
Landscape evolution and ice-sheet behaviour in a semi-arid polar 
environment: James Ross Island, NE Antarctic Peninsula 

BETHAN J. DAVIES
1*, NEIL F. GLASSER

1, JONATHAN L. CARRIVICK
2, MICHAEL J. HAMBREY

1, JOHN L. SMELLIE
3 & DANIEL NÝVLT

3 

1Institute of Geography and Earth Sciences, Aberystwyth University, Aberystwyth SY23 3DB, UK. 

2School of Geography, University of Leeds, Leeds LS2 9JT, UK. 

3Czech Geological Survey, Brno Branch, Leitnerova 22, 658 69 Brno, Czechia. 

3Department of Geology, University of Leicester, University Road, Leicester LE1 7RH, UK. 

*Corresponding author (email: bdd@aber.ac.uk) 

 

Authors’ Note: This pre-print version is the accepted version of the published manuscript, but there are 

some small changes between this version and the final published version. Please view the final published 

version here: http://sp.lyellcollection.org/content/early/2013/04/12/SP381.1.abstract 

Final citation: 

Davies, B. J., Glasser, N. F., Carrivick, J. L., Hambrey, M. J., Smellie, J. L., and Nývlt, D. (2013). Landscape 

evolution and ice-sheet behaviour in a semi-arid polar environment: James Ross Island, NE Antarctic 

Peninsula. In "Antarctic Palaeoenvironments and Earth Surface Processes." (Hambrey, M. J., Barker, P. F., 

Barrett, P. J., Bowman, V. C., Davies, B. J., Smellie, J. L., and Tranter, M., Eds.), pp. 1-43. Geological Society of 

London, Special Publications, volume 381, London. 

 

Abstract: This study of landscape evolution presents both new modern and palaeo process-landform data, and analyses 

the behaviour of the Antarctic Peninsula Ice Sheet through the Last Glacial Maximum (LGM), the Holocene and to the 

present day. Six sediment-landform assemblages are described and interpreted for Ulu Peninsula, James Ross Island, 

northeast Antarctic Peninsula: 1) the glacier ice and snow assemblage. 2) The glacigenic assemblage, which relates to 

LGM sediments and comprises both erratic-poor and erratic-rich drift, deposited by cold-based and wet based ice and 

ice streams respectively. 3) The boulder train assemblage, deposited during a mid-Holocene glacier readvance. 4) The 

ice-cored moraine assemblage, found in front of small cirque glaciers. 5) The paraglacial assemblage includes scree, 

pebble-boulder lags, and littoral and fluvial processes. 6) The periglacial assemblage includes rock glaciers, protalus 

ramparts, block fields, solifluction lobes and extensive patterned ground. The interplay between glacial, paraglacial and 

periglacial processes in this semi-arid polar environment is important in understanding polygenetic landforms. Crucially, 

cold-based ice was capable of sediment and landform genesis and modification.  This landsystem model can aid the 

interpretation of past environments, but also provides new data to aid the reconstruction of the last ice sheet to 

overrun James Ross Island.   
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Polar deserts were widespread during the Pleistocene (in high-latitude continental interiors) and are 

common today, both in the Arctic (e.g. Svalbard, Canadian High Arctic) and the Antarctic (e.g. Vestfold Hills, 

Dry Valleys; Alexander Island). However, geomorphological processes are poorly understood within polar 

deserts despite their widespread occurrence. In particular, the interrelationship of geomorphological (such 

as cold-based and warm-based glacial, periglacial and paraglacial) processes in polar deserts has been the 

subject of relatively few papers (Fitzsimons 2003; Haeberli 2005; Waller et al. 2009). This paucity of data and 

information is surprising because geomorphological processes within polar deserts provide information on 

past and present ice sheet and glacier dynamics and stability, mass and contribution to sea level rise (Waller 

2001; Kleman & Glasser 2007).  

Landsystems use modern analogues to understand geomorphological processes and process-form 

relationships through the characterisation of terrain with repeated patterns in surface form and sediments 

(e.g., Evans & Twigg 2002; Evans 2003b; Benn & Lukas 2006; Golledge 2007; Hambrey & Fitzsimons 2010). 

When constrained by detailed modern analogues, large scale geomorphological mapping and a landsystem 

approach can provide proxy data for palaeo-glaciological models and palaeoclimatic reconstructions (Evans 

2011). Landsystem models have been presented, among others, for cold-based glaciers in East Antarctica 

(French & Guglielmin 1999; Fitzsimons 2003; Hall & Denton 2005), glaciated Alpine valleys (Spedding & 

Evans 2002), active temperate ice sheets (Evans & Twigg 2002; Evans 2003a) and polythermal glaciers 

(Glasser & Hambrey 2003), but an original model has yet to be developed for a semi-arid polar desert.  

Palaeo-ice sheet reconstructions require a thorough understanding of current and past processes and 

subglacial conditions. Existing reconstructions of Antarctic Peninsula Ice Sheet extent, character and 

behaviour rely on poorly dated and sparse marine-dominated geological evidence (Heroy & Anderson 2005; 

2007; Davies et al., 2011), and there have been few detailed terrestrial studies (e.g., Ingólfsson et al. 1992; 

Hjort et al. 1997; 2003; Johnson et al. 2011). The relatively accessible Ulu Peninsula on James Ross Island 

(Fig. 1) is one of the largest ice-free regions in the Antarctic Peninsula, and therefore provides an ideal 

opportunity to investigate palaeo- and modern geomorphological and sedimentary processes. Previous 

studies on James Ross Island have focussed on only small individual landforms (e.g., Chinn & Dillon 1987; 

Rabassa 1987; Lundqvist et al. 1995; Strelin & Sone 1998; Fukui et al. 2007; 2008), and there is a need for a 

larger scale, holistic study. Furthermore, the higher precipitation rate and relatively northern latitude of 

James Ross Island means that meltwater is more readily available than, for example, the Dry Valleys of East 

Antarctica, making this a different landsystem that requires a new conceptual model. The aims of this paper 

are to provide a modern analogue to aid the interpretation and understanding of ancient polar deserts, and 

through interrogation of this to present new data regarding the character and behaviour of the Antarctic 

Peninsula Ice Sheet through the Last Glacial Maximum (LGM) and Holocene Epoch on James Ross Island.  

 



Study Area 

Location and climate 

James Ross Island (north-eastern tip of the Antarctic Peninsula; Fig. 1) has a cold, polar-continental climate 

(Martin & Peel 1978), influenced by the orographic barrier of the Trinity Peninsula mountains (Domack et al. 

2003; King et al. 2003; Davies et al. submitted). It is separated from Trinity Peninsula by the 4 – 8 km wide 

and 450 – 1200 m deep Prince Gustav Channel (British Antarctic Survey 2010). Mean annual air 

temperatures on Ulu Peninsula are around -7°C (Laska et al. 2010, 2011) and can reach up to +8°C in January, 

with more than 200 positive degree days and 100 freeze-thaw days per year, which are highly variable year-

on-year (NASA 2004; Laska et al. 2011). Estimates of precipitation range from 200 mm a-1 w.e. (water 

equivalent) (Strelin & Sone 1998) to 500 mm a-1 w.e. (van Lipzig et al. 2004), which falls into the range of a 

'semi-arid' climate (cf. Laity 2008). However, prevailing strong south to south-westerly winds on James Ross 

Island are effective in encouraging ablation through snow drift. The combination of relatively dry air and high 

wind speeds exacerbates evaporation and sublimation. Ice and snow melt and ground ice thaw is restricted 

to the short summer season and varies strongly diurnally in response to cooler night time temperatures and 

a low angle of incidence of the sun. 

Place names on Ulu Peninsula in this study follow the Czech Geological Survey (2009), the British Antarctic 

Survey (2010) and the Antarctic Digital Database, with the following important exception: the informal name 

“Whisky Glacier” for the small land-terminating glacier extending north from Lookalike Peaks (Chinn & Dillon 

1987; Laska et al. 2010; 2011; Engel et al. submitted) is not used (Fig. 2). “Whisky Glacier” has never been 

formally recognised. It is also known as "IJR-45" in the glacier classification by Rabassa et al. (1982) (also 

Hjort et al. 1997; Davies et al. submitted). Subsequently, the much larger tidewater glacier draining Dobson 

Dome into Whisky Bay was officially designated as Whisky Glacier (British Antarctic Survey 2010). 

Accordingly, we use “IJR-45” when referring to the land-terminating glacier described by Chinn & Dillon 

(1987). Elsewhere, informal names have been allocated where no formal names exist and are indicated by 

the use of parentheses (e.g., “Unnamed Glacier”). Finally, although Ulu Peninsula refers to the entire area of 

land extending between Röhss Bay and Cape Lachman (Fig. 2), our usage generally refers to that part of Ulu 

Peninsula between Whisky Bay, Cape Lachman and Shrove Cove. 

 

Geological and glaciological history 

The Permo-Triassic metamorphic Trinity Peninsula Group crops out widely on Trinity Peninsula (Fig. 1; 

Barbeau et al. 2010). It was intruded by Jurassic and Cretaceous felsic plutons, including granite, 

granodiorite, quartz monazite, tonalite and gabbro (Bibby 1966; Riley et al. 2011; Žák et al. 2011). James 

Ross Island comprises Late Cretaceous sedimentary strata with locally fossiliferous marine sandstone, shale 



and conglomerate, overlain by the Neogene James Ross Island Volcanic Group (Fig. 1; Bibby 1966; Nelson 

1975; Ineson et al. 1986; Košler et al. 2009; Riley et al. 2011). The latter includes tuff, hyaloclastite, basaltic 

lava and glacigenic diamictite (Pirrie et al. 1997; Jonkers et al. 2002; Smellie et al. 2006; 2008; Nelson et al. 

2009) and marine laminites (Nývlt et al. 2011). The tillites and glaciomarine diamictites contain pelitic 

metamorphic, altered volcanic and granitic erratics derived from Trinity Peninsula, indicating that the area 

was inundated on multiple occasions by ice caps during the Neogene (Pirrie et al. 1997; Hambrey & Smellie 

2006; Smellie et al. 2006; Hambrey et al. 2008; Nývlt et al. 2011). The basalt lavas form resistant caps on the 

Cretaceous strata, resulting in flat-topped mountains (mesas) surrounded by scree.  

During Quaternary glaciations, James Ross Island was overwhelmed by ice sheets from Trinity Peninsula, 

which deposited numerous metamorphic and granitic erratics across the island (Bibby 1966; Johnson et al. 

2011). Glacial drift, drumlins and moraines have been described from the interior of Ulu Peninsula (Rabassa 

1983, 1987; Hjort et al. 1997; Strelin et al. 2006). Prince Gustav Ice Stream developed during the Last Glacial 

Maximum (LGM), diverting ice flow north and south around the island (Gilbert et al. 2003; Evans et al. 2005). 

This ice stream receded from the shelf edge after 18 ka BP (Heroy & Anderson 2007; Davies et al. 2011), with 

retreat to the inner shelf occuring between 17.5 and 9.1 ka (Johnson et al. 2011). Mean exposure ages on 

granite erratics at Cape Lachman are dated to 8.0 ± 0.8 ka, suggesting recession of the ice stream from 

northern James Ross Island by that time (Johnson et al. 2011). Radiocarbon dates from glaciomarine 

sediments on The Naze, James Ross Island (Fig. 1) indicate that Herbert Sound became ice free by 6.3 ± 0.3 

to 7.8 ± 0.2 cal. ka BP (Hjort et al. 1997; calibrated and corrected by Davies et al. 2011), and this is supported 

by recent cosmogenic nuclide exposure ages on erratic boulders from 6.8 ± 0.7 ka from Terrapin Hill. 

Johnson Mesa maintained a small independent ice dome until 6.6 ± 0.7 ka (Johnson et al. 2011). 

Several mid-Holocene glacial advances have been documented on James Ross Island. There was an advance 

of Croft Bay glaciers to Cape Lachman from 7.3-7.0 cal. ka BP (Strelin et al. 2006; Johnson et al. 2011). A later 

mid-Holocene readvance of “IJR-45” deposited the very prominent line of hyaloclastite and tillite boulders 

from the existing margin of “IJR-45” northwards to the southern coastline of Brandy Bay. The large lateral 

moraine related to this advance and flanking Brandy Bay was radiocarbon dated to between 5.4 and 4.7 cal. 

ka BP (Hjort et al. 1997; recalibrated by Johnson et al. 2011), suggesting that this glacier readvance may have 

coincided with the mid-Holocene collapse of Prince Gustav Ice Shelf (absent from 6 to 2 ka; cf. Pudsey & 

Evans 2001). Lake cores indicate that the climate was warmer at this time (Björck et al. 1996). Prominent ice-

cored moraines in front of cirque glaciers also suggest a Late Holocene or Little Ice Age readvance (Carrivick 

et al. submitted).  

James Ross Island is now 75 % glacierised, and is dominated by the Mount Haddington Ice Cap. The 

disintegration of Prince Gustav Ice Shelf in 1995 was associated with rapid recession of tributary glaciers 

(Glasser et al. 2011; Davies et al. submitted). Periglacial landforms are today well developed on James Ross 



Island and on surrounding islands (Lundqvist et al. 1995; Ermolin et al. 2002; 2004; Strelin et al. 2006; Fukui 

et al. 2008). 

 

Methods 

Geomorphological mapping was achieved through visual interpretation of remotely sensed images (Table 1) 

and through an intensive field campaign that covered 200 km2 of Ulu Peninsula from January-March 2011. 

Identification of glacially-associated landforms from remote images is well established (Glasser & Jansson 

2005; Glasser et al. 2005; 2009a; 2009b). Remotely-sensed structural glaciological mapping followed 

standard procedures (Hambrey & Dowdeswell 1994; Glasser et al. 1998; Hambrey & Lawson 2000; Hambrey 

et al. 2005; Glasser et al. 2011). Landforms and sediments and were mapped and logged in the field 

following procedures outlined in Gale & Hoare (1991), Jones et al. (1999) and Evans & Benn (2004). 

Sediments were characterised and quantitatively differentiated through the collection of 101 samples each 

of 50 clasts (with an a-axis from 4 to 32 mm) from a 50 x 50 cm area. Stone lithologies were identified 

according to the methods of Bridgland (1986), Gale & Hoare (1991) and Walden (2004). A minimum of 30 

basalt pebbles were measured to the nearest 0.5 cm for shape-roundness data, following Benn & Ballantyne 

(1994). Shape-roundness analysis included calculation of the co-variance of the C40 and RA indices (cf. Adam 

& Knight 2003). The C40 index is the percentage of clasts with a c/a ratio of ≤ 0.4. The RA index is the 

percentage of very angular and angular clasts within the sample, using the Powers (1953) roundness chart. 

Only basalt clasts were used to avoid introducing bias into the dataset through the use of different 

lithologies. These analyses have resulted in the identification of six genetically-grouped sediment-landform 

associations (Fig. 2; Table 2), which are described and interpreted sequentially in the next section.   

 

Geomorphology and sedimentology  

Glacier ice and snow assemblage 

Description. James Ross Island has numerous small cirque, valley, tidewater and plateau dome glaciers (Table 

2). Most of these glaciers are receding (Table 3), but the land-terminating cirque glaciers on Ulu Peninsula 

(Fig. 3) have only small rates of recession or their margins are currently stationary. However, 100-200 m of 

recession has occurred since the most recent glacial advance, when prominent ice-cored moraines were 

formed (Carrivick et al., submitted). Volume loss has been observed on Davies Dome and “IJR-45”, of 29.7 % 

and 10.9% respectively from 1979 to 2006 (Engel et al. submitted).  

Glacier surfaces are characterised by continuous layering (sensu Hambrey et al. 2005), that is clearly visible 

both in the field and in aerial photographs (e.g. Figs 2 and 3). On “IJR-45”, there is well-developed 



continuous layering down glacier (Fig. 2) and supraglacial debris on either side of the ice divide. “IJR-45” is 

150 m thick, with a uniform bed topography (Engel et al. submitted) and a large debris-covered terminus 

(“IJR-45 Glacier Moraine”). No crevasses or crevasse traces were visible on any glaciers on the aerial 

photographs although crevasse traces were noted on the surface of “Unnamed Glacier” and “IJR-45” during 

fieldwork. The continuous layering in “Unnamed Glacier” is folded about the flow-parallel axis. Supraglacial 

scree that falls onto the surface of this glacier at the headwall apparently emerges near the snout (Fig. 3B). 

Glaciers on the eastern side of Lachman Crags (Fig. 3C) are characteristically small and detached from the 

plateau ice dome and thus presumably from their accumulation areas. They also have prominent ice-cored 

moraines. Davies Dome flows radially from the top of a mesa. Its lightly folded continuous layering follows 

the lobate ice margin. Whisky Glacier is characterised by sparse crevasses, crevasse traces and continuous 

layering (Fig. 2). Perennial snow banks lie in the lee of hill slopes (Fig. 2), feeding ephemeral streams that 

flow on positive degree days. These snow banks are sometimes associated with protalus ramparts and 

nivation hollows.  

 

Interpretation. The continuous layering (e.g. Fig. 3) is interpreted as primary stratification formed through 

firnification, superimposed ice formation, and melting and refreezing of snow. Folding of primary 

stratification in “Unnamed Glacier” occurred during down-glacier transport about the flow-parallel axis in a 

compressive regime (cf. Wadham & Nuttall 2003; Hambrey et al. 2005). However, the continuous 

stratification in marginal areas (and lack of foliation) suggests that ductile deformation and shear is not 

prevalent on these small cirque glaciers. The lobate planform pattern of stratification on Davies Dome 

indicates that the ice is flowing radially out of the dome. Crevasse traces on “Unnamed Glacier” and “IJR-45” 

suggest that these glaciers were more active in the past, and that these are now relict features (cf. Hambrey 

& Lawson 2000). 

The supraglacial debris on the surface of some of these glaciers (e.g. “Unnamed” and Triangular glaciers; Fig. 

3B) indicates limited subglacial and supraglacial transport, probably through small-scale creep (Hambrey & 

Lawson 2000). The small glaciers on the eastern side of Lachman Crags (Fig. 3C) are stagnating and down-

wasting in situ, presumably because the prevalent south-westerly winds starve them of precipitation. In this 

location, the abundant scree provided by the basalt and hyaloclastite cliffs provides ample debris, creating 

ice-cored moraines or rock glaciers (e.g. Strelin et al. 2007).  

There is little evidence of contemporary thrusting and active moraine formation on these small cirque 

glaciers today; they are now passively down-wasting and slowly receding, with a negative mass balance 

(Carrivick et al. submitted). The separation of some of these glaciers from their plateau accumulation areas 

has further encouraged ice stagnation. Despite a climate similar to that in Svalbard, none of these glaciers 

have structures indicative of past surge behaviour, such as looped moraines, pot holes or distorted 



longitudinal foliation (cf. Sharp et al. 1994; Bennett et al. 2000b; Hambrey & Lawson 2000; Murray et al. 

2000; 2002; Hambrey et al. 2005; Kjær et al. 2008; Grant et al. 2009).  

 

Glacigenic assemblage  

Ulu Peninsula is covered with a superficial drift sheet dominated by basalt pebbles and occasional erratics, 

which together form an armoured surface that overlies sand (Table 4). In some coastal areas the superficial 

drift is overprinted by marine terraces.  

 

Erratic-poor drift 

Description. A basalt pebble-cobble gravel is widespread across Ulu Peninsula and comprises unlithified 

subangular basalt pebbles and cobbles forming a lag on the surface, with frequent basalt boulders and rare 

granite boulders (Table 4). Samples from Solorina Valley (Fig. 2) and the foreground of “IJR-45” show that 

this erratic-poor 'drift sheet' is typically >90 % basalt, and clasts on the surface are angular to subangular. In 

each case, there are few Trinity Peninsula erratics. These basalt and erratic boulders can be both well-

embedded in the surface or rest on top of it (compare Figs 4A and 4B), and are generally faceted and 

occasionally striated. Stone stripes and polygons are typically well developed on this surface. This ‘drift 

sheet’ is prevalent on topographically flat and smooth, relatively featureless parts of the landscape.  

The erratic-poor drift comprises two further sub-elements: firstly, an unlithified, poorly-compacted, broken 

regolith of local Cretaceous siltstone, sandstone and flaggy sandstone slabs, which is frequently scattered 

with subrounded to subangular erratic basalt cobbles (Table 4). Patterned ground is often well developed, as 

illustrated in Fig. 4C. Large isolated basalt and occasionally granite cobbles and boulders are present on the 

otherwise topographically smooth surfaces (Fig. 4D). The second sub-element comprises exposed 

Cretaceous bedrock with few or no erratics and little surficial regolith, and clearly visible bedding planes (e.g. 

Fig. 4E). 

 

Interpretation. Drift sheets comprising an unconsolidated sandy boulder gravel with a pebble-cobble armour 

are regularly observed in deglaciated Antarctic regions, particularly in the Dry Valleys of East Antarctica 

(Higgins et al. 2000; Augustinus 2002; Hall & Denton 2005; Bockheim 2010), where they are inferred to have 

been deposited by cold-based ice. The climate of the Dry Valleys today (which is colder and drier than that of 

modern James Ross Island; Fitzsimons 2003) is probably comparable with the LGM climate on James Ross 

Island. Sediment-landform assemblages observed in the forefields of cold-based glaciers in the Dry Valleys, 

Antarctica, include striated boulders, sandstone and siltstone breccia, isolated boulders on drift sheets, 

boulder trains and ice-cored debris cones. Diamicton, silt and clay are typically absent (Waller 2001; Atkins et 



al. 2002; Lloyd Davies et al. 2009; Hambrey & Fitzsimons 2010).  These drift sheets are distinctly different 

from subglacial till, which is formed by wet-based ice at the ice-bed interface by a combination of sliding, 

shearing, lodgement and deformation. Subglacial till is characteristically a diamicton with a high bulk density 

and shear strength, an unlithified, over-consolidated, heterogeneous and unsorted matrix, and normally 

bearing polished, striated and faceted stones; the diamicton may be massive, fissile, jointed, and may 

contain numerous inclusions and other sedimentary structures (cf. Evans et al. 2006; Benn & Evans 2010).  

The cold-based sediment-landform assemblages noted in other parts of Antarctica (e.g., Atkins et al. 2002; 

Lloyd Davies et al. 2009; Hambrey & Fitzsimons 2010) are very similar to the erratic-poor drifts on James 

Ross Island (cf. Table 4). Key similarities include the lack of till, the pebble-cobble armour with occasional 

striated boulders and the lack of constructional landforms. The smoothed and sculpted surfaces evolved 

over millennia with repeated warm- and cold-based ice sheets throughout the Cenozoic (Davies et al. 2011), 

and with only very minor modification during LGM cold-based glaciation. This erratic-poor drift is therefore 

interpreted as having been deposited by a cold-based ice sheet. Basal sliding is likely to be limited to bedrock 

regions (Cuffey et al. 1999; Waller 2001). The relatively soft, poorly consolidated Cretaceous sedimentary 

strata that underlay the last ice sheet on James Ross Island were likely to have been deformed, encouraging 

sheet-flow in much the same way as under warm-based ice sheets above the pressure melting point, but at 

lower speeds (cf. Fitzsimons et al. 1999; Cuffey et al. 2000; Fitzsimons et al. 2008). Based on the extent of 

these drift sheets and their rare granite erratics, the ice sheet that overwhelmed the island during the LGM 

was sourced from Trinity Peninsula, during large scale continental-wide glaciation that extended to the shelf 

edge (Heroy and Anderson 2007). The minimal meltwater produced at the base of cold-based ice minimised 

entrainment, erosion, transport and deposition, and reduced the ability of the ice sheet to construct 

moraines and landforms; this resulted in the smooth land surfaces with minimal glacigenic landforms 

observed on Ulu Peninsula.  

The principal surficial sediment lithofacies are differentiated as erratic-rich or erratic-poor on the presence 

or absence of Trinity Peninsula Group erratics (Fig. 5A). Most samples show considerable modification from 

scree, which is presumed to supply the majority of the debris. Material is inferred to have been transported 

via supraglacial and subglacial pathways. Two samples from the erratic-poor drift from Solarina Valley and 

St. Martha Cove (Fig. 1) have particularly angular clasts, which could reflect intense post-depositional frost 

shattering.   

 

Erratic-rich drift 

Description. In some coastal regions adjacent to Prince Gustav Channel, such as Lewis Hill, San Carlos Point 

and Cape Lachman (Figs 1, 2), there are drift sheets comprising poorly-compacted, unsorted sandy boulder 

gravel with high percentages of Trinity Peninsula erratics from pebble to boulder-size (Table 4). At Cape 



Lachman, the central neck of the promontory is significantly enriched with erratics (see Figs 2 and 4F). 

Where the ground rises, there is a sharp contrast with the erratic-poor drift that is almost entirely composed 

of the James Ross Island Volcanic Group. There are large numbers of granite boulders in the topographically 

lower neck of the promontory, but none above the lateral margins of the coastal erratic-rich drift. These 

erratic-rich sediments are associated with constructional ridges and moraine fragments, such as Kaa Bluff 

(Fig. 4G).  Similar erratic-rich drifts also occur in isolated patches in cols and passes of Ulu Peninsula (cf. Fig. 

2), such as Baloo Col, San José Pass, Crame Col, Andreassen Point and in St. Martha Cove, where there are a 

number of small unconsolidated mounds. North of St. Martha Cove, hyaloclastite mounds are streamlined 

north-south.  

 

Interpretation. During the LGM, Prince Gustav Ice Stream flowed northwards along the north-western coast 

of James Ross Island (Camerlenghi et al. 2001; Gilbert et al. 2003; Evans et al. 2005) and impinged upon its 

coastal regions, resulting in lateral moraines and the erratic-rich drift. The sharp boundary between erratic-

poor and erratic-rich sandy boulder gravel on Cape Lachman results from an arm of the ice stream flowing 

over the lower col, perhaps with cold-based ice on the higher parts of the promontory.  

Patches of erratic-rich drift also occur in cols and passes (Table 4). However, there is no evidence of ice 

streaming over these cols and passes (cf. Stokes & Clark, 1999, 2001). Rather, the large accumulations of 

erratics indicate enhanced deposition and therefore wet-based subglacial conditions. As ice flowed over the 

cols it became focussed and compressional stresses increased. Pressure melting point was reached, allowing 

subglacial deposition and resulting in the erratic-rich sandy boulder gravels and further erosion of the cols 

(Lloyd Davies et al. 2009). Both ice deformation and frictional sliding can increase basal temperatures 

(Waller 2001). Furthermore, overriding escarpments can lead to ice-bed separation, the formation of lee-

side cavities, and further entrainment and deposition. These patches of erratic-rich drift are therefore 

interpreted to be a result of changes in the subglacial thermal regime during LGM glaciation, which can 

create mosaics of selective erosion and deposition (Hall & Glasser 2003; Kleman & Glasser 2007).   

The accumulation of Trinity Peninsula boulders and erratics on San José Pass is therefore a result of wet-

based ice flowing over the col, before flowing out of St. Martha Cove and north up Herbert Sound (cf. Fig. 1), 

depositing rich accumulations of erratics near Green Lake and ultimately on the eastern slopes of Berry Hill 

(Fig 2.). Fragments of moraine are associated with this land element at St. Martha Cove, further supporting 

the suggestion that the erratic-rich drift in this location was deposited by wet-based ice, capable of 

entraining, modifying and depositing subglacial debris. The ice cap that overwhelmed Ulu Peninsula during 

the LGM was therefore polythermal, with both regions of warm and cold-based ice. These patches of erratic-

rich drift are at odds with the traditional view of ice sheet flow, which envisaged ‘islands’ of cold-based ice, 

surrounded and enclosed by faster-flowing wet-based ice (Hughes 1981, 1995).  



Care must be taken when interpreting numerous erratics as evidence of a warm-based ice sheet, as the 

Neogene diamictites on James Ross Island contain Trinity Peninsula erratics (cf. Nelson et al. 2009; Nývlt et 

al. 2011). For example, at the northern end of Lachman Crags, east of Crame Col, there is an abandoned 

cirque. Beneath this is a vast accumulation of granite boulders and numerous Trinity Peninsula-derived 

pebbles and cobbles. However, in the cliffs bounding the cirque there is a thickness of Neogene tillite (Fig. 2), 

and these erratics are most likely reworked from Neogene sedimentary strata. The same is true for erratic 

boulders on the coast between Brandy Bay and Cape Lachman. 

 

Boulder train assemblage  

Boulder train and glacial drift  

Description. This assemblage comprises “IJR-45 Glacier Moraine”, “Brandy Bay Moraine”, and a boulder train 

and erratic-poor drift between the two (Table 2). A boulder train of large (7 to 10 m b-axis), freestanding 

hyaloclastite and diamictite boulders (Figs 2 and 4H) stretches from the western side of “IJR-45 Moraine” to 

a low ridge flanking western Brandy Bay. The surficial sediments associated with the hyaloclastite boulder 

train are a sandy boulder gravel, characterised by smooth surfaces, subangular to subrounded basalts, with 

rare granite or basaltic boulders embedded within the sediments or perched on the surface. The surficial 

sediments are dissected by rivers and lack clear boundaries.  

 

Interpretation. The surficial sediments are lithologically similar to the LGM erratic-poor drift (Tables 2 and 4), 

and are stratigraphically younger than the coastal erratic-rich drift. The intact large hyaloclastite boulders 

are likely to have been transported supraglacially by a readvance of IJR-45 during the mid-Holocene (cf. 

Björck et al. 1996; Hjort et al. 1997).  The hyaloclastite boulders are perched on, rather than lodged in, the 

surficial sediments. In addition, these boulders are friable and delicate, and unlikely to survive subglacial 

transport. Recession was rapid with little reworking of these boulders, and no recessional moraines are 

visible in the landscape. This boulder train was therefore most probably formed by the marginal dumping of 

supraglacial debris. Rapid (and possibly cold-based) recession may have protected these friable boulders.  

 

"Brandy Bay Moraine" 

Description. The ridge bounding the south-western coastline of Brandy Bay (Fig. 2) is approximately 30 m 

high with a rounded, undulating crest, 3.5 km long, and up to 0.7 km wide. There is a sharp break in slope at 

its base, and it declines in elevation from east to west (seawards). The surficial sediments are a basalt 

pebble-cobble pavement lag with a fine silt matrix buried beneath the cobble armour. There are rare granite 

boulders, increasing in number seawards. The clast shape-roundness data shows considerably rounder, 



blockier pebbles than the ice-cored moraines (Fig. 5B). The percentage of subrounded to rounded pebbles 

increases northwards along the crest of the moraine. Hyaloclastite boulders decrease in size, and 

degradation and weathering increase south-eastwards down the crest of the moraine. Adjacent to the ridge 

near Phormidium Lake, the glacial drift has abundant Trinity Peninsula erratics, contrasting with the surficial 

sediments on the moraine (see Fig. 2).  

On the crest of the ridge are numerous low surface depressions with arcuate scars, 0.5 to 1 m high. Slump 

scars, debris flows and stone polygons characterise the surface of the moraine. For example, a slump in the 

slope facing Brandy Bay is more than 7 m wide with a 40 m run-out, and an arcuate headwall scar. This 

slump has abrupt lateral margins, visible failure planes and desiccated edges. Slumping at the base of the 

seaward terminus of the moraine resulted in a natural exposure. At the base of the exposed section 0.6 m of 

stratified dark blue ice with large coarse crystals is present, and contains occasional coarse gravel clasts. It is 

overlain by 0.5 m of silty clast-rich diamicton that grades into 1.4 m of crudely bedded sand. From 1.9 to 3.3 

m in the section, there is a diamicton with a gradually increasing gravel content, overlain by crudely bedded 

sand.   

 

Interpretation. The ridge in Brandy Bay has previously been interpreted as a moraine (Hjort et al. 1997), and 

in our study, it is called "Brandy Bay Moraine". The moraine and associated “Bahiá Bonita Drift” were 

deposited by a readvance of “IJR-45” (Rabassa 1983, 1987; Ingólfsson & Hjort 2002). The readvance has been 

dated to the Mid-Holocene by radiocarbon dates from marine molluscs in overridden glaciomarine 

sediments at the base of the moraine, bordering Prince Gustav Channel (Hjort et al. 1997), and radiocarbon 

dates from lake sediments in the boulder train (Björck et al., 1996). Drumlins have been reported in 

association with the moraine and boulder train (Rabassa 1987; Hjort et al., 1997). However, our fieldwork 

indicates that these “drumlins” are simply remnants of a thicker Mid-Holocene drift sheet, subsequently 

dissected by ephemeral streams and reduced by periglacial slope processes.   

 The basaltic debris on the moraine was derived from reworking of basalt scree and hyaloclastite boulders 

from Lookalike Peaks and Smellie Peak, which were also the source for the diamictite and hyaloclastite 

boulders in the boulder train. The percentage of Trinity Peninsula erratics and numbers of granite boulders 

increases north-westwards along the crest of the moraine, indicating the reworking by wet-based ice of the 

pre-existing and underlying coastal erratic-rich drift. Conversely, the hyaloclastite boulders decrease in 

number and size northwards along the crest of the moraine as a result of increasing degradation and in situ 

weathering.  

Subglacial transport is suggested by the clast shape-roundness data (Fig. 5), with considerably less angular 

material than the ice-cored moraines and the basalt-rich drift. This glacier advance was synchronous with 

the recession of ice from Johnson Mesa and the collapse of Prince Gustav Ice Shelf (Pudsey & Evans 2001; 



Johnson et al. 2011), suggesting a warmer climate. This is supported by evidence from lake cores (Björck et 

al. 1996). However, constraints on radiocarbon dating limit our ability to refine the timing of these events. 

The moraine remains ice-cored at depth because of its large size and thick debris cover (which is 

considerably thicker than the active permafrost layer of 1 m and thus protects the ice core from further 

melting), and this ice is genetically related to the abundant permafrost features found on its crest. The large 

thickness of sediment cover is sufficient to protect the ice core from further ablation. 

“IJR-45” currently has only a small accumulation area. For the creation of such a large moraine, coalescent 

glaciers with accumulation areas on Lachman Crags, Davies Dome and Johnson Mesa must be invoked. In 

addition, shifting ice divides may have favoured “IJR-45” over Alpha Glacier, resulting in glacier advance. The 

survival of delicate hyaloclastite boulders in the boulder train suggests that detachment from its 

accumulation area during the mid-Holocene resulted in rapid recession. 

 

 “IJR-45 Glacier Moraine”   

Description. “IJR-45 Glacier Moraine” is up to 1 km wide, with low slope angles until the edge of the moraine, 

where it drops off sharply (Fig. 6A). The glacier trunk comprises clean ice and ice with a thin debris cover. 

The lateral-frontal complex comprises a chaotic assemblage of small, sharp-crested ridges 1 to 3 m high and 

up to 1 m wide and lines of boulders. Stratified ice is frequently exposed in back scars in this location. 

However, the region of intensely ice-cored moraine only extends for 50 m from the glacier snout. In this 

frontal region, the surficial sediments are highly variable, with localised patches of fossiliferous sandstone, 

mudstone and diamicton amongst the largely hyaloclastite-derived basalt sandy boulder gravel. In the 

immediate ice frontal region, the abundant meltwater mixes with fines to produces muddy, clast-rich 

diamictons. Glacier ice is inferred to continue westwards beneath the high frontal-lateral moraines (Engel et 

al. submitted). 

The next 50-160 m from “IJR-45” snout are characterised by increasingly degraded down-wasting back scars 

with exposed stratified blue and white ice, small sharp-crested ridges 1-3 m high, and numerous small 

perched lakes. The ridges follow the arcuate form of the primary stratification in the glacier ice, and are 

often asymmetric, with steep stoss faces and gentle lee faces. There is abundant meltwater dissecting the 

moraine-mound complex. The ice exposed in a back scar close to the snout (“IJR-45 4”; see Fig. 6A for 

location) has 5 m of bubble-poor, large, dark blue and well-defined ice crystals 0.05-0.10 m long, overlain by 

0.50 m of sediment. 

From 160-400 m back from the glacier snout, there are subdued crescent-shaped scars, circular niches and 

ridges with no ice visible, and numerous large hyaloclastite boulders, down-wasting and weathering in situ. 

The moraine surface is characterised by a pebble-boulder lag of subangular to angular basalts. There is a 



large frozen lake (> 100 m diameter) and numerous small perched lakes, as well as several circular 

depressions from drained lakes.  

From 400-1000 m back from the glacier snout, on the glacier true left-lateral moraine, the ridges widen and 

flatten down-slope into a 100 m wide ridge, sometimes with small 5 m high subsidiary ridges and isolated 

mounds. The ridges become increasingly subdued with distance from the ice margin. In this lateral position, 

stone stripes and patterned ground are clearly developing. There are no ice scars, although there are 

numerous ridges topped with lines of hyaloclastite boulders that reflect the orientation of the primary 

stratification in the glacier ice (Fig. 6A). These hyaloclastite boulders are up to 7 m in diameter. The moraine 

surface texture varies spatially, with areas of striated, faceted boulders, and areas with subangular to 

angular basalts showing little sign of glacial transport. There are rare small lakes. The true right-lateral 

moraine is similar. For example, “IJR-45 5” is characterised by a flattened ridge, 100 m wide, scattered 

boulders and isolated mounds and periglacial polygons.  In regions more distal to the terminus, there is a 

basalt-rich boulder gravel with a coarse orange sand matrix, derived from the in situ weathering of massive 

hyaloclastite boulders. 

From 1000 m from the glacier terminus to the upslope limit of the visible moraine, the moraine is 

characterised by smooth slopes with loose scree, frost-shattered basalt boulders, well-developed periglacial 

stone nets and stripes, drained lakes, and subdued ridges. There are large numbers of hyaloclastite boulders, 

particularly to the true left of the moraine, and subdued arcuate ridges. The outer face of the moraine is 

steep, lobate, and contrasts sharply with the glacial drift in the forefield (the photograph Fig. 4B was taken in 

front of “IJR-45”, which is visible in the distance). On the western flank of Smellie Peak, adjacent to the 

moraine terminus, a stream has incised a steep 10 m-deep channel. A series of three small, dry tributaries 

join this stream, running consecutively across the steep slope and at an angle to the fall line.  

 

Interpretation.  “IJR-45 Glacier Moraine” is characterised by five different zones (Table 5 and Fig. 6B and 6C).  

Fresh, actively back-wasting ice scars in the frontal-lateral complex grade outwards to increasingly smoother 

slopes, more uniform and compacted sediments, and increasing weathering and disintegration of 

hyaloclastite boulders. “IJR-45 Glacier Moraine” is separated from the ice-cored moraines of the Late 

Holocene Assemblage because of its older age, deduced on morphostratigraphical grounds, such as 

advanced periglaciation and ice-core degradation.  

Zone 1 comprises clean glacier ice and glacier ice with a thin debris cover. The moraine near the snout of 

“IJR-45” (Zones 2-3) has many features typical of ice-cored moraines formed through the thrusting of 

polythermal ice at the glacier margin (summarised in Table 5), including stratified, inclined glacier ice, ice 

scars, perched ponds, steep slopes, ridges and scarps (e.g., Østrem 1964; Knight et al. 2000; Schomacker & 

Kjær 2007). Sediment accumulates through the meltout of thrusted subglacial sediments, englacial debris 



bands, and channel-fill materials. Supraglacial material is also a significant component of the debris mantling 

the glacier surface.  De-icing processes include backwasting and downwasting (cf. Krüger et al. 2010). This 

causes surface lowering and flattening of ice-cored slopes. Collapse results in the breaking of sediment cover 

and the exposure of new ice walls and new cycles of ice degradation. Resedimentation occurs through 

slumping, sliding and sediment flows, and reworking from fluvial, aeolian and periglacial (freeze-thaw) 

action. The occasional striated boulders indicate active subglacial transport. This zone may have been 

contemporaneous with the Late Holocene assemblage. 

Zones 3 to 5 are typical of dead-ice (stagnant glacier ice) environments (cf. Krüger et al. 2010), where 

melting of buried ice results in resedimentation processes (Bennett et al. 2000a). This is dead-ice-cored 

moraine, with large volumes of supraglacial, englacial and subglacially transported debris (cf. Klint et al. 

2011). Water allows liquefaction and reduces the shear strength of the sediment, encouraging further mass 

movement. The large depth of sediment cover in the dead-ice-cored and permafrost zones protect the ice 

from further ablation. Indeed, once the accumulated sediment on the moraine becomes thicker than the 

active layer, estimated to be 1 m (Ermolin et al. 2002; 2004), the ice core is preserved. There is little sign of 

active ice melt in zones 4 and 5, illustrating the nature of dead-ice terrain (Klint et al. 2011). Landforms of 

this type are typical in polar arid environments in East Antarctica (Fitzsimons 2003), Svalbard (Lønne & Lyså 

2005; Lukas et al. 2007; Jacobs et al. 2011) and Iceland (Kjær & Krüger 2001; Krüger et al. 2010). 

“IJR-45 Glacier Moraine” is interpreted as an ice-cored moraine rather than a rock glacier (cf. Chinn & Dillon 

1987) because of limited evidence for downslope movement, the lack of a continuous supply of talus, and 

the evidence of thrusting (such as long, arcuate, asymmetric ridges, often with exposed scars of glacial ice, 

and linear trains of bouldery debris; cf. Hambrey & Huddart 1995; Hambrey et al. 1997) from polythermal 

glacial processes. The ridges on the outer moraine show former ice position, and are not furrows and ridges 

related to downslope movement. The distribution of large hyaloclastite boulders across the moraine reflects 

ice flow, as they are derived from Lookalike Peaks to the southwest of the glacier headwall, and are 

distributed across the true glacier left. Rather, “IJR-45 Glacier Moraine” is interpreted as a coherent body of 

stagnant glacier ice, down-wasting in situ and overlain by debris.  

The landform succession reflects the age and increasing degradation of the moraine, with three stages of 

landform succession: an initial, dynamic, young phase, with thrusting and upwards ice movement 

transporting debris to the surface (Zones 1-2); a mature phase of ice-disintegration and sediment reworking 

(Zones 3-4); and a final or old phase of partially ice-cored terrain (Zone 5). The presence of well-developed 

periglacial features on “IJR-45 Glacier Moraine” suggests that zones 4 and 5 formed some time ago, and that 

this dead-ice feature has been slowly degrading for centuries and possibly millennia. The ridges and lobate 

margin of “IJR-45 Glacier Moraine” (Fig. 6A) suggest that until IJR-45 began to stagnate and down waste in 

situ, it was an active piedmont glacier, expanding out of the valley.  



The clast roundness on “IJR-45 Glacier Moraine” is difficult to interpret, as the majority of the basalt clasts 

are derived from in situ weathering of large hyaloclastite boulders. However, they are largely more angular 

than those clasts on “Brandy Bay Moraine”. The tuff from these boulders also provides the majority of the 

sand fraction on the moraine. Clasts on the lateral moraine are more angular than those on the terminal 

moraine. The amount of frost-shattering towards the distal margins of the moraine increases the tendency 

towards angularity (Fig. 5B). Large basalt screes on Smellie Peak abut the true right moraine of the glacier, 

and probably represent a major source of clasts. Cretaceous sandstones occur in limited locations in the 

moraine, reflecting localised bedrock outcrops and low transport distances. The presence of more fines 

(from Cretaceous sandstone and siltstone) exerts a strong control on moraine character, with patchy 

outcrops of diamicton and deformed muds in “IJR-45 Glacier Moraine”. Dry channels in front of the moraine 

may be palaeo-meltwater channels, recording the recession of the glacier up the valley.  

 

Ice-cored moraine assemblage 

Description. Ice-cored moraines in front of cirque glaciers and abandoned cirques are amongst the youngest 

landforms on Ulu Peninsula (Rabassa 1987), and date from a readvance of the small cirque glaciers that was 

most likely in the Late Holocene (Carrivick et al. submitted). The cirques are characterised by steep bedrock 

headwall cliffs and a rounded, over-deepened basin, and they are occupied by small glaciers or occasionally 

lakes (e.g. by Davies Dome and the western face of Lachman Crags or the north-eastern slopes of Johnson 

Mesa). The ice-cored moraines (e.g. Fig. 3) typically have multiple sharp-crested ridges and numerous small 

lakes and ponds (Fig. 7A, B, C). The surfaces of the moraines range from sandy boulder gravel, through 

unsorted openwork basalt boulders to diamicton. Pebbles and cobbles are subangular to subrounded and 

show increasing roundness of shape with proximity to the glacier snout. Exposures reveal stratified glacier 

ice (layered blue or white ice, bubble poor or bubble rich) that is exposed in ice scars (Fig. 7D, E), and 

superficial slumps and debris flows. The exposed ice has a fine crystal structure and a low bubble content, 

and contains debris ranging from sand and fine gravel to small boulders. In San José Glacier moraine, an 

exposure of ice with stratification dipping at 40° up ice reveals clean blue bubble-free ice, interbedded with 

white bubble-rich ice, diamicton, fine to boulder-sized clasts and muddy laminations (Carrivick et al. 

submitted). On the terminal moraines there are occasional striated boulders in the terminal moraines (e.g. 

Fig. 7I). 

Clast lithological data gathered from San José Glacier moraine shows that the predominant lithology is the 

James Ross Island Volcanic Group (Fig. 8A). These basaltic rocks are well exposed in the bedrock cliffs and on 

the mesa above the glacier. Transport distances, especially for the friable and non-durable Cretaceous 

sandstone, are very low, with Cretaceous rocks occurring only in specific locations close to their outcrops. 

Unlike the smoothed glacial surfaces outside the moraines, no Antarctic Peninsula erratics were observed. 



The presence of Cretaceous lithologies, especially mudstone, significantly alters the composition of the 

moraine, with far higher percentages of fines and muds observed. This results in patches of diamicton 

amongst the largely sandy boulder-gravel of the moraines.  

Clast-roundness histograms from gravel-sized basalt clasts vary with sample location. In Lachman and San 

José glaciers, for example, there is a trend towards increasing angularity of gravel clasts towards the 

headwalls of the glacier (Fig. 8B). However, this trend is disrupted on the outermost edges of Lachman 

Glacier moraine, where there are increasing percentages of very angular clasts (Fig. 5). In “Unnamed Glacier” 

moraine, sample Unnamed 3 has high percentages of angular clasts despite being located in a terminal 

moraine position. However, there is considerable inter-moraine variability. In general, the ice-cored moraine 

clasts show more angularity than the older glacial drifts (Figs 5A, B). 

The moraines around the Davies Dome plateau glacier (Fig. 7G, H) are texturally and morphologically highly 

variable. For example, on top of the mesa, where the ice margin is rounded in both planform and surface 

slope, there is no evidence of landform construction. The lobed south-eastern margin comprises regions of 

angular unsorted gravel, diamicton ridges, and ridges of angular, frost-shattered basalt. At sample location 

DD2 (234 m a.s.l.; Fig. 8D), there are small, sharp-crested ridges up to 20 m high and 1 m wide, transverse to 

ice flow. There are back scars with exposed stratified ice. The proportion of sandstone in the clast count and 

matrix is highly variable. Mud content varies considerably over small distances, clearly dependent on local 

bedrock geology, i.e. the presence of Cretaceous deposits. Adjacent to these moraines, ice-contact scree is 

formed below an ice-cliff, forming angular open-work basalt cobbles and boulders, such as Sample DD1 (217 

m a.s.l.), which was taken in front of an ice cliff (Fig. 8). The stratified and dipping ice has a structural 

unconformity with a layer of angular basalt boulders and cobbles.  

Lateral moraines on the outlet glacier, which coalesces with Whisky Glacier in Whisky Bay, are also typical 

ice-cored moraines. Sample Davies 1 (Fig. 8D) is characterised by a series of small, sharp-crested ridges, 2-20 

m high, with basalt boulders perched on their crests. Ice scars expose stratified ice, dipping at 80-90°, with 5-

30 cm thick layers of dark blue, bubble-poor and white, bubble-rich ice, both with occasional cobbles; 10 cm 

thick layers of grey mud; and thin mud layers with occasional fine to medium gravel. The ice has a strong 

unconformity with the 60 cm thick sediment drape above it.  

 

Interpretation. These hummocky ice-cored moraines are assumed to have formed during the last 200 years, 

when the Antarctic Peninsula experienced a pronounced cooling event, approximately synchronous with the 

Northern Hemisphere Little Ice Age (Bertler et al. 2011). The moraines are principally composed of stratified 

ice. Ice with dispersed debris is interpreted as ice from above the basal zone. Ice with laminated debris is 

formed through the attenuation of debris through creep. The ice with stratified debris is interpreted as being 



derived from basal adfreezing (Hubbard & Sharp 1995; Knight et al. 2000; Waller et al. 2000; Hubbard et al. 

2009).  

The debris on the surface of the moraines is composed almost entirely of basalt (cf. Fig. 8A, C), originating 

principally from rockfall from the headwalls onto the glacier surface. However, sand and mud derived from 

subglacial reworking of Cretaceous sandstone is evident in the fine-grained matrix in particular areas of the 

lateral moraines. However, as transport distances of Cretaceous lithologies are low, sandstone gravel forms 

only a minor component of the moraine lithologies. Subglacially transported debris (such as striated 

boulders) is apparent, particularly in the terminal moraines. Moraine surface character and matrix content 

are therefore closely controlled by the bedrock geology, with patches of purely basaltic boulder-cobble 

gravel and diamicton occurring in close proximity to one another. 

Ice-cored moraines are formed by the release of material from proglacial or englacial thrusts, melt-out, and 

supraglacial debris (Glasser & Hambrey 2003; Schomacker 2008; Schomacker & Kjær 2008). Subglacial 

thrusting entrains sediment, with moraines forming through the thrusting upwards of basal glacial ice at the 

ice margin, induced through marginal shear. This behaviour is typical of small polythermal glaciers (Hambrey 

et al. 1999; Glasser & Hambrey 2003). Folding, thrusting and stacking of basal ice because of longitudinally 

compressive flow in polythermal glaciers (where the margin is frozen to the bed) results in the development 

of moraine ridges with intercalated debris-rich and debris-poor stratification (Boulton 1972; Evans 2009). 

The angle of thrusting controls not only the angle of moraine slope, but also moraine height, width and 

character. These are controlled moraines (Ó Cofaigh et al. 2003; Evans 2009), where the linearity of the 

moraine is controlled by primary stratification in the glacier ice (e.g. Figs 3, 6 and 8). These moraines indicate 

that the glaciers were previously more active in the past, with at least temperate ice regime in the snout, 

which is a common phenomenon in small modern glaciers in the High Arctic (e.g., Hambrey et al. 2005; 

Rippin et al. 2011).  

The complexity and variation in moraine around Davies Dome (ice-cored moraines composed of sandy 

boulder gravel and diamicton; ice-contact scree; flat and featureless on the mesa plateau; Fig. 8D) is likely to 

reflect variations in thermal regime. Structural glaciological analysis demonstrates that the lobes and outlet 

glaciers are likely to be polythermal, with a frozen margin, resulting in the formation of ice-cored moraines. 

Ice-contact scree forms below ice cliffs, where meltout and sublimation results in the deposition of angular 

englacial and supraglacial debris. The formation of ice-contact scree suggests that the ice margin is stable, 

and this is a common landform in cold-based glaciers (Fitzsimons 2003). The smooth, flat margin on top of 

the mesa suggests that this part of the dome is fully cold-based, with little or no movement or modification 

of the landscape.   

The shape-roundness data show some difference between samples from the high lateral moraines and 

samples from the distal terminal moraines within the same moraine (Fig. 5), although short transport 



distances mean that these differences are subtle. Samples from the terminal moraines clearly have blockier 

shapes and edge-rounded corners, which is indicative of subglacial transport. Samples from the lateral 

moraines are more angular, with less blocky clast shapes. This is indicative of shorter transport distances, 

and a higher input of supraglacially-derived material. This trend reflects the influence of transport distance 

on the shape of gravel clasts, and that these small cold to wet-based glaciers are locally capable of modifying 

their bedload. Angularity again increases towards the older, outer portions of the moraine, as post-

depositional frost-shattering fragments basalt clasts. This difference is clearly shown in the C40/RA plot in Fig. 

8C, with two distinct populations. However, there is considerable variation between the moraines; this is 

likely to be as a result of variations in the input material (scree), which is dependent on its origin (refer to 

Paraglacial assemblage). Also of note is the increase in angularity in some moraines on the distal parts of the 

moraine. This is likely to be the result of increased frost-shattering in the older parts of the moraine, and 

thus the older age of their deposition.  

Part of the complexity in clast shape is highlighted in “Unnamed Glacier” (Figs 2, 3C). Sample “Unnamed 3” 

(Fig. 5B) is directly below steep cliffs from which scree is constantly falling onto the glacier surface. This scree 

is lightly buried by snow, and then observed melting out near the terminus; sample "Unnamed 3”, although 

from the terminal moraine, is therefore largely derived from supraglacial material that has undergone little 

modification. This contrasts with “Unnamed 4”, also from a terminal position on the moraine (Fig. 5C), but 

from a position away from supraglacially-transported material. The edge-rounding of clasts in this location is 

indicative of subglacial transport.  

Post-depositional processes play a key part in moraine development, with aeolian deflation rapidly removing 

fines, resulting in a lag of cobbles and pebbles on the surface of the moraine. Melting of the ice-core 

provides abundant meltwater, resulting in numerous debris flows, especially in regions rich in matrix 

material. Preferential melting of ice core also results in the formation of ice-collapse pits, which 

subsequently become perched ponds (kettles). With only a thin sedimentary covering, these moraines are 

particularly prominent only because of the presence of this ice. After ice-core melt out, there will be little 

geomorphological expression, which explains the lack of other prominent moraines from previous 

readvances on Ulu Peninsula. Following the terminology of Clayton (1964) and Kjær and Krüger (2001), these 

are mature, fully ice-cored moraines, characterised by mass movement and resedimentation processes. They 

can be compared with “IJR-45 Glacier Moraine” and “Brandy Bay Moraine”, which are in an older phase and 

are classified as “partially ice-cored terrain”. 

 



Paraglacial assemblage 

The ‘paraglacial period’ refers to the period of readjustment from glacial to nonglacial conditions, with the 

reworking and relaxation of glacial landforms and sediments, such as steep debris-mantled slopes, cliffs and 

large fluvial systems (Fitzsimons 1996; Ballantyne 2002). Mass-wasting of rock walls, movement on debris-

mantled slopes, aeolian processes and limited fluvial transportation dominate sediment transfers, which are 

limited to the short summer season on James Ross Island. On Ulu Peninsula, paraglacial sediments and 

landforms overprint older glacial landforms, and paraglacial processes actively modify landforms and 

transport material.  

 

Marine Terraces and raised beaches 

Description. Below 30 m on the Abernethy Flats there are smooth, flat slopes, an absence of large boulders, 

and rounded pebbles. Shape-roundness Sample Aber 3, at 30 m a.s.l. on the Abernethy Flats (Fig. 9A), 

illustrates the high degree of rounding on the clasts, with spherical shapes (Fig. 5A). Sample Aber 1 was 

taken further away from the coastline but still at 30 m a.s.l. It has 18 % angular pebbles, thereby possibly 

reflecting frost shattering. In this aspect Sample Aber 1 bears a closer resemblance to sample Aber 2, taken 

from the basalt cobble-gravel glacial drift. The surface near sample Aber 3 is flat and smooth with a deflated 

pebble-cobble gravel. There are sparsely distributed hyaloclastite boulders. 

A series of flat terraces with rounded pebbles were observed near the sea shore in front of Alpha Glacier 

(Figs 9B and 9C). The uppermost bench, at 7 m a.s.l., has relatively few rounded pebbles. The surface is 

composed of a sorted basalt pebble-gravel, with no large boulders and a sandy silt matrix. The middle bench 

(2 m a.s.l.) is separated from the others by steep slopes with active solifluction lobes. This bench dips gently 

seaward. Frost shattering of pebbles is evident.  

 

Interpretation. Associated with and overprinting the glacial drifts in coastal areas on James Ross Island are a 

series of marine terraces, formed during and after deglaciation. Marine terraces on James Ross Island occur 

up to a height of 90 m a.s.l., and date from the Pliocene to the Holocene (Rabassa 1983; Strelin & Malagnino 

1992; Roberts et al. 2011). Hjort et al. (1997) recorded a series of strandlines and beach deposits near San 

Carlos Point, including beach gravels at 16 m, 30 m and 90 m a.s.l. Hjort et al. suggested that the 30 m a.s.l. 

marine limit observed primarily on the Abernethy Flats was associated with deglaciation of Prince Gustav 

Channel. A 16 m a.s.l. terrace is a mid-Holocene marine level following further terrestrial deglaciation 

(Ingólfsson et al. 1992; Hjort et al. 1997).  

 



Spits and modern beaches  

Description. Northern James Ross Island is fringed by beaches, occasionally with sandy spits. Spits occur at 

San Carlos Point (500 m long, 80 m wide), Cape Lachman and St. Martha Cove (900 m long, 300 m wide). 

Furthermore, over a distance of 1.8 km on the beach west of Mendel Station (Fig. 2), 79 granite, 19 gneiss 

and 22 pelitic boulders with a b-axis > 1 m were observed. Boulders are also noted on the beach east of 

Mendel station to the tip of Cape Lachman. 

 

Interpretation. The isolated sand and gravel spits formed through the reworking of glacial and fluvial 

sediments in the littoral zone (Ballantyne 2002). Littoral longshore currents transported formerly deposited 

glacial and fluvial material alongside the beach. This coastal reworking has also resulted in a large number of 

boulders, especially of Trinity Peninsula origin, forming a boulder lag on the beaches, which is typical of 

paraglacial environments (Ballantyne, 2002).  Unstable steep slopes behind beaches are subject to 

solifluction and over-steepening by wave action, further encouraging accumulations of boulders on the 

beach.  

 

Rivers and streams  

Description. Ephemeral incised streams and braided streams on Ulu Peninsula typically have multiple 

channels with an active river width of up to 100 m, incised stream cuts, small islands, point-bars and 

longitudinal mid-channel bars (cf. Miall 1977), which shift rapidly in response to widely variable flows (Figs. 

2, 9D, E). The braided river draining Alpha Glacier is characterised by rounded, poorly sorted and clast-

supported gravel on point bars (cf. Fig. 5A). The braided channel is incised 1 to 2 m, with numerous small 

channels actively down-cutting. Seal Stream and Monolith Stream (Fig. 2) are associated with the seaward 

progradation of the outwash plain in Brandy Bay.  

 

Interpretation. Ephemeral rivers and streams on James Ross Island are fed by perennial snowfields and 

melting glaciers (Fig. 2) and their discharge varies considerably on diurnal, weekly and monthly timescales. 

On warm days, these ephemeral rivers and streams are capable of winnowing glacial sediments and incising 

Cretaceous bedrock. Two contrasting fluvial styles occur; the low-discharge, multi-channel, high-sinuosity, 

braided stream stage, and the high-discharge low-sinuosity stage with one principal channel. In this stage, 

the whole of the channel belt is flooded. 

 



Aeolian sediments and landforms 

Description. Glacial drifts on Ulu Peninsula are frequently covered by a basalt pebble-cobble armour, 

commonly only one or two clasts thick, with sand beneath. Accumulations of wind-blown sand are 

frequently found on the surfaces of snowfields, where it can produce aeolian accumulations several metres 

thick after snowfield decay (Figs 9E, F). Many of the basalt and granite boulders associated with the erratic-

poor LGM drift (cf. Table 4) have smooth plano-concave and plano-convex faces (e.g. Fig. 4B) (Knight 2008). 

Red staining is common on granite boulders in the LGM drifts on Ulu Peninsula (e.g. Fig. 4A).  

 

Interpretation. Aeolian processes are strong and pervasive on Ulu Peninsula. Winnowing of fine particles 

from surficial deposits is pervasive on James Ross Island, particularly on the flatter regions such as the 

Abernethy Flats. This winnowing has resulted in a pebble-boulder lag on the surface of glacial drifts. The dry, 

unvegetated climate of James Ross Island makes it particularly susceptible to aeolian deflation, and strong 

katabatic winds exacerbate the process. Similar processes have been observed in East Antarctica (French & 

Guglielmin 1999; Bockheim 2010) and in Iceland, where, over four years, a recently deglaciated surface went 

from being 30-40 % clast covered to 90 % clast-covered (Boulton & Dent 1974; Ballantyne 2002). Most of the 

wind-transported material terminates in the sea, or is caught on snow banks. Basalt ventifacts with smooth 

plano-convex faces are common, which are typical of recently-deglaciated, periglacial terrain, because of the 

lack of vegetation cover, the presence of large unburied boulders, the availability of sand through glacial 

abrasion and mechanical frost weathering, and the strong katabatic winds (Knight 2008). In addition to 

ventifacts, aeroxysts are present on the surface of basalt and tuff boulders, along with other types of aeolian 

erosional micro-forms (e.g. tafoni) (Fig. 10H). 

The red staining on numerous granite boulders is a red desert varnish, enriched in iron, rather than the 

manganese frequently associated with hot desert environments. Iron oxides are leached out from the 

internal rock and are deposited as varnish. Granite is particularly prone to the development of a red desert 

varnish because it is resistant to physical breakdown and contains iron-bearing biotite (Matsuoka 1995). 

Well-developed desert varnish forms in semi-arid, sheltered areas, away from wind abrasion. Ventifacts and 

red desert varnishes are both a common feature of ice-free regions of Antarctica (Matsuoka 1995; French & 

Guglielmin 1999; Hall & Denton 2005; McLeod et al. 2008; Bockheim 2010). 

 

 

Scree slopes 

Description. Scree slopes are common beneath the steep Neogene basalt and hyaloclastite cliffs on James 

Ross Island, and are an important input into moraines, rock glaciers and protalus ramparts. Clast lithological 



counts prove that the scree is composed entirely of basalt and hyaloclastite. Three shape-roundness samples 

were taken from modern and active scree slopes (Fig. 5A, B), where they show considerably more angularity 

than the Glacigenic assemblage drifts but are similar to the lateral moraines in small cirque glaciers. Scree 

derived from hyaloclastite (NM2) is more rounded, whilst scree from flood basalts (IJR-45 6; BH1) is more 

angular (Fig. 5C).   

 

Interpretation. The steep cliffs of the James Ross Island Volcanic Group, with vertically-jointed hyaloclastite 

deltaic deposits, are particularly susceptible to rock weathering and scree slope formation. When deposited, 

the hyaloclastite lacks a fine binding matrix so it is often only weakly bound by palagonite clay from 

alteration of original glass (away from any pore-filling zeolite sediment; Johnson & Smellie 2007). After 

recession of glacier ice after the LGM, stress-release fracturing and subaerial exposure of the cliffs occurred, 

making them susceptible to freeze-thaw activity in a periglacial climate (Harris 2007). This has resulted in 

rapid readjustment and the formation of active scree slopes (cf. Ballantyne 2002), which are a key input for 

rock glaciers and protalus ramparts, and which are continuing to form actively today. 

 

Large scale mass movements 

Description. Large-scale mass-movement is evident on Ulu Peninsula where the James Ross Island Volcanic 

Group rests upon gently inclined poorly consolidated Cretaceous mudstone (Fig. 2). There is a large landslide 

on the northern foothill just below the col between Johnson Mesa and Bibby Hill (Figs. 10A, B, C). There are 

many smaller rockfalls and debris flows at the Andreasson Point massif (Fig. 2). In areas affected by large-

scale mass movement, volcanic blocks many tens of metres high (representing the full thickness of the local 

volcanic sequence) and a few hundred metres long, along with smaller fragments, form enormous jumbled 

heaps, for example, forming the hilly high ground backing onto Andreasson Point. These blocks have 

detached from the main ice-capped volcanic outcrops nearby (e.g. the Lachman Crags lava-fed delta is the 

source for the blocks at Andreasson Point). Elsewhere, similar chaotic blocky terrain formed by mass 

movement sourced in lava-fed deltas is present on the east side of Lachman Crags (Fig. 10C) to the north of 

Andreasson Point, and forming the hummocky ground between Davies Dome and Lookalike Peaks 

(surrounding Sekyra Peak), and between Smellie Peak and Dinn Cliffs.  

 

Interpretation. The large-scale mass-movements are probably controlled by gravity acting on steep-fronted 

brittle rock masses (delta margins) resting on soft ductile substrate (Cretaceous sediments). They are clearly 

geologically controlled, the upper surface of the Cretaceous mud representing a décollment surface on 

which the volcanic blocks can slide. Plough structures suggest that the process is still active, as does the 



presence of a slab of intact delta several hundred metres along the northeast side of Lachman Crags that is 

down-dropped tens of metres and separated from the main mesa by a snow-filled gap (Fig. 10D). Rates of 

movement involved in the formation and advection of slabs are not known. Moreover, the formation of the 

slabs involved in mass movement has not been investigated in detail. However, instability probably occurred 

after removal of any surrounding ice, or when the deltas were uplifted above sea level, thus removing the 

hydraulic support from steep delta fronts; this suggests that formation of the large-scale mass movements 

began soon after uplift and continued during each interglacial, including the Holocene. Sliding may involve 

initiation along finer-grained (sandy) “bottom set” layers in the lava-fed deltas, or a deep décollment surface 

lubricated by water in a permafrost environment. It is also conceivable that the underlying weak Cretaceous 

mudstone (and probably weakly lithified sandstone) can deform under the weight of the deltas, which are 

individually a few hundred metres thick. The blocks then move downslope with the active layer. Similar 

landslides have been observed in Scotland, particularly on the Isle of Skye (Ballantyne 1991; Ballantyne et al. 

1998). However, they are unusual, because these landscape features rely on the uncommon juxtaposition of 

thick brittle basalt deltas on weak and deformable Cretaceous sedimentary strata. They should therefore not 

be regarded as ‘typical’ of semi-arid polar landsystems, unless the appropriate lithologies are present. 

 

Periglacial assemblage 

Periglacial and paraglacial processes are closely intertwined on James Ross Island. Massive ground ice and 

glacier ice underlie many of the landforms on James Ross Island, resulting in abundant periglacial processes. 

There have been several studies investigating permafrost on James Ross Island and surrounding islands. 

Electrical resistivity studies have suggested that the active layer here is approximately 1 m deep (Fukuda et 

al. 1992; Ermolin et al. 2002; 2004). Slightly lower measurements for the active laver (22-93 cm) and 

important inter-annual variability (2009-2010) were found by using mechanical vertical probing on a transect 

from the eastern coast of Brandy Bay, over Johnson Mesa and up to Mendel Station, with variation being 

controlled partly by altitude, substrate and aspect (Engel et al. 2010). 

 

Rock Glaciers 

Description. Near the south-eastern corner of Lachman Crags, there are six rock glaciers (Fig. 2; 11A, B). 

Lachman II Rock Glacier is located at the end of an ice-cored moraine, in front of stagnating glacier ice 

(Strelin & Sone 1998; Strelin et al. 2006; 2007). Where the sediment cover in the moraine in front of the 

glacier reaches 0.60 m deep, it is interpreted as a rock glacier, with ridges and furrows delimiting flow-like 

features. The rock glacier extends 700 m down-valley and is approximately 500 m wide, with a surface dip to 

4-5° in the flow direction. It ends in a steep talus apron of 24-42°. The central part is incised by an ephemeral 



stream, and conical holes, occasionally occupied by meltwater, occur on the surface of the rock glacier. 

Exposures of glacier ice are visible in the central channel, in the conical holes, and in the marginal talus 

(Strelin & Sone 1998). Lachman II Rock Glacier has a mean annual flow velocity of 0.2 metres per year with a 

travel distance of 400 m from the initiation of the rock glacier, suggesting it is approximately 2000 years old. 

Lakes on this rock glacier may have previously been the source for glacier lake outburst floods (Sone et al. 

2007).  

The rock glacier beneath Berry Hill (Fig. 11B) is formed below steep hyaloclastite cliffs. It is at a low angle 

with a steep frontal face (60° slope), and is detached from the cliff face. There are several small arcuate 

ridges, 1-2 m high, which are moderately sharp-crested, with numerous circular depressions. There are 

several flat benches. The surface is 100 % basalt and hyaloclastite, with an orange coarse sandy matrix 

composed of weathered tuff from the hyaloclastite. There are large blocks of hyaloclastite moving 

downslope. 

 

Interpretation. Rock glaciers are lobate or tongue-shaped landforms comprising a mixture of rock debris and 

ice, typically with a lobate, furrowed form, ridges, ponds and a steep terminus and sides. They can be 

effective transporters of material from cliffs. Rock glaciers can be talus-derived (with debris burying snow 

and forming interstitial ice) or glacier-derived (Humlum 2000; Degenhardt Jr 2009). Glacier-derived rock 

glaciers form part of a continuum with, and can evolve from, ice-cored moraines (Evans 1993; Ó Cofaigh et 

al. 2003). Distinguishing between ice-cored moraines and glacier-derived rock glaciers can be challenging; 

however, rock glaciers must move downslope to be classified as such (similar to glaciers) (Østrem 1971), and 

would therefore normally occur on slopes, where they advance through the internal deformation of ice (see 

comparison in Table 6). Lachman II Rock Glacier is a glacier-derived rock glacier. Examples of talus-derived 

rock glaciers can be found west of Andreassen Point (Fig. 11A), below Berry Hill (Fig. 13B) and in Rockfall 

Valley (Fig. 2). 

 

Protalus ramparts 

Protalus ramparts are curved, flat features, found in association with scree and perennial snow banks. They 

are bounded on their downslope side by a sharp break in slope, where the talus rests at the angle of repose. 

Numerous protalus ramparts are formed along Johnson Mesa, the western slopes of Lachman Crags (Fig. 

11C) and below Davies Dome mesa (Fig. 11D). They form through the rolling of clasts down perennial snow 

banks, and indicate the presence of periglacial conditions.  

 



Slope Processes 

Description. Solifluction lobes are apparent on many moderate to low-gradient debris-mantled slopes on the 

island (e.g. Figs 2 and 11E), with many boulders on these slopes ‘ploughing’ into the sediment, with a keel at 

the downslope edge. Solifluction processes (French 1988) are also active in modifying ice-cored moraines 

and degraded ice-cored moraines on James Ross Island. This is apparent, for example, on the outer portions 

of “IJR-45 Glacier Moraine”, and has, in conjunction with slumping and slopewash, reduced slope gradients 

and subdued ridge crests.  

Alluvial fans and valley-fills are also important on James Ross Island, with fluvial, snow avalanches, debris 

flows and solifluction resulting in gentle fan-shaped sediment accumulations in many valleys. Some of the 

valley fill has subsequently been dissected by rivers and streams, with sorted material being deposited 

downstream. In the valleys near Alpha Glacier and St. Martha Cove, the region is dominated by large 

hyaloclastite hill mantled with extensive scree. The valley-fill deposits are bounded by a sharp break in slope. 

The ground is moist, with strongly-developed patterned ground and limited incision by small snow bank-fed 

ephemeral streams. These valley-fill deposits are smooth and flat, and dip downslope at very low angles. 

Rock streams (sensu Wilson 2007) were also observed in small valleys, with coarse rock debris and snow 

accumulating in a linear deposit with a downslope alignment. They typically have a single thread down the 

valley axis and extend for hundreds of metres, but are typically only a few metres wide. 

 

Interpretation. Periglacial slope processes are controlled by freeze-thaw activity, rock weathering, frost 

heave and thaw consolidation. The permafrost table inhibits the downward percolation of water, and the 

melt of segregated ice lenses provides water, which in turn reduces the internal friction and cohesion in the 

regolith. Frost creep is one of the main components of solifluction, with slow downslope gravitational 

deformation of slope materials through freeze-thaw activity (Harris 2007). These unvegetated slopes with 

thick glacial drift are susceptible to erosion by slope failure, debris flows, tributary streams and surface 

wash, resulting in gullying, slope-foot debris cones and valley floor deposits (Ballantyne 2002). These 

processes were observed widely on degraded ice-cored moraines, at the base of scree slopes, on slopes 

mantling hills (e.g. Fig. 11E), and on slopes covered with Cretaceous regolith. 

 

Freeze-thaw sediments and landforms  

Description. Evidence for modification of surface sediments by freeze-thaw activity on James Ross Island 

includes frost-shattered boulders (Fig. 12A), nivation hollows and processes (Fig. 12B), sorted stone polygons 

and stripes, sometimes vegetated by moss and lichens (Figs 12C and 12D), and surface cracks. The sorted 

polygons comprise cells of sand and fine to coarse gravel, surrounded by angular coarse gravel and cobbles. 



Pattern widths vary between 0.5 and 4 m. Sorted polygons (sensu Ballantyne 2007) are particularly prevalent 

in areas with a large supply of water, such as near streams and snow banks, but also occur on the summits of 

mesas and on degraded moraines. Stone stripes with alternating coarse and fine sediment are well 

developed on some slopes. Nivation hollows were frequently observed on Ulu Peninsula, related to small 

late-lying snow patches, and are usually a few metres square in size. Weathering and downslope 

transportation of basalt cobbles on Cretaceous sandstones results in striking black stone stripes (Fig. 4C). 

Patterned ground overprints all of the other land elements on James Ross Island.  

 

Interpretation. Shattered boulders occur through mechanical weathering induced through freezing and 

thawing under a periglacial environment (Murton 2007). Polygons on the ground surface may form through 

the development of vertical ice wedges in the ground (Harry 1988). Sorted stone polygons and stone stripes 

both form through diurnal needle-ice growth, with the former on flat and the latter on inclined surfaces. The 

diurnal needle-ice freezing and thawing produces creep on inclined surfaces (Ballantyne 2007). Stone stripes 

may form in combination with seasonal gelifluction and creep through solifluction, resulting in lobes. The 

presence of patterned ground indicates that the glacigenic deposits on James Ross Island have undergone 

significant modification since their initial deposition. Networks of cracks have been interpreted as being the 

product of the fissuring of seasonally frozen ground (Ballantyne 2002) 

Late-lying snow is common on James Ross Island, and snow falls throughout the summer season, leading to 

numerous snow banks and small perennial snow patches. These snow banks feed many of the ephemeral 

streams and form nivation hollows (Thorn 1988). The close association of patterned ground with streams 

and snow banks suggests that water may be a limiting factor in the freeze-thaw cycles that form these 

features. More liquid water is present downslope of snow banks and in moist areas, encouraging ice wedge 

growth and resulting in more well-developed polygons and stripes.  

 

Mesas and blockfields 

Description. The surface of Lachman Crags mesa (400 m a.s.l.) is smooth and flat, but stone stripes and 

sorted polygon nets occur in most regions. The surficial sediments are almost entirely basalt clasts, with rare, 

well-embedded, rounded granite boulders. The pebbles are generally edge-rounded with few angular 

pebbles (Fig. 5A). At the highest point (above 380 m), the sediments form a blockfield of large, angular basalt 

boulders (Fig. 12E). These boulders are not faceted or striated, and many are sub-vertical as a result of frost 

upheaval (Fig. 12F).  

Johnson Mesa (320 m a.s.l.) is characterised by stone stripes and polygonal nets, with very rare cobbles and 

boulders of Trinity Peninsula origin. In the highest parts, the surface comprises a blockfield with some 



boulders turned sub-vertical through frost action. In a col between Bibby Hill and Johnson Mesa, Trinity 

Peninsula erratics make up 20 % of the clast lithologies.  This col has scattered Trinity Peninsula granites and 

metamorphic boulders, with an a-axis of up to 60 cm.  

On Davies Dome mesa (370 m a.s.l.), the topography is smooth with gentle undulation. The margins of 

Davies Dome plateau glacier have little geomorphological expression and moraines are absent. The surface is 

a sandy boulder gravel with well-developed stone polygons, and is 100 % basalt. Within the polygons, there 

is coarse, poorly-sorted sand. No Trinity Peninsula erratics were observed on this mesa. Again, above 

approximately 380 m, the surface comprises a basalt-derived blockfield, with angular, non-faceted and non-

striated basalt boulders.  

 

Interpretation. Blockfields are assumed to develop under periglacial conditions on levelled or gently 

undulating relief, with autochthonous blockfields developing from the in situ weathering of bedrock with 

limited downslope displacement of blocks (Rea 2007; Goodfellow et al. 2008; Ballantyne 2010). The 

blockfields on James Ross Island have developed on the Neogene basalt plateaux (Fig. 2). Vertical frost 

sorting and patterned ground with sorted polygon nets and stone stripes indicates periglacial frost action. 

Some authors argue that initial crack formation in blockfields occurred during the warmer climates of the 

Neogene (cf. Ballantyne 2010). These cracks were then exploited by ice, resulting in frost wedging of bedrock 

and granular disaggregation under a periglacial climate. However, recent studies have found no evidence of 

chemical weathering (Goodfellow et al. 2008). The Ulu Peninsula blockfields may have been actively forming 

through frost action throughout the Quaternary (and possibly Neogene), protected by cold-based plateau ice 

caps during glacials or remaining unglaciated as nunataks above the height of the ice sheet (cf. Goodfellow 

et al. 2008).  

The clast size on the blockfields is highly variable. On Lachman Crags mesa, clast size ranges from boulder-

size, open-work blockfields, with boulder size being controlled by joint spacing (e.g. Fig. 12E), to sandy 

boulder-gravels with well-developed stone circles and fine matrix in the interior of the polygons. The pebble 

fraction has rounded shapes (Fig. 5A), which is not unusual in long-established blockfields (Ballantyne 2010). 

Edge rounding through granular disaggregation may imply long-term stability of the surface. There is a clear 

altitudinal control, with coarser, bouldery blockfields only occurring above 380 m. 

The presence of granite and Trinity Peninsula cobbles and boulders on the surfaces of some mesas suggests 

that they might have previously been overridden by glacier ice from Trinity Peninsula. The absence of 

erratics on Davies Dome mesa, in comparison with Johnson Mesa or Lachman Crags mesa, could be a result 

of an expansion of Davies Dome, a cold-based ice cap that preserved and protected the blockfield below (cf. 

Kleman & Glasser 2007) and deflected Antarctic Peninsula ice during the LGM and previous glaciations. An 

alternative explanation is that the erratics were deposited subaqueously from icebergs derived from 



Neogene ice sheets under glaciomarine conditions, and that the plateaux were subsequently uplifted above 

the height of the Quaternary ice sheets. There is observational support for the latter suggestion. The 

Lachman Crags lava-fed delta was emplaced in a marine setting whereas that at Davies Dome was englacial 

(Smellie et al. 2008). The erratics are found only on the Lachman Crags delta, on areas of the mesa top 

underlain by hyaloclastite, i.e. where the overlying lava ‘topsets’ have been stripped off. The hyaloclastite 

surface is flat and at a uniform elevation below the adjacent lava outcrop (except where the lavas are down 

faulted, as on Johnson Mesa), suggesting that the lava cover was removed by marine erosion during the 

years and decades following emplacement of the delta in the sea (i.e. contemporaneous erosion). If ice was 

still present in the Peninsula (cf. Smellie et al. 2009), icebergs would be able to drift over the stripped-off 

areas of Lachman Crags delta and deposit erratics. Significantly, the Davies Dome delta has not suffered 

similar erosion, nor does it have any erratics. The lower col on Johnson Mesa, however, is assumed to be a 

flow pathway for Quaternary ice sheets, with concentrated flow encouraging deposition of numbers of 

Trinity Peninsula erratics.  

 

Discussion 

 Processes of landscape evolution in a semi-arid polar environment 

Using the geological, geomorphological and glaciological studies undertaken on James Ross Island, we 

present a new landsystems model for landscape evolution on James Ross Island (Fig. 13), which will aid the 

interpretation of past, present and future glacierised and glaciated environments. A key feature of this new 

model is the multi-temporal approach. Six sediment-landform assemblages were described and interpreted 

in the above sections (Table 2), and they mark a change from landscape dominance by large-scale glaciation 

during the LGM, mid- and late-Holocene glacial readvances, and paraglacial and periglacial processes 

throughout the Holocene and into the present day. The polar-desert landsystem on Ulu Peninsula is strongly 

controlled by the geology; basalt mesas dominate the landscape, while being underlain by softer Cretaceous 

marine deposits and a basalt pebble-cobble gravel covers almost all surfaces, and differences between the 

six identified sediment-landform assemblages are subtle. The large landslides (Fig. 10) are predicated by the 

presence of basalt deltas, likely to be an uncommon feature of other polar desert environments. However, 

similar features have been noted elsewhere (e.g., the Isle of Skye, where basalt columns overly Jurassic 

mudstones (Ballantyne 1991)). The landscape was initially overprinted by Antarctic Peninsula ice during the 

LGM. This ice sheet, and previous incarnations, has sculpted and moulded Ulu Peninsula. Variations in the 

thermal regime and ice stream activity have resulted in differences in the glacial drift. Following deglaciation, 

paraglacial and periglacial processes immediately began to modify the landscape (summarised in Fig. 13 and 

Table 2). 



Our landsystem model (Fig. 13; Table 2) is a modern analogue to aid the interpretation of other high-latitude 

semi-arid environments during the Late Glacial in the Northern Hemisphere. Similar semi-arid environments 

are recognised to have existed during the Late Pleistocene in the Canadian High Arctic (Ó Cofaigh et al. 1999) 

and in Svalbard (Glasser & Hambrey 2003), and may be expected in high-latitude continental interiors 

glaciated during the LGM, such as Siberia and European Russia.  

 

Glacial-paraglacial-periglacial interactions 

A latitudinal transect from northern Chile through to the Dry Valleys highlights the changing dominance of 

different processes, driven primarily by the availability of meltwater (Fig. 14). It is clear that meltwater is 

increasingly important at more northerly latitudes. The fast-flowing temperate glaciers of the Northern 

Patagonian Icefield (47°S) produce large volumes of meltwater, which rapidly rework and remove fines 

generated subglacially. Subglacial landforms, such as drumlins, flutes, eskers, or crevasse-squeeze rides are 

rare (Glasser et al. 2009a). The large volume of meltwater results in numerous glaciofluvial ice-contact 

landforms, with abundant kame terraces, glacial lakes and raised lake shorelines, and rapid reworking of 

subglacially-deposited sediments and landforms. The meltwater also facilitates basal sliding and enables 

glaciers to flow quickly (Glasser et al. 2009a), resulting in abundant ice-scoured bedrock. In contrast, the 

sediment-landform assemblage around Tierra del Fuego, southernmost Chile (53°S), is dominated abundant 

subglacial till, flutes, drumlins and moraines, deposited by temperate glaciers but with reduced proglacial 

meltwater. Smaller sandur and ice-contact lakes, however, remain important (Benn & Clapperton 2000; 

Bentley et al. 2005). At these latitudes, there is only discontinuous permafrost at high altitudes (Trombotto 

2002; Benn & Clapperton 2000), resulting in fewer rock glaciers, protalus ramparts, frost-shattered boulders 

or stone polygons than on James Ross Island. Aeolian processes are also comparatively less important; 

ventifacts and pebble-cobble lags are more numerous in East Antarctica than in Chile because of the 

comparatively faster, sand-bearing winds, less vegetation and less surficial sediments than in temperate 

regions. 

On James Ross Island, freeze-thaw and fluvial activity have far greater relative importance when compared 

to the Dry Valleys (cf. French & Guglielmin 1999; Sugden et al. 1999; Hall & Denton 2005; McLeod et al. 

2008), which significantly aids the development of patterned ground and solifluction landforms (Fig. 14). 

Indeed, the prevalence of moisture-driven periglacial processes on Ulu Peninsula contrasts sharply with their 

absence in more southerly, colder parts of Antarctica. In contrast, the Glacigenic Assemblage on James Ross 

Island resembles closely the cold-based glacial sediment-landform assemblages recognised in East Antarctica 

(Fig. 14; Atkins et al. 2002; Lloyd Davies et al. 2009; Hambrey & Fitzsimons 2010), perhaps indicating 

similarities between the climate during the LGM on James Ross Island and the climate in the Dry Valleys and 

East Antarctica today (cf. Fitzsimons 2003). Some paraglacial processes, such as glacio-isostatic adjustment, 



relaxation of rock walls, littoral reworking (González Bonorino et al. 1999) and fluvial reworking (albeit 

limited in the Dry Valleys) operate throughout the transect, although glacio-isostatic uplift, marine terraces 

and raised beaches are more prevalent at James Ross Island (cf. Roberts et al. 2011) and Tierra del Fuego, as 

a result of their proximity to the ocean. 

The scope for landscape modification at the intersection of a paraglacial-periglacial-glacial landsystem is of 

great importance. Even in more temperate latitudes, the interplay between periglacial, paraglacial and 

glacial processes has been recognised as important (Coleman & Carr 2008). Ground ice is prevalent on James 

Ross Island today, in the form of permafrost, rock-glaciers, buried glacier ice and ice-cored moraines. Buried 

glacier ice can survive almost indefinitely in the permafrost environment (e.g., 8 m. yr. old ice in the Dry 

Valleys; Sugden et al. 1995; Schafer et al. 2000). However, despite the wealth of research on glacial and 

periglacial processes, there are relatively few papers that discuss the actions of one set of processes upon 

the other (Harris & Murton 2005).  

The presence of permafrost beneath cold-based glaciers on James Ross Island during the LGM may have 

facilitated forward movement, as high porewater pressures beneath subglacial permafrost can reduce the 

shear strength of unfrozen substrate. This may also be a factor in initiating the large-scale mass movements. 

Further, proglacial permafrost can reduce effective stress by generating over pressuring in groundwater 

(Mathews & Mackay 1960; Boulton et al. 1995). Entrainment of debris (as observed in debris-rich basal ice 

exposed in ice-cored moraines) occurs through the transmission of basal shear stress from the glacier bed 

into the frozen subglacial sediment (Waller et al. 2009). The glacier couples with the permafrost (e.g. Cuffey 

et al. 2000), and the plane of movement (décollment plane) moves downwards to a plane of weakness 

within the underlying substrate, itself composed of relatively soft, easily deformable Cretaceous sediments. 

In this instance (cold-based glaciers overlying frozen ground), the base of the glacier is a heterogeneous 

zone, with the lower boundary of glacier flow varying spatially and temporally (Fitzsimons 2006; Waller et al. 

2009).  

This landsystem model includes many ice-cored landforms, such as ice-cored moraines, debris-covered 

glacier snouts, glacier-derived rock glaciers and talus-derived rock glaciers. The continuum and classification 

of ice-cored landforms has generated much debate (e.g., Hamilton & Whalley 1995; Humlum 1998; Konrad 

et al. 1999; Humlum 2000; Serrano & López-Martínez 2000; Lønne & Lyså 2005; Lukas et al. 2007; 

Degenhardt Jr 2009; Jacobs et al. 2011). The morphologies of landforms generated at the termini of 

polythermal and cold-based glaciers overlap significantly. For example, the processes governing the genesis 

of ice-cored moraine, debris-covered glacier termini, dead-ice moraine and glacier-derived rock glaciers may 

be very similar. However, these morphological terms describe different end members of the continuum, and 

their different processes, sediments and landforms are summarised in Table 6. 



In the contemporary permafrost environment on James Ross Island, the seasonal melting of glacier ice and 

snow dominates sedimentary processes and products. However, this is modulated and modified by the 

melting and mobilisation of the permafrost active layer. In the semi-arid polar environment on James Ross 

Island, with predominantly cold-based glacial processes, periglaciation and paraglaciation dominating 

sediment transport. Sediment transfers occur through fluvial erosion, rock glaciers, slope instability and 

solifluction (cf. Harris & Murton 2005), and result in chaotic dead-ice terrain with abundant re-sedimentation 

processes (Etzelmüller & Hagen 2005). When analysing geomorphological processes in cold environments, 

glacial, periglacial and paraglacial processes must be considered as an intrinsically coupled system.  

 

Character and behaviour of the LGM ice sheet on Ulu Peninsula  

The basal thermal regime of ice sheets represents important empirical data required for numerical ice sheet 

models (Kleman et al. 1999; Siegert & Dowdeswell 2004; Siegert 2009). This research suggests that the 

subglacial thermal regime on Ulu Peninsula comprised four principal types: a wet-based ice stream, warm-

based sheet flow, cold-based sheet flow and cold-based plateau ice caps. Each leaves a distinctive sediment-

landform assemblage behind in the geological record (Table 7).  The frozen-bed patches identified by Kleman 

and Glasser (2007) are more complex and variable than previously assumed. The thermal regime of Whisky 

Glacier and glaciers in Croft Bay is unknown. It is possible, however, that slippery marine sediments in the 

bays would have encouraged rapid basal sliding. Marine geological evidence has been taken to suggest that 

cold-based ice developed on the Antarctic Peninsula mountains (Ó Cofaigh et al. 2001; Reinardy et al. 2009). 

Unglacierised mesas are assumed to have been above the height of the LGM ice sheet, but they could have 

harboured cold-based plateau ice caps (Johnson et al. 2009). If the mesas were above the LGM ice sheet, the 

summit plateau elevations provide an estimate for maximum ice thicknesses at the LGM. However, an ice 

surface elevation of c. 750 m a.s.l. has been demonstrated for Dobson Dome, just south of our field area (Fig. 

1), with an age of < 80 ka (with large errors; Smellie et al. 2008).  

Sharp boundaries in thermal regime and styles of erosion and deposition have long been recognised in the 

geological record at the shear margins of ice streams (Stokes & Clark 1999, 2001). Less is known about flow 

boundary patterns in sheet-flow areas. However, on Ulu Peninsula, the mosaic in the thermal regime of the 

cold-based ice sheet operating under sheet-flow was subtle, and the boundaries more dispersed than the 

shear margins of ice streams.  

The glacial sandy boulder gravel that characterises James Ross Island today is a significant contrast to the 

Neogene diamictite logged in many locations across the island (Hambrey & Smellie 2006; Hambrey et al. 

2008; Smellie et al. 2009). Similar contrasts have been noted in the Dry Valleys, where pebble gravels 

deposited by cold-based ice differ from Neogene the Sirius Group diamictons (Hambrey & Fitzsimons 2010). 

This is indicative of changing climatic regimes, with diamicton, silt and clay forming only under the warmer 



climatic conditions of the Neogene (cf. DeConto & Pollard 2003; Mayewski et al. 2009). Warmer atmospheric 

temperatures encouraged subglacial sliding, erosion, transportation and deposition under a wet-based ice 

sheet, with abundant production of fines and therefore diamictites. Abrasion under cold-based glaciers is 

insufficient to generate the large quantities of fines required for subglacial till formation, which is associated 

with warm-based glaciers above the pressure melting point. Geothermal heating may also have aided the 

production of basal meltwater and subglacial till formation during the Neogene Period on James Ross Island 

(Hambrey et al. 2008). Effects of volcanically enhanced geothermal gradients on meltwater availability 

during the Neogene are difficult to determine. However, those effects were probably localised mainly to 

within several km of the erupting vents (at Mount Haddington, c. 40 km distant), with only a very limited 

influence likely in the more distal regions where our study was focussed. Quaternary volcanic activity was 

somewhat closer, situated on western Vega Island, Terrapin Hill and Dobson Dome (990 ka, c. 660 ka and < 

80 ka, respectively, the latter two with large errors; Smellie et al. 2008), situated c. 10, 20 and 10 km, 

respectively, from our field area. The Quaternary centres are therefore probably too old and too distant to 

have had a major effect in the Brandy Bay area. 

This study has shown that cold-based ice sheets are capable of entraining and moving sub-glacial sediments 

and boulders, and, in conjunction with numerous recent studies that illustrate the erosive and depositional 

capabilities of ice sheets that reach -17°C at their bed (e.g., Phillips et al. 2006; Hambrey & Fitzsimons 2010), 

supports a new and emerging paradigm of sheet flow in high latitude regions. The old paradigm suggested 

that ice sheets comprised a patchwork of cold-based ice on mountain tops, with very little erosion or 

deposition, surrounded by highly active warm-based ice that typically occupied valleys (e.g., Hättestrand & 

Stroeven 2002; Stroeven et al. 2002; Briner et al. 2003; Davis et al. 2006). Delicate structures and blockfields 

are preserved at high altitudes (Kleman et al. 1999; Johnson et al. 2009). New and emerging research (for 

examples, see Kleman & Glasser 2007) suggests that this is an over-simplification, and that sheet flow 

beneath high-latitude ice sheets is more complex. Although cold-based glaciers are weak erosional and 

depositional agents compared with warm-based glaciers, the interaction between glaciers, their thermal 

regime and their beds is more subtle  than is usually assumed (Cuffey et al. 2000; Lloyd Davies et al. 2009). 

The ice sheet that overwhelmed James Ross Island during the LGM was a composite of ice streaming in the 

trough of Prince Gustav Channel, which impinged on the coastal margins of Ulu Peninsula; sheet flow on the 

main part of Ulu Peninsula with both warm and cold-based ice flowing across the island, and cold-based and 

stationary plateau ice domes on high plateau blockfields (Table 7). The lateral margins of Prince Gustav Ice 

Stream were likely to have been dominated by warm-based sheet flow; the evidence for this includes 

moraines and enhanced deposition of erratics. The key point of this new paradigm is that the cold-based ice 

was capable of movement, erosion, transportation of material and deposition, with enhanced deposition 

occurring in small areas as a result of changes in the thermal regime of the ice sheet, and that sheet flow and 

cold-based ice are more complex than previously thought.  



 

Conclusions 

This holistic and systematic study of sediment-landform assemblages from Ulu Peninsula on James Ross 

Island (Table 2) has used detailed sedimentary descriptions, clast lithology, shape-roundness counts and 

geomorphology mapped both in the field and from remotely-sensed images (Table 1) to discriminate six 

sediment-landform assemblages and thus to present the first landsystem model from a semi-arid sub-polar 

desert from the Antarctic Peninsula. The conceptual model in Fig. 13 emphasises the interrelationship and 

importance of not only glacial, but also periglacial and paraglacial processes. The six sediment-landform 

assemblages identified were, 1) the Glacier Snow and Ice Assemblage; 2) the Glacigenic Assemblage; 3) the 

Boulder Train Assemblage, 4) the Ice-Cored Moraine Assemblage; 5) the Paraglacial Assemblage and 6) the 

Periglacial Assemblage. Analysis if these assemblages provides a detailed understanding of landscape 

evolution on James Ross Island. Sediments and landforms were deposited during LGM glaciation and from 

mid to late-Holocene glacier readvances. These were subsequently reworked and redeposited by periglacial 

and paraglacial processes throughout the Holocene and into the present day. Crucially, when compared with 

the few other polar landsystem models, we find that the availability of melt water encourages strong 

landform modification by periglacial processes. These processes would have been similarly important in the 

Northern Hemisphere during the Late Pleistocene epoch. Therefore the landsystem model presented here is 

a modern analogue to be used in the interpretation of past glaciated environments. 

This paper presented new information regarding the thermal regime of the Antarctic Peninsula Ice Sheet 

during LGM glaciation (Table 7). The data and model for the interplay between cold-based, warm-based and 

streaming ice challenges the theory that cold-based glaciers do not erode or deposit. We have presented 

geomorphological and sedimentological data to help interpret the presence of cold-based sheet flow in 

other Quaternary glaciated environments. Finally, this paper presented important new data regarding the 

thermal regime and character and behaviour of the LGM ice sheet on James Ross Island, which will aid 

reconstructions of the LGM ice sheet in northern Antarctic Peninsula.  
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Tables 

Table 1. Sources used for remote mapping of landforms. RMS = Root Mean Square error. 

Data Source Resolution / Scale Date Captured Notes 

BAS/JR/2/79 1:95 000 February 1979 BAS and Royal Navy aerial photographs taken over Brandy Bay, 
Vega Island, Rum Cove and Terrapin Hill. Digitally scanned and 
georeferenced in ArcGIS to SPOT-5 satellite images (WGS84 UTM 
21 S). Photographs copyright British Antarctic Survey and Crown 
copyright Controller of Her Majestey’s Stationary Office and the 
UK Hydrographic Office. 

The 2006 aerial photographs were processed, georeferenced and 
orthorectified by Nývlt and Šerák (Czech Geological Survey, 2009).  

BAS/JR/1/79 1:95 000 January 1979 

BAS/JR/2/80 1:95 000 February 1980 

RN/6/89 1:16 000 January 1989 

BAS/RN/06 1:25 000 (< 1 m) 2006 (various dates) 

Digital Elevation Model (DEM) produced by 
Nývlt and Šerák (Czech Geological Survey 
2009) 

< 5 m 
Created from BAS 
1970/80 and 2006 
aerial photographs 

James Ross Island – Northern Part. Heights: geoid EGM96. Map 
projection: WGS84 UTM 21S 

 



Table 2. Summary of the six sediment-landform assemblages on Ulu Peninsula, James Ross Island 

Assemblage Principle land elements Age of formation Interpretation 

Glacier snow and 
ice assemblage 

Glacier ice (cirque, tidewater, valley, 
dome glaciers) 
Perennial snow-banks 

Holocene to 
present day 

Contemporary glaciation. Small cold-
based cirque and plateau glaciers 
dominate on Ulu Peninsula. 

Glacigenic 
assemblage 

Erratic-poor drift 
Cretaceous bedrock with scattered 
basalts 
Erratic-rich drift (in coastal regions) 
Erratic-rich drift (in cols and passes) 
Moraine fragments 

LGM James Ross Island overwhelmed by the 
Antarctic Peninsula Ice Sheet. 
Development of Prince Gustav Ice 
Stream in Prince Gustav Channel. 

Boulder train 
assemblage 

Boulder train 
Erratic-poor drift sheet 
“Brandy Bay Moraine” (with some 
reworked granite erratics) 
“IJR-45 Glacier Moraine” 

Mid-Holocene Mid-Holocene readvance of “IJR-45” to 
form a marine-terminating glacier in 
Brandy Bay. 

Ice-cored moraine 
assemblage 

Ice-cored moraines in front of 
cirques (both with and without 
modern glaciers) 

Late-Holocene  Late-Holocene readvance of small 
polythermal glaciers, possibly during a 
southern Hemisphere equivalent of 
the "Little Ice Age". 

Paraglacial 
assemblage 

Scree slopes 
Boulder lags on beaches 
Ventifacts ; cobble-boulder 
pavements 
Spits and beaches 
Marine terraces 
Rivers and streams 
Large scale mass movements 
 

Holocene to 
present day 
 
 
 
 
 
Neogene to present 
 

Paraglacial reworking of glacigenic 
sediments and landforms 
 
 
 
 
 
Paraglacial relaxation of basalt deltas 

Periglacial 
assemblage 

Rock glaciers 
Nivation hollows 
Protalus and pronival ramparts 
Freeze-thaw shattering of boulders 
Solifluction 
Mesas and blockfields 

Holocene to 
present day 
 
 
 
(Neogene to 
present day) 

Periglaciation of James Ross Island, 
with deep permafrost and a seasonal 
active layer. 
 
 
Development of blockfields shortly 
after their genesis in the Neogene. 
Occasionally glaciated by small, cold-
based plateau glaciers. 

 

  



Table 3. Principal characteristics of the land-terminating glaciers on Ulu Peninsula (after Davies et al. submitted). San José and 
Lachman glaciers are treated as one glacier. “Width” was measured at the widest point on the glacier. ELA is calculated from 
topographical data (refer to Davies et al. submitted for more information). Refer to Fig. 2 for glacier locations. 

Glacier Type Length Width Area 
Mean 
Slope 

ELA (m a.s.l.) 
Recession rate 
1988 to 2009 

“IJR-45”* Valley glacier 3.26 km 0.8 km 2.36 km2 5° 270 m 0.144 km2 a-1 

“Unnamed Glacier” Cirque glacier 2.53 km 0.5 km 3.61 km2 12° 350 m 0.017 km2 a-1 

Triangular Glacier Cirque glacier 0.9 km 0.8 km 0.62 km2 17° 180 m 0.004 km2 a-1 

Lachman and San 
José Glaciers 

Cirque glacier 1.44 km 1.5 km 0.62 km2 12° 230 m 0.000 km2 a-1 

Alpha Glacier Valley glacier 3.94 km 1.0 km 3.19 km2 8° 230 m 0.016 km2 a-1 

Davies Dome 
Dome (plateau) 
glacier 

3.46 km 2.7 km 6.46 km2 9 ° 300 m 0.041 km2 a-1 

*Informally named “Whisky Glacier” by Chinn & Dillon (1987); name not used here as it clashes with officially adopted name for the 

glacier (Whisky Glacier) between Dobson Dome and Whisky Bay (British Antarctic Survey 2010). "IJR-45" from Rabassa et al. 1982.  

 

 



Table 4. Glacigenic Assemblages: LGM sediments and landforms of James Ross Island. TPG: Trinity Peninsula Group metamorphic rocks (cf. Fig. 1). 

Land element Sediments Landforms Processes and interpretation Age 

Erratic-poor drift; basalt 
pebble-cobble gravel  

Subangular to subrounded clasts, numerous basalt and 
rare granite boulders either well-embedded in 
sediments or perched on surface. Pebble lags, 
ventifacts and desert varnish are common. 

Smooth, flat surfaces. Widespread across 
the interior of Ulu Peninsula. 

Deposition beneath a slow-moving cold-
based ice sheet 

LGM 

Erratic-poor drift; 
sandstone and siltstone 
breccia 

Unlithified sandstone / siltstone regolith, poorly-
compacted, occasional isolated granite or basalt 
boulders; scattered basalt cobbles across the surface 

Smoothed surfaces, occasionally bedding 
planes are visible. 

Scouring and deposition beneath a cold-
based ice sheet 

LGM 

Erratic-rich coastal 'drift 
sheet' with abundant TPG & 
granite erratics 

Found along the western coast of Ulu Peninsula. 
Subangular to subrounded clasts, numerous boulders 
and pebbles of Trinity Peninsula origin. 

Constructional ridges, moraine fragments, 
smooth slopes. Focussed in coastal areas 
and where ice flow is concentrated. 

Deposition beneath fast-flowing, warm-
based ice, adjacent to Prince Gustav Ice 
Stream. Lateral moraines were formed 
by Prince Gustav Ice Stream.  

LGM 

Erratic-rich patchy 'drift 
sheet' with TPG & granite 
erratics 

Found in cols and passes. Subangular to subrounded 
clasts, numerous boulders and pebbles of Trinity 
Peninsula origin. 

Occasional moraine fragments; 
streamlined bedrock (hyaloclastite) 
ridges; smoothed cols and passes.  

Deposition beneath wet-based ice; 
sheet flow. Moraines and streamlined 
features were formed by inland wet-
based sheet flow 

LGM 



Table 5. Description and characteristics of the principle zones associated with the large moraine in front of “IJR-45”.  

Zone Sediments Landforms Interpretation 

Zone 1 Thin drape of fine pebble-
gravel at the margin. Largely 
clean glacier ice 

Stratified white and blue ice, supraglacial streams. Glacier ice; minor 
debris cover 

Zone 2 Surface varies from silt-rich 
diamicton to angular sandy 
boulder gravel, angular to 
striated boulders and cobbles. 
Occasional striated boulders.  

Series of small, thin, sharp-crested ridges, numerous small lakes 
(< 10 m diameter), scars with exposed stratified ice (sediment 
drape is 20-40 cm thick), conical mounds of sediment, large 
boulders resting on pedestals of ice. Complex and chaotic 
topography. Lines of boulders on ridges.  Small debris flows. 

Fresh ice-cored 
moraine 

Zone 3 Sandy boulder gravel surface 
with matrix composed of 
weathered hyaloclastite. 
Occasional fines in association 
with numerous sandstone 
boulders. 

Moraine widens and flattens. 5 m high sharp-crested to more 
subtle ridges. Isolated mounds. Ice collapse pits. Occasional 
small ice scars and buried ice under ridges. Lines of hyaloclastite 
boulders on ridges. Perched boulders. Crescent-shaped scars. 
Perched lakes. Ridges increasingly subdued with distance from 
the ice margin. 

Degrading ice-
cored moraine 

Zone 4 Lag of pebbles and boulders 
on surface. Sandy boulder-
gravel. Frost-shattered basalt. 

Subsiding and subdued ridge crests, debris flows, perched and 
frozen lakes, no visible ice, sandy boulder gravel surface. Basalt 
and hyaloclastite boulders wasting down in situ. Incipient stone 
stripes and polygon nets. 

Dead-ice  
moraine 

Zone 5 Fines are absent from the 
surface, leaving a cobble-
pebble lag. Basalt and 
weathered hyaloclastite 
boulders. Well-developed 
stone stripes and polygon 
nets. Frost-shattered basalt. 

Low-relief and subtle ridge crests, no visible ice, sandy boulder 
gravel surface. Small incised and snow-patch fed streams. Steep 
frontal edge off moraine. Solifluction lobes move downslope on 
steep frontal face and where streams have incised. Evidence of 
former ice-core, including debris flows, subsiding ridge crests, 
weathering hyaloclastite boulders. Drained lakes leaving 
depressions. 

Dead-ice 
moraine; 
Permafrost  

 

 

 



Table 6. Continuum of ice-cored features in a glacial-periglacial landscape, and criteria for recognition in the landform record. 

Landform Criteria for identification Processes of formation References and examples Geomorphological significance 

Debris covered 
glacier 

Uniformly thin debris layer on glacier 
surface. 

Thrusting and upwards movement of ice transport subglacial debris 
to surface. Meltout of englacial debris bands. Ridges mimic the 
surface of the glacier. Thin debris cover. 

Lukas et al. 2007; Jacobs et 
al. 2011 

Stagnation of glacier snout; 
melting and down-wasting in 
situ. 

Ice-cored 
moraine 

 Thrusts 

 Exposed stratified and debris-rich ice 

 Perched ponds and boulders 

 Debris flows and slumps 

 Possibly striated clasts / boulders.   

Thrusts are caused by compressive stresses at frozen glacier margins 
in small polythermal glaciers. Debris entrained in basal ice is thrust 
towards the surface. Melting and back wasting of ice results in release 
of debris to the surface, where it is redistributed and resedimented 
by meltwater, debris flows and slumps. Debris may be supplemented 
by supraglacial material.  

Østrem 1964; 1971; Hambrey 
et al. 1999; Glasser & 
Hambrey 2003; Schomacker 
& Kjær 2007; Schomacker 
2008 

Polythermal glacial conditions. 
Crest denotes the maximum 
extent of the glacier.  

Dead-ice 
moraine 

 Hummocky landscape 

 Subdued ridges 

 Perched boulders 

 No visible ice scars. 

Down-wasting and back-wasting of ice scars and increased burial by 
talus. Top and bottom melt. Lowering of moraine surface. Extensive 
sediment redistribution. Further ice melting is limited by the 
insulating effect of the debris mantle. Thick debris cover. Ice 
stagnation and little active melting. 

Kjær & Krüger 2001; 
Schomacker & Kjær 2007, 
2008; Krüger et al. 2010; Klint 
et al. 2011 

Periglacial environment. May 
indicate the extent of a former 
advance. 

Glacier-derived 
rock glacier 

 Core of glacial ice (with stratification) 

 Down-slope movement 

 Lobate shape. Furrows, ridges and 
mounds on surface 

 Continuous, thick debris cover 

 Very small accumulation area 

 Steep frontal and side slopes 

Downslope movement of ice/debris mixtures by creep. Talus falls 
onto glacier surface, resulting in a thick debris cover, accumulating on 
low-angle slopes. This insulates the ice and limits ablation. Surface 
debris rolling down the stoss side is overridden, forming a sub-rock 
glacier debris layer. Strongly developed surface relief can indicate 
compressive stress.  

Hamilton & Whalley 1995; 
Konrad et al. 1999 

May indicate location of 
palaeo-ice margin. Periglacial 
conditions. Forms a continuum 
with ice-cored moraine. 
Indicative of limited 
precipitation. 

Talus-derived 
rock glacier 
(also known as 
protalus lobes) 

 Downslope movement 

 Large talus supply (e.g. scree) 

 Form below cliffs or steep terrain 

 Distinct ridge and furrow pattern 

 Steep front and side slopes 

 Ponds and glacial karst landscape 

Accumulation of ice and debris in the upper part of the rock glacier. 
The ice-rock mixture flows downslope, with ice ablating slowly at the 
base of the active layer. 

Hamilton & Whalley 1995; 
Serrano & López-Martínez 
2000; Degenhardt Jr 2009 

Periglacial; frequent freeze-
thaw cycles, sub-zero ground 
temperatures, abundant talus 
supply, limited precipitation. 
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Table 7. Principal land elements of the Glacigenic Assemblage and inferred subglacial thermal regime. 1 

Glacial Drift Characteristics Inferred thermal regime 

Erratic-poor glacial 
drift 

Sandy boulder gravel found widely across the island; 
smooth slopes. Basalt and Cretaceous lithologies only. 

Cold-based sheet flow 

Erratic-poor glacial 
drift 

On mesas and around Davies Dome. Smooth and flat; no 
landforms. 

Cold-based plateau ice 
cap 

Erratic-rich drift (in 
cols and passes) 

Sandy boulder gravel at higher elevations in cols and 
passes. Up to 30 % Trinity Peninsula erratics. Smoothed 
and sculpted cols. 

Warm-based sheet flow 

Erratic-rich drift (in 
coastal regions) 

Sandy boulder gravel with up to 50 % erratics from Trinity 
Peninsula. Associated with moraine fragments. 

Ice stream 

 2 

 3 

  4 
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Figures 

 

Fig. 1. James Ross Island and Ulu Peninsula, NE Antarctic Peninsula. Study region is in boxed area on main map. Inset 

shows the wider regional context of James Ross Island. Main map shows the location of Cretaceous, James Ross 

Island Volcanic Group, Trinity Peninsula Group and granite lithologies (Bibby 1966; Nelson 1975; British Antarctic 

Survey 2010; Riley et al. 2011). James Ross Island Volcanic Group: Miocene to recent basaltic lava, tuff, hyaloclastite 

and breccia. Seymour Island Group: Palaeogene-Eocene richly fossiliferous, shallow water, fine grained volcaniclastic 

sedimentary rocks. Marambio Group: Santonian-Palaeocene fossiliferous, shallow water fine grained volcaniclastic 

sedimentary rocks. Gustav Group: Barremian-Albian coarse grained volcaniclastic sedimentary rocks; deeper water 

environment. Cretaceous plutons: typically granodiorite. Jurassic plutons: granite-tonalite-quartz mononzite. 

Mapple, Mt Flora and Kenney Glacier formations and Botany Bay Group: mainly rhyolitic ignimbrite. Trinity Peninsula 

Group: Permo-Triassic siliclastic turbidite succession with interbedded basic volcanic rocks. 
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Fig. 2. Geomorphological map of northern Ulu Peninsula, showing the main features from the six sediment-landform 

assemblages. Overlain on the 2006 DEM and using ice, perennial snow, braid plains and rivers mapped by the Czech 

Geological Survey (2009). Glacier structures are mapped from aerial photographs from the year 2006.  
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Fig. 3. Principal characteristics of Glacier Ice and Snow Assemblage on Ulu Peninsula. A. Lachman (left) and San José 

(right) glaciers, with stratification. Note large ice-cored moraines. B. “Unnamed Glacier”, with supraglacial debris 

falling onto the glacier head from scree (arrowed, “b”) and emerging near the snout (arrowed, “a”). C. Stagnant and 

down-wasting ice mass with prominent ice-cored moraines. View downwards from the top of Lachman Crags, 

looking east. Arrow indicates an ice scar with stratified ice. D. Stratification in San José glacier (arrowed). 



03 September 2014 

 

55 
 

 

Fig. 4.  Glacial drifts on Ulu Peninsula. Drift sheets in photographs A to G were emplaced during the LGM. A. Erratic-

poor drift. Lone striated, faceted granite erratic with red staining in a region otherwise devoid of erratics in Solarina 

Valley. The basalt-rich drift is a sandy gravel with scattered cobbles with an a-axis of up to 30 cm. The gravel is 

almost 100 % angular to subangular basalt. B. Erratic-poor drift. Lone granite erratic in the forefield of “IJR-45”, 
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where it rests as an isolated boulder on an otherwise entirely basaltic surficial drift. Basalt boulders can be seen 

protruding through the glacial drift surface. The boulder appears to be a ventifact. “IJR-45” moraine can be seen in 

the distance. C. Erratic-poor drift with broken and brecciated Cretaceous bedrock with stone stripes emanating from 

basalt cobbles. D. Erratic-poor drift on broken and brecciated Cretaceous bedrock with scattered basalt erratics on 

the surface. E. Erratic-poor drift on scoured Cretaceous bedrock with few erratics or cobbles on the surface. The 

different beds are clearly visible. Note the basaltic mesas in the distance (Johnson Mesa (left) and Lachman Crags). F. 

Coastal erratic-rich drift with numerous white granite boulders protruding through the drift at Cape Lachman. People 

are encircled for scale. Note the contrast in the colour of the drift with the brown surfaces with no Trinity Peninsula 

erratics in the distance. Numerous granite erratics are well-embedded in the surficial sediments at this location. 

Note the abundant granite pebbles, giving the surface a speckled white appearance. G. Erratic-rich drift on fragment 

of moraine behind Kaa Bluff on the edge of Prince Gustav Channel (cf. Fig. 2). Note the difference in surface texture 

to the smooth slopes with stone runs on the steep slopes of Kaa Bluff in the background. Note also the presence of 

several large granite boulders perched on the surface, whose white colour contrasts with the brown basalts that 

make up the majority of the surface. No stone stripes or polygons are evident on the moraine fragment. H. Boulder 

Train Assemblage, near Monolith Lake. Note the large hyaloclastite monoliths. Prince Gustav Channel and Trinity 

Peninsula in the distance. 
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Fig. 5. C40 / RA plots and clast-roundness histograms of the different land elements of the sediment-landform 

assemblages: A. glacial drifts; B. ice-cored moraines. All shape-roundness measurements were carried out on basalt 

clasts. All samples show considerable modification from the original source material (scree) but there is considerable 

overlap between those samples with Trinity Peninsula erratics and those without, perhaps highlighting the similar 

transport distances for all samples; all the basalts are locally-derived and so have similar transport histories. C. 

Angularity histograms for ice-cored moraine samples. 
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Fig. 6. Boulder train assemblage. A. Geomorphological map of “IJR-45 Glacier Moraine”, showing degradation of ice-

cored moraine on “IJR-45”. Refer to Fig. 2 for regional situation. B. Landform zonation on “IJR-45 Glacier Moraine”, 

from fresh ice-cored moraine to an outer zone of permafrost. Refer to Table 5. C. Annotated long profile of “IJR-45”, 

along line XY marked on Fig. 6B. Maps are overlain on the 2006 DEM (Czech Geological Survey 2009). 
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Fig. 7. Late-Holocene moraines on James Ross Island. A. Inner moraines on Lachman Glacier. B. Kettle lakes on 

Lachman Glacier moraine. C. Thrusts (red dashed lines) on the inner face of Lachman Glacier latero-terminal 

moraine. D. Ice scars (arrowed) exposed in the true right latero-terminal moraine on Lachman Glacier.  E. Section 2; 

exposure of stratified ice in the lateral moraine on San José Glacier. F. The ice-cored moraine of Triangular Glacier. I. 

Striated sandstone boulder at the proximal terminal moraine of “IJR-45”. G. Sample location DD1; margin of Davies 
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Dome. Refer to Fig. 2 for regional situation. Samples DD1 and DD2 are in close proximity but are strikingly different. 

Sample DD1 is in front of an ice cliff, with ice-contact scree forming and flowing down-slope under gravity. The 

surface is openwork gravel and boulders. Note the unconformity within the stratified ice, which contains boulders of 

basalt. The stone lithologies are all angular to subangular basalt. H. Sample DD2 is characterised by chaotic mounds 

and ridge crests on the ice-cored moraine in front of the lower lobed margin of Davies Dome. Refer to Fig. 5C for 

angularity histograms. I. Striated Cretaceous sandstone boulder in the proximal terminal moraine for IJR-45. Camera 

lens cap for scale. 
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Fig. 8. Ice-cored moraine assemblage. A and B: Glaciological and geomorphological map of San José and Lachman 

glaciers and their associated moraines. Refer to Fig. 2. for regional situation. Note how the moraines mirror the 

primary stratification. Overlain on the 2006 DEM (Czech Geological Survey 2009). The lithological composition of 

moraine surface samples (n=50) is shown. B. Map showing roundness data of surface pebble samples (n=50). C. 

C40/RA plot of shape-roundness data of all samples. D. Map of Davies Dome Glacier, showing sample locations DD1 

and DD2. 
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Fig. 9. Paraglacial assemblage. A. Marine terrace at site Aber 3 site, Abernethy Flats, facing Brandy Bay.  Surface is 

flat and featureless, with few boulders. Clasts are 100 % locally-derived basalts and hyaloclastites. Clast shape shows 

a high degree of clast rounding. Dashed line indicates margin of modern beach. B. Marine terrace in front of Alpha 

Glacier. People circled for scale Dashed line indicates margin of marine terrace. C. Idealised sketch of the marine 

terraces in front of Alpha Glacier. D. Bohemian Stream, draining towards Mendel Station. E. Monolith Stream, 

Brandy Bay. Braided stream incised through the marine terrace on Abernethy Flats, draining into Brandy Bay. Note 

the point bars, multiple channels and low-volume discharge. F. Wind-blown sand on snow patch below Crame Col. G. 

Detail of windblown sand on snow patch below Crame Col. H. Aeroxysts on a basalt boulder. 

 

Fig. 10. Paraglacial landforms: large scale mass movements. A. Landslide below the col between Johnson Mesa and 

Bibby Hill. B. South side of Berry Hill. There is a large block of hyaloclastite with subaerial lava cap that has detached, 

tilted outwards (to right hand side) slightly and started to fall away from Berry Hill (subaerial lavas still in situ on 

Berry Hill top partly seen at left). A few smaller degraded hyaloclastite blocks can be seen in the background right 

hand side at a lower level. C. Berry Hill looking down the E side of Lachman Crags. The middle distance and far left 

are hummocky terrain underlain by multiple large mass movement blocks derived from Lachman Crags. Also visible 

(arrowed) is a block that has dropped a few tens of metres but is still upright - i.e. frozen in action as it detaches and 

begins its downslope journey. D. Schematic diagram illustrating processes involved in the emplacement of the large-

scale mass movement of sections of the lava-fed deltas on James Ross Island. Instability near the margins of the 

delta following the removal of supporting ice or seawater is envisaged causing stress-release fracturing, 

with fractures potentially propagating down to intersect any fine-grained (sandy) bottomset layers in the 

predominantly very coarse hyaloclastite breccias. Note that, although the sandy layers probably acted as 

weak ductile surfaces of décollement, they are comparatively uncommon and delta flank collapses also 

occurred in sections lacking sandy interbeds. However, their presence and greater structural weakness 

relative to the enclosing hyaloclastite breccias ensures that if present they probably act preferentially as 

décollement surfaces. For clarity, the diagram does not illustrate the presence and potential importance of 

high porewater pressures beneath a subglacial and/or proglacial permafrost layer, which would reduce the 

effective stress of the substrate and promote lateral instability and collapse.  

 

Fig. 11. Periglacial phenomena. A. Talus-derived rock glaciers on Andreasson Point (arrowed). B. Talus-derived rock 

glacier below Berry Hill. C. Protalus rampart on the eastern face of Lachman Crags (arrowed). D. Protalus ramparts 

below Davies Dome mesa. E. Solifluction lobes (arrowed) mantling the slopes of a hill made of hyaloclastite. Person 

for scale (circled).  
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Fig. 12. Periglacial phenomena.  A. Frost-shattered basalt boulder near DD2, with the detritus moving downslope 

under periglacial processes. B. Nivation processes south of the neck of Cape Lachman promontory. C. Stone polygon 

nets, near Green Lake. D. Stone stripes with coarser basalt cobbles concentrated in the centre of the stripes, 

northern Brandy Bay area. E. Blockfield of basalt fragments on top of Lachman Crags mesa. F. Basalt boulder on top 

of Lachman Crags mesa, turned sub-vertical under freeze-thaw processes. 

 

Fig. 13. Conceptual model illustrating the principal processes and sediment-landform assemblages in a semi-arid 

polar desert, based on Ulu Peninsula of James Ross Island, showing simplified geology and surficial sediments. 

 

Fig. 14. Schematic cartoon illustrating the relative importance of various modern processes and the abundance of 

different products across a latitudinal transect from Northern Patagonia (northern Chile), through Tierra del Fuego 

(southern Chile) and James Ross Island to the Dry Valleys (Northern Victoria Land, East Antarctica). Thermal regimes 

change from temperate to cold-based; glacier velocities decrease southwards; meltwater is progressively abundant 

northwards. The shaded shapes illustrate the relative importance or abundance of a process or product, with 1 being 

low importance and 5 being high importance or very abundant. Sources include Trombotto (2002); Bentley et al. 

(2005); Glasser et al. (2009a); Hambrey & Fitzsimons (2010). 

 


