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Abstract

In this paper we study long-term evolution of a finite system of locally interacting

birth-and-death processes labelled by vertices of a finite connected graph. A detailed

description of the asymptotic behaviour is obtained in the case of both constant vertex

degree graphs and star graphs. The model is motivated by modelling interactions between

populations, adsorption-desorption processes and is related to interacting particle systems,

Gibbs models with unbounded spins, as well as urn models with interaction.

1 The model

Let Λ be a finite connected graph. If two vertices x, y ∈ Λ are connected by an edge, call

them neighbours and write x ∼ y. Let Z be the set of all integers and Z+ be the set of

all non-negative integers including zero. Consider a continuous time Markov chain (CTMC)

ξ(t) = {ξx(t), x ∈ Λ} ∈ ZΛ
+ with the following transition rates: given ξ(t) = ξ ∈ ZΛ

+ a

component (a spin) ξx increases by 1 at the rate eαξx+βϕ(x,ξ), where α, β ∈ R,

ϕ(x, ξ) =
∑
y:y∼x

ξy (1)

and at the same time each positive component ξx decreases by 1 at constant rate 1.

This birth-and-death dynamics belongs to a class of stochastic dynamics which is used in

statistical physics to describe the time evolution of a system of interacting spins. Our particular

dynamics is motivated by adsorption-desorption processes, where adsorption rates depend on

a local environment and an adsorbed particle can depart at a non-zero rate ([3]). It is closely

related to a particle deposition on a discrete substrate and urn models with interaction (e.g., [7],

[12], and [13]). Recall also that a birth-and-death process on the non-negative integer half-line

is a classic probabilistic model for the population size so that the Markov chain can be used

for modelling different types of interaction between populations, where a component ξx(t) can

be interpreted as the size of a population which is located at x ∈ Λ at time t.
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If we assume that spins are bounded and consider the same birth-and-death dynamics then

we will get a finite irreducible Markov chain whose stationary probability distribution is a

Gibbs measure (see Remark 1). A particular case of the model with bounded spins, where

α = β, Λ ⊂ Zd, was studied in [14]. For instance, if a spin takes values 0 and 1 only, and,

in addition, α = β > 0, then we obtain a finite Markov chain whose stationary probability

distribution is a Gibbs measure on {0, 1}Λ which is equivalent to a particular case of the famous

Ising model on {−1, 1}Λ. The main goal in [14] was to study the asymptotic behaviour of the

stationary distribution as Λ ↑ Zd. In general, the asymptotic behaviour of such equilibrium

distributions in thermodynamic limit, i.e. as graph Λ expands, is of main interest in statistical

physics.

The aim of this paper, on the other hand, is to describe the asymptotic behaviour of the

Markov chain with unbounded spins as time tends to infinity while the underlying graph remains

fixed. In this case we deal with a countable Markov chain that can be either recurrent (or even

positive recurrent) or non-recurrent (e.g., transient, or even explosive) depending both on the

graph Λ and the values of parameters α, β.

It is easy to see that if β = 0 then the structure of graph Λ is irrelevant and the components

of CTMC ξ(t) are independent identically distributed birth-and-death processes with values

in Z+. The well known results for birth-and-death processes (e.g. see [4] or [11]) yield that

if α > 0, β = 0, then each component is an explosive Markov chain. In turn, it implies that

CTMC ξ(t) is explosive. Moreover, independence of spins imply that their times to explosion

are also independent and this allows to repeat the well known Rubin’s argument (used in [2]

in the case of classic Pólya urn scheme) in order to obtain that with probability 1 only a single

component of ξ(t) explodes. Notice that this fact can be also inferred from our Theorem 2. A

non-zero interaction does not change the explosive behaviour of the Markov chain in the case

α > 0 but escape to infinity can happen in various ways which depend on both β and Λ.

If α < 0, β = 0, then CTMC ξ(t) is formed by a collection of independent positive recurrent

Markov chains. It is quite obvious that if both α < 0 and β < 0 then the Markov chain remains

to be positive recurrent. If β > 0, then one could intuitively expect that given α < 0 there

exists some critical value βcr such that if β < βcr, then the stable ergodic evolution of the

system is still observed, and, in contrast, if β > βcr, then the system becomes unstable, i.e.

transient or even explosive. We compute this critical value explicitly in some cases. It turns

out that βcr = −αc(Λ), where c(Λ) = ν−1 in the case of a graph Λ with the constant vertex

degree ν and c(Λ) = n− 1
2 in the case of a star graph Λ with n+ 1 vertices.

The Markov chain under consideration is reversible, therefore the computation of its invari-

ant measure is straightforward. Stationary probability distributions arising in positive recurrent

cases are Gibbs measures with unbounded positive spins on a finite graph with empty bound-

ary conditions. Consequently the model in positive recurrent cases is closely related to Gibbs

random fields with unbounded spins on graphs (see [6], [8], and references therein).

We give a detailed description of how the Markov chain escapes to infinity in all the transient

cases that we consider. We show that due to a rapid increase of birth rates in explosive cases,

there are no death events in the system after some finite random moment of time, and the

dynamics of the Markov chain is that of a pure birth process, obtained by setting the death
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rates to zero.

We will start with results that are valid in the case of an arbitrary finite connected graph Λ;

they are presented in Theorems 1, 2 and 3. We also study two special cases in more detail,

namely constant vertex degree graphs and star graphs. The results for these two cases are found

in Theorems 4, 5 and 6. Graphs with the constant vertex degree and star graphs are particular

examples of homogeneous graphs and of inhomogeneous graphs, respectively. Despite the ob-

vious difference in the structure of these graphs the long term behaviour of the corresponding

Markov chains is similar to each other. The main features of the model dynamics are illustrated

in Section 3 by a model with graph Λ formed by just two neighbouring vertices. Proofs are

given in Section 4.

Finally, we denote by Ci, i = 1, 2, ..., or just C various constants whose exact values are

immaterial.

2 Results

Let Λ be an arbitrary finite graph. Given ξ ∈ ZΛ
+ define potential U(x, ξ) of a vertex x ∈ Λ as

the following quantity

U(x, ξ) = αξx + βϕ(x, ξ). (2)

Notice the following identity ∑
x∈Λ

U(x, ξ) =
∑
x∈Λ

(α + βν(x))ξx, (3)

where ν(x) is the degree of vertex x ∈ Λ, i.e. the number of edges incident to the vertex.

Throughout the paper we will also denote by 1A the indicator of a set (or event) A. In these

notations, given ξ(t) = ξ ∈ ZΛ
+ a component ξx jumps up by 1 with intensity eU(x,ξ) and the

generator of the Markov chain is therefore

Lf(ξ) =
∑
x∈Λ

(
f
(
ξ + e(x)

)
− f(ξ)

)
eU(x,ξ) +

(
f
(
ξ − e(x)

)
− f(ξ)

)
1{ξx>0}, (4)

where e(x) is a configuration such that e
(x)
x = 1 and e

(x)
y = 0 for all y ̸= x (addition of configur-

ations is understood component-wise).

Let us define the following function

W (ξ) =
α

2

∑
x

ξx(ξx − 1) + β
∑
x∼y

ξxξy, ξ ∈ ZΛ
+. (5)

It is easy to see that

eU(x,ξ)eW (ξ) = eW(ξ+e(x))

for all x ∈ Λ and ξ ∈ ZΛ
+. This equation is a detailed balance condition which implies that

CTMC ξ(t) is time-reversible with invariant measure eW (ξ), ξ ∈ ZΛ
+. If

Zα,β,Λ =
∑
ξ∈ZΛ

+

eW (ξ) < ∞, (6)
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then CTMC ξ(t) has a stationary probability distribution given by

µα,β,Λ(ξ) =
eW (ξ)

Zα,β,Λ

, ξ ∈ ZΛ
+. (7)

It is well known (e.g., [1] or [9]) that existence of a stationary probability distribution of an

irreducible CTMC is equivalent to the CTMC being positive recurrent. Moreover, an irreducible

positive recurrent CTMC is ergodic in a sense that it converges (in distribution) to its stationary

probability distribution as time goes to infinity.

Remark 1 If a component of the Markov chain takes values in {0, 1, . . . , N}, where N ≥ 1,

then the invariant probability distribution of the Markov chain is defined similar to measure (7).

Namely, it is a probability measure on {0, 1, . . . , N}Λ that is equal, up to a normalizing constant,

to function eW (ξ), where, in turn, function W is defined, as before, by (5).

We are ready now to formulate the findings of our paper. We start with the results that are

valid for all finite connected graphs.

Theorem 1 Let Λ be a finite connected graph.

1) If α < 0 and α+βmaxx∈Λ ν(x) ≤ 0 then CTMC ξ(t) is not explosive. Moreover, if α < 0

and α + βmaxx∈Λ ν(x) < 0 then CTMC ξ(t) is positive recurrent.

2) If α ≥ 0 then CTMC ξ(t) is not positive recurrent.

3) If α + βminx∈Λ ν(x) > 0 then CTMC ξ(t) is explosive.

Recall that the embedded Markov chain, corresponding to a continuous time Markov chain,

is a discrete time Markov chain (DTMC) with the same state space, and that makes the same

jumps as the continuous time Markov chain with probabilities proportional to the corresponding

jump rates. Let ζ(t) be the DTMC corresponding to CTMC ξ(t). The states of the embedded

Markov chain will be denoted by ζ and we will use the same symbol t = 0, 1, 2, . . . , to denote

the discrete time.

The non-recurrent behaviour of the Markov chain in Part 2) of Theorem 1 can now be

described more precisely under certain additional assumptions. In order to do so, define the

following event related to DTMC ζ(t):

B = {∃τ ∈ Z+ and a vertex x ∈ Λ such that

ζy(τ + s+ 1) = ζy(τ + s) + 1{y=x}, ∀s ≥ 1
}
, (8)

in other words, the process grows only at point x after time τ .

Theorem 2 Let Λ be a finite, not necessarily connected, graph. If α > max{0, β} then with

probability 1 event B defined by (8) occurs, and a single component of CTMC ξ(t) explodes.
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Furthermore, given x1, x2 ∈ Λ define the following event

Bx1,x2 = {∃s ∈ Z+ : ζy(t) = ζy(s) for all y /∈ {x1, x2} and all t ≥ s;

lim
t→∞

ζx1(t)

t
= lim

t→∞

ζx2(t)

t
=

1

2

}
, (9)

in other words, the process grows only at two points x1 and x2 after time s and the speed of

growth is approximately the same.

Theorem 3 Let Λ be a finite connected graph without triangles, i.e. such that there are no

three distinct vertices x, y, z ∈ Λ such that x ∼ y, y ∼ z and z ∼ x. If 0 < α < β then with

probability 1 there are two random adjacent vertices x1 and x2 such that the event (9) occurs.

This implies that with probability 1 only a pair of adjacent components of the CTMC explodes.

Theorem 4 Let Λ be a graph with the constant vertex degree ν(x) ≡ ν.

1) CTMC ξ(t) is positive recurrent if and only if α < 0 and α+ βν < 0.

2) If α < 0 and α + βν = 0 then CTMC ξ(t) is transient.

3) If α ≤ 0 and α + βν > 0 then CTMC ξ(t) is explosive.

4) If α > 0 then CTMC ξ(t) is explosive. Moreover,

i) if β < α then with probability 1 the event (8) occurs, so that with probability 1 a

single component of CTMC ξ(t) explodes;

ii) if α < β and the graph Λ is without triangles (as explained in Theorem 3) then with

probability 1 the event Bx1,x2 occurs for some adjacent vertices x1, x2 ∈ Λ, so that

with probability 1 a pair of adjacent components of the CTMC explodes.

Let us mention two examples of constant vertex degree graphs, both with and without triangles.

a) Lattice models with local interaction. Let Z be the set of all integers. Given integers L >

0, d ≥ 1, let Λ = {0, ..., L− 1}d ∈ Zd be a lattice cube with periodic boundary conditions.

Call x = (x1, . . . , xd), y = (y1, . . . , yd) ∈ Λ neighbours if there is j ∈ {1, 2, . . . , d} such

that xi = yi for all i ̸= j and xj − yj = ±1 mod L.

In this case ν(x) ≡ 2d and the graph does not have triangles.

b) Mean-field model. Given n ≥ 2 let Λ be a complete graph with n vertices. By construction,

ν(x) ≡ n− 1 in this example and the graph does have triangles.

The following statement complements Theorem 4 in the mean field case.

Theorem 5 Let Λ be a complete graph with n vertices labelled by 1, . . . , n, where n ≥ 1. If

either 0 < α < β or α < 0 < α + βν where ν = n− 1, then

1) ζk(t)/t → 1/n for all k = 1, . . . , n a.s.;
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2) all components of CTMC ξ(t) explode simultaneously a.s.;

3) a process of differences (ζ1(t)− ζn(t), . . . , ζn−1(t)− ζn(t)) ∈ Zn−1 converges in distribution

as t → ∞.

Finally, Theorem 6 below describes the long-term behaviour of the Markov chain in the case of

a star graph.

Theorem 6 Given n ≥ 1 let Λ be a star graph with (n+1) vertices, i.e. where there is a central

vertex x and its neighbouring vertices y1, . . . , yn, so that x is the only neighbour for each of yi,

i = 1, . . . , n, and x ∼ yi, i = 1, . . . , n. Then

1) CTMC ξ(t) is positive recurrent if and only if α < 0 and α+ β
√
n < 0;

2) if α < 0 and α + β
√
n = 0 then CTMC ξ(t) is transient;

3) if α < 0 and α + β
√
n > 0 then with probability 1

ζx(t)

t
→ nβ + |α|

(n+ 1)β + 2|α|
,

ζyi(t)

t
→ β + |α|

(n+ 1)β + 2|α|
, i = 1, 2, . . . , n,

as t → ∞; moreover with probability 1 all components of CTMC ξ(t) explode simultan-

eously.

4) If α > 0 then CTMC ξ(t) is explosive. Moreover,

i) if β < α then with probability 1 the event (8) occurs, so that with probability 1 a

single component of CTMC ξ(t) explodes;

ii) if α < β then with probability 1 the event Bx,yi occurs for some i = 1, . . . , n, so that

with probability 1 only a pair of adjacent components of CTMC ξ(t) explodes.

Remark 2 It is easy to see that some parts of Theorems 4 and 6 are direct corollaries of

Theorems 1, 2 and 3 and we formulate them mostly in order to have a complete stand-alone

description of the asymptotic behaviour of the Markov chain in the case of both constant degree

graphs and star graphs.

We would like also to comment on the asymptotic behaviour of the Markov chain in the case

α = 0. If α = 0, β > 0 then CTMC ξ(t) is explosive and the corresponding DTMC is transient

(see Part 3) of Theorem 1 and its proof) in the case of an arbitrary finite connected graph

Λ. On the other hand, we do not know a complete answer in the case α = 0, β < 0, which

seems to be more interesting in the following sense. We anticipate that either both Markov

chains are null recurrent or transient and a particular behaviour depends on the structure of the

underlying graph. We show rigorously in Section 3 that if α = 0, β < 0 and graph Λ is formed

by two vertices then both the DTMC and the CTMC are null recurrent. An intuitive argument

supporting this fact is the following. If, say, both components of the Markov chain are large

then they most likely will drift almost deterministically towards the origin. If one of them is

zero and another one is sufficiently large then the latter evolves as a symmetric simple random
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walk which is null recurrent and the zero component has very small chances to increase. The

same intuition suggests that if α = 0, β < 0 and Λ is a star graph with three vertices (n = 2 in

Theorem 6), then both Markov chains are null recurrent as well, but if Λ is a star graph with

4 vertices (n = 3), then both Markov chains are transient. We do not consider the case α = 0,

β < 0 in more detail here and hope to address it in our subsequent publications.

3 Random walk in the quarter plane

Let graph Λ be formed by two adjacent vertices. In this case the corresponding Markov chain

is equivalent to an inhomogeneous random walk on the positive quarter plane. We will briefly

comment on this particular case to illustrate some distinctive features of the model dynamics,

which can be also observed in more general situations.

Figure 1: The vector field of mean jumps of Markov chains, α < 0, β > 0. The vertical axis is y axis and the

horizontal axis is x axis. Left: α + β < 0; the upper line is y = −α
βx, the lower line is y = −β

αx, the curve is

Q(x, y) = C, for some C > 0. Right: α+ β > 0; the upper line is y = −β
αx, the lower line is y = −α

β x.

Figure 2: The vector field of mean jumps of Markov chains, α > 0, β < 0. The vertical axis is y axis and

the horizontal axis is x axis. Left: α + β < 0; the upper line is y = −β
αx, the lower line is y = −α

β x. Right:

α+ β > 0; the upper line is y = −α
β x, the lower line is y = −β

αx.

The theorems in Section 2 and Remark 3 imply the following results for the two-dimensional

case.
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1) If α < 0 and β < |α| then both CTMC ξ(t) and DTMC ζ(t) are positive recurrent. Left

part of Figure 1 sketches the vector field of mean jumps of the Markov chain and level curves

of Lyapunov function Q(x, y) = −αx2−αy2− 2βxy in the positive recurrent case 0 < β < −α.

2) If α < 0 and α+ β ≥ 0 then DTMC ζ(t) is transient, CTMC ξ(t) is explosive; moreover

P(ζ1(t) = ζ2(t) infinitely often) = 1. The vector field of mean jumps in the case α < 0, α+β > 0

is illustrated by the right part of Figure 1.

3) If α > 0 then CTMC ξ(t) is explosive. If, in addition, β < α then with probability 1 a

single component of DTMC will eventually grow (event (8) occurs). We illustrate this by the

left part of Figure 2 in the case β < −α < 0. The right part of the same figure corresponds to

the transient/explosive case −α < β < 0. If α < β then both components grow and

P(ζ1(t) = ζ2(t) infinitely often) = 1.

4) In the two-dimensional case we also deal with the case α = 0 and β < 0 and show

that both CTMC ξ(t) and DTMC ζ(t) are null recurrent. Indeed, let us show recurrence of

DTMC ζ(t). By the well-known criterion for recurrence (e.g., Theorem 2.2.1 in [5]) to show

recurrence of DTMC ζ(t) it suffices to find a positive function f(x, y) such that f(x, y) → ∞
as
√
x2 + y2 → ∞ and for which the following inequality

E(f(ζ1(t+ 1), ζ2(t+ 1))|ζ(t) = (x, y))− f(x, y) ≤ 0, (10)

holds for all but finitely many (x, y). The above inequality is equivalent to the following one

Lf(x, y) ≤ 0, (11)

where L is the generator of the corresponding continuous Markov chain (see (4)). Consider a

function f(x, y) = log(x+ y + 1). We will show that if the sum x+ y is sufficiently large, then

the inequality (11) holds. Indeed, if y = 0 then

Lf(x, 0) = (log(x+ 2)− log(x+ 1))
(
1 + eβx

)
+ (log(x)− log(x+ 1))

= log
x+ 2

x+ 1
+ log

x

x+ 1
+ eβx log

x+ 2

x+ 1
≤ log

(
1− 1

(x+ 1)2

)
+ eβx ≤ 0,

where the last inequality holds for sufficiently large x > 0. If both x > 0 and y > 0 then

assuming that C = x+ y is large enough, we have the following bound:

Lf(x, y) = (log(C + 2)− log(C + 1))
(
eβy + eβx

)
+ (log(C)− log(C + 1))

(
1{x>0} + 1{y>0}

)
≤ 2 (log(C + 2)− 2 log(C + 1) + log(C)) = 2 log

C(C + 2)

(C + 1)2
≤ 0.

It is well known (e.g. [9]) that either both an irreducible CTMC and its corresponding DTMC

are recurrent or both chains are transient. Therefore, CTMC ξ(t) is also recurrent. It is easy

to see that CTMC ξ(t) cannot be positive recurrent in this case. Indeed, had it been recurrent,
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then its stationary distribution would be given by formula (7), but the latter is impossible,

since ∑
x,y∈Z+

eβxy = ∞

for all β < 0. Since all transition rates are uniformly bounded below and above, this yields

that DTMC ζ(t) cannot be positive recurrent either.

4 Proofs

4.1 Proof of Theorem 1

We start with introduction of the following quantities

Q(ξ) = −α
∑
x

ξ2x − 2β
∑
x∼y

ξxξy, (12)

S(ξ) =
∑
x

ξx. (13)

This allows us to rewrite function (5) as

W (ξ) = −1

2
(Q(ξ) + αS(ξ)). (14)

Recall that ν(x) denotes the degree of vertex x ∈ Λ and notice the following useful representa-

tions of the quadratic part of W

Q(ξ) =
∑
x

(−α− βν(x))ξ2x + β
∑
x∼y

(ξx − ξy)
2 (15)

=
∑
x∈Λ

(
−αξ2x − βξxϕ(x, ξ)

)
= −

∑
x∈Λ

ξxU(x, ξ).

Proof of Part 1) of Theorem 1. Notice first that if α < 0 and β ≤ 0 then the stationary

distribution (7) is well-defined and the Markov chain ξ(t) is positive recurrent.

We will show now that CTMC does not explode, if α < 0, β > 0 and α+βmaxx∈Λ ν(x) ≤ 0.

Define

τN = min

{
t : max

x∈Λ
ξx(t) = N

}
.

It is obvious that the Markov chain is explosive if and only if

P
(
lim

N→∞
τN < ∞

)
> 0,

but the latter cannot happen. Indeed, given ξ(t) = ξ let x ∈ Λ be such that ξx = maxy∈Λ ξy.

Then

U(x, ξ) = αξx + βϕ(x, ξ) ≤ (α+ βν(x))ξx ≤
(
α + βmax

x∈Λ
ν(x)

)
ξx ≤ 0.

9



Therefore the waiting times τN+1 − τN are stochastically larger than exponentially distributed

independent random variables with parameter (2|Λ|)−1; as a result, the limit lim
N→∞

τN is infinite

with probability 1 and thus the chain does not explode.

Let us finally show that if

α < 0, β > 0, α + βmax
x∈Λ

ν(x) < 0, (16)

then Zα,β,Λ < ∞ and consequently the stationary probability distribution is well defined. Since

the quadratic part in W (ξ) (see (5)) dominates the linear part, it is easy to see that Zα,β,Λ < ∞
if ∑

ξ∈ZΛ
+

exp(−Q(ξ)/2) < ∞, (17)

where Q(ξ) is defined by (12). Consider a symmetric matrix AQ = (axy)x,y∈Λ determining the

quadratic form Q, i.e.

Q(u) = (AQu, u), u ∈ R|Λ|. (18)

It is easy to see that axx = −α, axy = −β, if y ∼ x and axy = 0 otherwise. Therefore for all

x ∈ Λ

|axx| −
∑
y ̸=x

|axy| = −α− βν(x) ≥ −α− βmax
x∈Λ

ν(x) > 0,

because of (16). In other words, matrix AQ is strictly diagonally dominant with positive diag-

onal entries and hence, by standard algebra, is positive definite. In the case under consideration

one can also observe positive definiteness of AQ from representation (15). Positive definiteness

of AQ implies that ∫
R|Λ|

e−(AQu,u)/2du =
(2π)

|Λ|
2√

det(AQ)
< ∞,

which, in turn, implies (17), so the stationary probability distribution is well defined as claimed.

Proof of Part 2) of Theorem 1. The Markov chain ξ(t) does not have a stationary

probability distribution if α ≥ 0. Indeed, fix x ∈ Λ and define a set of configurations

Dx = {ξ : ξx ≥ 0, ξy = 0, y ̸= x}. It is easy to see that

Zα,β,Λ ≥
∑
ξ∈Dx

eW (ξ) =
∞∑
k=0

eαk(k−1)/2 = ∞,

and the stationary distribution does not exist.

Proof of Part 3) of Theorem 1. Denote for short νmin = minx∈Λ ν(x) throughout the

proof of this part of the theorem. We start with proving a statement (Lemma 1) that implies

transience of DTMC ζ(t).
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Lemma 1 Let Λ be a finite connected graph. If α + βνmin > 0 then with probability 1 there

exists a time moment τ < ∞ such that for all t ≥ τ none of the components of DTMC ζ(t)

decreases.

Proof of Lemma 1. Recall that U(x, ζ) is the quantity defined by equation (2) and the quantity

S(ζ) is defined by (13). Since α + βνmin > 0 equation (3) implies that for all ζ

max
x∈Λ

U(x, ζ) ≥ C1S(ζ), (19)

where C1 = (α + βνmin)/|Λ|. Using this bound for the maximal potential we get the following

inequality

P(S(ζ(t+ 1)) = S(ζ(t)) + 1|ζ(t) = ζ) = 1−
∑

x∈Λ 1{ζx>0}∑
x∈Λ e

U(x,ζ) +
∑

x∈Λ 1{ζx>0}

≥ 1− |Λ|
max
x∈Λ

eU(x,ζ)
≥ 1− |Λ|e−C1S(ζ).

Therefore, if Ds = {none of the components ever decreases after time s}, then

P(Ds|ζ(s) = ζ) ≥
∞∏
t=s

(
1− C2(ζ)e

−C1(t−s)
)
= 1− o(S(ζ)) (20)

where C2(ζ) = |Λ|e−C1S(ζ) and o(S(ζ)) → 0 as S(ζ) → ∞. Since for each N = 1, 2, . . . , the set

of configurations {ζ : S(ζ) ≥ N} is finite and the Markov chain is irreducible, we can define

τN = min{t : S(ζ(t)) = N} < ∞. As P(DτN ) → 1, by continuity of probability P(∪NDτN ) = 1

and hence there exists N such that after time τ = τN the only changes in the system are

increases of the components.

It is quite obvious that Lemma 1 implies transience of the DTMC in the case α+βνmin > 0.

Nevertheless we would like to provide another lemma (Lemma 2 below) that also ensures

transience in this case. The main reason is that this lemma takes into account the geometry

of mean jumps and formalizes intuition which can be inferred from, for example, the images

located on the right hand side of Figures 1 and 2. Besides, it provides an idea for proving

transience in Part 2) of Theorem 4 (see Lemma 5 below).

Lemma 2 Let Λ be a finite connected graph. If α + βνmin > 0, then for any 0 < ε < 1 the

following bound holds

E(S(ζ(t+ 1))− S(ζ(t))|ζ(t) = ζ) ≥ ε, (21)

provided that S(ζ) > C1 = C1(ε).

Proof of Lemma 2. It is easy to see that inequality (21) is equivalent to the following one

J(ζ, ε) :=
∑
x∈Λ

(
δ(ε)eU(x,ζ) − 1{ζx>0}

)
≥ 0, (22)

where

δ(ε) =
1− ε

1 + ε
. (23)
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Using subsequently inequality 1{ζx>0} ≤ 1, equation (3) and inequality eu > 1 + u, u ∈ R, we
obtain

J(ζ, ε) ≥
∑
x∈Λ

(
δ(ε)eU(x,ζ) − 1

)
≥
∑
x∈Λ

(δ(ε)(1 + U(x, ζ))− 1)

≥ δ(ε)(α + βνmin)S(ζ)− (1− δ(ε))|Λ| > 0,

provided that S(ζ) > C1 :=
(1−δ(ε))|Λ|

δ(ε)(α+βνmin)
.

Observe that it is also possible to use inequality between the arithmetical and geometric

means and equation (3) in order to obtain that∑
x∈Λ

eU(x,ζ) ≥ |Λ|e
(α+βνmin)S(ζ)

|Λ|

and to arrive to a similar result (provided that S(ζ) > C2, where C2 is another constant).

Lemma 2 means that conditions of Theorem 2.2.7 in [5] are satisfied with the linear function

f(ζ) = S(ζ) and set A = {ζ ∈ ZΛ
+ : S(ζ) ≥ C1} and the embedded Markov chain ζ(t) is transient

in the case α + βνmin > 0.

Let us finish the proof of Part 3) of Theorem 1. If α+ βνmin > 0, then transience of CTMC

ξ(t) is implied (regardless of the sign of α) by Lemma 1 (or by Lemma 2). Let us show that

CTMC ξ(t) is explosive. Indeed, given a configuration ξ bound (19) implies the following lower

bound for the total transition rate∑
x∈Λ

(
eU(x,ξ) + 1{ξx>0}

)
≥ max

x∈Λ
eU(x,ξ) ≥ eC1S(ξ),

where, as before, C1 = (α+βνmin)/|Λ|. Besides, none of the components decrease after τ steps

of the embedded process (recall that τ is defined in Lemma 1). Therefore the only changes in

the systems are jumps up and these jumps happen with exponentially increasing rates whose

inverses are summable. This yields explosion.

Function Q as the Lyapunov function for Foster criterion. Observe that positive

recurrence of the Markov chain in Part 1) of Theorem 1 can be shown by using Foster criterion

for positive recurrence of a countable CTMC (see e.g. [10]). We skip the easy case, when both

α < 0 and β < 0 and show that if α < 0, β > 0 and α + βmaxx∈Λ ν(x) < 0 the function Q

serves as the corresponding Lyapunov function. Indeed, the equation (15) yields that Q(ξ) > 0

for all ξ ∈ ZΛ
+ outside the origin (i.e., ξ ̸= 0) and that Q(ξ) → ∞ as

∑
x∈Λ ξ

2
x → ∞. Recall

that L is the generator (defined by (4)) of the Markov chain. We fix some ε > 0 and show that

LQ(ξ) ≤ −ε, (24)
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provided that S(ξ) =
∑

x∈Λ ξx ≥ C, where C = C(ε) is sufficiently large. It is easy to see that

LQ(ξ) =
∑
x∈Λ

(−α− 2U(x, ξ))eU(x,ξ) +
∑
x∈Λ

(−α + 2U(x, ξ))1{ξx>0}, (25)

where U(x, ξ) is defined by equation (2). Sums in (25) can be respectively bounded as follows∑
x∈Λ

(−α− 2U(x, ξ))eU(x,ξ) ≤ |Λ|max
u∈R

(−α + 2u)e−u = 2|Λ|e
−α−2

2 ,

and ∑
x∈Λ

(−α + 2U(x, ξ))1{ξx>0} ≤
∑
x∈Λ

(−α + 2U(x, ξ))

= −α|Λ|+ 2
∑
x∈Λ

(α + βν(x))ξx

≤ −α|Λ|+ 2(α + βmax
x∈Λ

ν(x))S(ξ)

≤ −α|Λ|+ 2C(α + βmax
x∈Λ

ν(x)),

where we used the equation (3) to get the equality. Thus the LHS of (24) is bounded by the

following quantity

2|Λ|e
−α−2

2 − α|Λ|+ 2C(α + βmax
x∈Λ

ν(x)),

which is less than −ε, if C > 0 is sufficiently large. The inequality (24) allows to apply Foster

criterion of positive recurrence (Theorem 1.7 in [10]) of a countable CTMC.

Remark 3 It should be noticed that DTMC ζ(t) is also positive recurrent under conditions

of Part 1) of Theorem 1. This can be proved by applying the Foster criterion for positive

recurrence of a countable DTMC (e.g. Theorem 2.2.3 in [5]) with the same function Q as the

Lyapunov function for the criterion. Modifications of the above calculations are straightforward

and we skip the details.

4.2 Proof of Theorem 2

Given ζ ∈ ZΛ
+ define

Mζ = max
x∈Λ

U(x, ζ) and Dζ = {x ∈ Λ : U(x, ζ) = Mζ} .

Depending on the values of {α, β} there can be two different cases.

1) A finite connected graph Λ is such that

Mζ ≥ 0 for all ζ ∈ ZΛ
+. (26)

We say in this case that Λ is a type I graph.
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2) The set of configurations

K = {ζ : Mζ < 0}, (27)

is not empty, then we say that Λ is a type II graph.

Let us consider some examples before proceeding further. It is obvious that if both α and β

are positive, then any graph is a type I graph. Also, if α > 0 > β and α + βmaxx∈Λ ν(x) ≥ 0

then for every x ∈ Λ such that ζx = N = maxy∈Λ ζy the following inequality holds

U(x, ζ) = αN + βϕ(x, ζ) ≥ N

(
α + βmax

x∈Λ
ν(x)

)
≥ 0,

hence, Λ is a type I graph.

Consider two main examples of type II graphs. In both examples α > 0 and β < 0.

(i) Suppose that α + βν < 0, and let Λ be a constant vertex degree graph with ν(x) ≡ ν.

In this case K is a non-empty since it contains all the points where ζ(x) ≡ c ∀x ∈ Λ for

some c ∈ Z+.

(ii) Suppose α+ β
√
n < 0 and let Λ be a star graph with n+ 1 vertices. In this case the set

K contains all the points where ζ(x) = c1, ζ(yi) = c2 ∀i = 1, 2, . . . , n (see the statement

of Theorem 6) and c1, c2 ∈ Z+ solve the system of inequalities{
αc1 + βnc2 < 0,

αc2 + βc1 < 0

(one can easily check that under the above conditions on α and β the solution is non-

empty).

We start the proof with the following lemma.

Lemma 3 There is a δ′ > 0 such that

P (B|ζ(t) = ζ) > δ′, (28)

for all t and ζ.

Proof of Lemma 3 for type I graph. For a given x ∈ Λ define the following event

Bx(t) = {ζx(s+ 1) = ζx(s) + 1, ζy(s) = ζy(t), for y ̸= x and s ≥ t}.

Trivially, Bx(t) ⊂ B. We are going to show that for any ζ and x ∈ Dζ

P(Bx(t)|ζ(t) = ζ) > δ′ > 0,

where δ′ might depend only on parameters α, β and graph Λ. Given x ∈ Λ and ζ ∈ ZΛ
+ denote

R(x, ζ) =
∑
y∈Λ

eU(y,ζ) −

(
eU(x,ζ) +

∑
y∼x

eU(y,ζ)

)
.
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If x ∈ Dζ then

R(x, ζ)e−U(x,ζ) = R(x, ζ)e−Mζ ≤ (|Λ| − ν(x)− 1) < |Λ|, (29)

for all ζ ∈ ZΛ
+. Given x ∈ Dζ we have that

P (Bx(t)|ζ(t) = ζ) =
∞∏
k=0

eMζ+αk

eMζ+αk +
∑
y∼x

eU(y,ζ)+βk +R(x, ζ) +
∑

y∈Λ 1{ζy>0}

=
∞∏
k=0

1

1 +
∑
y∼x

eU(y,ζ)−Mζ−(α−β)k +

(
R(x, ζ) +

∑
y∈Λ

1{ζy>0}

)
e−Mζ−αk

,

for all ζ ∈ ZΛ
+. It is easy to see that by choice of x we have∑

y∼x

eU(y,ζ)−Mζ−(α−β)k ≤ e−(α−β)k max
y∈Λ

ν(y).

Also, using (26) and (29) we get that(
R(x, ζ) +

∑
y∈Λ

1{ζy>0}

)
e−Mζ−αk ≤ 2|Λ|e−αk. (30)

Therefore, we obtain the following bound

P (Bx(t)|ζ(t) = ζ) ≥
∞∏
k=0

1

1 + e−(α−β)k maxy∈Λ ν(y) + 2|Λ|e−αk
= δ′ > 0. (31)

The preceding display implies bound (28) in the case of type I graph.

Proof of Lemma 3 for type II graph. Fix some ε > 0 and suppose that ζ ∈ Kε = {ζ :

Mζ ≥ −ε}. Given x ∈ Dζ one can repeat, with a minor change, the same argument which

led to bound (31). The only difference now is that the inequality Mζ ≥ −ε yields constant

(1+ eε)|Λ|e−αk in the right side of (30) (instead of 2|Λ|e−αk) and it results in a different δ′′ ̸= δ′

such that

P(Bx(t)|ζ(t) = ζ) > δ′′ > 0.

Consider the opposite case, when ζ ∈ Kc
ε = {ζ : Mζ < −ε}. Define a stopping time

τ = min{t : ζ(t) ∈ Kε}.

We will now show that P(τ < ∞|ζ(0) = ζ) = 1 for all ζ ∈ Kc
ε, which means that the results of

the previous paragraph apply. This would complete the proof of bound (28).

Indeed, define F (ζ) = | ζ | 2, where | ζ | is Euclidean norm in R|Λ|. A direct computation

gives that there exists some ε′ > 0 such that

E(F (ζ(t+ 1))− F (ζ(t))|ζ(t) = ζ) ≤ −ε′
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for all ζ ∈ Kc
ε. Let Yt = F (Xt∧τ ) then

E(Yt+1 − Yt|ζ(0), . . . , ζ(t)) ≤ −ε′1{t<τ} (32)

so that Yt is a non-negative supermartingale which converges a.s. Taking the expectation of

in (32) yields P(τ > t) → 0 as t → ∞ thus τ < ∞ a.s.

Proof of Theorem 2. By Lemma 3

E (1B|Ft) > δ′, (33)

where Ft = σ{ζ0, . . . , ζt} is the σ−algebra of events generated by DTMC up to time moment

t. Since B ∈ F∞ = σ{Ft, t ≥ 0} we get by Lévy’s 0− 1 law that

E(1B|Ft) → E(1B|F∞) = 1B, as t → ∞.

By (33) the right hand side of the preceding display is positive. Therefore, it must be equal to

1, hence, P(B) = 1.

Thus, eventually only a single component of the embedded chain continues to evolve by

jumping up without jumping down. In the continuous time setting the only growing component

evolves eventually as a pure birth process with exponentially growing birth rates. The latter

process is explosive and, hence, CTMC ξ(t) is explosive, where with probability 1 only a single

component explodes.

Remark 4 Under the assumptions of the theorem with probability one a typical trajectory of

DTMC ζ(t) returns to set Kc
ε only a finite number of times in the case of type II graph.

4.3 Proof of Theorem 3

We start with the following lemma.

Lemma 4 Let 0 < α < β. Suppose that x1 and x2 are two vertices of Λ such that (1) x1 ∼ x2;

(2) there is no y such that y ∼ x1 and y ∼ x2 at the same time; (3) at some time s the

configuration of the DTMC is such that u1 = U(x1, ζ(s)) is the largest potential on the whole

graph and u2 = U(x2, ζ(s)) is the largest potential among all the neighbours of x1. Then, with

a positive probability depending on α, β and Λ only, the following events simultaneously occur

ζy(t) = ζy(s) for all y /∈ {x1, x2} and all t = s, s+ 1, s+ 2, . . . ;

lim
t→∞

ζx1(t)

t
= lim

t→∞

ζx2(t)

t
=

1

2
.

Proof of Lemma 4. Observe that every time when the component at x1 increases by 1, the

potential at x1 increases by α while the potential at each of the neighbours of x1 increases by

β, therefore the potential at x2 remains the largest among the neighbours of x1. At the same

time the difference between the potentials at x1 and x2 decreases by δ := β − α > 0.
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Let k =
⌊
u1−u2

δ

⌋
where ⌊a⌋ denotes the integer part of a ∈ R. Assume that k is even;

the case with odd k can be handled very similarly. Denoting by ν1 = ν(x1) the degree of

vertex x1 (and ν2 = ν(x2) respectively), we obtain that the probability that during the times

t = s, s+ 1, ...s+ k only the component at x1 increases is larger than

p1 =
k∏

i=0

eu1+iα

eu1+iα + ν1eu2+iβ + (|Λ| − ν1)eu1

=
k∏

i=0

1

1 + ν1e−(u1−u2)+i(β−α) + (|Λ| − ν1)e−iα

≥
k∏

i=0

1

1 + ν1e−(k−i)δ + |Λ|e−iα

≥
k/2∏
i=0

1

1 + ν1e−kδ/2 + |Λ|e−iα
×

k/2∏
j=0

1

1 + ν1e−jδ + |Λ|e−kα/2

≥

k/2∏
i=0

1

1 + (ν1 + |Λ|)(e−iδ + e−iα)

2

≥

(
∞∏
i=0

1

1 + (ν1 + |Λ|)(e−iδ + e−iα)

)2

= C1(|Λ|, α, β) > 0.

Consequently, by time s+k we have −δ < U(x2, ζ(s+k))−U(x1, ζ(s+k)) ≤ 0 with probability

at least p1.

From now on for simplicity of notations assume that the state where u2 ∈ (u1 − δ, u1] has

already been reached at time s (as opposed to a later time). Let mi(t), i = 1, 2 be the number

of times xi was chosen during the times s+ 1, s+ 2 . . . , s+ t. Define the events

A′
k = {ζy(s+ i) = ζy(s) for all y /∈ {x1, x2}, i = 1, 2, . . . , 2k2},

A′′
k =

{
|m1(2k

2)−m2(2k
2)| ≤ 2k

}
,

Ak = A′
k ∩ A′′

k.

Then under Ak we have m1(2k
2) + m2(2k

2) = 2k2 and |mi(2k
2) − k2| ≤ k for i = 1, 2. So,

denoting sk,i = s+ 2k2 + i we get that P(A′
k+1|Ak) is no less than

4k+1∏
i=0

eU(x1,ζ(sk,i)) + eU(x2,ζ(sk,i))

eU(x1,ζ(sk,i)) + eU(x2,ζ(sk,i)) + (ν1 + ν2)eu2+β(k2+6k) + (|Λ| − ν1 − ν2)eu2

≥
4k+1∏
i=0

1

1 + |Λ|e(7β+α)k−αk2
≥ 1− C2(|Λ|, α)e−k,

since U(x1, ζ(sk,i)) ≥ u1 + α(k2 − k) + β(k2 − k), and the potential at any vertex y adjacent

either to x1 or to x2 is bounded by

u2 + β(k2 + k + (4k + 1)) ≤ u2 + β(k2 + 6k).
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To estimate P(A′′
k+1|Ak) observe that whenever m1(j) > m2(j)+ 1 the potential at x2 is larger,

and the similar statement holds if one swaps 1 and 2. Now, there are two possibilities at time

j = s+ 2k2: (a) |m1(2k
2)−m2(2k

2)| ≤ 1.5k and (b) |m1(2k
2)−m2(2k

2)| > 1.5k.

In case (a), the difference |m1(j) − m2(j)| can be majorized by the distance to the origin

of the simple symmetric random walk on Z1. In particular, the probability that during 4k + 2

steps it is further than k2/3 from the starting point is bounded by c3e
−k1/6 where c3 is some

constant. As a result,, with probability at least 1− c3e
−k1/6 we have

|m1(2(k + 1)2)−m2(2(k + 1)2)| < 1.5k + k2/3 < 2(k + 1)

and A′′
k+1 occurs.

On the other hand, in case (b) we have 1.5k < |m1(2k
2)−m2(2k

2)| ≤ 2k, hence the potential

at the larger xi in the pair {x1, x2} is much smaller than the potential at the smaller x in this

pair. Consequently, for the next k steps the probability to increase the larger component,

divided by the probability to increase the smaller component, is bounded above by e−δk/2, so

we can couple |m1(j) − m2(j)| with an asymmetric simple random walk on Z1 with the drift

towards the origin. As a result, we obtain that with probability at least 1 − e−c4k during the

times t = s+ 2k2 + i, i = 1, . . . , k, the distance between m1 and m2 decreases at least by k/2,

bringing it to the value less than 2k − (k/2) = 1.5k, and thus to case (a). Therefore,

P(A′′
k+1|Ak) ≥ 1− C3e

−k1/6 − e−C4k.

Combining the above inequalities yields

P(Ak+1|Ak) ≥ 1− C3e
−k1/6 − e−C4k − C2(|Λ|, α)e−k. (34)

Since the product of the terms on the RHS of (34) over all large enough k is positive, the

statement of the lemma follows.

Now note that at any moment of time s there is a vertex x1 with the largest potential.

Because of our assumption it satisfies the conditions of Lemma 4 for some neighbour x2. Hence,

Theorem 3 follows from the Lévy’s 0–1 law.

4.4 Proof of Theorem 4

Proof of Part 1) of Theorem 4. Positive recurrence in the case α < 0, α + βν < 0 and

absence of positive recurrence in the case α ≥ 0 are implied by Theorem 1. If α < 0, α+βν ≥ 0

then, using equations (14) and (15), we get the following bound

Zα,β,Λ ≥
∑
ξ∈ZΛ

+

eW (ξ)1{ξ:ξx=ξy ,∀x,y∈Λ} =
∞∑
k=1

e|Λ|((α+βν)k2−αk)/2 = ∞,

which means that the stationary distribution does not exist in this case and, hence, the CTMC

is not positive recurrence.
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We want to remark that if Λ is a constant vertex degree graph then (−α−βν) is the eigen-

value ofAQ with the corresponding eigenvector (1, . . . , 1) and, hence, the function exp(−Q(ξ)/2)

is not summable in the direction of this eigenvector, provided that −α−βν ≥ 0. Furthermore,

if α < 0, β > 0 then −α−βν is the minimal eigenvalue of AQ, since all eigenvalues of matrix AQ

lie, by Gershgorin circle theorem (see e.g. [15]), within the closed interval [−α−|β|ν,−α+ |β|ν].
Also, in the case of the mean-field model with n vertices (complete graph with n vertices) one

can easily compute the characteristic polynomial of matrix AQ:

(−1)n−1(α− β + µ)n−1(−α− (n− 1)β − µ),

and analysis of the eigenvalues yields the same results.

Proof of Part 2) of Theorem 4 We start with showing transience of DTMC ζ(t). Tran-

sience in the discrete time case is implied by the following lemma (which based on the same

intuition as Lemma 2).

Lemma 5 Let Λ be a finite connected graph with the constant vertex degree ν(x) ≡ ν. If

α + βν = 0, then there exist ε > 0 and C > 0 such that the following bound holds

E(S(ζ(t+ k(ζ(t)))− S(ζ(t))|ζ(t) = ζ) ≥ ε, (35)

provided that S(ζ) ≥ C and where

k(ζ) =

{
1, if U(x, ζ) ̸= 0 for at least one x ∈ Λ,

2, if U(x, ζ) = 0 for all x ∈ Λ.

Proof of Lemma 5. As we already noted in the proof of Lemma 2 inequality (35) with k ≡ 1 is

equivalent to the following one

J(ζ, ε) = δ(ε)
∑
x∈Λ

eU(x,ζ) −
∑
x∈Λ

1{ζx>0} ≥ 0, (36)

where δ(ε) is defined by (23) and (36) would be implied by

δ(ε)
∑
x∈Λ

eU(x,ζ) − |Λ| ≥ 0.

Notice that by inequality between geometric and arithmetic means we have that for all ζ∑
x∈Λ

eU(x,ζ) − |Λ| ≥ 0, (37)

since by equation (3) ∑
x∈Λ

U(x, ζ) = (α+ βν)S(ζ) = 0. (38)

It is well known that given numbers a1, . . . , am geometric and arithmetic means of these numbers

are equal to each other if and only if a1 = . . . = am. Therefore, equation (38) also implies that
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identity
∑

x∈Λ e
U(x,ζ) − |Λ| = 0 holds if and only if U(x, ζ) = 0, for all x ∈ Λ otherwise we have

got a strict inequality in (37). Thus, if there are exactly 0 < m ≤ |Λ| vertices with non zero

potentials then ∑
x∈Λ

eU(x,ζ) − |Λ| ≥
∑

x∈Λ:U(x,ζ )̸=0

eU(x,ζ) −m > 0.

It is easy to see that since the inequality in the preceding display is strict there exists δm ∈ (0, 1)

such that

δm
∑
x∈Λ

eU(x,ζ) − |Λ| ≥ δm
∑

x∈Λ:U(x,ζ )̸=0

eU(x,ζ) −m > 0,

because values of potentials U belong to a discrete set {α(k− j/ν), k, j ∈ Z+} (where we used

that β = −α/ν) which is bounded away from zero. Thus, given 0 < m ≤ |Λ| we claim existence

of δm and, hence, existence of the corresponding ε = ε(δm) (using equation (23)). The required

in Lemma 4 ε is obtained thus by setting ε = minm εm.

It is easy to see that all potentials cannot stay zero for two steps in a row, hence

E (S(ζ(t+ 2))− S(ζ(t))|ζ(t) = ζ) = E(S(ζ(t+ 2))− S(ζ(t+ 1))|ζ(t) = ζ) ≥ ε.

Thus inequality (35) is proven.

Lemma 5 implies that the conditions of Theorem 2.2.7 in [5] are fulfilled and hence the

embedded Markov chain is transient.

We are ready now to finish the proof of Part 2) of Theorem 4. If α+βν = 0 then transience

of DTMC ζ(t) implies at least transience of CTMC ξ(t). By Theorem 1 CTMC ξ(t) does not

explode if α < 0, α + βν = 0. Hence, CTMC ξ(t) is transient if α < 0, α+ βν = 0.

Remark 5 Let us notice how the sign of parameter α influences the process dynamics in the

case α+βν = 0. If α > 0, α+βν = 0, then Theorem 2 applies (since β < 0) and, eventually, a

single component of the Markov chain explodes. A set of configurations {ξ : ξx = ξy, x, y ∈ Λ}
is ”unstable” in the sense that the process tends to leave it and to never return. In contrast,

if α < 0, α + βν = 0, then the process tends to stay in a neighbourhood of the same set of

configurations (with equal components) while escaping to infinity. It is easy to see that vertex

potentials are bounded around this set of configurations and this is why no explosion happens

in this case.

Proof of Part 3) of Theorem 4. Part 3) of Theorem 4 is covered by Part 3) of Theorem 1.

Proof of Part 4) of Theorem 4. If both α > 0 and β > 0 then transience of DTMC

ζ(t) and explosiveness of CTMC ξ(t) are obvious. On the other hand, if α > max{0, β} then

Theorem 2 applies; if 0 < α < β and the graph Λ is without triangles then Theorem 3 applies.
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4.5 Proof of Theorem 5

Let ζ(t) = (ζ1(t), . . . , ζn(t)) be DTMC corresponding to a complete graph with n vertices. It is

easy to see that the potential of a component at vertex i at time t is equal to

U(i, ζ(t)) = αζi(t) + β(S(ζ(t))− ζi(t)) = (α− β)ζi(t) + βS(ζ(t)).

First, we present an intuitive argument justifying the theorem, which is made rigorous later. In

both cases described in the theorem, α + βν > 0 hence by Lemma 1 there exists a moment of

time τ after which none of the components decrease. Also, it is easy to see that in both cases

of the theorem β must be positive. So, for t > τ the probability that it is the i−th component

that increases is equal to

e(α−β)ζi(t)+βS(ζ(t))∑n
k=1 e

(α−β)ζi(t)+βS(ζ(t))
=

e(α−β)ζi(t)∑n
k=1 e

(α−β)ζk(t)

Therefore, in the long run DTMC evolves as a generalized Pólya urn model with weight function

g(x) = e(α−β)x. Now the well-known results for a generalized Pólya urn scheme and Theorem 1

in [12] implies Parts 1) and 3) of Theorem 5. Finally, the explosiveness of the process ξ(t) follows

from Parts 3) and 4) of Theorem 4. (One can compare this and the following calculations with

the argument presented in the proof of Part 3) of Theorem 6.)

The problem with the above argument is that, strictly speaking, the events {ζi+1(t) =

ζi(t) + 1}, i = 1, 2, . . . , n, are not independent of the event {τ < t}, since the behaviour of

the Pólya urn may affect the probability of decreasing of a component. Thus, to make the

argument rigorous, we construct the following coupling.

Let Yt, t = 1, 2, . . . , be a sequence of i.i.d. uniform [0, 1] random variables. At time t split

the interval [0, 1] into 2n intervals with lengths proportional to

[eU(1,ζ(t)), eU(2,ζ(t)), . . . , eU(n,ζ(t)), 1, 1, . . . , 1]

where U is defined by (2). If Yt falls into the i−th subinterval with 1 ≤ i ≤ n then we set

ζi(t + 1) = ζi(t) + 1; if n + 1 ≤ i ≤ 2n then we set ζi(t + 1) = max{0, ζi(t) − 1}. In both

cases we leave the remaining components unchanged. It is easy to see that the process ζ(t),

t ≥ 1, has exactly the same distribution as the DTMC defined above. At the same time for

a fixed N ∈ Z+ define the process ζ(N)(t), t = N,N + 1, . . . , such that ζ(N)(N) := ζ(N) and

the transition rules of ζ(N)(t) are exactly the same as that of ζ(t) with the only exception that

when Yt falls in the interval with index ≥ n + 1 the process ζ(N)(t) remains unchanged (i.e.,

“no deaths”). Let BN be the event “none of Yt falls in the intervals indexed n+1, n+2, . . . , 2n

for all t ≥ N”, then on BN we have ζ(N)(t) ≡ ζ(t), t ≥ N , consequently ζ(t) has the behaviour

of the above Pólya urn with weight function g. Let A be the event {limt→∞ ζk(t)/t = 1/n}.
Since ζ

(N)
k (t)/t → 1/n a.s., we have

P(A) ≥ P(A|BN)P(BN) = P(BN).

On the other hand, Lemma 1 implies that P(BN) → 1 as N → ∞, which finishes the proof.
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4.6 Proof of Theorem 6

Proof of Part 1) of Theorem 6. Throughout the proof, denote the center of the star graph

by n+1 and all other vertices 1, 2, . . . , n. We skip the trivial case, where α < 0 and β ≤ 0. We

will show that if

α < 0 < β, and α + β
√
n < 0, (39)

then the stationary distribution is well defined. Let AQ be the matrix determined by equa-

tion (18) in the case of the star graph with n+1 vertices. Denote by Dn(µ) be the characteristic

polynomial of matrix AQ. A direct computation gives the following recursive equation

Dn(µ) = (−α− µ)Dn−1(µ)− β2(−α− µ)n−1, n ≥ 1,

which yields that

Dn(µ) = (−1)n+1(µ+ α)n−1(µ+ α + β
√
n)(µ+ α− β

√
n).

Thus, −α > 0 is the matrix eigenvalue of multiplicity n− 1 and −α ± β
√
n are eigenvalues of

multiplicity 1. The eigenvalue −α − β
√
n > 0 is the minimal one (since β > 0), hence AQ is

positive definite provided conditions (39) are satisfied. Positive definiteness of AQ implies that

Zα,β,Λ < ∞ (as in the proof of Part 1) of Theorem 1). Therefore, the stationary distribution is

well defined and the CTMC ξ(t) is ergodic.

We are going to show that if α < 0 < β and α + β
√
n > 0 then Zα,β,Λ = ∞ and the

stationary distribution is not defined. Start with noticing that (1, . . . , 1,
√
n) ∈ Zn+1

+ is the

eigenvector corresponding to the eigenvalue (−α− β
√
n). Therefore, if α + β

√
n ≥ 0 then the

function exp(−Q(ξ)/2) is not summable along the direction of this eigenvalue and, hence, the

CTMC ξ(t) is not ergodic. Indeed, in this case, since α < 0,

Zα,β,Λ =
∑

ξ∈Zn+1
+

e−Q(ξ)/2−α
2

∑n+1
i=1 ξi ≥

∑
ξ∈Zn+1

+ ∩G

e−Q(ξ)/2

where G = {ξ : ξi = [βξn+1/|α|], i = 1, 2, . . . , n} and [x] denotes the closest integer to x ∈ R,
so that |x − [x]| ≤ 1/2. Using the expression (12) for Q(ξ) and the fact that β >

√
n|α| we

have

Zα,β,Λ ≥
∑

ξ∈Zn+1
+ ∩G

exp

(
−n|α|

8
+

nβ2 − α2

2|α|
ξ2n+1

)

= e−
n|α|
8

∞∑
k=0

exp

(
nβ2 − α2

2|α|
k2

)
= ∞.

Proof of Part 2) of Theorem 6. Observe that

U(i, ζ) = −|α|ζi + βζn+1, i = 1, 2, . . . , n;

U(n+ 1, ζ) = −|α|ζn+1 + β
n∑

i=1

ζi.
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An easy calculation gives the following identity

(nβ + |α|)U(n+ 1, ζ) + (β + |α|)
n∑

i=1

U(i, ζ) =
(
nβ2 − α2

)
S(ζ) (40)

where S is defined by (13), valid in the case of any star graph. Therefore, if α+
√
nβ = 0, then

(nβ + |α|)U(n+ 1, ζ) + (β + |α|)
n∑

i=1

U(i, ζ)

= β(1 +
√
n)

(
√
nU(n+ 1, ζ) +

n∑
i=1

U(i, ζ)

)
= 0

which is equivalent to
√
nU(n+ 1, ζ) +

n∑
i=1

U(i, ζ) = 0. (41)

Given ξ denote mn = mn(ξ) = max
i=1,...,n

ξi, and

τN = min{t : max(ξn+1(t), ⌊
√
nmn(ξ(t))⌋ = N}

where ⌊a⌋ ≤ a denotes the integer part of a. It is obvious that the Markov chain is explosive if

and only if

P
(
lim

N→∞
τN < ∞

)
> 0,

but this cannot happen. Indeed, if ξn+1 ≥ ⌊
√
nmn⌋ then

Un+1 = β(−
√
nξn+1) + ξ1 + · · ·+ ξn ≤

√
nβ(−ξn+1 +

√
nmn) ≤ 0,

and, on the other hand, if ξn+1 < ⌊
√
nmn⌋ then

Uk = β(−
√
nmn + ξn+1)

= β
[
(−

√
nmn + ⌊

√
nmn⌋)− (⌊

√
nmn⌋ − ξn+1)

]
< −β

for all k such that ξk = mn. Therefore the waiting time τN+1 − τN is stochastically larger than

a certain exponentially distributed random variable which parameters depend only on n and β

and hence the limit limN→∞ τN is infinite with probability 1. Thus CTMC ξ(t) is not explosive.

We are now going to prove transience of DTMC ζ(t) and thereby transience of CTMC

ξ(t). Recall that υ = (1, . . . , 1,
√
n) ∈ Zn+1

+ is the eigenvector corresponding to the eigenvalue

(−α− β
√
n). Define a function f as the scalar product (in Rn+1) of vectors ζ and υ, i.e.

f(ζ) = ζ1 + . . .+ ζn +
√
nζn+1.

For simplicity, denote ft = f(ζ(t)). We will show that there exists ε > 0 such that for all ζ

E [ft+2 − ft|ζ(t) = ζ] ≥ ε. (42)
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Since the function f is non-negative and has uniformly bounded jumps (as |ft+1 − ft| ≤
√
n)

transience of ζ(t) will follow from Theorem 2.2.7 in [5] with k(α) ≡ 2.

To establish (42), observe that for ε ∈ [0, 1)

E [ft+1 − ft|ζ(t) = ζ]− ε

=

∑n
i=1 e

U(i,ζ) +
√
neU(n+1,ζ) −

∑n
i=1 1{ζi>0} −

√
n1{ζn+1>0}∑n+1

i=1

[
eU(i,ζ) + 1{ζi>0}

] − ϵ

=
H(ζ, ε)∑n+1

i=1

[
eU(i,ζ) + 1{ζi>0}

] (43)

where

H(ζ, ε) = (1− ε)
n∑

i=1

eU(i,ζ) +
(√

n− ε
)
eU(n+1,ζ)

− (1 + ε)
n∑

i=1

1{ζi>0} −
(√

n+ ε
)
1{ζn+1>0}.

From (41) and the inequality between the arithmetical and geometric means we have

n∑
i=1

eU(i,ζ) ≥ n

[
n∏

i=1

eU(i,ζ)

]1/n
= ne

−U(n+1,ζ)√
n

hence

H(ζ, ε)

1− ε
>

n∑
i=1

eU(i,ζ) +
(
√
n−

√
nε)

1− ε
eU(n+1,ζ) − 1 + ε

1− ε

n∑
i=1

1{ζi>0}

−
√
n+

√
nε

1 + ε
1{ζn+1>0}

=
n∑

i=1

eU(i,ζ) +
√
neU(n+1,ζ) − 1 + ε

1− ε
(n+

√
n) =: φε(u)

where

φε(u) = ne−u/
√
n +

√
neu − 1 + ε

1− ε
(n+

√
n)

and u = U(n+ 1, ζ) ∈ R.
One can easily check that φ′

ε(0) = 0 and φ′′
ε(u) = e−u/

√
n +

√
neu > 0 for all u, therefore

φε(·) attains its unique minimum at u = 0. If we set ε = 0 we also have φ0(0) = 0 hence

φ0(u) ≥ 0, u ∈ R implying that when ε = 0 the LHS of (43) is always non-negative and ft is

thus a submartingale.

To show that it actually increases on average by at least ε > 0 in two steps, note that

|U(n + 1, ζ(t + 1)) − U(n + 1, ζ(t))| ≥ β > 0 since ζ(t + 1) differs from ζ(t) in one of the

coordinates, and |α| > β. Therefore,

min {|U (n+ 1, ζ(t))| , |U (n+ 1, ζ(t+ 1))|} ≥ β

2
.
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Without loss of generality, assume that it is u = U(n+1, ζ(t)) which has the property |u| ≥ β/2.

To guarantee that the LHS (43) is non-negative for some small ε > 0 we will establish that

inf
u: |u|≥β/2

φε(u) = min{ϕε(−β/2), ϕε(β/2)} > 0 (44)

where the equality follows from the fact that φε(u) is increasing for u > 0 and decreasing for

u < 0. However, since φ0(±β/2) is strictly positive, as we established before, and φε(u) is

continuous in ε, by choosing ε > 0 sufficiently small we can ensure (44) and hence (42) and

transience.

Proof of Part 3) of Theorem 6. Recall from (40) that

(nβ + |α|)U(n+ 1, ζ) + (β + |α|)
n∑

i=1

U(i, ζ) =
(
nβ2 − α2

)
S(ζ),

where now nβ2−α2 > 0, due to our assumption β > |α|/
√
n. Hence, using the elementary fact

that if a1 + · · ·+ an+1 = x then maxi ai ≥ x/(n+ 1) we get that

max
i=1,...,n+1

U(i, ζ(k)) ≥ CS(ζ(k))

and C > 0 is some constant depending on n, α and β.

At the same time, whenever any of the component of ζ increases, S(ζ(k)) also increases by

1. For a positive integer y define τy = min{t : S(ζ(t)) ≥ y}. For each y ∈ {1, 2, . . . } the set

of configurations of ζ where S(ζ) < y is finite, so with probability one at some point of time k

the system will reach the state where S(ζ(k)) ≥ y, consequently τy < ∞ a.s. for all y. Hence

we can define the events Ay =“there exists t ≥ τy such that some component decreases at time

t”. Then one can easily obtain the following bound

P(Ay) ≤ 1−
∞∏
k=y

(
1− n

emaxi U(ζ(k),i)

)
≤ 1−

∞∏
k=y

(
1− n

eCk

)
∼ n

1− e−C
· e−Cy

for large enough y. Since
∑

y e
−Cy < ∞ by Borel-Cantelli lemma there will be a.s. a time y′

for which no Ay (y ≥ τy′) occurs and thus the only changes in the system are increases of the

components; this also implies that for any integer k > τy′ we have maxi U(i, ζ(k)) ≥ Ck, thus

ensuring that the CTMC ξ(t) explodes a.s., since the rates of jumps are bounded below by eCk,

the inverses of which are again summable.

Let us now observe the DTMC after time y′ thus assuming only increases of the components,

i.e. S(ζ(k + 1))− S(ζ(k)) = 1 for all k ≥ y′. Denote

z(k) =
n∑

i=1

ζi(k) = S(ζ(k))− ζn+1(k).

Since the probability that only the component at n+ 1 increases after time k equals

∞∏
l=k

eU(n+1,ζ(k))−|α|(l−k)

eU(n+1,ζ(k))−|α|(l−k) +
∑n

i=1 e
U(i,ζ(k))

= 0
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on one hand, and the probability that the component at n + 1 never increases after time k is

equal to

∞∏
l=k

(
1− eU(n+1,ζ(k))

eU(n+1,ζ(k)) +
∑n

i=1 e
U(i,ζ(l))

)
≤

∞∏
l=k

(
1− eU(n+1,ζ(k))

eU(n+1,ζ(k)) + nemaxi=1,...,n U(i,ζ(l))

)
=

∞∏
l=k

(
1− 1

1 + ne(|α|+2β)ζn+1(k)−βS(ζ(l))−|α|mini=1,...,n ζi(l))

)
≤

∞∏
l=k

C · e−βl = 0

on the other hand, we conclude that both ζn+1(k) → ∞ and z(k) → ∞.

Now consider the process ζ(k) at those times k1 < k2 < . . . when one of the components

in {1, 2, . . . , n} increases. It is easy to see that z(ki+1) − z(ki) = 1 for all i and that one can

couple the process

(ζ1(ki), ζ2(ki), . . . , ζn(ki)), i = 1, 2, . . . ,

with the generalized Pólya urn with n types of balls and the weight function g(x) = eαx. Since

α < 0, from, for example, a trivial comparison with the Friedman urn, we conclude that all

ζj(ki), j = 1, . . . , n grow at the same speed, resulting in ζj(k)/z(k) → 1/n. Therefore, for any

ϵ > 0 there is a (random) time k1 ≥ y′ such that

1− ϵ

n
≤ min

j=1,...,n

ζj(k)

z(k)
≤ max

j=1,...,n

ζj(k)

z(k)
≤ 1 + ϵ

n
for all k ≥ k1.

Once this being the case, the odds that at time k the component at n + 1 grows (as opposed

to a component at i, i ∈ {1, . . . , n}) lies in the interval[
e−|α|ζn+1+βz

ne−|α|(1−ε) z
n
+βζn+1

,
e−|α|ζn+1+βz

ne−|α|(1+ε) z
n
+βζn+1

]
=
[
ezR−ϵ−Lζn+1−log(n), ezR+ϵ−Lζn+1−log(n)

]
where

R±ϵ = β +
|α|(1± ε)

n
, L = |α|+ β.

Let X(k) = z(k)R−ϵ − ζn+1(k)L, k = k1, k1 + 1, . . . . Then X(k) can be coupled with random

walk Y (k) on [log(np/(1− p)),+∞) with the transitional probabilities

Y (k + 1) =

Y (k) +R−ϵ, with probability 1− p;

max
{
Y (k)− L, log

(
np
1−p

)}
, with probability p,

in such a way that X(k) ≤ Y (k). By choosing p ∈ (0, 1) such that

E(Y (k + 1)− Y (k)) = R−ϵ(1− p)Lp < 0
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(provided Y (k) ≥ L + log (np/(1− p))) we ensure that limk→∞ Y (k)/k = 0, implying in turn

that

lim sup
k→∞

X(k)

k
= lim sup

k→∞

z(k)R−ϵ − ζn+1(k)L

k
≤ 0.

By the completely symmetric argument we also obtain

lim inf
k→∞

z(k)R+ϵ − ζn+1(k)L

k
≥ 0.

Now, using the fact that z(k) + ζn+1(k) = k + const for large k,

R−ϵ

L+R−ϵ

≤ lim inf
k→∞

ζn+1(k)

k
≤ lim sup

k→∞

ζn+1(k)

k
≤ R+ϵ

L+R+ϵ

Since ϵ > 0 is arbitrary and R+ϵ −R−ϵ → 0 as ϵ → 0, we get

lim
k→∞

ζn+1(k)

k
=

β + |α|/n
β + |α|/n+ β + |α|

=
nβ + |α|

2nβ + (n+ 1)|α|

and, as a consequence,

lim
k→∞

ζi(k)

k
=

β + |α|
2nβ + (n+ 1)|α|

for i = 1, 2, . . . , n.

Finally, we also conclude that all the components of the CTMC ξ actually explode simultan-

eously.

Proof of Part 4) of Theorem 6 The case i) of the theorem is covered by Theorem 2, and

the case ii) is covered by Theorem 3, since a star graph does not have triangles.
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