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ABSTRACT. In this paper we used "Little Ice Age" ("LIA") trimlines and moraines to assess changes in South 9 

American glaciers over the last ~140 years. We determined the extent and length of 640 glaciers during the 10 

"LIA" (c. AD 1870) and 626 glaciers (the remainder having entirely disappeared) in 1986, 2001 and 2011. The 11 

calculated reduction in glacier area between the "LIA" and 2011 is -4131 km2 (-15.4%), with -660 km2 (-12 

14.2%) being lost from the Northern Patagonian Icefield (NPI), -1643 km2 (-11.4%) from the Southern 13 

Patagonian Icefield (SPI), and -306 km2 (-14.4%) from Cordillera Darwin. Latitude, size and terminal 14 

environment (calving or land-terminating) exert the greatest control on rates of shrinkage. Small, northerly, 15 

land-terminating glaciers shrank fastest. Annual rates of area loss increased dramatically after 2001 for 16 

mountain glaciers north of 52°S and the large ice fields, with the NPI and SPI now shrinking at -9.4 km2 a-1 (-17 

0.23% a-1) and -20.5 km2 a-1 (-0.15% a-1) respectively. The shrinkage of glaciers between 52°S and 54°S 18 

accelerated after 1986, and rates of shrinkage from 1986-2011 remained steady. Icefield outlet glaciers, 19 

isolated glaciers and ice caps south of 54°S shrank faster from 1986-2001 than they did from 2001-2011.  20 

 21 

1. INTRODUCTION 22 

1.1 Rationale 23 

The glaciers of the Patagonian Andes and Tierra del Fuego region are currently shrinking rapidly. Regional 24 

assessments of glacier shrinkage is, however, only short-term because they are limited by the temporal 25 

availability of satellite observations (~40 years), aerial photography (~60 years) and detailed cartography 26 

(~60 years) required to produce accurate reconstructions of former glacier extent. Furthermore, inventories 27 

and assessments of modern glacier change in Patagonia have generally been restricted to individual glaciers 28 

(e.g. Harrison and Winchester, 2000; Stueffer and others, 2007), or geographically limited to one or two of 29 

the large icefields (e.g., Rivera and Cassassa, 2004; Bown and Rivera, 2007; Chen and others, 2007; Schneider 30 

and others, 2007; Lopez and others, 2010; Willis and others, 2011). Large parts of the southern Andes still 31 
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lack detailed inventories (cf. Masiokas and others, 2009b). There are no detailed assessments that 32 

encompass the entire region, covering both historically documented shrinkage and remotely sensed 33 

observations of change in recent decades. This paper therefore aims, firstly, to establish rates of glacier 34 

shrinkage from the “Little Ice Age” ("LIA") to the present day across southern South America, and secondly, 35 

to determine how rates of shrinkage changed through the late twentieth and early twenty-first centuries.  36 

We here present a  long (140 years) and spatially wide (2000 km in length) record of glacier change in South 37 

America (41° to 56°S) by calculating changes in glacier length and area between the end of the “Little Ice 38 

Age” (c. AD 1870), and the years 1986, 2001 and 2011. This is the first study to compare length and area 39 

changes since the “LIA” with change in recent decades for the whole study region. We also analyse spatial 40 

and temporal variability in glacier change and the controls thereupon. Our data is available from the Global 41 

Land-Ice Measurements from Space (GLIMS) database (www.glims.org). 42 

 43 

1.2 Study area  44 

The Andes are the longest continental mountain range in the world, stretching 7000 km along the coast of 45 

South America and reaching almost 7000 m a.s.l. in altitude. In our study area, the mountains reach a 46 

maximum of 4000 m a.s.l., decreasing to 1500-2000 m in southernmost South America. Between 38o S and 47 

56o S there are four major ice masses (the Northern and Southern Patagonian Icefields, Gran Campo Nevado 48 

[GCN] and the Cordillera Darwin) and numerous snow- and ice-capped volcanoes and icefields (Fig. 1). Our 49 

study area focuses on the Patagonian Andes and Tierra del Fuego, from 41°S to 56°S. This region has had 50 

numerous detailed local studies covering glacier behaviour over various timescales, and there is good 51 

historical and geomorphological evidence for glacier fluctuations since the LIA (summarised by Masiokas and 52 

others, 2009b).  53 

The Chilean Lake District (38-42°S) is characterised by shrinking glaciers on active volcanic cones, with 54 

frequent ash deposition insulating the ice. These volcano ice caps have been thinning since observations 55 

began in 1961, with more rapid thinning from 1981-1998. Their negative mass balances were caused by 56 

decreased precipitation and upper tropospheric warming over the last 30 years (Bown and Rivera, 2007). 57 

Equilibrium line altitudes are at approximately 1600 m at 43°S (Rivera and others, 2012). Glaciers north of 58 

42°S receive higher precipitation during winter months than glaciers between 42°S and 49°S (Sagredo and 59 

Lowell, 2012). 60 

The Northern Patagonian Icefield (NPI) covers an area of approximately 4200 km2 at 47°S (Fig. 2a). Its 61 

survival at such a low latitude is attributed to a large volume of precipitation (up to 10,000 mm a-1 water 62 

equivalent) and to the cool temperatures associated with the high elevation of the Andes (Rott and others, 63 
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1998; Michel and Rignot, 1999; see temperature transects on Fig. 1). The NPI is characterised by high 64 

ablation rates, steep mass balance and precipitation gradients, and high ice velocities (Lopez and others, 65 

2010). The glaciers of the NPI extend below the 0°C isotherm, and the snowline is generally below 2000 m 66 

a.s.l. (Sagredo and Lowell, 2012). The recent fluctuations of NPI outlet glaciers have been extensively studied 67 

(Aniya, 1988,  1995, 1996, 1999, 2001, 2007; Harrison and Winchester, 2000; Araneda and others, 2007; 68 

Chen and others, 2007; Lopez and others, 2010). San Rafael Glacier is the only tidewater glacier of the NPI, 69 

and is significant because it is the world's lowest latitude tidewater glacier, and is among the fastest flowing 70 

glaciers in the world (Warren and others, 1995; Koppes and others, 2011). Peak velocities of 19.7 ± 1.2 m per 71 

day were observed in 2007 by Willis and others (2011). Laguna San Rafael is dammed by large arcuate 72 

moraines that were formed during a mid-Holocene readvance of the glacier (Fig. 2b; Harrison and others, 73 

2012). 74 

The Southern Patagonian Icefield (SPI) stretches along the southern Andes, reaching altitudes of 3400 m. It is 75 

drained by temperate outlet glaciers, terminating on land or in proglacial lakes or tidal fjords (Aniya and 76 

others, 1997). Variations in glacier frontal positions have been studied since the 1940s, with long-term 77 

retreat (Aniya and others, 1992, 1996, 1997; Aniya, 1996, 1999; Lopez and others, 2010) and thinning (Aniya, 78 

1995; Naruse and others, 1997; Naruse and Skvarca, 2000) being evident in the majority of the glaciers. 79 

Glaciers are generally larger than in the NPI, and Glaciar Pio XI is the largest in South America (1265 km2) 80 

(Aniya and others, 1996).  81 

The NPI and SPI have been shrinking dramatically ever since their “LIA” maxima, which is securely dated to 82 

AD 1870 (Glasser and others, 2011), and are now shrinking at an increasing rate in response to regional 83 

climate change. Rignot and others (2003) estimated that the two icefields jointly contributed 0.042 ± 0.002 84 

mm a-1 to global mean sea level rise in the period 1968/1975 to 2000 but that this doubled to 0.105 ± 0.011 85 

mm a-1 from 1995-2000. Chen and others (2007) estimated the ice loss rate for the Patagonia Icefields from 86 

2002-2006 to be -27.9 ± 11 km3 a-1, equivalent to an average loss of ∼-1.6 m a-1 ice thickness change if evenly 87 

distributed over the entire glacier area and a global contribution to sea level rise of 0.078 ± 0.031 mm a-1. 88 

Ivins and others (2011) estimated ice loss rates for the NPI and SPI of -26 ± 6 Gt a-1 from 2003-2009, using a 89 

combination of data from the GRACE satellite and GPS bedrock uplift data. The background to these changes 90 

is presumed to be the global surface temperature increase of 0.6 ± 0.2°C in the last century (Vaughan and 91 

others, 2001) resulting in widespread glacier wastage and shrinkage (Aniya, 1988; Ramirez and others, 2001; 92 

Arendt and others, 2002; Meier and others, 2003; Cook and others, 2005, WGMS, 2008).  93 

Gran Campo Nevado, at 53°S, is an ice cap with several steep outlet glaciers (199 km2; Schneider and others, 94 

2007; Fig. 1), which may mean that it responds faster to climatic changes than the NPI or SPI (Möller and 95 

others, 2007). This ice cap is at much lower altitudes than the NPI or SPI, with mountain summits from 1000 96 
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to 1700m high, and with outlet glaciers reaching sea level. Mean annual temperatures here are +5.7°C, but 97 

the ice cap survives because of extremely high precipitation (Möller and Schneider, 2008).  98 

Isla Riesco (52°S) is about 130 km long and 50 km wide, with moderate precipitation on its eastern part (< 99 

1000 mm a-1), which is leeward of the Andes mountains. The western part of the island is within the main 100 

belt of the Andean mountains, with high precipitation rates (Fig. 1). The mountains reach 1830 m, with 101 

several small ice caps and mountain glaciers (Casassa and others, 2002). All these glaciers terminate on land, 102 

with the exception of a few small freshwater lakes.  103 

Tierra del Fuego is an archipelago off southernmost South America (Fig. 1), with many small ice caps and 104 

mountain glaciers, as well as the Cordillera Darwin icefield. Cordillera Darwin is the most southerly icefield in 105 

the study region, at 54°30’S, with topography constraining the ice masses (in comparison to the NPI and SPI, 106 

where ice-sheds separate the catchments (Warren and Aniya, 1999)). The mountains reach 2469 m a.s.l., 107 

and many of the glaciers calve into the ocean. The area receives more precipitation than land to the east and 108 

north, and glaciers south of the ice divide receive far more precipitation than those north of the ice divide, as 109 

a result of the orographic rain shadow (Holmlund and Fuenzalida, 1995). The glaciers of Tierra del Fuego and 110 

Cordillera Darwin receive uniform precipitation throughout the year, and have an annual temperature range 111 

of ~7.4°C and a mean annual temperature of 1.2°C (Sagredo and Lowell, 2012). The mass balance of Martial 112 

Este Glacier in Tierra del Fuego was found to have been negative (-772 mm water equivalent per annum) 113 

from 1960 to 2006 (Buttstädt and others, 2009).  114 

 115 

1.3 Regional climate 116 

1.3.1 Precipitation 117 

The climate of Patagonia is dominated by Southern Hemisphere westerlies and equatorial Pacific sea surface 118 

temperatures, which regulate the El Niño Southern Oscillation (ENSO) and the Pacific Decadal Oscillation 119 

(Aravena and Luckman, 2009; Garreaud and others, 2009). The Andean mountain chain is a significant 120 

orographic barrier to the predominant westerlies, which results in steep precipitation gradients across the 121 

mountain chain (Masiokas and others, 2008; cf. Fig. 1). Precipitation between 40°S and 43°S declined 122 

between 1950 and 2000 (Aravena and Luckman, 2009). Furthermore, ENSO events, which are associated 123 

with reduced precipitation, have become more frequent since 1976 (Giese and others 2002; Montecinos and 124 

Aceituno 2003; Bown and Rivera, 2007).  125 

 126 
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1.3.2 Temperature 127 

Throughout the Andes, there has been a positive trend in the 0°C isotherm, with an ELA rise attributed to 128 

this warming. This warming is regionally variable, with slight cooling or non-significant warming in southern 129 

Chile after 1976 (Carrasco and others, 2008). Tree ring data from the Southern Andes dating back to AD 1640 130 

show that twentieth century temperatures have been anomalously warm; the mean annual temperatures 131 

for 1900-1990 for the northern and southern sectors of the Andes are 0.53°C and 0.86°C warmer than the 132 

1640-1899 means (Villalba, 1994).  133 

In the Chilean Lake District (38°-42°S), the upper troposphere has been warming at 0.019 to 0.031°C a-1. 134 

However, low altitude air temperature cooling has been detected at several meteorological stations, 135 

particularly Puerto Montt and stations further north (Bown and Rivera, 2007). After 1976, changes in the 136 

Pacific Decadal Oscillation were observed, with a period of increased temperatures across the southern 137 

Andes (Villalba and others, 2003). Sagredo and Lowell (2012) hypothesise that under a changing climatic 138 

regime, glaciers in the NPI, SPI and Cordillera Darwin would become increasingly sensitive southwards to 139 

mean temperature rises and more uniform precipitation throughout the year. 140 

 141 

2. METHODS 142 

2.1 Data 143 

Orthorectified (Level 1G) Landsat TM images from 1985-1987 and Landsat ETM+ images from 2001-2002 and 144 

2010-2011 were acquired pre-registered to UTM WGS 84, zone 18S projection (Appendix I). These images 145 

have a large swath (185 km) and reasonable spatial resolution (30 m), and a geopositional accuracy of better 146 

than ± 50 m (Tucker and others, 2004). The 2010-2011 images have striping artefacts, caused by failure of 147 

the Scan Line Corrector (SLC) on the Landsat sensor in 2003.  148 

For the NPI, additional data were obtained for 1975 from Aniya (1988). These data originate from 1974/1975 149 

vertical aerial photographs, which were used to create a map by the Instituto Geografico Militar, Chile, 150 

which was subsequently used in a glacier inventory by Aniya (1988).  151 

Elevation data were derived from the Shuttle Radar Topographic Mission (SRTM) digital elevation model 152 

(DEM) version 4.1 (hereafter SRTM4), at 3 arcseconds resolution (90 m) (Jarvis and others, 2008), providing 153 

elevation data from February 2000 (Appendix II). Vertical and horizontal errors are approximately 10 m (Farr 154 

and others, 2007). SRTM4 is a void-filled DEM, which may introduce inaccuracies in areas of steep 155 

topography (Frey and Paul 2012; Reuter and others, 2007), but is suitable for use in glacier inventories (cf. 156 

Frey and Paul 2012). There is uncertainty in glacier elevation in our 2001 census as a result of differing times 157 

of image capture between the SRTM and Landsat data.  158 



Journal of Glaciology  Davies and Glasser 2012 

6 
 

 159 

2.2 Glacier digitisation for 1986, 2001 and 2011 160 

Our methods follow GLIMS protocols, with each glacier between 41o S and 56o S (Fig. 1; Table 1) being 161 

manually digitised as a separate polygon (Rau and others, 2005; Raup and others, 2007a; 2007b; Paul and 162 

others, 2009; Racoviteanu and others, 2009; Svoboda and Paul, 2009; Raup and Khalsa, 2010). We digitized 163 

glacier outlines in a Geographical Information System (GIS) (ESRI ArcMap 9.3) at 1:10,000 scale using cloud- 164 

and snow-free Landsat satellite images available from summer months in 1985-1986, 2000-2001 and 2010-165 

2011 (Appendix I). Using data from Aniya (1988), the extents of 38 outlet glaciers for the NPI were also 166 

digitised for 1975. Ice divides on the icefields were determined from previous publications (Aniya, 1996, 167 

1999; Aniya and others, 1996; Rignot and others, 2003; Bown and Rivera, 2007; Rivera and others, 2007; 168 

Lopez and others, 2010), and downloaded from GLIMS where possible (e.g., Schneider and others, 2007) to 169 

ensure consistency with other studies, or by using high points, nunataks, glaciological structures or breaks in 170 

slope (cf. Glasser and Scambos, 2008; Davies and others, 2011; Table 1). All icefield outlet glaciers and ice 171 

caps and all mountain glaciers that could be clearly discriminated in the satellite images (as distinct from 172 

snow) and that were larger than 0.1 km2 (because of image resolution and the danger of misclassification of 173 

snow patches) were digitised in this study. Near the NPI, SPI, Cordillera Darwin and GCN, there are numerous 174 

small isolated glaciers with a “Mountain glacier” classification, which have been considered separately 175 

(Northern Patagonian mountain glaciers (NPMG); Southern Patagonian Mountain Glaciers (SPMG); Cordillera 176 

Darwin Mountain Glaciers (CDMG); Gran Campo Nevado Mountain Glaciers (GCMG). 177 

 178 

2.3 Geomorphological mapping to determine "LIA" extent 179 

Glacier extent at the "LIA" was digitized for glaciers between 38o S and 56o S (Fig. 1) (see Glasser and others, 180 

2011) for glaciers with clear trimlines and moraines. The "LIA" extent was inferred from geomorphological 181 

evidence, including trimlines and terminal moraines in front of contemporary glaciers (e.g. Fig 2), which were 182 

identified according to previously defined criteria (Table 1). The inferred "LIA" glacier extents were checked 183 

against known "LIA" positions from published valley-scale dendrochronological and lichenometric dating 184 

studies, for example, for the Chilean Lake District (Bown and Rivera, 2007), NPI (Villalba, 1994; Winchester 185 

and Harrison, 2000; Harrison and Winchester, 2000; Glasser and others, 2002, 2004; Araneda and others, 186 

2007; Harrison and others, 2007, 2012), SPI (Aniya, 1995, 1996; Masiokas and others, 2009a; 2009b; Rivera 187 

and others, 2011), Gran Campo Nevado (Koch and Kilian, 2005) and Cordillera Darwin (Kuylenstierna and 188 

others, 1996; Masiokas and others, 2009b). In situations where multiple trimlines or moraines exist, we drew 189 

the "LIA" limit at the trimline or moraine closest to the contemporary glacier snout (see Fig. 2 for examples 190 

from the NPI). At those glaciers where there is no visible evidence of shrinkage since the "LIA" or where the 191 



Journal of Glaciology  Davies and Glasser 2012 

7 
 

"LIA" limits are ambiguous or difficult to establish, for example, for some fjord-terminating glaciers of the 192 

SPI, the limits are assumed to be the same as in 1975 or 1986 (the earliest possible data available). Our 193 

results are therefore minimum estimates of ice shrinkage over the time period ~AD 1870 to 2011.  194 

 195 

2.4 Glacier attribute data 196 

Attribute data for each glacier polygon includes a unique Local-ID (the same as that used in previous 197 

inventories, where appropriate), GLIMS ID (Raup and Khalsa, 2010), any established glacier name, X and Y 198 

coordinates of the centroid, surface area (km2), primary classification (Rau and others, 2005), form, frontal 199 

characteristics, ID and acquisition date of the satellite image, analyst name and analysis time. For "LIA" 200 

polygons, any published evidence of "LIA" ice extent and associated references are also included. Glacier 201 

aspect (azimuth of the accumulation area; Evans, 2006) was estimated using vectors that follow the steepest 202 

part of the glacier accumulation area. Glacier length was measured for 520 glaciers according to standard 203 

procedures (Lopez and others, 2010; Davies and others, 2011), following the longest flow pathway from the 204 

highest point on the ice divide to the glacier tongue (see Fig. 2). Minimum, maximum and median elevations 205 

and slopes for the year 2000 were derived automatically for each glacier in the GIS following analysis of 206 

SRTM4 (cf. Paul and others, 2009; Frey and Paul 2012).  207 

 208 

2.5 Uncertainty 209 

Digitised glacier lengths and outlines are accurate to ± 30 m (i.e. ± one pixel). Accuracy may be less in the 210 

centre of icefields, where ground control points are scarce, but as the same ice divides are used for each 211 

year inventoried, the uncertainty that this introduces into relative change measurement is limited. There 212 

may be inaccuracies where snow cover on nunataks in the centre of the icefields or adjacent to the ice edges 213 

has been misclassified as ice. We used qualitative methods to identify errors in glaciers with seasonal snow 214 

or large deviations in area between each year mapped, and manually improved these with additional 215 

Landsat images. Indeed, seasonal snow cover is not a significant problem in Patagonia because of the strong 216 

seasonality, and there is very little lying snow in the summer months near the glacier snouts. Where snow 217 

and ice is difficult to discriminate, for example on snow-capped mountains and volcanoes, glaciers have not 218 

been digitised. 219 

Other potential sources of uncertainty include ice divide and drainage basin identification, error in co-220 

registration (Granshaw and Fountain, 2006), clouds and shadows, and delineation of debris-coved glaciers 221 

(Bolch and others, 2010). However, this uncertainty was limited with manual digitisation at resolutions up to 222 

1:10,000 (see Table 1), which is more accurate than automatic classification (cf. Jiskoot and others, 2009), 223 

particularly when dealing with debris-covered glaciers (Paul, 2002). Automatic classification is particularly 224 
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useful and suitable when analysing larger datasets comprising 1000+ glaciers with clean ice. However, we 225 

acknowledge that delineating the boundary of debris-covered ice is very difficult with images of this 226 

resolution.  A further source of error is the striping on Landsat ETM+ images taken after 2003, and it was 227 

necessary to interpolate across the stripes. This was mitigated by using numerous overlapping images, so 228 

that interpolating across large stripes near the margins of the image was not required. 229 

Statistical quantification of errors is difficult without ground control points, high-resolution satellite images 230 

or ground-truthing in the week that the satellite image was taken (cf. Svoboda and Paul, 2009). In order to 231 

quantify uncertainty, we conducted error analysis of the digitisation of six NPI outlet glaciers in 1986 (i.e. the 232 

same glacier was independently digitised 5 times), both with and without debris cover and with grounded 233 

and floating termini (cf. Stokes and others, 2007). This yielded an average standard deviation of 0.3 km2, or 234 

2.0% of the area. Analysis of the area changes of glaciers is therefore considered to be accurate to within 235 

2.0%. The glaciological uncertainty of ice divides is likely to be far larger than the mapping uncertainty, which 236 

has little influence on the final glacial outline, especially when comparing ice margin change from different 237 

years.  238 

 239 

2.6 Analysis of glacier change 240 

There are four kinds of data resulting from this study: glacier descriptors (area, length, primary classification, 241 

aspect, frontal characteristics, etc.); length changes (km and m per annum [m a-1]); area changes (km2 and 242 

per cent); and annual rates of change, which are expressed as a percentage (% a-1; cf. Bolch and others, 243 

2010). We use ‘recession’ where length changes are discussed and ‘shrinkage’ where area changes are 244 

discussed. Annual rates of change were calculated by dividing the area change by the time between analyses 245 

for each glacier (time is taken from the date the satellite image was acquired). The latter are the only result 246 

that can be directly compared between different time periods and different glaciers, because of the different 247 

lengths of time between analyses (i.e., ~116 years from 1870-1986; ~15 years from 1986-2001; ~10 years 248 

from 2001-2011, depending on when the satellite image for each glacier was acquired).  249 

 250 

3. RESULTS 251 

3.1 Characteristics of South American glaciers in 2011 252 

In 2011, 626 glaciers were considered in our assessment, which included 386 major outlet glaciers from the 253 

main icefields (44 from the NPI, 161 from the SPI, 35 from GCN and 99 from Cordillera Darwin) (Table 2). 254 

These four principal icefields dominate the glacierised area (Fig. 3a). Glacier sizes in 2011 ranged from 0.1 255 

km2 to 1344 km2 (SPI-137; Pio XI) (Table 2). Although there are many small glaciers, a few large glaciers 256 

comprised the majority of the glacierised area (Fig. 3a). The mountain ranges beneath the SPI, NPI, Gran 257 
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Camp Nevado and El Volcan are orientated north-south, resulting in a predominantly west-east aspect for 258 

the outlet glaciers (Fig. 3b).  259 

In the study region there were 233 outlet, 95 valley and 229 mountain glaciers, 26 ice caps and 38 icefields, 260 

with outlet glaciers dominating the glacierised area. Although mountain glaciers are numerous, they 261 

comprised only a small proportion of the glacierised area (8.3%; Fig. 3c). Many of the valley or outlet glaciers 262 

have a compound basin (numerous cirques or catchment areas) or compound basins, where two compound 263 

basin drainage systems merge (Fig. 3d; Rau and others, 2005). The majority of the glaciers surveyed 264 

terminate on land (526), although 100 have calving termini (35 marine and 65 lacustrine). 265 

Mean glacier elevation ranged from 496 m a.s.l. (IH-14) to 2182 m a.s.l. (MSL-5) (Table 2). Parque Nacional 266 

Vicente Perez Rosales (VPR-1) had the highest mean elevation (2158 m a.s.l.), and NPI-1 had the highest 267 

maximum elevation (3968 m a.s.l.). Overall, 41% of the glaciers had a median altitude of 1000-1500 m a.s.l., 268 

with only one glacier having a median altitude of 0-500 m or over 2000 m (Fig. 3e). There was a weak 269 

relationship (r2 = 0.2) between maximum altitude and glacier area in 2001 (Fig. 3f), and there was a trend 270 

towards decreasing glacier median altitudes southwards (Fig. 3g; Table 2). There was a large scatter in glacier 271 

altitude, with large outlet glaciers from the ice fields having a wide range of median altitudes. Glacier slope 272 

varied with glacier length (r2 = 0.3; Fig. 3h), which is important, as shorter, steeper glacier typically have the 273 

fastest response times (Raper and Braithwaite, 2009). Regionally, the steepest glaciers were found in Parque 274 

Nacional Vicente Perez Rosales, and the lowest mean slopes are found in the NPI and SPI (Table 2).  275 

The NPI (4365 km2) was 120 km long, 70 km at its widest, and extended from 46°30’S to 47°30’S. It had a 276 

mean altitude of 1340 m a.s.l.. We analysed 44 outlet glaciers of the NPI covering 3976 km2 and 59 isolated 277 

nearby glaciers (NPMG, Cordon La Parvas, Cordillera Lago General Carrera) surrounding the NPI, covering 278 

389 km2. These mountainous regions generally had glaciers with high mean slopes and altitudes (Table 2). 279 

Nineteen of the outlet glaciers had calving termini, of which only one (Glaciar San Rafael) was marine-280 

terminating. Glaciers west of the ice divide made up the majority of the glacierised area of the NPI (Table 3; 281 

Fig. 4a). The more southerly glaciers of El Volcan (cf. Fig. 1; Table 2) were primarily small ice caps and 282 

mountain glaciers with a mean altitude of 1521 m a.s.l., and all were land-terminating, though some have 283 

small lakes in their forefields.  284 

The SPI was the largest icefield (13,219 km2) and stretched north-south for 400 km, from 48°S to 52°S along 285 

the southern Andes, with widths between 30 and 70 km, and a mean altitude of 1191 m a.s.l.. In our 286 

assessment, it was drained by 154 outlet and simple basin glaciers with 45 nearby isolated glaciers (in SPMG, 287 

El Condor, Cerro Paine Grande, Torres Del Paine) covering 278 km2. Its area was again dominated by glaciers 288 

west of the ice divide (Table 3), but with several large outlet glaciers draining eastwards. Of the outlet 289 

glaciers, 54 had calving termini, and they accounted for 10,945 km2, or 83% of the total area (Fig. 4a). 290 
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Gran Campo Nevado (52°40’S to 52°55’S) was the smallest ice cap (262 km2) with 35 glaciers (of which four 291 

calve into lakes), and was 24 km long and 16 km wide. It was surrounded by 17 small mountain glaciers and 292 

ice caps. Cordillera Darwin (1931 km2) was the southernmost icefield (54°30’S), and was 90 km long and 30 293 

km wide. There were 99 glaciers, of which 66 are outlet glaciers (covering 408 km2). Ten of these had calving 294 

termini. There were 18 small isolated glaciers nearby, including 7 valley glaciers and 6 small icefields and ice 295 

caps nearby.  296 

 297 

3.2 Changes in glacier length and area from 1870 to 2011 298 

3.2.1 General trends 299 

A total of 640 glaciers were digitised from 1870 from 40°S to 56°S (Figs. 4-6; Table 4). Of these, 626 remained 300 

in 1986. Overall, 90.2% of the glaciers shrank from 1870 to 2011, 0.3% advanced, and 9.5% showed no 301 

change. Despite some small advances, which are generally short-term and limited to tidewater glaciers, all 302 

regions have suffered extensive glacier surface area loss. For the SPI and the eastern NPI, the greatest rates 303 

of shrinkage were observed in land-terminating glaciers (Fig. 4a). Glacier shrinkage from 2001-2011 was 304 

greatest in those glaciers less than 5 km2 in size, with those greater than 100 km2 in particular having slow 305 

rates of shrinkage (Fig. 4b). Rate of shrinkage were also fastest in those glaciers furthest north, with most 306 

glaciers shrinking. Latitudinal gradients are also emphasised, with glaciers from 41-44°S generally all 307 

shrinking, small glaciers from 44-53°S also shrinking, and with little shrinkage in glaciers from 54-56°S (Fig. 308 

4b). Mean glacier altitude and slope (Figs. 4c and 4d) had little control on glacier shrinkage in Patagonia.  309 

Annualised rates of shrinkage across South America increased for each time period measured (Table 4; Fig. 310 

4e), with overall rates of areal loss twice as rapid from 2001-2011 as from 1870-1986 (-0.10% a-1 for 1870- 311 

1986, -0.14% a-1 for 1986-2001, and -0.22% a-1 for 2001-2011). Across the study area, percentage change per 312 

annum was greatest from 1870-1986 for 212 glaciers, from 1986-2001 for 172 glaciers, and from 2001-2011 313 

for 155 glaciers. Across the study region, 14 glaciers extant during the “LIA” had disappeared entirely by 314 

1986, mostly around the SPI. 315 

 316 

3.2.2 Mountain glaciers 317 

In general, rates of change were fastest from 2001-2011 in the more northerly locations (Parque Nacional 318 

Vicente Perez Rosales, Hornopiren, Parque Nacional Corcovado, Cerro Hudson, and SPMG; Figs. 4e, 5), and 319 

faster from 1986-2001 in the more southerly locations (e.g., Cordillera Darwin, Isla Hosta, Monte Sarmiento, 320 

Isla Riesco, and Tierra del Fuego (cf. Fig. 1 for locations). North of 46°S, small, land-terminating glaciers are 321 

generally rapidly shrinking, and the rate of area loss is accelerating (Figs. 1, 4b, 4e, 5). Indeed, the ice caps of 322 
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the Chilean Lake District experienced some of the fastest rates of area loss in the area from 2001-2011 (Fig. 323 

5; Table 4). Although there is little clear statistical relationship between glacierised area and rate of 324 

shrinkage, glaciers north of 52°S show increased relative rates of shrinkage. Out of 16 glaciers in the Parque 325 

Nacionale Corcovado, 11 shrank fastest from 2001-2011, 3 from 1986-2001, and 2 from 1870-1986. These 326 

more northerly glaciers also tend to be higher, steeper and smaller (Fig. 3g, 4b), which may result in shorter 327 

response times.  328 

Between 52° and 46°S, rates of area loss were also generally faster from 2001-2011, although it is more 329 

variable. For the seven mountain glaciers of Cerro Erasmo, steady and accelerating glacier length recession 330 

was observed (Fig. 6a). All glaciers receded, but distances varied between -0.5 km and -5.6 km. Around the 331 

NPI, mountain glaciers receded rapidly between 1870-1986. For example, CLGC-6 receded 7.1 km (60 m a-1) 332 

during this period, but thereafter length did not change. Northern Patagonian mountain glaciers (NPMG) had 333 

a total area loss of -1.2% from 2001-2011, Cordon La Parvas mountain glaciers lost -3.2%, and Cordillera Lago 334 

General Carrera glaciers lost -1.2% (Table 4).  335 

Length fluctuations of 32 glaciers were measured for El Volcan. Some glaciers receded rapidly from 1870-336 

1986 but have since remained stable (e.g., EV-14 [0.6 km or -5 m a-1], EV-19 [-2.5 km or -22 m a-1], EV-30 [-337 

1.4 km or -12 m a-1] and EV-32 [-1.0 km or -9 m a-1]), but most have steadily receded (Fig. 6c). The glaciers 338 

that receded fastest were EV-37 (-63m a-1 from 1986-2001), EV-22 (-118 m a-1 from 2001-2011), EV-24 (-66 339 

m a-1 from 2001-2011) and EV-28 (-22 m a-1 from 1870-1986). Rates of area loss peaked from 1986-2001 and 340 

then declined (Table 4). 341 

For SPI mountain glaciers, the largest areal changes from 2001-2011 were for SPMG-5 (-3.83%), SPMG-15 (-342 

5.03%), SPMG-7 (-1.12%) and EC-1 (-4.41%). Glaciers around the SPI, particularly south and east of the main 343 

icefield, shrank very rapidly after 2001 (Fig. 4e). From 2001-2011, the El Condor region had a reduction in 344 

glacier area of -44%; SPMG of -26.8%, and Lago del Desierto of -6.5% (Table 4).  For these regions, rates of 345 

area loss are several orders of magnitude faster after 2001 (-2.37% a-1 for SPMG) compared with 1870-1986. 346 

However, the mountains of El Condor are heavily snow-covered, which may induce an over-estimation of 347 

glacierised area in 2001. There are also no trimlines or moraines mapped in this region, so extent during the 348 

"LIA" extents are not possible to estimate.  349 

Between 52°S and 54°S there is more variation, with Gran Campo Nevado mountain glaciers shrinking fastest 350 

after 2001, but with the Monte Burney ice cap and Isla Riesco glaciers shrinking fastest from 1986-2001 (Fig. 351 

4e). From 2001-2011, only two mountain glaciers around GCN shrank, with the remaining glaciers remaining 352 

stationary (Fig. 5). In Isla Riesco from 2001-2011, one glacier advanced (RI-1; +0.26% a-1) and only one had 353 

significant shrinkage (RI-4, at -1.33% a-1).  354 
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Mountain glaciers south of 54°S (Tierra del Fuego, Monte Sarmiento, Cordillera Darwin mountain glaciers 355 

and Isla Hoste) generally shrank fastest from 1986-2001, and show little change after 2001 (cf. Figs. 4e, 5). 356 

 357 

3.2.3 Northern Patagonian Icefield (NPI) 358 

Almost all glaciers (98.1%) in the NPI shrank from 1870-2011. Length fluctuations were measured for 38 NPI 359 

glaciers, and showed a general trend of increasing recession (Fig. 6b). Several glaciers were stable from 360 

1986-2001, but receded from 2001-2011 (e.g., NPI-21 [Pared Norte; -112 m a-1], NPI-20 [Pared Sur; -189 m a-361 
1] and NPI-2 [-112 m a-1]). Still others receded at steadily increasing rates (e.g., NPI-10 [Strindberg] and NPI-362 

14). NPI-7 (San Rafael; lagoonal) receded by -9.6 km [-83 m a-1] between 1870 and 1986, and by a further -363 

1.2 km by 1990, whereupon the margin stabilised.  364 

The fastest rates of shrinkage east of the NPI ice divide were for land-terminating glaciers. West of the ice 365 

divide, the fastest rates of shrinkage were observed in calving glaciers, which also occupy a larger area (Fig. 366 

4a). The large areal losses of the NPI from 1870-2011 were dominated by a small number of large glaciers. 367 

These include NPI-7 (-11.5%; San Rafael), NPI-8 (San Quintin; -14.6%) and NPI-25 (Colonia; -12.9%) (cf. Fig. 2). 368 

Glaciers east of the ice divide shrank by -2.2% from 2001-2011 (Table 3), compared with -2.4% for glaciers of 369 

the west. Four glaciers had small, short-term advances (NPI-14 from 1975-1986; NPI-32 from 1986-2001; 370 

NPI-18 and NPI-86 from 2001-2011).  371 

Overall, rates of area loss from 2001-2011 (-0.23% a-1) were over twice that of 1870-1986 (-0.09% a-1) (Fig. 372 

4e), with similar rates both west and east of the ice divide (Table 3). However, more glaciers shrank fastest 373 

from 1975-1986 than from 2001-2011 (Table 4). The rapid areal shrinkage from 2001-2011 of NPI-1 (Grosse; 374 

-1.69%  a-1), NPI-6 (Gualas; -0.97% a-1), NPI-16 (HPN-4; -0.26% a-1) and NPI-25 (Colonia; -0.15% a-1) dominates 375 

the trend observed in Figure 4e, but in general, the small glaciers fringing the icefield shrank fastest (Figs. 4, 376 

5, 6a).  The period of most rapid shrinkage of the other glaciers is variable, from 1870-1986 (e.g., NPI-7; San 377 

Rafael; -0.09% a-1), to 1975-1986 (e.g., NPI-8; San Quintin; -0.23% a-1), 1986-2001 (e.g., NPI-14 [-0.23% a-1], 378 

NPI-12 [Benito; -0.33% a-1], and NPI-5 [Reicher; -0.77% a-1]) (Figs. 2b; 2c; 7a). It is also clear from the scatter 379 

plot in Fig. 5 that calving glaciers are currently shrinking less rapidly (as a percentage of their area per 380 

annum) than land-terminating glaciers. Indeed, Fig. 4a shows that land-terminating glaciers have relative 381 

rates of area loss much higher than calving glaciers, both east and west of the ice divide, with land-382 

terminating glaciers east of the ice divide shrinking at -0.27% a-1 from 2001-2011, compared with -0.11% a-1 383 

for calving glaciers. However, it should be noted that these large calving glaciers have lost the most area in 384 

absolute terms, and are still shrinking rapidly. 385 

 386 
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3.2.4 Southern Patagonian Icefield (SPI) 387 

For the SPI, 96.5% of the glaciers shrank from 1870-2011, with the majority (59 out of 154) shrinking fastest 388 

from 2001-2011. The length fluctuations of 157 glaciers show large but variable linear recession from their 389 

"LIA" maxima (e.g., SPI-14 [O’Higgins; -16.0 km by 2011; lacustrine] and SPI-1 [Jorge Montt; -10.0 km by 2001 390 

followed by a small advance of 0.5 km 2001-2011]). Several large glaciers shrank particularly fast from 2001-391 

2011 (e.g., SPI-142 [Occidental; -216 m a-1], SPI-179 [-76 m a-1], SPI-22 [-157 m a-1]) (Fig. 6d).  392 

The largest relative area changes (1870-2011) were generally from the smaller outlet glaciers, such as SPI-26 393 

(-82.4%), SPI-177 (-85.8%) and SPI-169 (-93.2%). The larger outlet glaciers have also lost surface area from 394 

1870-2011, for example, from SPI-1 (Jorge Montt ; -12.6%), SPI-14 (O'Higgins; -10.9%), SPI-31 (Upsala; -395 

19.7%) and SPI-142 (Occidental; -11.5%). Three glaciers advanced from 1986-2001 (SPI-137 (+2.1 km2); SPI-396 

198 (+2.4 km2) and SPI-77 (+0.3 km2)) and three from 2001-2011 (SPI-113 (+4.9 km2); SPI-109 (+0.6 km2) and 397 

SPI-45 (+4.9 km2)); in the case of SPI-113, the advance from 2001-2011 was beyond 1870 limits. However, it 398 

is difficult to determine the 1870 limit for fjord-type glaciers without moraines, such as SPI-113.  399 

Overall, for the SPI, rates of area change were more than twice as rapid from 2001-2011 (-0.15% a-1) than 400 

from 1870-1986 (-0.07% a-1; Fig. 4e), but this result is again dominated by a small number of outlet glaciers 401 

(Fig. 5, 6b), particularly small ones south of the main icefield, such as SPI-70 (-1.22% a-1);  SPI-149 (-6.37% a-1) 402 

and SPI-199 (-1.95% a-1) (Fig. 6, 7b). Although some calving outlet glaciers are shrinking rapidly, for example, 403 

SPI-141 (-0.22% a-1); SPI-145 (-1.02% a-1) and SPI-31 (Upsala; -19.7% a-1), in general, small, land-terminating 404 

glaciers are experiencing the fastest annual rates of shrinkage (Figs. 5, 6). Across the SPI, glaciers on the east 405 

of the ice divide had slightly faster annual rates of shrinkage (Table 3), with land-terminating glaciers 406 

shrinking at rates of -0.29% a-1 from 2001-2011, compared with -0.08% a-1 for calving glaciers west of the ice 407 

divide (Fig. 4a). Figure 7b illustrates the highly variable but rapid area loss in small glaciers around the fringes 408 

of the SPI, with particular large glaciers also losing surface area. Rates of area loss are increasing around the 409 

SPI, with most glaciers experiencing their fastest rates of area loss from 2001-2011 (Fig. 8b; Table 4). For 410 

most of the remaining glaciers, the period of fastest area loss was 1986-2001.  411 

 412 

3.2.5 Gran Campo Nevado (GCN) 413 

Around the GCN, 19 glaciers (36.5%) did not exhibit any change, 33 (63.5%) shrank and none advanced from 414 

1870-2011. The 31 glaciers of GCN for which length was measured show, in general, recession, with various 415 

glaciers receding at different rates during each time period (Fig. 6e). While the mountain glaciers around 416 

GCN shrank rapidly after 2001, rates of area loss for land-terminating outlet glaciers have remained steady 417 

(Fig. 4e). Although most glaciers shrank from their "LIA" maxima, the fastest annual rates of shrinkage were 418 

observed in small glaciers (Fig. 5; 6c). In total, 11 glaciers shrank fastest from 1986-2001, and 10 from 2001-419 
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2011 (Table 4). Annual rates of shrinkage were similar from 1986 to 2011 (-0.23% a-1; Table 4; Fig. 4e; 8c). 420 

The glaciers losing area fastest from 2001-2011 were GCN-03 (-2.22% a-1), GCN-27 (-1.17% a-1) and GCN-51 (-421 

5.53% a-1). The large outlet glaciers had smaller rates of relative area loss; for example; GCN-26 [-0.53% a-1] 422 

and GCN-42 [-0.37% a-1] (Fig. 7c).  423 

 424 

3.2.6 Cordillera Darwin 425 

The numbers of glaciers shrinking in Cordillera Darwin fell from 77.5% from 1870-1986, 39.5% from 1986-426 

2001, to 31.8% from 2001-2011, with many glaciers showing no change from 2001-2011. Glacier length was 427 

measured for 107 glaciers in the Cordillera Darwin, with most receding until 1986, and with little frontal 428 

change after this. Some calving glaciers had small advances between 1986 and 2011, for example, CD-80 429 

(+1.3 km from 2001-2011; further than its 1986 limit). A lack of moraines makes the 1870 limit difficult to 430 

map.  In contrast, CD-8, also marine terminating, receded rapidly from 1986-2001 (-756 m a-1), after which 431 

recession slowed (-202 m a-1 from 2001-2011) (Fig. 6f).  432 

Many glaciers had little or no shrinkage from 1870-2011, and the glaciers with the fastest annual rates were 433 

small and land-terminating (Figs. 5, 7c). Outlet glaciers of Cordillera Darwin had their fastest rates of area 434 

loss from 1986-2001 (Fig. 4e, 8d). Overall, rates of area loss were more than twice as fast from 1986-2001 (-435 

0.26% a-1) than from 1870-1986 (-0.08% a-1), but they fell to -0.12% a-1 after 2001 (Table 4; Fig. 4e). 29 436 

glaciers shrank fastest from 1986-2001, compared with 16 from 2001-2011 (Table 4).  437 

The outlet glaciers of the nearby Monte Sarmiento and Isla Hoste ice caps show similar patterns, frequently 438 

with low rates of shrinkage (Figs. 5, 7d). Overall, for both ice caps, the period of fastest area loss was from 439 

1986-2001, with many glaciers having no observable change after 2001 (Figs. 5, 8d; Table 4).  It is again the 440 

small, land-terminating glaciers that are shrinking fastest (cf. Fig. 5).  441 

 442 

4. DISCUSSION 443 

4.1 Comparison with previous inventories 444 

Our calculated area for NPI of 3976 km2 in 2011 and 4070 km2 in 2001 is similar to the previous estimate of a 445 

total ice area of 3953 km2 in 2001 made by Rivera and others (2007). Our calculated area for the 446 

contemporary SPI of 13,219 km2 in 2011 also fits with the previous estimate for this icefield of 13,000 km2 447 

(Aniya, 1999). For GCN, our calculated area of 243 km2 in 2001 fits well with the calculated area of Schneider 448 

and others (2007) of 252.6 km2 in 2002. Differences may be because we included more of the surrounding 449 

glaciers in our study. 450 
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Our data lend independent support to the assertion of Rignot and others (2003) and Glasser and others 451 

(2011) that the Patagonian icefields are shrinking at an increasing rate. Our calculated rates of area loss from 452 

the NPI suggest that there was an increase in annual area loss rates from -0.09% a-1 in the 116 years between 453 

AD 1870 and 1986, to -0.12% a-1 in the 15 years between 1986 and 2001, and -0.23% a-1 from 2001-2011 454 

(Table 4). 455 

 456 

4.2 Calving dynamics and asynchronous glacier change 457 

The acceleration in relative rates of area loss from 2001-2011 for the NPI was dominated by the smaller 458 

land-terminating glaciers (cf. Figs. 4e, 5). The shrinkage of marine- and lacustrine-terminating glaciers is 459 

highly variable, and reflects a dynamic and non-linear response to multiple factors. For example, NPI-1, NPI-460 

6, NPI-16 and NPI-25 terminate in freshwater lakes, and had particularly rapid rates of area loss. NPI-1, 461 

however, ablates not by calving but by rapid thinning and surface melting, with large supraglacial ponds 462 

(Masamu Aniya, Pers. Comm, May 2012). The fragmented snout of NPI-16 is difficult to define, which may 463 

induce an error in assessing the shrinkage. Supraglacial debris cover insulates the glacier from solar radiation 464 

and so affects ablation rates (Scherler and others, 2011). For example, slow shrinkage of NPI-1 (Glaciar 465 

Grosse) prior to 2001 was attributed to insulation by thick debris cover (Aniya, 2001). The floating terminus 466 

of NPI-6 (Glaciar Gualas) advanced from 1996-1999, possibly as a result of stretching (Aniya, 2001). This 467 

stretching was followed by more rapid shrinkage from 2001-2011, driven by rapid calving induced by large, 468 

deep, water-filled crevasses.  469 

NPI-7 (Glaciar San Rafael), NPI-8 (Glaciar San Quintin) and NPI-5 (Glaciar Reicher) (Figs. 2, 7, 8) shrank most 470 

rapidly from 1870-1986, 1986-2001 and 1986-2001 respectively. These lacustrine-terminating glaciers are 471 

the largest of the NPI and have widely different accumulation area ratios. They have shown repeated still 472 

stands, advances and retreats since the 1920s (Winchester and Harrison, 1996; Aniya 2007, Araneda and 473 

others, 2007; Lopez and others, 2010). Glaciar San Rafael currently has a high velocity and is thinning 474 

extensively (Willis and others, 2011). Steady thinning of the glacier surface could induce periodic floatation 475 

and rapid retreat, followed by grounding and stabilisation (Aniya, 2007). An advance reported from 1992 to 476 

1999 for Glaciar San Rafael (Aniya, 2001) explains the reduced area loss rates observed from 1986-2001. 477 

Glaciar San Quintin terminated on land until 1991, when shrinkage led to the formation of a lake in the 478 

former glacier basin, into which it now calves (Rivera and others 2007; Willis and others, 2011). Large-scale 479 

shrinkage was observed in Glaciar Reicher from 1996-1999 (Aniya, 2001), before the glacier appeared to 480 

reach a new equilibrium. NPI-12 (Glaciar Benito) and NPI-13 (HPN-1) are both thinning rapidly and 481 

accelerated in speed between 2007-2011 (Willis and others, 2011). Neither glacier has shown significant 482 

shrinkage in this period.  483 
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For the SPI, the acceleration of shrinkage post-2001 is dominated by smaller fringing glaciers (Figs. 4e, 5, 7b, 484 

8b). However, the majority of the large outlet glaciers draining the SPI calve into freshwater lakes or fjords, 485 

with highly variable behaviour in each catchment basin (Aniya, 1995; Fig. 8d). Dynamical changes in the 486 

calving glaciers of the SPI are discussed below.  487 

SPI-31 (Glaciar Upsala) calves into a lake on the eastern SPI and shrank at -0.2% a-1 from 2001-2011. Previous 488 

studies observed thinning (-33 m between 1990 and 1993; Naruse and Skvarca, 2000) and rapid area loss, 489 

and argued that this was caused by variations in bed topography, with bedrock rises in the lake controlling 490 

frontal fluctuations (Naruse and others, 1997; Naruse and Skvarca, 2000). SPI-137 (Pio XI) is currently 491 

shrinking at a rate of -0.04% a-1. From 1986-2001, Pio XI advanced at a rate of +0.01% a-1, with a documented 492 

advance of up to +10 km from 1945-1986 (Rivera and Cassassa, 1999), with thickening  by an average of 493 

+44.1 m from 1975-1995.  494 

SPI-16 (Glaciar Chico) is shrinking slower than many of the other large tidewater glaciers of the SPI (at -0.18% 495 

a-1), which has been attributed to limited calving activity (Rivera and others, 2005). However, this glacier is 496 

thinning at rates comparable to other glaciers of the SPI, and the rate of area loss has accelerated in each 497 

successive period. SPI-14 (Glaciar O’Higgins) shrank most rapidly from 1870-1986 (-0.09% a-1), followed by 498 

slower shrinkage from 1986-2001 (-0.02% a-1) and from 2001-2011 (-0.01% a-1). This is largely due to a rapid 499 

retreat of -4.7 km from 1973-1976 (Lopez and others, 2010).  500 

SPI-48 (Glaciar Perito Moreno), on the eastern side of the ice divide, calves into Lago Argentino (cf. Fig. 8b), 501 

with only limited area loss (-0.1%) after 2001. This glacier is well known for periodic advances and retreats, 502 

related to the geometry of its calving front. The glacier periodically advances to Península Magallanes, 503 

whereupon it dams the lake. Rising lake levels lead to increased pressure and eventual ice-dam and lake-504 

drainage events through the ice front (Stueffer and others, 2007). 505 

Therefore, across the NPI and SPI, atmospheric temperature changes have led to thinning, resulting in 506 

calving glaciers reaching floatation point and becoming unstable (cf. Rivera and Cassassa, 2004). Stretching 507 

may cause short-lived advances, but encourages thinning and enhanced calving, resulting eventually in 508 

retreat. Accelerated retreat may occur after shrinkage from a pinning point (Holmlund and Fuenzalida, 1995; 509 

Warren and Aniya, 1999). Alternatively, a marine shoal may reduce water depths and encourage advance. 510 

The formation of a proglacial lake may accelerate glacier shrinkage, but if the glacier retreats beyond the 511 

lake margin, shrinkage may slow down. Therefore glacier shrinkage in calving glaciers is regulated by 512 

individual dynamics (calving status, equilibrium line altitude, channel geometry (Aniya and others, 1997)), 513 

with retreating, advancing and stable termini observed. 514 

 515 
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4.3 Temporal and regional variations 516 

From Figures 4 and 5, it is clear that latitude, size and terminal environment exert the greatest controls on 517 

glacier shrinkage, with the more northerly, smaller, land-terminating glaciers shrinking fastest. Calving 518 

glaciers are changing in area (relative rates of area loss) more slowly than small land-terminating glaciers, 519 

with internal calving dynamics controlling tidewater termini (cf. Fig. 4a). The spikes in SPMG and El Condor 520 

are caused by a small number of very rapidly shrinking glaciers, such as EC-1, SPMG-15 and SPMG-5. 521 

Worldwide, small glaciers and ice caps have reacted particularly dynamically to increased global 522 

temperatures (Oerlemans and Fortuin, 1992; Hock and others, 2009), and it has been proposed that the 523 

volume loss from mountain glaciers and ice caps like these is the main contributor to recent global sea level 524 

rise (Church and others, 2001; Braithwaite and Raper, 2002; Meier and others, 2007; Hock and others, 2009). 525 

On a regional scale, both the large icefields and small ice caps and glaciers north of 52°S have suffered 526 

accelerated shrinkage from 2001-2011 (Fig. 4e), presumably driven by the observed increases in upper 527 

tropospheric air temperatures since 1976, particularly at Puerto Montt (Giese and others, 2002; Villalba and 528 

others, 2003; Bown and Rivera 2007; Carrasco and others, 2008; Aravena and Luckman, 2009; Rivera and 529 

others, 2012). Glacierised summits in the Chilean Lake District lie within this altitudinal zone, and so this 530 

warming is likely to be a significant control on the mass balance of ice caps and glaciers between 41° and 531 

46°S in the far north of the study region, resulting in rapid shrinkage (i.e., Parque Nacional Vicente Rosales, 532 

Hornopieren, and Parques Nacional Corcovado and Quelat).  533 

There is a very slight east-west gradient in annual rates of area loss for the NPI and SPI (Table 3), in particular 534 

for the period 1870-1986, with the eastern glaciers shrinking fastest. This is illustrated further by Figure 6, 535 

where smaller glaciers on the east of the NPI and the nearby glaciers exhibit the fastest rates of relative 536 

shrinkage. We do not find strong evidence for shrinkage gradients in the outlet glaciers after 1986; this 537 

contrasts with other studies, where it has been argued that changes in precipitation are driving the 538 

accelerated shrinkage east of the ice divide (cf. Aravena and Luckman, 2009). However, it should be noted 539 

that absolute rates of area loss (km2 per annum) are higher on the west of the ice divide, due to the larger 540 

glacierised area here. Harrison and Winchester  (2000) also found little evidence of clear east-west gradients 541 

or patterns of behaviour for the NPI. It is possible that declining precipitation drove increased relative 542 

shrinkage rates east of the ice divide for the period 1870-1986, but after this period, more uniform shrinkage 543 

would suggest that they are more likely shrinking in response to thinning (cf. Rignot and others, 2003). 544 

Barcaza and others (2009) attribute faster absolute shrinkage (km2 per annum) on western glaciers to high 545 

transient snowlines and increased ablation areas; however, this does not take into account glacier size and 546 

so results are not comparable.  547 

Mountain glaciers and ice caps between 52°S and 54°S, including GCN and Isla Riesco, had relatively similar 548 

rates of area loss from 1986-2011 (Figs. 4e, 6). The observed shrinkage is in keeping with thinning observed 549 
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on outlet glaciers (Möller and others, 2007). Mountain glaciers south of 54°S and the Cordillera Darwin, Isla 550 

Hoste, Tierra del Fuego and Monte Sarmiento ice caps have had respectively less change since the “LIA”, 551 

which agrees with the findings of other studies (e.g., Kuylenstierna and others, 1996). These glaciers shrank 552 

fastest from 1986-2001 (Fig. 4e), during a period of rapid warming south of 46°S (Villalba and others, 2003).  553 

 554 

5. CONCLUSIONS 555 

We mapped glacier area and length for 640 Patagonian glaciers in 1870, and 626 glaciers for 1986, 2001 and 556 

2011 (the remainder having entirely disappeared). The region is characterised by four large icefields and 557 

numerous small glaciers. These data provide the longest term estimates (141 years) for regional glacier 558 

shrinkage of which we are aware. During this time, modelling and instrumented records show increases in 559 

atmospheric temperatures and reductions in precipitation. Almost all the glaciers shrank from their “LIA” 560 

limit. However, it was difficult to map this limit for some glaciers, and the area lost is a minimum estimate.  561 

For the first time, we have compared glacier length and area changes following the end of the “LIA” to 562 

change in recent decades, and been able to compare rates of shrinkage both between icefields, but also for 563 

small isolated glaciers and ice caps across the study region, from 41° to 56°S. 564 

Since 1870, 90.2% of glaciers have shown continued and accelerating shrinkage. Small glaciers (> 5 km2), 565 

mountain glaciers and ice caps around icefields and outlet glaciers in particular are shrinking very rapidly. 566 

We have demonstrated that mean glacier shrinkage is now faster than it was at the end of the "LIA", with 567 

the NPI and SPI shrinking at approximately twice the rate from 2001-2011 as from 1870-1986. However it 568 

should be noted that during the 116 years between observations, glaciers may have shrunk at rates faster or 569 

slower than the mean, with periods of stagnation or advance not accounted for during this period in our 570 

study. 571 

The detailed analysis undertaken allows regional trends to be observed. Size, latitude and terminal 572 

environment exert the largest controls on glacier shrinkage, with smaller (> 5 km2), land-terminating, 573 

northerly glaciers generally shrinking faster. For mountain glaciers north of 52°S and the NPI and the SPI, the 574 

period of fastest shrinkage was 2001-2011. Glaciers in the Chilean Lake District and ice caps on volcanic 575 

mountains north of 46°S (which also have high mean elevations), and small mountain glaciers east of the SPI 576 

had the fastest area loss rates, with accelerating shrinkage after 2001. Annual rates of area loss for mountain 577 

glaciers and ice caps north of 52°S are faster than the outlet glaciers of the NPI and the SPI, which may be 578 

because they are smaller. 579 

There is considerable inter-catchment variability, with glaciers (particularly lacustrine and marine-580 

terminating glaciers) responding non-linearly to external forcings, and with shrinkage being regulating by 581 

calving processes and bedrock topography. Only two glaciers advanced beyond their “LIA” limits (which may 582 
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be because of mapping difficulties), but several glaciers advanced from 1986-2001 and 2001-2011. There is 583 

evidence for only very slight asynchronous shrinkage either side of the ice divide for the NPI and SPI. Calving 584 

outlet glaciers of the NPI and SPI are thinning and shrinking, but more slowly than land-terminating glaciers, 585 

and are controlled more by dynamic calving processes.  586 

For GCN, Isla Riesco ice caps and small (> 5 km2) mountain glaciers between 52°S and 54°S, rates of area loss 587 

accelerated after 1986 and then remained stable, with similar rates of area loss from 2001-2011, and with 588 

many glaciers having no observable change. Mountain glaciers around GCN shrank fastest from 2001-2011. 589 

For the Cordillera Darwin, Isla Hoste and Monte Sarmiento ice caps and glaciers south of 54°S, the period of 590 

fastest area loss was 1986-2001, with rates of area loss since declining, and increasing numbers of glaciers 591 

remained stable after 2001. There are clear differences in response between different regions, tidewater 592 

and land-terminating glaciers.  593 
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FIGURES 826 

Fig. 1. Location of the main icefields and glaciers in southern South America, showing abbreviations used in 827 

text and tables. The inset shows the wider location of the study area. Mean annual temperature data for the 828 

four temperature transects was obtained from Hijmans and others (2005) from a 1 km resolution raster 829 

dataset. Note decreasing temperatures over the icefields and in areas of high elevation.  Local variations 830 

reflect the influence of fjords, rivers and mountains. Precipitation data for stations where there were records 831 

longer than 10 years was obtained from the Dirección Meteorológica de Chile. Note the strong west to east 832 

precipitation gradients that exist across the study area and the low number of stations; precipitation values 833 

at each glacier are therefore uncertain. Lakes larger than 15 km2 are shown. 834 

Fig. 2. Examples of glacier change for parts of the NPI. Note the trimlines and mapped moraines, which were 835 

used to reconstruct maximum glacier extent during the “LIA” (AD 1870). Dashed black lines illustrate 836 

mapped glacier lengths for 2011; previous years follow the same flowline. (a) Overview of the NPI. (b) The 837 

snout of Glaciar San Rafael. (c) The snout of Glaciar San Quintin. In this case, because of well-documented 838 

evidence, the outermost moraines were used in the definition of the "LIA". (d) The northern NPI, including 839 

NPI-1 (Glaciar Grosse). (e) Landsat ETM+ image for 2001, with clearly defined trimlines and moraines 840 

demarking the "LIA" extent (dashed white outline). 841 

Fig. 3. (a) Glacierised area in 2011 and number of glaciers in each size class. (b) Glacier aspect for the main 842 

regions. (c) Number of glaciers in each ‘Primary Classification’ (from GLIMS protocols). (d) Numbers of 843 

glaciers in each category of the ‘Form’ attribute (from GLIMS protocols). (e) Mean altitude for glaciers across 844 

the study region. (f) Comparison between glacier area in 2001 and glacier maximum altitude, with regression 845 

line. Note logarithmic scale. (g) Relationship between glacier latitude and median altitude. (h) Relationship 846 

between glacier length and mean slope. Note logarithmic scale. 847 

Fig. 4. (a) Glacierised area and rates of area loss for the NPI and SPI, with calving and land-terminating 848 

glaciers shown separately. (b) Rate of change 2001-2011 against latitude, with glaciers divided into size 849 

classes. (c) Rate of glacier shrinkage 2001-2011 (per cent per annum) against glacier mean altitude, with 850 

glaciers divided into size classes. (d) Rate of glacier shrinkage 2001-2011 (per cent per annum) against glacier 851 

mean slope, with glaciers divided into size classes.(e) Rate of change (% a-1) for each region over three time 852 

periods. For El Condor and Southern Patagonian Mountain Glaciers (starred), the anomalously high 853 

shrinkage rates are given on the figure. See Table 2 for abbreviations.  854 

Fig. 5. Rate of annual change (% a-1) for 2001-2011 against 2011 glacier size for each region. SPMG refers to 855 

isolated glaciers surrounding the SPI. “National Parks” includes Parque Nacional Vicente Perez Rosales, 856 

Parque Nacional Corcovado and Parque Nacional Quelat. Grey circles denote calving glaciers; black squares 857 
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denote land-terminating glaciers. Solid horizontal line is nil change; shrinkage is below this line, and advance 858 

is above. Latitude of regional centre is shown.     859 

Fig. 6. Graphs showing cumulative length changes for selected glaciers for key icefields. The black line 860 

indicates a glacier that terminates on land. The grey line with short dashes indicates lacustrine-terminating 861 

glaciers. The thick black dashed line indicates marine-terminating (tidewater) glaciers. (a) Cerro Erasmo, (b) 862 

Northern Patagonian Icefield, (c) El Volcan, (d) Southern Patagonian Icefield, (e) Gran Campo Nevado, (f) 863 

Cordillera Darwin.  864 

Fig. 7. Map of key icefields showing overall glacier shrinkage, 1870-2011. Glacier extent in 1870 is shown in 865 

white. Lakes larger than 15 km2 are also shown. 866 

Fig.8. Map of key icefields, illustrating period of fastest shrinkage. Glaciers in dark grey shrank fastest 867 

between 2001-2011, mid-grey between 1986-2001, light-grey, 1975-1986 (data for the NPI only), and white, 868 

1870-1986. Glaciers with cross-hatching advanced and glaciers with stipples did not change. Glacier outlines 869 

are from 2011. Lakes larger than 15 km2 are also shown. 870 

 871 
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TABLES 872 

Table 1. Identification of glaciological and geomorphological features. After Glasser and others, 2005, 2008. 873 

Landform / 
feature 

Identification criteria Possible errors Glaciological significance
Morphology Colour/structure/texture

Contemporary 
glaciers 

Bare ice, snow and debris, surface structures 
(crevasses, longitudinal structures, folds, lakes 
and supraglacial streams). 

White to blue, smooth to rough surface. 
Abrupt transition. 

Overestimate where snout is covered in 
snow. Underestimate where snout is 
covered with debris. 

Foci for ice discharge

Ice divides Where ice divides have not previously been published (e.g. on GLIMS), they are 
identified through mapping high points, cols, topographic divides, glaciological 
structures such as crevasses and longitudinal surface structures (see Glasser and 
Scambos, 2008). Previously published ice divides are used for the NPI, SPI, Cordillera 
Darwin and Gran Campo Nevado (see GLIMS). 

Error is likely to be highest in flat summits. 
Interpreter error in ice divide mapping is 
likely to be the largest source of error. 
Limited by the lack of a DEM that is well 
resolved over the ice. 

No migration of ice divides is 
assumed for calculation of 
glacier change.  

Debris-
covered snout 

There may be arcuate or linear glaciological 
structures, ponds or bare ice visible. Where 
the glacier terminates in a lake, a fragmented 
floating margin may be visible. 

Dark brown. Sharp transition to 
vegetation. Surface is rough and pitted. 

Supraglacial debris cover on snout may be 
confused with lateral or terminal moraines; 
similar spectral properties to rock valley 
sides. 

Denotes glacier extent. May 
indicate downwasting. 

Trimlines Sub-horizontal lines on valley sides separating 
areas of vegetated and non-vegetated land or 
areas with different types of vegetation. 

Sharp altitudinal change in surface 
colour and texture as a result of 
changes in vegetation cover. 

Possible but unlikely; confusion with sub-
horizontal features as lake shorelines 

Former vertical extent of 
glaciers. 

Terminal 
moraines 

Prominent cross-valley single or multiple 
ridges with positive relief. Linear, curved, 
sinuous or saw-toothed plan. 

Shadowing due to change in relief and 
change in colour when moraines are 
vegetated. 

Possible, but unlikely, confusion with 
trimlines where moraines have a low 
relative height. 

Mark the former terminal 
position of outlet glaciers. 
Innermost moraine is taken as 
the “LIA” limit except where this 
has been published elsewhere. 

Cirques Large amphitheatre-shaped hollows on 
mountain flanks or incised into plateau edges. 
Sharp boundaries with surrounding terrain. 

Shadowing due to change in height or 
relative relief. Cirque floors may be 
different in colour to surrounding land. 

Possible, but unlikely, confusion with mass-
movement or landslip scars, particularly 
beneath volcanic plateau. 

Indicates presents of localised or 
restricted mountain glaciation. 

  874 
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Table 2. Summary of the glacier inventory, divided into regions (region codes given in brackets). Regions are ordered north to south. 875 

Region 
Region 
code 

Latitude Longitude
Largest 

glacier in 
2011 (km2)

Smallest 
glacier in 

2011 (km2)

Mean topographic 
data in 2000 

Number of 
glaciers 

Glacierised area (km2) 

Elevation 
(m a.s.l.) 

Slope
(degrees)

1870
1986-
2011

1870 1986 2001 2011

Parque Nacional Vicente Perez Rosales VPR -41.15 -71.88 65.8 65.8 2158 23 1 1 89.4 72.1 71.2 65.8
Hornopiren H -41.99 -72.19 32 1.4 1614 20 8 8 146.4 113.1 104.3 96.1
Parque Nacionale Corcovado PNC -43.49 -72.5 82 0.4 1492 23 16 16 453.4 330.4 311.7 284.1
Parque Nacional Queulat PNQ -44.40 -72.42 101.7 1.5 1446 18 5 5 265.4 220.9 213.4 212.4
Cerro Hudson CH -46.08 -72.93 22.3 0.9 1405 18 10 9 268.6 232.0 229.7 221.9
Cerro Erasmo CE -46.16 -73.2 40.4 2.9 1375 21 7 7 181.2 151.5 144.1 141.0
Northern Patagonian Icefield NPI -47.01 -73.5 781.7 1.0 1340 20 44 44 4635.7 4142.3 4070.2 3976.0
Northern Patagonian Mountain Glaciers NPMG -47.01 -73.50 27.6 0.2 1471 22 25 25 251.0 186.3 178.3 176.1
Cordon la Parvas CLP -46.59 -73.05 16.3 0.7 1483 27 16 16 125.8 93.7 88.4 85.6
Cordillera Lago General Carrera CLGC -46.83 -73.07 33.0 1.4 1671 28 18 18 189.8 138.6 133.2 131.6
El Volcan EV -47.59 -72.61 48.2 0.7 1521 21 40 36 511.8 387.1 361.9 354.3
Monte San Lorenzo MSL -47.59 -72.37 48.7 2.6 1948 27 11 10 207.8 150.3 145.4 142.9
Lago del Desierto LDP -48.83 -73.20 192.4 7.1 1579 23 7 6 363.7 294.2 290.3 271.3
El Condor EC -49.11 -72.80 74.1 3.0 1403 22 2 2 137.8 137.8 137.8 77.1
Cerro Paine Grande CPG -50.90 -73.20 22.2 1.5 1313 26 13 13 96.4 77.9 76.5 76.4
Southern Patagonian Icefield SPI -49.74 -73.47 1343.9 0.2 1191 21 161 154 14862.1 13657.3 13424.0 13218.8
Southern Patagonian Mountain Glaciers SPMG -49.74 -73.47 30.4 0.5 956 26 25 25 495.4 125.1 124.7 95.2
Torres del Paine TDP -51.42 -73.14 11 0.5 1093 25 5 5 70.0 28.0 27.0 26.8
Monte Burney MB -52.32 -73.36 15.5 15.5 883 27 1 1 22.4 16.3 15.7 15.5
Gran Campo Nevado Mountain Glaciers GCMG -52.95 -72.99 7.2 0.1 801 22 17 17 29.4 27.0 26.4 25.3
Gran Campo Nevado GCN -52.95 -72.99 30.9 0.7 836 23 35 35 263.2 251.1 242.6 236.9
Isla Riesco RI -52.95 -72.58 35.1 7.4 858 17 4 4 120.4 110.4 107.0 106.6
Estrecho de Magallanes M -53.79 -72.58 180.5 180.5 717 14 1 1 187.9 183.4 182.1 180.5
Tierra del Fuego TDF -54.43 -70.81 76.2 3.8 748 17 4 4 173.5 168.2 164.5 163.9
Monte Sarmiento MS -54.57 -70.47 25 1.4 867 20 17 17 199.3 186.6 183.1 183.1
Cordillera Darwin CD -54.66 -69.72 160.1 0.5 938 22 94 94 2138.1 1930.2 1855.2 1832.7
Cordillera Darwin Mountain Glaciers CDMG -54.66 -69.72 10.4 0.4 801 21 30 30 119.3 102.8 99.0 98.9
Isla Hoste IH -55.22 -69.6 93.3 0.5 727 19 18 18 243.5 228.8 221.5 220.8
Entire region All -48.58 -73.45 1343.9 0.14 1172 22 640 626 26848.8 23743.1 23229.0 22717.5
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 876 

Table 3. Glacier change for the NPI and SPI. 877 

 
Ice divide 

Number of 
glaciers 

Glacierised area 
2011 (km2) 

% Change 
1870-1986 

% Change 
1986-2001 

% Change 
2001-2011 

Rate of change 
(% a-1) 1870-1986 

Rate of change 
(% a-1) 1986-2001 

Rate of change 
(% a-1) 2001-2011 

NPI West  19 2962.5 -8.8 -1.9 -2.4 -0.08% -0.12% -0.24%
NPI East  25 1013.5 -15.5 -1.4 -2.2 -0.13% -0.09% -0.22%
SPI West  73 8417.4 -5.9 -1.9 -1.4 -0.05% -0.13% -0.14%
SPI East  81 4801.4 -11.0 -1.3 -1.8 -0.09% -0.09% -0.18%

 878 

  879 
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Table 4.  Area change, percentage change and annual rates of change in each region and time period. "N" refers to the number of glaciers shrinking fastest 880 
in this period. *Note for the NPI, that 20 glaciers shrank fastest between 1975-1986. 881 

1870-2011 1870-1986 1986-2001 2001-2011

 
Area 

change 
(km2) 

% Area 
change 

Rate of 
change 

Rate of 
change 

Area 
change 
(km2) 

% Area 
change 

Rate of 
change 

Rate of 
change N. 

Area 
change 
(km2) 

% Area 
change 

Rate of 
change 

Rate of 
change N. 

Area 
change 
(km2) 

% Area 
change 

Rate of 
change 

Rate of 
change N. 

(km2 a-1) (% a-1) (km2 a-1) (% a-1) (km2 a-1) (% a-1) (km2 a-1) (% a-1) 
VPR -23.6 -26.3% -0.1 -0.19% -17.3 -19.3% -0.1 -0.17% 0 -1.0 -1.3% -0.1 -0.09% 0 -5.3 -7.5% -0.5 -0.75% 1 
H -50.3 -34.3% -0.3 -0.24% -33.3 -22.7% -0.3 -0.20% 0 -8.8 -7.8% -0.6 -0.52% 1 -8.1 -7.8% -0.8 -0.78% 7 
PNC -169.3 -37.3% -1.1 -0.26% -123.0 -27.1% -1.1 -0.23% 1 -18.8 -5.7% -1.3 -0.38% 3 -27.5 -8.8% -2.8 -0.88% 12 
PNQ -53.0 -20.0% -0.4 -0.14% -44.5 -16.8% -0.4 -0.14% 1 -7.4 -3.4% -0.5 -0.22% 4 -1.1 -0.5% -0.1 -0.05% 0 
CH -46.7 -17.4% -0.3 -0.12% -36.5 -13.6% -0.3 -0.12% 1 -2.4 -1.0% -0.2 -0.07% 2 -7.8 -3.4% -0.8 -0.34% 5 
CE -40.2 -22.2% -0.3 -0.16% -29.7 -16.4% -0.3 -0.14% 2 -7.3 -4.8% -0.5 -0.32% 3 -3.2 -2.2% -0.3 -0.22% 2 
NPI* -659.7 -14.2% -4.3 -0.10% -493.4 -10.6% -4.3 -0.09% 3 -72.1 -1.7% -4.8 -0.12% 6 -94.1 -2.3% -9.4 -0.23% 14 
NPMG -75.0 -29.9% -0.6 -0.21% -64.8 -25.8% -0.6 -0.22% 13 -8.0 -4.3% -0.5 -0.29% 8 -2.2 -1.2% -0.2 -0.12% 4 
CLP -40.2 -31.9% -0.3 -0.23% -32.1 -25.6% -0.3 -0.22% 4 -5.3 -5.6% -0.4 -0.37% 6 -2.8 -3.1% -0.3 -0.31% 5 
CLGC -58.2 -30.7% -0.4 -0.22% -51.2 -27.0% -0.4 -0.23% 8 -5.4 -3.9% -0.4 -0.26% 7 -1.6 -1.2% -0.2 -0.12% 3 
EV -157.5 -30.8% -1.1 -0.22% -124.7 -24.4% -1.1 -0.21% 12 -25.1 -6.5% -1.7 -0.43% 18 -7.7 -2.1% -0.8 -0.21% 5 
MSL -64.9 -31.2% -0.5 -0.22% -57.5 -27.7% -0.5 -0.24% 3 -4.9 -3.2% -0.3 -0.22% 5 -2.6 -1.8% -0.3 -0.18% 2 
LDP -92.4 -25.4% -0.6 -0.18% -69.5 -19.1% -0.6 -0.16% 0 -3.9 -1.3% -0.3 -0.09% 2 -19.0 -6.5% -1.9 -0.65% 4 
EC -60.7 -44.1% 0.0 -0.31% 0.0 0.0% 0.0 0.00% 0 0.0 0.0% 0.0 0.00% 0 -60.7 -44.1% -6.1 -4.41% 2 
CPG -20.0 -20.7% -0.2 -0.15% -18.4 -19.1% -0.2 -0.17% 4 -1.5 -1.9% -0.1 -0.13% 4 -0.1 -0.1% 0.0 -0.01% 0 
SPI -1643.3 -11.1% -10.4 -0.08% -1204.8 -8.1% -10.4 -0.07% 51 -233.3 -1.7% -15.6 -0.11% 39 -205.2 -1.5% -20.5 -0.15% 59 
SPMG -400.3 -80.8% -3.2 -0.57% -370.3 -74.7% -3.2 -0.64% 20 -0.5 -0.4% 0.0 -0.03% 0 -29.5 -23.7% -2.9 -2.37% 4 
TDP -43.2 -61.7% -0.4 -0.44% -42.0 -60.0% -0.4 -0.52% 3 -0.9 -3.3% -0.1 -0.22% 1 -0.3 -1.0% 0.0 -0.10% 1 
MB -7.0 -31.1% -0.1 -0.22% -6.2 -27.5% -0.1 -0.24% 0 -0.6 -3.6% 0.0 -0.24% 1 -0.2 -1.4% 0.0 -0.14% 0 
GCMG -4.1 -13.9% 0.0 -0.10% -2.3 -8.0% 0.0 -0.07% 2 -0.7 -2.5% 0.0 -0.17% 3 -1.1 -4.0% -0.1 -0.40% 4 
GCN -26.3 -10.0% -0.1 -0.07% -12.1 -4.6% -0.1 -0.04% 2 -8.5 -3.4% -0.6 -0.23% 11 -5.6 -2.3% -0.6 -0.23% 10 
RI -13.9 -11.5% -0.1 -0.08% -10.1 -8.4% -0.1 -0.07% 0 -3.4 -3.1% -0.2 -0.21% 3 -0.4 -0.4% 0.0 -0.04% 1 
M -7.5 -4.0% 0.0 -0.03% -4.6 -2.4% 0.0 -0.02% 0 -1.3 -0.7% -0.1 -0.05% 0 -1.6 -0.9% -0.2 -0.09% 1 
TDF -9.6 -5.5% 0.0 -0.04% -5.3 -3.1% 0.0 -0.03% 1 -3.7 -2.2% -0.2 -0.15% 3 -0.6 -0.4% -0.1 -0.04% 0 
MS -16.2 -8.1% -0.1 -0.06% -12.7 -6.4% -0.1 -0.05% 5 -3.5 -1.9% -0.2 -0.12% 8 0.0 0.0% 0.0 0.00% 2 
CD -305.5 -14.3% -1.8 -0.10% -207.9 -9.7% -1.8 -0.08% 33 -75.0 -3.9% -5.0 -0.26% 29 -22.5 -1.2% -2.3 -0.12% 16 
CDMG -20.4 -9.3% 0.0 -0.07% -16.5 -6.0% 0.0 -0.05% 7 -3.7 -3.2% 0.0 -0.21% 9 -0.1 -0.3% 0.0 -0.03% 0 
IH -22.7 -9.3% -0.1 -0.07% -14.7 -6.0% -0.1 -0.05% 4 -7.3 -3.2% -0.5 -0.21% 7 -0.7 -0.3% -0.1 -0.03% 1 
All -4131.3 -15.4% -26.8 -0.11% -3105.6 -11.6% -26.8 -0.10% 180 -514.1 -2.2% -34.3 -0.14% 183 -511.5 -2.2% -51.2 -0.22% 165 
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APPENDIX 882 

Appendix 1. List of images used in the inventory. All Landsat images are natural look with geographic 883 
reference. Landsat resolution 30 m; swath 185 km. Glacier extent in AD1870 was mapped from 16 Landsat 7 884 
ETM+ SLC-on images from 2000-2001. Glacier extents in 1975 from Aniya (1988) map for the NPI (provided 885 
as shapefiles by Masamu Aniya). Inventory in 1987 from 20 Landsat 4-5 images. Inventory in 2001 from 16 886 
Landsat 7 ETM+ SLC-on images. Inventory in 2011 from Landsat 7 ETM+ SLC-OFF images. 887 

Sensor Image ID Date Path/Row
Landsat 7 ETM+ SLC-OFF LE72320892011050EDC00 19/02/2011 232/89
Landsat 7 ETM+ SLC-OFF LE72320902011050EDC00 19/02/2011 232/90
Landsat 7 ETM+ SLC-OFF LE72320912011210COA00 29/07/2011 232/91
Landsat 7 ETM+ SLC-OFF LE72320922011050EDC00 19/02/2011 232/92
Landsat 7 ETM+ SLC-OFF LT52310932011299EDC01 26/10/2011 231/93
Landsat 7 ETM+ SLC-OFF LE72320932011050EDC00 19/02/2011 232/93
Landsat 7 ETM+ SLC-OFF LE72320942011050EDC00 19/02/2011 232/94
Landsat 7 ETM+ SLC-OFF LE72310942011347EDC00 13/12/2011 231/94
Landsat 7 ETM+ SLC-OFF LE72310952011299EDC00 26/10/2011 231/95
Landsat 7 ETM+ SLC-OFF LE72310952011347COA00 13/12/2011 231/95
Landsat 7 ETM+ SLC-OFF LE72320952011050EDC00 19/02/2011 231/95
Landsat 7 ETM+ SLC-OFF LE72320952011274ASN00 01/10/2011 232/95
Landsat 7 ETM+ SLC-OFF LE72310962010088EDC00 29/03/2010 231/96
Landsat 7 ETM+ SLC-OFF LE72300972007249ASN00 06/09/2007 230/97
Landsat 7 ETM+ SLC-OFF LE72290982010250EDC00 07/09/2010 229/98
Landsat 7 ETM+ SLC-OFF LE72270982011095EDC00 05/04/2011 227/98
Landsat 7 ETM+ SLC-OFF LE72270982010092EDC00 02/04/2010 227/98
Landsat 7 EMT+ SLC-on p226r099_7f2001214_z19_ps742 14/12/2001 226/99
Landsat 7 EMT+ SLC-on p227r0987f20020207_z19_pz742 07/02/2002 227/98
Landsat 7 EMT+ SLC-on p228r098_7f20010331_z19_ps742 31/03/2001 228/98
Landsat 7 EMT+ SLC-on p230r096_7f20010507_z18_ps742 07/05/2001 230/96
Landsat 7 EMT+ SLC-on LE72300972001216EDC00 04/08/2001 230/97
Landsat 7 EMT+ SLC-on p231r093_7f20010115_z18_ps742 15/01/2001 231/93
Landsat 7 EMT+ SLC-on p231r094_7f20011027_z18_ps742 27/10/2001 231/94
Landsat 7 EMT+ SLC-on p231r095_7f20011014_z18_ps742 14/10/2001 231/95
Landsat 7 EMT+ SLC-on p232r089_7f20011208_z18_ps742 08/12/2001 232/89
Landsat 7 EMT+ SLC-on p232r090_7f20011208_z18_ps742 08/12/2001 232/90
Landsat 7 EMT+ SLC-on p232r091_7f20011208_z18_ps742 08/12/2001 232/91
Landsat 7 EMT+ SLC-on p232r092_7f20010311_z18_ps742 03/11/2001 232/92
Landsat 7 EMT+ SLC-on p232r093_7f20010311_z18_ps742 11/03/2001 232/93
Landsat 7 EMT+ SLC-on p233r089_7f20011129_z18_ps742 29/11/2001 233/89
Landsat 7 EMT+ SLC-on p233r090_7f20010403_z18_ps742 03/04/2001 233/90
Landsat 7 EMT+ SLC-on P233r092_7f20000822_z18_ps74 22/08/2000 233/92
Landsat 4-5 TM LT52320891986053AAA03 22/02/1989 232/89
Landsat 4-5 TM LT52320901986229AAA08 17/08/1986 232/90
Landsat 4-5 TM LT52320911986229AAA08 17/08/1986 232/91
Landsat 4-5 TM LT52310911986270AAA04 27/09/1986 231/91
Landsat 4-5 TM LT52310911986270AAA04 27/09/1986 231/91
Landsat 4-5 TM LT52320911986117XXX02 27/14/1986 232/91
Landsat 4-5 TM LT52320921987040XXX02 15/09/1987 232/92
Landsat 4-5 TM LT52310931986270AAA03 27/09/1986 231/93
Landsat 4-5 TM LT523209311987040XXX02 09/02/1987 232/93
Landsat 4-5 TM LT52310941986270AAA11 27/09/1986 231/94
Landsat 4-5 TM LT52320941986277XXX02 04/10/1986 232/94
Landsat 4-5 TM LT52310951985027AAA03 27/01/1985 231/95
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Landsat 4-5 TM LT52310951986270AAA02 27/09/1986 231/95
Landsat 4-5 TM LT52310961986014XXX04 14/01/1986 231/96
Landsat 4-5 TM LT52310961986014XXX04 14/01/1986 231/96
Landsat 4-5 TM  LT52300971986279XXX03 06/10/1986 230/97
Landsat 4-5 TM LT52280981986057XXX02 26/02/1986 228/98
Landsat 4-5 TM LT52270981986258XXX03 15/06/1986 227/98
Landsat 4-5 TM LT52270981985143AAA02 23/05/1985 227/98
Landsat 4-5 TM LT52280981986057XXX02 26/02/1986 228/98

 888 

Appendix 2. List of NASA SRTM DEM V4.1 tiles downloaded for this study from http://srtm.csi.cgiar.org. 889 
These images have a swath of 225 km and a resolution of 90 m.  All images date from February 2000. 890 
Path/Row 
srtm_21-22 
srtm_21_23 
srtm_22_21 
srtm_22_22 
srtm_22_23 
srtm_22_24 
srtm_23_21 
srtm_23_22 
srtm_23_23 
srtm_23_24 
srtm_24_23 
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