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Abstract

In the parameterized problem MaxLin2-AA[k], we are given a system
with variables x1, . . . , xn consisting of equations of the form

∏
i∈I xi = b,

where xi, b ∈ {−1, 1} and I ⊆ [n], each equation has a positive integral
weight, and we are to decide whether it is possible to simultaneously
satisfy equations of total weight at least W/2 + k, where W is the total
weight of all equations and k is the parameter (it is always possible
for k = 0). We show that MaxLin2-AA[k] has a kernel with at most
O(k2 log k) variables and can be solved in time 2O(k log k)(nm)O(1). This
solves an open problem of Mahajan et al. (2006). The problem Max-
r-Lin2-AA[k, r] is the same as MaxLin2-AA[k] with two differences:
each equation has at most r variables and r is the second parameter. We
prove that Max-r-Lin2-AA[k, r] has a kernel with at most (2k − 1)r
variables.

1 Introduction

1.1 MaxLin2-AA and Max-r-Lin2-AA. While MaxSat and its special
case Max-r-Sat have been widely studied in the literature on algorithms and
complexity for many years, MaxLin2 and its special case Max-r-Lin2 are less
well known, but H̊astad [29] succinctly summarized the importance of these
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two problems by saying that they are “as basic as satisfiability.” These prob-
lems provide important tools for the study of constraint satisfaction problems
such as MaxSat and Max-r-Sat since constraint satisfaction problems can
often be reduced to MaxLin2 or Max-r-Lin2, see, e.g., [1, 2, 13, 14, 29, 31].
Accordingly, in the last decade, MaxLin2 and Max-r-Lin2 have attracted
significant attention in algorithmics.

The problem MaxLin2 can be stated as follows. We are given a system of
m equations in variables x1, . . . , xn, where each equation is

∏
i∈Ij xi = bj and

xi, bj ∈ {−1, 1}, j = 1, . . . ,m, and where each equation is assigned a positive
integral weight wj . We are required to find an assignment of values to the
variables in order to maximize the total weight of the satisfied equations.

Let W be the sum of the weights of all equations in S and let sat(S) be
the maximum total weight of equations that can be satisfied simultaneously.
To see that W/2 is a tight lower bound on sat(S) choose assignments to the
variables independently and uniformly at random. Then W/2 is the expected
weight of satisfied equations (as the probability of each equation being satisfied
is 1/2) and thus W/2 is a lower bound; to see the tightness consider a system
consisting of pairs of equations of the form

∏
i∈I xi = −1,

∏
i∈I xi = 1 of the

same weight, for some non-empty sets I ⊆ [n]. This leads to the following
decision problem:

MaxLin2-AA
Instance: A system S of equations

∏
i∈Ij xi = bj , where xi, bj ∈ {−1, 1},

j = 1, . . . ,m and where each equation is assigned a positive integral
weight wj ; and a nonnegative integer k.
Question: sat(S) ≥W/2 + k?

The maximization version of MaxLin2-AA (maximize k for which the answer
is Yes), has been studied in the literature on approximation algorithms, cf.
[29, 30]. These two papers also studied the following important special case
of MaxLin2-AA:

Max-r-Lin2-AA
Instance: A system S of equations

∏
i∈Ij xi = bj , where xi, bj ∈ {−1, 1},

|Ij | ≤ r, j = 1, . . . ,m; equation j is assigned a positive integral weight
wj , and a nonnegative integer k.
Question: sat(S) ≥W/2 + k?

H̊astad [29] proved that, as a maximization problem, Max-r-Lin2-AA
with any fixed r ≥ 3 (and hence MaxLin2-AA) cannot be approximated
within a constant factor c for any c > 1 unless P=NP (that is, the problem is
not in APX unless P=NP). H̊astad and Venkatesh [30] obtained some approx-
imation algorithms for the two problems. In particular, they proved that for
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Max-r-Lin2-AA there exists a constant c > 1 and a randomized polynomial-
time algorithm that, with probability at least 3/4, outputs an assignment with
an approximation ratio of at most cr

√
m.

The problem MaxLin2-AA was first studied in the context of parameter-
ized complexity by Mahajan et al. [33] who naturally took k as the parame-
ter1. We will denote this parameterized problem by MaxLin2-AA[k]. Despite
some progress [13, 14, 27], the complexity of MaxLin2-AA[k] has remained
prominently open in the research area of “parameterizing above guaranteed
bounds” that has attracted much recent attention (cf. [1, 13, 14, 27, 31, 33])
and that still poses well-known and longstanding open problems (e.g., how
difficult is it to determine if a planar graph has an independent set of size
at least (n/4) + k?). One can parameterize Max-r-Lin2-AA by k for any
fixed r (denoted by Max-r-Lin2-AA[k]) or by both k and r (denoted by
Max-r-Lin2-AA[k, r])2.

Define the excess for x0 = (x0
1, . . . , x

0
n) ∈ {−1, 1}n over S to be

εS(x0) =
m∑
j=1

cj
∏
i∈Ij

x0
i , where cj = wjbj .

Note that εS(x0) is the total weight of equations satisfied by x0 minus the total
weight of equations falsified by x0. The maximum possible value of εS(x0) is
the maximum excess of S. H̊astad and Venkatesh [30] initiated the study of the
excess of a system of equations and further research on the topic was carried
out by Crowston et al. [14] who concentrated on MaxLin2-AA. In this paper,
we study the maximum excess for both MaxLin2-AA and Max-r-Lin2-AA.
Note that the excess is a pseudo-boolean function [10], i.e., a function that
maps {−1, 1}n to the set of reals.

1.2 Main Results and Structure of the Paper. Roughly speaking, a
kernelization is a polynomial-time algorithm that transforms an instance I
of the parameterized decision problem under consideration into an equivalent
instance (called a kernel) I ′ of the same problem such that both the size of I ′
and the value of its parameter are bounded from above by a function in the
parameter of I only.

Henceforth, O(1) will denote an arbitrary absolute constant.
The main results of this paper are Theorems 3 and 4. In 2006 Mahajan

et al. [33] introduced MaxLin2-AA[k] and asked what is its complexity. We

1We provide basic definitions on parameterized algorithms and complexity in Subsection
1.4 below.

2While in the preceding literature only MaxLin2-AA[k] was considered, we introduce
and study Max-r-Lin2-AA[k, r] in the spirit of Multivariate Algorithmics as outlined by
Fellows et al. [23] and Niedermeier [36].
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answer this question in Theorem 3 by showing that MaxLin2-AA[k] admits a
kernel with at most O(k2 log k) variables. In our kernel, it is only the number
of variables that is bounded from above by a polynomial in k. In our kernel,
the number of equations is only bounded by an exponential function of k.
These two results imply that MaxLin2-AA[k] admits a kernel and, hence, is
fixed-parameter tractable (see Section 1.4).

The proof of Theorem 3 is based on two results: (a) If S is an irreducible
system (i.e., a system that cannot be reduced using Rule 1 or 2 defined in
Section 2) of MaxLin2-AA[k] and 2k ≤ m ≤ 2n/(2k−1) − 2, then S is a
Yes-instance; (b) there is an algorithm for MaxLin2-AA[k] of complexity
n2k(nm)O(1). To prove (a), we introduce a new notion of a sum-free subset of
vectors over F2 and show the existence of such subsets using linear algebra.
We also prove that MaxLin2-AA[k] can be solved in time 2O(k log k)(nm)O(1)

(Corollary 1).
The other main result of this paper, Theorem 4, gives a sharp lower bound

on the maximum excess for Max-r-Lin2-AA as follows. Let S be an irre-
ducible system and suppose that each equation contains at most r variables.
Let n ≥ (k − 1)r + 1 and let wmin be the minimum weight of an equation of
S. Then, in time O(mO(1)), we can find an assignment x0 to variables of S
such that εS(x0) ≥ k ·wmin. Essentially Theorem 4 follows from the existence
of sum-free sets of vectors satisfying some simple conditions.

In Section 2, we give some reduction rules for Max-r-Lin2-AA, describe an
algorithmH introduced by Crowston et al. [14] and give some properties of the
maximum excess, irreducible systems and AlgorithmH. In Section 3, we prove
Theorem 3 and Corollary 1. A key tool in our proof of Theorem 4 is a lemma
on sum-free subsets in a set of vectors from Fn

2 . The lemma and Theorem 4 are
proved in Section 4. We prove several corollaries of Theorem 4 in Section 5.
The corollaries are relevant to parameterized and approximation algorithms,
as well as lower bounds for the maxima of pseudo-boolean functions and their
applications in graph theory.

Our results on parameterized algorithms improve a number of previously
known results including those of Kim and Williams [31]. In Section 6, we
discuss some recent results and open problems.

1.3 Corollaries of Theorem 4. The following results have been obtained
for Max-r-Lin2-AA[k] when r is fixed and for Max-r-Lin2-AA[k, r]. Gutin
et al. [27] proved that Max-r-Lin2-AA[k] is fixed-parameter tractable and,
moreover, has a kernel with n ≤ m = O(k2). This kernel is, in fact, a kernel of
Max-r-Lin2-AA[k, r] with n ≤ m = O(9rk2). This kernel for Max-r-Lin2-
AA[k] was improved by Crowston et al. [14], with respect to the number
of variables, to n = O(k log k). For Max-r-Lin2-AA[k], Kim and Williams
[31] were the first to obtain a kernel with a linear number of variables, n =
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O(k), for fixed r. This kernel is, in fact, a kernel with the number of variables
n ≤ r(r + 1)k for Max-r-Lin2-AA[k, r]. In this paper, we obtain a kernel
with n ≤ (2k− 1)r for Max-r-Lin2-AA[k, r]. As an easy consequence of this
result we show that the maximization problem Max-r-Lin2-AA is in APX
if restricted to m = O(n) for all fixed r, where the weight of each equation
is bounded by a constant. This is in sharp contrast with the fact mentioned
above that for each r ≥ 3, Max-r-Lin2-AA with arbitrary weights is not in
APX unless P=NP.

Fourier analysis of pseudo-boolean functions, i.e., functions f : {−1, 1}n →
R, has been used in many areas of computer science (cf. [1, 11, 14, 37]). In
Fourier analysis, the Boolean domain is often assumed to be {−1, 1}n rather
than more usual {0, 1}n and we will follow this assumption in our paper. Here
we use the following well-known and easy to prove fact (see, e.g., [37]): each
function f : {−1, 1}n → R can be uniquely written as

f(x) = f̂(∅) +
∑
I∈F

f̂(I)
∏
i∈I

xi. (1)

where F ⊆ {I : ∅ 6= I ⊆ [n]}, [n] = {1, 2, . . . , n}, xi ∈ {−1, 1}, and f̂(I) are
non-zero reals. Formula (1) is the Fourier expansion of f and f̂(I) are the
Fourier coefficients of f . The right hand side of (1) is a polynomial and the
degree max{|I| : I ∈ F} of this polynomial will be called the degree of f . Let
A be a (0, 1)-matrix with n rows and |F| columns and with entries aij such
that aij = 1 if and only if term j in (1) contains xi.

In Section 5, we obtain the following lower bound on the maximum of a
pseudo-boolean function f of degree r:

max
x

f(x) ≥ f̂(∅) + b(rank(A) + r − 1)/rc ·min{|f̂(I)| : I ∈ F}, (2)

where rank(A) is the rank of A over F2. (Note that since rank(A) does not
depend on the order of the columns in A, we may order the terms in (1)
arbitrarily.)

To demonstrate the combinatorial usefulness of (2), we apply it to obtain
a short proof of the well-known lower bound of Edwards-Erdős on the maxi-
mum size of a bipartite subgraph in a graph (the Max Cut problem). Erdős
[21] conjectured and Edwards [20] proved that every connected graph with n
vertices and m edges has a bipartite subgraph with at least m/2 + (n− 1)/4
edges. For short graph-theoretical proofs, see, e.g., Bollobás and Scott [8] and
Erdős et al. [22]. We consider the Balanced Subgraph problem [4] that
generalizes Max Cut and show that our proof of the Edwards-Erdős bound
can be easily extended to Balanced Subgraph.
1.4 Parameterized Complexity and (Bi)kernelization. A parameterized
problem is a subset L ⊆ Σ∗ ×N over a finite alphabet Σ. L is fixed-parameter
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tractable (FPT, for short) if membership of an instance (x, k) in Σ∗ × N can
be decided in time f(k)|x|O(1), where f is a function of the parameter k only.
If membership can be decided in time O(|x|f(k)) then L belongs to the param-
eterized complexity class XP. It is known that FPT is a proper subset of XP
[19]. Analogs of NP are provided by the classes of parameterized problems of
the W[t] Hierarchy giving the tower: FPT ⊆ W[1] ⊆ W[2] ⊆ · · · ⊆ XP. For
the definition of the classes W[t], see, e.g., [19, 24].

Given a pair L,L′ of parameterized problems, a bikernelization from L
to L′ is a polynomial-time algorithm that maps an instance (x, k) to an in-
stance (x′, k′) (the bikernel) such that (i) (x, k) ∈ L if and only if (x′, k′) ∈ L′,
(ii) k′ ≤ f(k), and (iii) |x′| ≤ g(k) for some functions f and g. The function
g(k) is called the size of the bikernel. The notion of a bikernelization was
introduced in [1], where it was observed that a parameterized problem L is
fixed-parameter tractable if and only if it is decidable and admits a biker-
nelization to a parameterized problem L′. A kernelization of a parameterized
problem L is simply a bikernelization from L to itself; the bikernel is the kernel,
and g(k) is the size of the kernel. Due to the importance of polynomial-time
kernelization algorithms in applied multivariate algorithmics, low degree poly-
nomial size kernels and bikernels are of considerable interest, and the subject
has developed substantial theoretical depth, cf. [1, 5, 6, 7, 18, 24, 25, 26, 27].

The case of several parameters k1, . . . , kt, as for Max-r-Lin2-AA[k, r], can
be reduced to the one parameter case by setting k = k1 + · · · + kt, see, e.g.,
[18]. We remark that other ways of handling multiple parameters (other than
just adding them up) is an area of active investigation, e.g., see [23].

2 Maximum Excess, Irreducible Systems and Algo-
rithm H

Recall that an instance of MaxLin2-AA consists of a system S of equations∏
i∈Ij xi = bj , j ∈ [m], where ∅ 6= Ij ⊆ [n], bj ∈ {−1, 1}, xi ∈ {−1, 1}. An

equation
∏

i∈Ij xi = bj has an integral positive weight wj . Recall that the

excess for x0 = (x0
1, . . . , x

0
n) ∈ {−1, 1}n over S is εS(x0) =

∑m
j=1 cj

∏
i∈Ij x

0
i ,

where cj = wjbj . The excess εS(x0) is the total weight of equations satisfied by
x0 minus the total weight of equations falsified by x0. The maximum possible
value of εS(x0) is the maximum excess of S.

Remark 1. Observe that the answer to MaxLin2-AA is Yes if and only if
the maximum excess is at least 2k.

Remark 2. The excess εS(x) is a pseudo-boolean function and its Fourier
expression is εS(x) =

∑m
j=1 cj

∏
i∈Ij xi. Moreover, observe that every pseudo-

boolean function f(x) =
∑

I∈F f̂(I)
∏

i∈I xi (where f̂(∅) = 0) is the excess
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over the system
∏

i∈I xi = bI , I ∈ F , where bI = 1 if f̂(I) > 0 and bI = −1

if f̂(I) < 0, with weights |f̂(I)|. Thus, studying the maximum excess over a
MaxLin2-AA-system (with real weights) is equivalent to studying the maxi-
mum of a pseudo-boolean function.

Consider two reduction rules for MaxLin2 studied in [27]. Rule 1 was
studied before in [30].

Reduction Rule 1. If we have, for a subset I of [n], an equation
∏

i∈I xi =
b′I with weight w′I , and an equation

∏
i∈I xi = b′′I with weight w′′I , then we

replace this pair by one of these equations with weight w′I +w′′I if b′I = b′′I and,
otherwise, by the equation whose weight is bigger, setting its new weight to
|w′I −w′′I |. If the resulting weight is 0, we delete the equation from the system.

Remark 3. In what follows, we will use the fact that a maximum independent
set in a set M of vectors from Fn

2 , can be found in polynomial time in n and
|M | [32].

Henceforth, rank(A) will denote the rank of A over F2.

Reduction Rule 2. Let A be the matrix over F2 corresponding to the set of
equations in S, such that aji = 1 if i ∈ Ij and 0, otherwise. Let t = rank(A)
and suppose columns ai1 , . . . , ait of A are linearly independent. Then delete
all variables not in {xi1 , . . . , xit} from the equations of S.

Observe that after applying Rule 2, the resulting matrix A has rank equal
n.

Lemma 1. [27] Let S′ be obtained from S by Rule 1 or 2. Then the maximum
excess of S′ is equal to the maximum excess of S. Moreover, S′ can be obtained
from S in time polynomial in n and m.

If we cannot change a weighted system S using Rules 1 and 2, we call it
irreducible.

Lemma 2. Let S′ be a system obtained from S by first applying Rule 1 as
long as possible and then Rule 2 as long as possible. Then S′ is irreducible.

Proof. Let S∗ denote the system obtained from S by applying Rule 1 as long
as possible. Without loss of generality, assume that x1 6∈ {xi1 , . . . , xit} (see
the description of Rule 2) and thus Rule 2 removes x1 from S∗. To prove the
lemma it suffices to show that after the removal of x1 no pair of equations
has the same left hand side. Suppose that there is a pair of equations in S∗

which has the same left hand side after the removal of x1; let
∏

i∈I′ xi = b′

and
∏

i∈I′′ xi = b′′ be such equations and let I ′ = I ′′ ∪ {1}. Then the entries
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of the first column of A, a1, corresponding to the pair of equations are 1 and
0, but in all the other columns of A the entries corresponding to the pair of
equations are either 1,1 or 0,0. Thus, a1 is independent from all the other
columns of A, a contradiction.

Let S be an irreducible system of MaxLin2-AA. Consider the following
algorithm. We assume that, in the beginning, no equation or variable in S is
marked.

Algorithm H
While the system S is nonempty do the following:
1. Choose an equation

∏
i∈I xi = b and mark a variable xl such that

l ∈ I.

2. Mark this equation and delete it from the system.

3. Replace every equation
∏

i∈I′ xi = b′ in the system containing xl by∏
i∈I∆I′ xi = bb′, where I∆I ′ is the symmetric difference of I and I ′ (the

weight of the equation is unchanged).

4. Apply Reduction Rule 1 to the system.

The maximum H-excess of S is the maximum possible total weight of
equations marked by H for S taken over all possible choices in Step 1 of H.
The following lemma indicates the potential power of H.

Lemma 3. Let S be an irreducible system. Then the maximum excess of S
equals its maximum H-excess. Furthermore, for any set of equations marked
by Algorithm H, in polynomial time, we can find an assignment of excess at
least the total weight of marked equations.

Proof. We first prove that the maximum excess of S is not smaller than its
maximum H-excess. By construction, for any assignment that satisfies all
the marked equations, exactly half of the non-marked equations are satisfied.
Therefore it suffices to find an assignment to the variables such that all marked
equations are satisfied. Assign arbitrary values to the unmarked variables.
Then assign values to the marked variables in the order opposite to which
they were marked such that the corresponding marked equations are satisfied.

The above argument also proves the last statement of the lemma.
Now we prove that the maximum H-excess of S is not smaller than its

maximum excess. Let x0 = (x0
1, . . . , x

0
n) be an assignment that achieves the

maximum excess, t. Observe that if at each iteration ofH we mark an equation
that is satisfied by x0, then H will mark equations of total weight t.
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3 MaxLin2-AA

The following two theorems provide a basis for proving Theorem 3, the main
result of this section.

Theorem 1. There exists an O(n2k(nm)O(1))-time algorithm for MaxLin2-
AA[k] that returns an assignment of excess of at least 2k if one exists, and
returns no otherwise.

Proof. Suppose we have an instance L of MaxLin2-AA[k] that is reduced by
Rules 1 and 2, and that the maximum excess of L is at least 2k. Let A be the
matrix introduced in Rule 2. Pick n equations e1, . . . , en such that their rows
in A are linearly independent. An assignment of excess at least 2k must either
satisfy one of these equations, or falsify them all. If they are all falsified, then
the system of equations ē1, . . . , ēn, where each ēi is ei with the changed right
hand side, has a unique solution, an assignment of values to x1, . . . , xn. If this
assignment does not give excess at least 2k for L, then any assignment that
leads to excess at least 2k must satisfy at least one of e1, . . . , en. Thus, by
Lemma 3, algorithm H can mark one of these equations and achieve an excess
of at least 2k.

This gives us the following depth-bounded search tree. At each node N of
the tree, reduce the system by Rules 1 and 2, and let n′ be the number of vari-
ables in the reduced system. Then find n′ equations e1, . . . , en′ corresponding
to linearly independent vectors. Find an assignment of values to x1, . . . , xn′

that falsifies all of e1, . . . , en′ . Check whether this assignment achieves excess
of at least 2k − w∗, where w∗ is total weight of equations marked by H in all
predecessors of N . If it does, then return the assignment and stop the algo-
rithm. Otherwise, split into n′ branches. In the i’th branch, run an iteration
of H marking equation ei. Then repeat this algorithm for each new node.
Whenever the total weight of marked equations is at least 2k, return the suit-
able assignment. Clearly, the algorithm will terminate without an assignment
if the maximum excess of L is less than 2k.

All the operations at each node take time O((nm)O(1)), and there are less
than n2k+1 nodes in the search tree. Therefore this algorithm takes time
O(n2k(nm)O(1)).

The following lemma is used to prove Theorem 2, but it might be also of
independent interest. Let K and M be sets of vectors in Fn

2 such that K ⊆M .
We say K is M -sum-free if no sum of two or more distinct vectors in K is
equal to a vector in M . Observe that K is M -sum-free if and only if K is
linearly independent and no sum of vectors in K is equal to a vector in M\K.

Lemma 4. Let M be a set in Fn
2 such that M contains a basis of Fn

2 , the zero
vector is in M and |M | < 2n. If k is a positive integer and k+1 ≤ |M | ≤ 2n/k
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then, in time polynomial in |M | and n, we can find an M -sum-free set K of
k + 1 vectors.

Proof. We first consider the case when k = 1. Since |M | < 2n and the zero
vector is in M , there is a non-zero vector v 6∈ M . Since M contains a basis
for Fn

2 , the vector v can be written as a sum of vectors in M . Consider such
a sum with the minimum number of summands: v = u1 + · · · + u`, ` ≥ 2.
Since u1 + u2 6∈ M , we may set K = {u1, u2}. We can find such a set K in
polynomial time by looking at every pair in M ×M .

We now assume that k > 1. Since k + 1 ≤ |M | ≤ 2n/k and k ≥ 2, we have
n ≥ k + 1.

We proceed with a greedy algorithm that tries to find K. Suppose we
have a set L = {a1, . . . , al} of vectors in M , l ≤ k, such that no sum of
two or more elements of L is in M . We can extend this set to a basis, so
a1 = (1, 0, 0, . . . , 0), a2 = (0, 1, 0, . . . , 0) and so on. For every a ∈ M\L we
check whether M\{a1, . . . , al, a} has an element that agrees with a in all co-
ordinates l + 1, . . . , n. If no such element exists, then we add a to the set L,
as no element in M can be expressed as a sum of a and a subset of L.

If our greedy algorithm finds a set L of size at least k + 1, we are done
and L is our set K. Otherwise, we have stopped at l ≤ k. In this case, we
do the next iteration as follows. Recall that L is part of a basis of M such
that a1 = (1, 0, 0, . . . , 0), a2 = (0, 1, 0, . . . , 0), . . . . We create a new set M ′ in
Fn′

2 , where n′ = n − l. We do this3 by removing the first l co-ordinates from
M , and then identifying together any vectors that agree in the remaining n′

co-ordinates. We are in effect identifying together any vectors that only differ
by a sum of some elements in L. It follows that every element of M ′ was
created by identifying together at least two elements of M , since otherwise
we would have had an element in M\L that should have been added to L by
our greedy algorithm. Therefore it follows that |M ′| ≤ |M |/2 ≤ 2n/k−1. From
this inequality and the fact that n′ ≥ n− k, we get that |M ′| ≤ 2n

′/k. It also
follows by the construction of M ′ that M ′ has a basis for Fn′

2 , and that the
zero vector is in M ′. (Thus, we have |M ′| ≥ n′+ 1.) If n′ ≥ k+ 1 we complete
this iteration by running the algorithm on the set M ′ as in the first iteration.
Otherwise (n′ ≤ k) and the algorithm stops.

Since each iteration of the algorithm decreases n′, the algorithm termi-
nates. Now we prove that at some iteration, the algorithm will actually find
a set K of k + 1 vectors. To show this it suffices to prove that we will never
reach the point when n′ ≤ k. Suppose this is not true and we obtained n′ ≤ k.
Observe that n′ ≥ 1 (before that we had n′ ≥ k + 1 and we decreased n′ by at
most k) and |M ′| ≥ n′ + 1. Since |M ′| ≤ 2n

′/k, we have n′ + 1 ≤ 2n
′/k, which

3For the reader familiar with vector space terminology: Fn′
2 is Fn

2 modulo span(L), the

subspace of Fn
2 spanned by L, and M ′ is the image of M in Fn′

2 .
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is impossible due to n′ ≤ k unless n′ = 1 and k = 1, a contradiction with the
assumption that k > 1.

It is easy to check that the running time of the algorithm is polynomial in
|M | and n.

Theorem 2. Let S be an irreducible system of MaxLin2-AA[k] and let k ≥ 1.
If 2k ≤ m ≤ min{2n/(2k−1) − 1, 2n − 2}, then the maximum excess of S is at
least 2k. Moreover, we can find an assignment with excess of at least 2k in
time O(mO(1)).

Proof. Consider a set M of vectors in Fn
2 corresponding to equations in S as

follows: for each equation
∏

i∈I xi = b in S, define a vector v = (v1, . . . , vn) ∈
M , where vi = 1 if i ∈ I and vi = 0, otherwise. Add the zero vector to M .

As S is reduced by Rule 2 and 2k ≤ m ≤ min{2n/(2k−1) − 1, 2n − 2}, we
have that M contains a basis for Fn

2 and 2k ≤ |M | ≤ min{2n/(2k−1), 2n − 1}.
Therefore, using Lemma 4 we can find an M -sum-free set K of 2k vectors.
Let {ej1 , . . . , ej2k} be the corresponding set of equations. Run Algorithm H,
choosing at Step 1 an equation of S from {ej1 , . . . , ej2k} each time, and let S′

be the resulting system. Algorithm H will run for 2k iterations of the while
loop as no equation from {ej1 , . . . , ej2k} will be deleted before it has been
marked.

Indeed, suppose that this is not true. Then for some ejl and some other
equation e in S, after applying Algorithm H for at most l − 1 iterations ejl
and e contain the same variables. Thus, there are vectors vj ∈ K and v ∈ M
and a pair of nonintersecting subsets K ′ and K ′′ of K \ {v, vj} such that
vj +

∑
u∈K′ u = v +

∑
u∈K′′ u. Thus, v = vj +

∑
u∈K′∪K′′ u, contradicting the

definition of K.
Thus, by Lemma 3, we are done.

Theorem 3. The problem MaxLin2-AA[k] has a kernel with at most O(k2 log k)
variables.

Proof. Let L be an instance of MaxLin2-AA[k] and let S be the system of L
with m equations and n variables. We may assume that S is irreducible. Let
the parameter k be an arbitrary positive integer.

If m < 2k then n < 2k = O(k2 log k) and we are done. Otherwise, if
2k ≤ m ≤ 2n/(2k−1) − 2 then, by Theorem 2 and Remark 1, the answer to L
is yes and the corresponding assignment can be found in polynomial time. If
m ≥ n2k − 1 then, by Theorem 1, we can solve L in polynomial time.

Finally we consider the case 2n/(2k−1) − 2 ≤ m ≤ n2k − 2. Hence, n2k ≥
2n/(2k−1). Therefore, 4k2 ≥ 2 + n/ log n ≥

√
n and n ≤ (2k)4. Hence, n ≤

4k2 log n ≤ 4k2 log(16k4) = O(k2 log k).
Since S is irreducible, m < 2n ≤ 2O(k2 log k) and thus we have obtained the

desired kernel.
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Corollary 1. The problem MaxLin2-AA[k] can be solved in time 2O(k log k)(nm)O(1).

Proof. Let L be an instance of MaxLin2-AA[k]. By Theorem 3, in time
O((nm)O(1)) either we solve L or we obtain a kernel with at most O(k2 log k)
variables. In the second case, we can solve the reduced system (kernel)
by the algorithm of Theorem 1 in time [O(k2 log k)]2k[O(k2 log k)m]O(1) =
2O(k log k)mO(1). Thus, the total time is 2O(k log k)(nm)O(1).

4 Max-r-Lin2-AA

The following theorem is the main result of this section.

Theorem 4. Let S be an irreducible system and suppose that each equation
contains at most r variables. Let n ≥ (k−1)r+1 and let wmin be the minimum
weight of an equation of S. Then, in time O(mO(1)), we can find an assignment
x0 to variables of S such that εS(x0) ≥ k · wmin.

We can easily prove Theorem 4 in the same way as we proved Theorem 2,
but instead of Lemma 4, we use Lemma 5.

Lemma 5. Let M be a set of vectors in Fn
2 such that M contains a basis of

Fn
2 . Suppose that each vector of M contains at most r non-zero coordinates.

If k ≥ 1 is an integer and n ≥ r(k − 1) + 1, then in time O(|M |O(1)), we can
find a subset K of M of k vectors such that K is M -sum-free.

Proof. Since the case of k = 1 is trivial, we may assume that k ≥ 2. Let
1 = (1, . . . , 1) be the vector in Fn

2 in which every coordinate is 1. Note that
1 6∈M. By our assumption M contains a basis B of Fn

2 and we may write 1 as
a sum of some vectors of B. This implies that 1 can be expressed as follows:
1 = v1 + v2 + · · · + vs, where {v1, . . . , vs} ⊆ B and v1, . . . , vs are linearly
independent, and we can find such an expression in polynomial time.

For each v ∈ M\{v1, . . . , vs}, consider the set Sv = {v, v1, . . . , vs}. In
polynomial time, we may check whether Sv is linearly independent. Consider
two cases:

Case 1: Sv is linearly independent for each v ∈M\{v1, . . . , vs}. Then {v1, . . . , vs}
is M -sum-free (here we also use the fact that {v1, . . . , vs} is linearly in-
dependent). Since each vi has at most r positive coordinates, we have
sr ≥ n > r(k − 1). Hence, s > k − 1 implying that s ≥ k. Thus,
{v1, . . . , vk} is the required set K.

Case 2: Sv is linearly dependent for some v ∈ M\{v1, . . . , vs}. Then we
can find (in polynomial time) I ⊆ [s] such that v =

∑
i∈I vi. Thus,

we have a shorter expression for 1: 1 = v′1 + v′2 + · · · + v′s′ , where
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{v′1, . . . , v′s′} = {v} ∪ {vi : i /∈ I}. Note that {v′1, . . . , v′s′} is linearly
independent.

Since s ≤ n and Case 2 produces a shorter expression for 1, after at most
n iterations of Case 2 we will arrive at Case 1.

Remark 4. To see that the inequality n ≥ r(k − 1) + 1 in the theorem is
best possible assume that n = r(k − 1) and consider a partition of [n] into
k − 1 subsets N1, . . . , Nk−1, each of size r. Let S be the system consisting of
subsystems Sp, p ∈ [k − 1], such that a subsystem Sp is comprised of equa-
tions

∏
i∈I xi = −1 of weight 1 for every I such that ∅ 6= I ⊆ Np. Now

assume without loss of generality that Np = [r]. Observe that the assignment
(x1, . . . , xr) = (1, . . . , 1) falsifies all equations of Sp but by setting xj = −1 for
any j ∈ [r] we satisfy the equation xj = −1 and turn the remaining equations
into pairs of the form

∏
i∈I xi = −1 and

∏
i∈I xi = 1. Thus, the maximum

excess of Sp is 1 and the maximum excess of S is k − 1.

Remark 5. It is easy to check that Theorem 4 holds when the weights of
equations in S are real numbers, not necessarily integers, assuming unit cost
real arithmetic (as in the model of Blum et al. [3]).

5 Applications of Theorem 4

Theorem 5. The problem Max-r-Lin2-AA[k, r] has a kernel with at most
(2k − 1)r variables.

Proof. Let T be the system of an instance of Max-r-Lin2-AA[k, r]. After
applying Rules 1 and 2 to T as long as possible, we obtain a new system S
which is irreducible. Let n be the number of variables in S and observe that
the number of variables in an equation in S is bounded by r (as in T ). If
n ≥ (2k − 1)r + 1, then, by Theorem 4 and Remark 1, S is a Yes-instance
of Max-r-Lin2-AA[k, r] and, hence, by Lemma 1, S and T are both Yes-
instances of Max-r-Lin2-AA[k, r]. Otherwise n ≤ (2k − 1)r and since S is
irreducible, for the number m of equations in S, we have m < 2n ≤ 2(2k−1)r.
Thus, we have the required kernel.

Corollary 2. The maximization problem Max-r-Lin2-AA is in APX if re-
stricted to m = O(n) and the weight of each equation is bounded by a fixed
constant.

Proof. It follows from Theorem 4 and Remark 1 that the answer to Max-r-
Lin2-AA, as a decision problem, is Yes as long as 2k ≤ b(n+ r− 1)/rc. This
implies approximation ratio at most W/(2b(n + r − 1)/rc) which is bounded
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by a constant provided m = O(n) and the weight of each equation is bounded
by a constant (then W = O(n)).

The (parameterized) Boolean Max-r-Constraint Satisfaction Problem (Max-
r-CSP) generalizes MaxLin2-AA[k, r] as follows: We are given a set Φ of
Boolean functions, each involving at most r variables, and a collection F of m
Boolean functions, each f ∈ F being a member of Φ, and each acting on some
subset of the n Boolean variables x1, x2, . . . , xn (each xi ∈ {−1, 1}). We are
to decide whether there is a truth assignment to the n variables such that the
total number of satisfied functions is at least E + k, where E is the average
value of the number of satisfied functions. The parameters are k and r.

Using the bikernelization algorithm described in [1, 14] and our new kernel
result, it easy to see that Max-r-CSP with parameters k and r admits a biker-
nel with at most (k2r+1−1)r variables. This result improves the corresponding
result of Kim and Williams [31] (n ≤ kr(r + 1)2r).

The following result is essentially a corollary of Theorem 4 and Remark 5.

Theorem 6. Let
f(x) = f̂(∅) +

∑
I∈F

f̂(I)
∏
i∈I

xi (3)

be a pseudo-boolean function of degree r. Then

max
x

f(x) ≥ f̂(∅) + b(rank(A) + r − 1)/rc ·min{|f̂(I)| : I ∈ F}, (4)

where A is a (0, 1)-matrix with entries aij such that aij = 1 if and only if term
j in (3) contains xi and rank(A) is the rank of A over F2. One can find an
assignment of values to x satisfying (4) in time O((n|F|)O(1)).

Proof. By Remark 2 the function f(x) − f̂(∅) =
∑

I∈F f̂(I)
∏

i∈I xi is the

excess over the system
∏

i∈I xi = bI , I ∈ F , where bI = +1 if f̂(I) > 0 and

bI = −1 if f̂(I) < 0, with weights |f̂(I)|. Clearly, Rule 1 will not change
the system. Using Rule 2 we can replace the system by an equivalent one (by
Lemma 1) with rank(A) variables. By Lemma 2, the new system is irreducible
and we can now apply Theorem 4. By this theorem, Remark 2 and Remark
5, maxx f(x) ≥ f̂(∅) + k∗min{|f̂(I)| : I ∈ F}, where k∗ is the maximum
value of k satisfying rank(A) ≥ (k − 1)r + 1. It remains to observe that
k∗ = b(rank(A) + r − 1)/rc.

We next give a new proof of the Edwards-Erdős bound, we need the fol-
lowing well-known and easy-to-prove lemma [9]. For a graph G = (V,E), an
incidence matrix is a (0, 1)-matrix with entries me,v, e ∈ E, v ∈ V such that
me,v = 1 if and only if v is incident to e.
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Lemma 6. The rank over F2 of an incidence matrix M of a connected graph
equals |V | − 1.

Theorem 7. Let G = (V,E) be a connected graph with n vertices and m
edges. Then G contains a bipartite subgraph with at least m

2 + n−1
4 edges. Such

a subgraph can be found in polynomial time.

Proof. Let V = {v1, v2, . . . , vn} and let c : V → {−1, 1} be a 2-coloring of
G. Observe that the maximum number of edges in a bipartite subgraph of
G equals the maximum number of properly colored edges (i.e., edges whose
end-vertices received different colors) over all 2-colorings of G. For an edge
e = vivj ∈ E consider the following function fe(x) = 1

2(1 − xixj), where
xi = c(vi) and xj = c(vj) and observe that fe(x) = 1 if e is properly colored
by c and fe(x) = 0, otherwise. Thus, f(x) =

∑
e∈E fe(x) is the number of

properly colored edges for c. We have f(x) = m
2 −

1
2

∑
e∈E xixj . By Theorem

6, maxx f(x) ≥ m/2 + b(rank(A) + 2− 1)/2c/2. Observe that matrix A in this
bound is an incidence matrix of G and, thus, by Lemma 6 rank(A) = n − 1.
Hence, maxx f(x) ≥ m

2 + 1
2b

n
2 c ≥

m
2 + n−1

4 as required.

This theorem can be extended to the Balanced Subgraph problem [4],
where we are given a graph G = (V,E) in which each edge is labeled either by
= or by 6= and we are asked to find a 2-coloring of V such that the maximum
number of edges is satisfied; an edge labeled by = (6=, resp.) is satisfied if and
only if the colors of its end-vertices are the same (different, resp.).

Theorem 8. Let G = (V,E) be a connected graph with n vertices and m
edges labeled by either = or 6=. There is a 2-coloring of V that satisfies at
least m

2 + n−1
4 edges of G. Such a 2-coloring can be found in polynomial time.

Proof. Let V = {v1, v2, . . . , vn} and let c : V → {−1, 1} be a 2-coloring of
G. Let xp = c(vp), p ∈ [n]. For an edge vivj ∈ E we set sij = 1 if vivj
is labeled by 6= and sij = −1 if vivj is labeled by =. Then the function
1
2

∑
vivj∈E(1− sijxixj) counts the number of edges satisfied by c. The rest of

the proof is similar to that in the previous theorem.

6 Discussion and Open Problems

The kernels obtained in Theorems 3 and 5 are not of polynomial size as the
number of equations in the kernels is not bounded by a polynomial in the
parameter(s). The existence of polynomial-size kernels for MaxLin2-AA[k]
and Max-r-Lin2-AA[k, r] remains an open question.

Perhaps the kernel obtained in Theorem 3 or the algorithm of Corollary
1 can be improved if we can find a structural characterization of irreducible
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systems for which the maximum excess is less than 2k which would be of
interest in itself.

Let F be a CNF formula with clauses C1, . . . , Cm of sizes r1, . . . , rm. Since
the probability of Ci being satisfied by a random assignment is 1 − 2−ri , the
expected (average) number of satisfied clauses is E =

∑m
i=1(1 − 2−ri). It is

natural to consider the following parameterized problem MaxSat-AA[k]: de-
cide whether there is a truth assignment that satisfies at least E + k clauses.
When there is a constant r such that |Ci| ≤ r for each i = 1, . . . ,m, MaxSat-
AA[k] is denoted by Max-r-Sat-AA[k]. Mahajan et al. [33] asked what is the
complexity of Max-r-Sat-AA[k] and Alon et al. [1] proved that it is fixed-
parameter tractable [1]. Recently, Crowston et al. [16] determined the com-
plexity of MaxSat-AA[k] by showing that MaxSat-AA[2] is NP-complete.
Thus, MaxSat-AA[k] is not fixed-parameter tractable unless P=NP.

In a graph G = (V,E), a bisection (X,Y ) is a partition of V into sets X
and Y such that |X| ≤ |Y | ≤ |X| + 1. The size of (X,Y ) is the number of
edges between X and Y . In Max Bisection, we are given a graph G with
n ≥ 2 vertices and m edges and asked to find a bisection of maximum size. It
is not hard to see that dm/2e is a tight lower bound on the maximum size of a
bisection of G. Gutin and Yeo [28] proved that Max Bisection parameterized
above dm/2e has a kernel with O(k2) vertices. Mnich and Zenklusen [34]
improved it to O(k) vertices. Gutin and Yeo [28] also showed that d nm

2(n−1)e is
another tight lower bound on the maximum size of a bisection of G. Clearly,
d nm

2(n−1)e ≥ dm/2e. Gutin and Yeo [28] left it as an open problem to determine

the complexity of Max Bisection parameterized above d nm
2(n−1)e.

In Theorem 7, we gave another proof that every connected graph G with
n vertices and m edges, has a bipartite subgraph with at least ` = m

2 + n−1
4

edges. Recently, Crowston et al. [17] solved an open question by showing that
deciding whether G contains a bipartite subgraph with at least ` + k edges is
fixed-parameter tractable and the problem admits a kernel with O(k5) vertices.
Crowston et al. [15] improved this to O(k3) and showed that such a kernel
exists for the more general problem of deciding whether a connected graph
with edges labelled by = and 6=, has a balanced subgraph with at least ` + k
edges (for the bound, see Theorem 8). Can O(k3) be further improved?

Finally, the entire area of parameterizing above or below tight guaranteed
bounds offers many challenging open problems in parameterized complexity.
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