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With the advent of quantum information, the violation of a Bell inequality is used to witness the absence

of an eavesdropper in cryptographic scenarios such as key distribution and randomness expansion. One of

the key assumptions of Bell’s theorem is the existence of experimental ‘‘free will,’’ meaning that

measurement settings can be chosen at random and independently by each party. The relaxation of this

assumption potentially shifts the balance of power towards an eavesdropper. We consider a no-signaling

model with reduced ‘‘free will’’ and bound the adversary’s capabilities in the task of randomness

expansion.

DOI: 10.1103/PhysRevLett.109.160404 PACS numbers: 03.65.Ta, 03.65.Ud

Introduction.—A source of random data that can be
trusted to be truly random, and not just repeating a
predetermined, apparently random, sequence is a vital
resource in a vast array of applications, not least cryptog-
raphy. Within the scientific community, numerical tools
such as Monte Carlo simulations find that classically gen-
erated pseudo-randomness is insufficient [1] while in a
much broader community, the lack of trust in randomness
generation leads, for instance, to widespread accusations
of deck rigging in online gambling. Quantum mechanics
has long been known to provide intrinsic randomness (see
references in [2]), but it has recently been noticed that Bell
tests allow us to go further: they provide quantitative
bounds for the amount of randomness that is generated
[3–6]. Moreover, these bounds are device-independent, in
the sense that they are obtained only from the observed
statistics, without reference to a description of the physical
system or the implemented operations. Two different types
of bound can be achieved, either by assuming the validity
of quantum mechanics or merely with the weaker assump-
tion of no-signaling in a fully black-box scenario.

In a randomness expansion protocol [3,6], a preestab-
lished stock of randomness (for instance, a string of ran-
dom bits) is used to make measurement selections in a
series of Bell tests, operated by two parties (Alice and Bob)
in distantly separated parts of the same laboratory. The
correlation statistics of the outcomes are used to violate a
Bell inequality [7], giving a quantitative bound on the
degree to which an adversary or eavesdropper (Eve) is
excluded. This bound can be used to measure the random-
ness of the outcomes, which can be added to the stock of
private randomness [3]. To certify the private randomness
produced, it is crucial to not only determine what we call

the guessing probability G (defined below), but also to
ensure that Eve cannot somehow fake this bound, perhaps
by bypassing some of the assumptions used in the deriva-
tion of the bound. One of these assumptions is that Alice
and Bob can randomly and independently select their
measurements. While Alice and Bob could rely on making
these choices with their own free will, in practice they use
random number generators, which Eve could potentially
manipulate to deliberately introduce patterns undetected
by standard statistical tests, giving rise to the interpretation
that Eve compromises the experimental free will of Alice
and Bob.
We study the extent to which Eve, by influencing those

measurement choices, can manipulate the degree of viola-
tion (S) of a Bell test using a no-signaling model [8,9]. Eve
does her best to preprogram the outcomes of Alice’s and
Bob’s measurements so that, for prescribed S and degree
of influence upon Alice’s and Bob’s measurement choices,
her probability of guessing the measurement outcomes
correctly is maximized. The more influence she has, the
less ‘‘free will’’ can be attributed to Alice and Bob, and if
they wrongly assume that they have complete free will,
they can be fooled into thinking that their observed outputs
are not predetermined.
Previous discussions of the free will assumption have

quantified the concept in differing ways [8–11]. The
upshot is that free will seems to be a critical resource
for the violation of Bell inequalities in order to derive
their usual interpretation. Indeed, if free will is given
up on 41% of the runs of an experiment in the Clauser-
Horne-Shimony-Holt (CHSH) scenario [12], singlet
state correlations can be reproduced from classical
correlations [13].
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An operational way of quantifying randomness involves
the notion of guessing probability or predictability: a
process has large randomness if it is hard to guess its
outcomes. Here, we establish bounds on the average proba-
bility of guessing an outcome of a Bell test, for a given
amount of free will, using a variant of Hall’s relaxed Bell
inequalities [14]. While these results require only the
no-signaling restriction, for comparison we also establish
bounds on a quantum-limited Evewho eavesdrops each run
independently.

Model.—We work in the simplest scenario of two
parties, each with two inputs and two outputs, for which
the CHSH inequality [12] is the unique Bell test. The
devices that Alice and Bob use are treated as black boxes,
potentially prepared by Eve. The inputs are labelled Aj and

Bk respectively, where j, k 2 f0; 1g, and the outputs are
labelled a, b 2 f0; 1g. The CHSH test is repeated a large
number of times, yielding a probability distribution of
the outputs f~pða; bjAj; BkÞg, which we assume to be

no-signaling. In terms of these probabilities, the CHSH
correlation function S can be defined as

S ¼
��������

X
a;b;j;k2f0;1g

ð�1Þaþbþjk ~pða; bjAj; BkÞ
��������: (1)

By imposing that the probability of each input is equally
likely, pðAj; BkÞ ¼ 1

4 for all j, k 2 f0; 1g, Alice and Bob,

with no knowledge of the underlying strategy, are not able
to detect any deviations of these probabilities from the
uniform distribution ( 14 ,

1
4 ,

1
4 ,

1
4 ) that they expect. Eve’s

control over the inputs and outputs is described by an
underlying variable �, corresponding to conditional
probability densities ~pða; bjAj; Bk; �Þ and �ð�jAj; BkÞ.
These are related by Bayes’ theorem: ~pða; bjAj; BkÞ ¼R
d�~pða; bjAj; Bk; �Þ�ð�jAj; BkÞ. The summation over b

and a, respectively, produce the marginals ~pðAÞðajAj; �Þ
and ~pðBÞðbjBk; �Þ. No-signaling imposes that the marginal

probabilities ~pðAÞ and ~pðBÞ are independent of Bk and Aj,

respectively.
Guessing probability.—The guessing probability, or

predictability, Gð�Þ for a given underlying variable � is
the maximum over all these marginal probabilities

Gð�Þ ¼ max
a;Aj;b;Bk

½~pðAÞðajAj; �Þ; ~pðBÞðbjBk; �Þ�;

i.e., it upper bounds the probability of Eve, who knows �,
guessing one of Alice’s or Bob’s outcomes. For Alice, Bob
or any observer without access to the underlying variables,
the guessing probability is the weighted average of Gð�Þ
over �, i.e.,

G ¼
Z

d��ð�ÞGð�Þ; (2)

where �ð�Þ is the probability distribution of the variable �.
When G ¼ 1

2 (G ¼ 1) the underlying model is completely

indeterministic (deterministic).
For a given Bell violation, tight bounds for G have been

calculated in the literature [15] for the case of complete
free will. In order to formulate the relaxation of free will,
we define a free will parameter, P, as the maximum proba-
bility that a particular pair of measurement settings is
chosen, maximized over all control variables �, i.e.,

P ¼ max
j;k;�

pðAj; Bkj�Þ: (3)

This quantifies the maximum deviation of pðAj; Bkj�Þ
from the uniform distribution, i.e., the extent of Eve’s
influence over the supposedly free choice. For a two-party,
two-setting protocol, P takes values in the interval
½14 ; 1�; P ¼ 1

4 corresponds to the case of complete free

will, while P ¼ 1 corresponds to a deterministic selection
specified by Eve. This definition relates directly to the
probability that a pair of inputs is chosen for a given
underlying variable. While being more natural for our
model, this differs from that given in Ref. [8], which
involves conditional probability distributions of the under-
lying variable given the measurement inputs. Nevertheless,
a correspondence between the two can be found via
Bayes’s theorem. From these definitions, we obtain the
following theorem (proved in Ref. [16]):
Theorem 1: The maximum possible CHSH expectation

value SmaxðG;PÞ, for a guessing probabilityG and free will
parameter P, for any no-signaling model with pðAj; BkÞ ¼
1
4 (i.e., all inputs are equally likely), is

SmaxðG;PÞ ¼
(
4–8ð2G� 1Þð1� 3PÞ P � 1

3 ;

4 P � 1
3 :

(4)

We illustrate this result with three limiting cases. If Eve
knows exactly, for each instance of the measurement, what
will be measured, then Alice and Bob have no ‘‘free will’’
(P ¼ 1); their measurement settings are predetermined.
Eve can then preprogram the outcomes of the measure-
ments in such a way that the outcomes are completely
predictable (G ¼ 1), while allowing Alice and Bob to
attain any value of S up to its maximum value of 4. On
the other hand, if Eve has no prior knowledge of what will
be measured (P ¼ 1

4 ), Alice’s and Bob’s actions are not

predetermined and hence, we say that they have complete
experimental free will. Any attempts to preprogram the
outcomes of the measurements with complete predictabil-
ity (G ¼ 1) will result in values S � 2, familiar from the
standard CHSH inequality. Finally, if Eve gives up any
intention of extracting information (G ¼ 1

2 ), then Alice and

Bob could share an arbitrary no-signaling distribution,
which will allow any S � 4.
From Theorem 1: Eve’s knowledge of Alice’s and Bob’s

bits, as quantified byG, can be estimated given an observed
CHSH correlation S as the free will parameter P. The
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bound in the theorem is tight, i.e., for any G and P, there
exists a no-signaling model for which the CHSH correla-
tion is equal to SmaxðG;PÞ (see Ref. [16] for explicit
constructions). In particular, suppose that Alice and Bob
measure a CHSH correlation S. If S � Smaxð1; PÞ, then
Alice and Bob know that the bits could have been com-
pletely preprogrammed before the Bell measurements
were carried out. On the other hand, if S > Smaxð1; PÞ
(anywhere above the G ¼ 1 (NS) line in Fig. 1), then
Alice and Bob can conclude that some indeterminism has
been introduced into the model, and that the guessing
probability is less than unity. They can then use Eq. (4)
to determine an upper bound for the guessing probability
G. For the case P � 1

3 , we have Smaxð1; PÞ ¼ 4, which

implies that G ¼ 1; i.e., Eve can use a deterministic pro-
tocol to achieve maximal Bell violation. The case where
P< 1

3 is more interesting because only in this case is the

upper bound on the maximum guessing probability for a
given CHSH correlation S nontrivial:

G � min

�
1

2

�
1þ 4� S

4� Smaxð1; PÞ
�
; 1

�
; P <

1

3
: (5)

The observed values for S and G thus give a tight upper
bound on the guessing probability (Fig. 2), from which the
tradeoff between the degree of free will and Bell violation
can be seen.

Since our motivation is the task of randomness expan-
sion, we need to evaluate the amount of true randomness
that we can produce via postprocessing. The degree to
which this can be achieved is characterized by the min-
entropy, which is used by a classical randomness extraction

procedure in order to guarantee total privacy of a (shorter)
random output string. For a single run, the min-entropy is
defined to be H1ðABjXYÞ ¼ �log2maxa;b;x;y ~pða; bjx; yÞ
[17], which is clearly bounded from below by �log2G.
For experimental estimation of a Bell violation, a Bell test
must be performed on the devices many times in succes-
sion, requiring a bound for the min-entropy over a series of
n runs. Assuming that Eve can only perform a collective
attack without memory, i.e., that the devices behave inde-
pendently and identically in each run, then ~pðrjsÞ ¼
~pðanbnjxnynÞ ¼ Q

i ~pðaibijxiyiÞ by independence and so
H1ðRjSÞ � �nlog2G [3].
Existing privacy amplification methods rely on the use

of a perfectly random seed to, for instance, select uni-
formly from a family of hashing functions. Such perfect
randomness may not be available in the present scenario of
reduced free will. Assuming (as we have throughout this
Letter) only memoryless collective attacks by Eve, we can
outline an effective privacy amplification strategy, and, in
the instance where Eve is more sophisticated, refer the
reader to [10]. Suppose that Alice and Bob have succeeded
in generating a string of bits xk, and have obtained a bound
on Eve’s maximum probability for guessing any one of
Alice’s bits, G. If Alice takes N such bits and XORS them,
the resulting output bit can be guessed by Eve only if she
has incorrectly guessed an even number of the outcomes of
the individual measurements, which occurs with probabil-
ity ½1þ ð2G� 1ÞN�=2. Evidently, asN becomes large, this
tends to 1=2. By setting an allowable threshold � and
choosing N ¼ logð�Þ= logð2G� 1Þ, Alice and Bob can
pick their desired bound on security of the generated bit
as a compromise on the number of raw key bits required to
calculate it.
Restricted adversary.—Theorem 1 did not impose any

restrictions on the probability distribution pðAj; Bkj�Þ.
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FIG. 1 (color online). The maximal CHSH expectation value
SmaxðG;PÞ plotted against the free will parameter P, for the
no-signaling (NS) G ¼ 1 model (solid line), and the quantum
(Q) G ¼ 1

2 model (dashed line). Region III (unshaded) can be

explained by a deterministic G ¼ 1 model. In regions I (darker
gray) and II (lighter gray), the results cannot be deterministic;
Eve cannot know the outputs with certainty. Regions II and III
together give the set of (S, P) values that may be attained by a
quantum model.
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FIG. 2 (color online). Optimal guessing probability GðS; PÞ for
no-signaling models at different CHSH expectation values, in-
cluding S ¼ 2 (local deterministic) and S ¼ 2

ffiffiffi
2

p
(Tsirelson

bound). In the cases of general and factorizable distributions,
the optimal guessing probabilities approach the vertical dotted
lines as S goes to 4.
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Although a nonfactorizable distribution can always be
made factorizable by utilizing more hidden variables, this
changes the value of P. Therefore, for a fixed value of P,
Eve requires access to quantum technology in order to
generate the most general of such distributions, e.g., ran-
dom number generators which share the entangled state

j��i ¼ P
j;k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðAj; Bkj�Þ

q
jji � jki. In its absence, one

should impose that the probability distributions are factor-

izable, i.e.,pðAj; Bkj�Þ ¼ pðAÞðAjj�ÞpðBÞðBkj�Þ. The results
of Theorem 1 hold in the case of an arbitrary probability
distribution. Imposing this factorizability condition changes
the upper bound for the Bell violation. In this case, as shown
in Ref. [16],

Smax
fac ðG;PÞ ¼

� 4� 4ð2G� 1Þð1� 2PÞ P � 1
2

4 P � 1
2

; (6)

reducing Eve’s influence compared to Eq. (4). The upper
bound on the guessing probability G for an observed
CHSH expectation value S is analogous to Eq. (5), upon
replacing Smax with Smax

fac and the validity range by P< 1
2 .

Also, note that for P ¼ 1
4 , corresponding to the case

of complete free will, the bounds on G for both the
general and factorizable cases, reduce to the result in [3]:
G � 3

2 � S
4 .

Quantum limit.—The previously derived bounds apply
under the weak assumption of no-signaling, which means
that Eve might be able to supply Alice and Bob with any
no-signaling distribution, such as a PR box [18–20], giving
the maximal violation of the CHSH inequality. However,
assuming the validity of quantum mechanics, Eve can
achieve only much lower limits; in the case of P ¼ 1

4 ,

she can do no better than S ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� ð2G� 1Þ2p

[3]. In
the case of P> 1

4 , Alice and Bob perform a CHSH test and

calculate their expectation value averaged over all runs of
the experiment, as before. Eve uses a hidden variable
model to determine the probabilities pðAj; Bkj�Þ that, on
a given run, Alice and Bob use to select their measurement
settings. As far as Eve is concerned, she just has to opti-
mize her quantum strategy for each of the different values
of � independently, and the corresponding probabilities
pðAj; Bkj�Þ. For a given �, Alice and Bob (unbeknownst

to them) are effectively playing a CHSH subgame, with the
correlation function

Sð�Þ ¼ 4

��������
X

a;b;j;k

ð�1Þaþbþjk ~pða; bjAj; BkÞpðAj; Bkj�Þ
��������:
(7)

In Ref. [16], we derive the generalized Tsirelson bound for
this class of games, and find the optimal distribution of
probabilities to maximize Sð�Þ for a given P. We also
prove that for P< 3

10 , this maximum necessarily corre-

sponds to the caseG ¼ 1
2 . This implies that, for the optimal

quantum strategy (meaning largest achievable CHSH ex-
pectation value), we have for P< 3

10 ,

Smax
Q

�
1

2
; P

�
¼ 4ð1� 2PÞ3=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1� 3PÞp : (8)

For P � 3
10 , a deterministic strategy is used, and hence,

Smax
Q ð1; PÞ ¼ Smaxð1; PÞ.
This considerably restricts the region of operation for

Eve, as can be seen in Fig. 1. Interestingly, for P � 3
10 ,

there is no quantum strategy that outperforms the determi-
nistic strategy. This means that if Alice and Bob estimate
that P � 3

10 , a randomness expansion protocol based on the

CHSH inequality cannot function. We have not succeeded
in finding a closed form for the general SmaxðG;PÞ trade-
off in the quantum strategy, except for recovering known
limits such as P ¼ 1

4 [3] and G ¼ 1 [Eq. (4)], although it

can be solved numerically.
Conclusions.—We have shown that by influencing the

apparently free choice of measurement settings in a Bell
test, the adversary can fool the participants into thinking
they share quantum correlations when, in fact, they do not
and are being manipulated. We have specified the optimal
models for Eve to maximize the guessing probabilities
based on only no-signaling models, thereby specifying,
for a given Bell correlation, a bound on the extent of
private randomness that can be extracted. This universal
bound requires only that Eve is limited to the use of
no-signaling devices (including PR boxes, etc.). We have
also obtained stronger results when Eve is further assumed
to be limited to quantum devices.
In order to bound the exclusion of an eavesdropper, a

prior about the degree of manipulation is required. How
Alice and Bob might assess this value remains an open
challenge. We have also restricted Eve to performing col-
lective attacks. Whilst this is made possible by ensuring
that each run of the protocol is performed on causally
disconnected devices, this approach eschews practicality.
Attempts to bypass the restriction to collective attacks
[10,15,21] merit further investigation.
A natural extension of this work is to ask whether the

local strategies employed here could be used to take ad-
vantage of a key distribution scheme, where Eve fakes a
Bell violation to undermine the security that Alice and Bob
believe is in their key. There are a number of subtleties that
necessitate a more detailed study.
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