagram from
Figs. 28 or 29, replace an external wavy line by an inter-
action vertex, and contract two external legs from these
external interaction vertices by putting a relevant bare
Green’s function between the legs. This results in a
term that renormalises the Green’s function and the self-
energy can be identified in the usual manner by removing
the remaining two external legs. In general, order param-
eter suppression comes from low energy excitations, and
Schrieffer et. al [38] have shown that only xjip, diagrams
need to be taken into account. They have thus computed
mprpa numerically for general values of U (see their Fig.
7), which we use in this paper.

Appendix B: Mean-field finite temperature
susceptibilities

In this Appendix we give the full finite temperature
MFT result for the correlation function needed in the
structure factor of Eq. (69) that goes into the inelas-
tic spectrum Eq. (67). Instead of using the imaginary
time Matsubara formalism, we evaluate to the correla-
tion functions directly in the MFT from the Hamilto-
nian (28) as follows: First, for the connected correla-
tion function in Eq. (69), the original fermions belonging
to the full Brillouin Zone are transformed into the two-
band fermions of the RBZ via the Bogoliubov transfor-
mation Eq. (25). Next, the resulting correlation function
can be simplified because of the simple quadratic form
of the MFT Hamiltonian of Eq. (28): any given term
(€] s CaskogaCistr—qr.ga Conk g e Will be zero unless
the effective band index (a;, ¢ = 1,...,4), the spin in-
dex (g;), and the momenta all match up pairwise. Now,
we have <éj1k,géak79> = Nakg, Where nixy = f(Fxy) and
nokg = 1 — f(Fxg), and f(E) = [exp(E/kpT) + 1]~ de-
notes the Fermi-Dirac distribution. Hence, collecting all
the factors, we get the MFT static structure factor [see
Eq. (69)]

RBZ
Sgs_gf (Ak) - 694191 92,93 N4 Z Z gg4g2 Ak A, 4 )naqg4 (1 - an/sh) ’ (Bl)
S a,f=1,2 qq’
where
1 Ay, Ay, + €q€q A A
9492 Ak — Tk _ L1 94=—92 a *_ _ , 94 g2
o) =g ranea [1+ PR | +Viaatses |t + T
L, Ag,Ag, — €qéq’

+ §u5k_q+Qu5k_q/+Q |:1 + (7 )O‘+ﬁEqEq/ ) (B2)



and o and f are the effective band indices. The product
of the occupation numbers naqg, (1 — ngqg,) indicates
the Pauli blocking where the scattering from the initial
state naqg, to an already occupied final state ngqrg, is

34

forbidden. At 7' = 0, only the scattering from the filled
lower band to the empty upper band is allowed, while at
the finite temperature also other processes are possible.
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